1 /*
2  * Copyright (c) 2018-2022, Arm Limited. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <common/debug.h>
8 #include <drivers/arm/css/css_mhu_doorbell.h>
9 #include <drivers/arm/css/scmi.h>
10 #include <drivers/arm/css/sds.h>
11 #include <drivers/arm/gic600_multichip.h>
12 #include <lib/mmio.h>
13 #include <lib/utils.h>
14 #include <plat/arm/common/plat_arm.h>
15 
16 #include "n1sdp_def.h"
17 #include <platform_def.h>
18 
19 /*
20  * Platform information structure stored in SDS.
21  * This structure holds information about platform's DDR
22  * size which will be used to zero out the memory before
23  * enabling the ECC capability as well as information
24  * about multichip setup
25  * 	- multichip mode
26  * 	- secondary_count
27  * 	- Local DDR size in GB, DDR memory in master board
28  * 	- Remote DDR size in GB, DDR memory in secondary board
29  */
30 struct n1sdp_plat_info {
31 	bool multichip_mode;
32 	uint8_t secondary_count;
33 	uint8_t local_ddr_size;
34 	uint8_t remote_ddr_size;
35 } __packed;
36 
37 static scmi_channel_plat_info_t n1sdp_scmi_plat_info = {
38 	.scmi_mbx_mem = N1SDP_SCMI_PAYLOAD_BASE,
39 	.db_reg_addr = PLAT_CSS_MHU_BASE + CSS_SCMI_MHU_DB_REG_OFF,
40 	.db_preserve_mask = 0xfffffffe,
41 	.db_modify_mask = 0x1,
42 	.ring_doorbell = &mhu_ring_doorbell
43 };
44 
45 static struct gic600_multichip_data n1sdp_multichip_data __init = {
46 	.rt_owner_base = PLAT_ARM_GICD_BASE,
47 	.rt_owner = 0,
48 	.chip_count = 1,
49 	.chip_addrs = {
50 		PLAT_ARM_GICD_BASE >> 16,
51 		PLAT_ARM_GICD_BASE >> 16
52 	},
53 	.spi_ids = {
54 		{32, 479},
55 		{512, 959}
56 	}
57 };
58 
59 static uintptr_t n1sdp_multichip_gicr_frames[3] = {
60 	PLAT_ARM_GICR_BASE,
61 	PLAT_ARM_GICR_BASE + PLAT_ARM_REMOTE_CHIP_OFFSET,
62 	0
63 };
64 
plat_css_get_scmi_info(int channel_id)65 scmi_channel_plat_info_t *plat_css_get_scmi_info(int channel_id)
66 {
67 	return &n1sdp_scmi_plat_info;
68 }
69 
plat_arm_psci_override_pm_ops(plat_psci_ops_t * ops)70 const plat_psci_ops_t *plat_arm_psci_override_pm_ops(plat_psci_ops_t *ops)
71 {
72 	return css_scmi_override_pm_ops(ops);
73 }
74 
75 /*
76  * N1SDP platform supports RDIMMs with ECC capability. To use the ECC
77  * capability, the entire DDR memory space has to be zeroed out before
78  * enabling the ECC bits in DMC620. Zeroing out several gigabytes of
79  * memory from SCP is quite time consuming so the following function
80  * is added to zero out the DDR memory from application processor which is
81  * much faster compared to SCP. Local DDR memory is zeroed out during BL2
82  * stage. If remote chip is connected, it's DDR memory is zeroed out here.
