1 // hashtable.h header -*- C++ -*-
2 
3 // Copyright (C) 2007-2014 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable.h
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28  */
29 
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
32 
33 #pragma GCC system_header
34 
35 #include <bits/hashtable_policy.h>
36 
_GLIBCXX_VISIBILITY(default)37 namespace std _GLIBCXX_VISIBILITY(default)
38 {
39 _GLIBCXX_BEGIN_NAMESPACE_VERSION
40 
41   template<typename _Tp, typename _Hash>
42     using __cache_default
43       =  __not_<__and_<// Do not cache for fast hasher.
44 		       __is_fast_hash<_Hash>,
45 		       // Mandatory to have erase not throwing.
46 		       __detail::__is_noexcept_hash<_Tp, _Hash>>>;
47 
48   /**
49    *  Primary class template _Hashtable.
50    *
51    *  @ingroup hashtable-detail
52    *
53    *  @tparam _Value  CopyConstructible type.
54    *
55    *  @tparam _Key    CopyConstructible type.
56    *
57    *  @tparam _Alloc  An allocator type
58    *  ([lib.allocator.requirements]) whose _Alloc::value_type is
59    *  _Value.  As a conforming extension, we allow for
60    *  _Alloc::value_type != _Value.
61    *
62    *  @tparam _ExtractKey  Function object that takes an object of type
63    *  _Value and returns a value of type _Key.
64    *
65    *  @tparam _Equal  Function object that takes two objects of type k
66    *  and returns a bool-like value that is true if the two objects
67    *  are considered equal.
68    *
69    *  @tparam _H1  The hash function. A unary function object with
70    *  argument type _Key and result type size_t. Return values should
71    *  be distributed over the entire range [0, numeric_limits<size_t>:::max()].
72    *
73    *  @tparam _H2  The range-hashing function (in the terminology of
74    *  Tavori and Dreizin).  A binary function object whose argument
75    *  types and result type are all size_t.  Given arguments r and N,
76    *  the return value is in the range [0, N).
77    *
78    *  @tparam _Hash  The ranged hash function (Tavori and Dreizin). A
79    *  binary function whose argument types are _Key and size_t and
80    *  whose result type is size_t.  Given arguments k and N, the
81    *  return value is in the range [0, N).  Default: hash(k, N) =
82    *  h2(h1(k), N).  If _Hash is anything other than the default, _H1
83    *  and _H2 are ignored.
84    *
85    *  @tparam _RehashPolicy  Policy class with three members, all of
86    *  which govern the bucket count. _M_next_bkt(n) returns a bucket
87    *  count no smaller than n.  _M_bkt_for_elements(n) returns a
88    *  bucket count appropriate for an element count of n.
89    *  _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
90    *  current bucket count is n_bkt and the current element count is
91    *  n_elt, we need to increase the bucket count.  If so, returns
92    *  make_pair(true, n), where n is the new bucket count.  If not,
93    *  returns make_pair(false, <anything>)
94    *
95    *  @tparam _Traits  Compile-time class with three boolean
96    *  std::integral_constant members:  __cache_hash_code, __constant_iterators,
97    *   __unique_keys.
98    *
99    *  Each _Hashtable data structure has:
100    *
101    *  - _Bucket[]       _M_buckets
102    *  - _Hash_node_base _M_before_begin
103    *  - size_type       _M_bucket_count
104    *  - size_type       _M_element_count
105    *
106    *  with _Bucket being _Hash_node* and _Hash_node containing:
107    *
108    *  - _Hash_node*   _M_next
109    *  - Tp            _M_value
110    *  - size_t        _M_hash_code if cache_hash_code is true
111    *
112    *  In terms of Standard containers the hashtable is like the aggregation of:
113    *
114    *  - std::forward_list<_Node> containing the elements
115    *  - std::vector<std::forward_list<_Node>::iterator> representing the buckets
116    *
117    *  The non-empty buckets contain the node before the first node in the
118    *  bucket. This design makes it possible to implement something like a
119    *  std::forward_list::insert_after on container insertion and
120    *  std::forward_list::erase_after on container erase
121    *  calls. _M_before_begin is equivalent to
122    *  std::forward_list::before_begin. Empty buckets contain
123    *  nullptr.  Note that one of the non-empty buckets contains
124    *  &_M_before_begin which is not a dereferenceable node so the
125    *  node pointer in a bucket shall never be dereferenced, only its
126    *  next node can be.
127    *
128    *  Walking through a bucket's nodes requires a check on the hash code to
129    *  see if each node is still in the bucket. Such a design assumes a
130    *  quite efficient hash functor and is one of the reasons it is
131    *  highly advisable to set __cache_hash_code to true.
132    *
133    *  The container iterators are simply built from nodes. This way
134    *  incrementing the iterator is perfectly efficient independent of
135    *  how many empty buckets there are in the container.
136    *
137    *  On insert we compute the element's hash code and use it to find the
138    *  bucket index. If the element must be inserted in an empty bucket
139    *  we add it at the beginning of the singly linked list and make the
140    *  bucket point to _M_before_begin. The bucket that used to point to
141    *  _M_before_begin, if any, is updated to point to its new before
142    *  begin node.
143    *
144    *  On erase, the simple iterator design requires using the hash
145    *  functor to get the index of the bucket to update. For this
146    *  reason, when __cache_hash_code is set to false the hash functor must
147    *  not throw and this is enforced by a static assertion.
148    *
149    *  Functionality is implemented by decomposition into base classes,
150    *  where the derived _Hashtable class is used in _Map_base,
151    *  _Insert, _Rehash_base, and _Equality base classes to access the
152    *  "this" pointer. _Hashtable_base is used in the base classes as a
153    *  non-recursive, fully-completed-type so that detailed nested type
154    *  information, such as iterator type and node type, can be
155    *  used. This is similar to the "Curiously Recurring Template
156    *  Pattern" (CRTP) technique, but uses a reconstructed, not
157    *  explicitly passed, template pattern.
158    *
159    *  Base class templates are:
160    *    - __detail::_Hashtable_base
161    *    - __detail::_Map_base
162    *    - __detail::_Insert
163    *    - __detail::_Rehash_base
164    *    - __detail::_Equality
165    */
166   template<typename _Key, typename _Value, typename _Alloc,
167 	   typename _ExtractKey, typename _Equal,
168 	   typename _H1, typename _H2, typename _Hash,
169 	   typename _RehashPolicy, typename _Traits>
170     class _Hashtable
171     : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
172 				       _H1, _H2, _Hash, _Traits>,
173       public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
174 				 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
175       public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
176 			       _H1, _H2, _Hash, _RehashPolicy, _Traits>,
177       public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
178 				    _H1, _H2, _Hash, _RehashPolicy, _Traits>,
179       public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
180 				 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
181       private __detail::_Hashtable_alloc<
182 	typename __alloctr_rebind<_Alloc,
183 	  __detail::_Hash_node<_Value,
184 			       _Traits::__hash_cached::value> >::__type>
185     {
186       using __traits_type = _Traits;
187       using __hash_cached = typename __traits_type::__hash_cached;
188       using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
189       using __node_alloc_type =
190 	typename __alloctr_rebind<_Alloc, __node_type>::__type;
191 
192       using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;
193 
194       using __value_alloc_traits =
195 	typename __hashtable_alloc::__value_alloc_traits;
196       using __node_alloc_traits =
197 	typename __hashtable_alloc::__node_alloc_traits;
198       using __node_base = typename __hashtable_alloc::__node_base;
199       using __bucket_type = typename __hashtable_alloc::__bucket_type;
200 
201     public:
202       typedef _Key						key_type;
203       typedef _Value						value_type;
204       typedef _Alloc						allocator_type;
205       typedef _Equal						key_equal;
206 
207       // mapped_type, if present, comes from _Map_base.