83  */
84 
remote_dmc_ecc_setup(uint8_t remote_ddr_size)85 void remote_dmc_ecc_setup(uint8_t remote_ddr_size)
86 {
87 	uint64_t remote_dram2_size;
88 
89 	remote_dram2_size = (remote_ddr_size * 1024UL * 1024UL * 1024UL) -
90 				N1SDP_REMOTE_DRAM1_SIZE;
91 	/* multichip setup */
92 	INFO("Zeroing remote DDR memories\n");
93 	zero_normalmem((void *)N1SDP_REMOTE_DRAM1_BASE,
94 			N1SDP_REMOTE_DRAM1_SIZE);
95 	flush_dcache_range(N1SDP_REMOTE_DRAM1_BASE, N1SDP_REMOTE_DRAM1_SIZE);
96 	zero_normalmem((void *)N1SDP_REMOTE_DRAM2_BASE, remote_dram2_size);
97 	flush_dcache_range(N1SDP_REMOTE_DRAM2_BASE, remote_dram2_size);
98 
99 	INFO("Enabling ECC on remote DMCs\n");
100 	/* Set DMCs to CONFIG state before writing ERR0CTLR0 register */
101 	mmio_write_32(N1SDP_REMOTE_DMC0_MEMC_CMD_REG,
102 			N1SDP_DMC_MEMC_CMD_CONFIG);
103 	mmio_write_32(N1SDP_REMOTE_DMC1_MEMC_CMD_REG,
104 			N1SDP_DMC_MEMC_CMD_CONFIG);
105 
106 	/* Enable ECC in DMCs */
107 	mmio_setbits_32(N1SDP_REMOTE_DMC0_ERR0CTLR0_REG,
108 			N1SDP_DMC_ERR0CTLR0_ECC_EN);
109 	mmio_setbits_32(N1SDP_REMOTE_DMC1_ERR0CTLR0_REG,
110 			N1SDP_DMC_ERR0CTLR0_ECC_EN);
111 
112 	/* Set DMCs to READY state */
113 	mmio_write_32(N1SDP_REMOTE_DMC0_MEMC_CMD_REG, N1SDP_DMC_MEMC_CMD_READY);
114 	mmio_write_32(N1SDP_REMOTE_DMC1_MEMC_CMD_REG, N1SDP_DMC_MEMC_CMD_READY);
115 }
116 
n1sdp_bl31_multichip_setup(void)117 void n1sdp_bl31_multichip_setup(void)
118 {
119 	plat_arm_override_gicr_frames(n1sdp_multichip_gicr_frames);
120 	gic600_multichip_init(&n1sdp_multichip_data);
121 }
122 
bl31_platform_setup(void)123 void bl31_platform_setup(void)
124 {
125 	int ret;
126 	struct n1sdp_plat_info plat_info;
127 
128 	ret = sds_init();
129 	if (ret != SDS_OK) {
130 		ERROR("SDS initialization failed\n");
131 		panic();
132 	}
133 
134 	ret = sds_struct_read(N1SDP_SDS_PLATFORM_INFO_STRUCT_ID,
135 				N1SDP_SDS_PLATFORM_INFO_OFFSET,
136 				&plat_info,
137 				N1SDP_SDS_PLATFORM_INFO_SIZE,
138 				SDS_ACCESS_MODE_NON_CACHED);
139 	if (ret != SDS_OK) {
140 		ERROR("Error getting platform info from SDS\n");
141 		panic();
142 	}
143 	/* Validate plat_info SDS */
144 	if ((plat_info.local_ddr_size == 0)
145 		|| (plat_info.local_ddr_size > N1SDP_MAX_DDR_CAPACITY_GB)
146 		|| (plat_info.remote_ddr_size > N1SDP_MAX_DDR_CAPACITY_GB)
147 		|| (plat_info.secondary_count > N1SDP_MAX_SECONDARY_COUNT)) {
148 		ERROR("platform info SDS is corrupted\n");
149 		panic();
150 	}
151 
152 	if (plat_info.multichip_mode) {
153 		n1sdp_multichip_data.chip_count = plat_info.secondary_count + 1;
154 		n1sdp_bl31_multichip_setup();
155 	}
156 	arm_bl31_platform_setup();
157 
158 	/* Check if remote memory is present */
159 	if ((plat_info.multichip_mode) && (plat_info.remote_ddr_size != 0))
160 		remote_dmc_ecc_setup(plat_info.remote_ddr_size);
161 }
162