208       // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
209       typedef typename __value_alloc_traits::pointer		pointer;
210       typedef typename __value_alloc_traits::const_pointer	const_pointer;
211       typedef value_type&					reference;
212       typedef const value_type&					const_reference;
213 
214     private:
215       using __rehash_type = _RehashPolicy;
216       using __rehash_state = typename __rehash_type::_State;
217 
218       using __constant_iterators = typename __traits_type::__constant_iterators;
219       using __unique_keys = typename __traits_type::__unique_keys;
220 
221       using __key_extract = typename std::conditional<
222 					     __constant_iterators::value,
223 				       	     __detail::_Identity,
224 					     __detail::_Select1st>::type;
225 
226       using __hashtable_base = __detail::
227 			       _Hashtable_base<_Key, _Value, _ExtractKey,
228 					      _Equal, _H1, _H2, _Hash, _Traits>;
229 
230       using __hash_code_base =  typename __hashtable_base::__hash_code_base;
231       using __hash_code =  typename __hashtable_base::__hash_code;
232       using __ireturn_type = typename __hashtable_base::__ireturn_type;
233 
234       using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
235 					     _Equal, _H1, _H2, _Hash,
236 					     _RehashPolicy, _Traits>;
237 
238       using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
239 						   _ExtractKey, _Equal,
240 						   _H1, _H2, _Hash,
241 						   _RehashPolicy, _Traits>;
242 
243       using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
244 					    _Equal, _H1, _H2, _Hash,
245 					    _RehashPolicy, _Traits>;
246 
247       using __reuse_or_alloc_node_type =
248 	__detail::_ReuseOrAllocNode<__node_alloc_type>;
249 
250       // Metaprogramming for picking apart hash caching.
251       template<typename _Cond>
252 	using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
253 
254       template<typename _Cond>
255 	using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
256 
257       // Compile-time diagnostics.
258 
259       // _Hash_code_base has everything protected, so use this derived type to
260       // access it.
261       struct __hash_code_base_access : __hash_code_base
262       { using __hash_code_base::_M_bucket_index; };
263 
264       // Getting a bucket index from a node shall not throw because it is used
265       // in methods (erase, swap...) that shall not throw.
266       static_assert(noexcept(declval<const __hash_code_base_access&>()
267 			     ._M_bucket_index((const __node_type*)nullptr,
268 					      (std::size_t)0)),
269 		    "Cache the hash code or qualify your functors involved"
270 		    " in hash code and bucket index computation with noexcept");
271 
272       // Following two static assertions are necessary to guarantee
273       // that local_iterator will be default constructible.
274 
275       // When hash codes are cached local iterator inherits from H2 functor
276       // which must then be default constructible.
277       static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
278 		    "Functor used to map hash code to bucket index"
279 		    " must be default constructible");
280 
281       template<typename _Keya, typename _Valuea, typename _Alloca,
282 	       typename _ExtractKeya, typename _Equala,
283 	       typename _H1a, typename _H2a, typename _Hasha,
284 	       typename _RehashPolicya, typename _Traitsa,
285 	       bool _Unique_keysa>
286 	friend struct __detail::_Map_base;
287 
288       template<typename _Keya, typename _Valuea, typename _Alloca,
289 	       typename _ExtractKeya, typename _Equala,
290 	       typename _H1a, typename _H2a, typename _Hasha,
291 	       typename _RehashPolicya, typename _Traitsa>
292 	friend struct __detail::_Insert_base;
293 
294       template<typename _Keya, typename _Valuea, typename _Alloca,
295 	       typename _ExtractKeya, typename _Equala,
296 	       typename _H1a, typename _H2a, typename _Hasha,
297 	       typename _RehashPolicya, typename _Traitsa,
298 	       bool _Constant_iteratorsa, bool _Unique_keysa>
299 	friend struct __detail::_Insert;
300 
301     public:
302       using size_type = typename __hashtable_base::size_type;
303       using difference_type = typename __hashtable_base::difference_type;
304 
305       using iterator = typename __hashtable_base::iterator;
306       using const_iterator = typename __hashtable_base::const_iterator;
307 
308       using local_iterator = typename __hashtable_base::local_iterator;
309       using const_local_iterator = typename __hashtable_base::
310 				   const_local_iterator;
311 
312     private:
313       __bucket_type*		_M_buckets;
314       size_type			_M_bucket_count;
315       __node_base		_M_before_begin;
316       size_type			_M_element_count;
317       _RehashPolicy		_M_rehash_policy;
318 
319       // A single bucket used when only need for 1 bucket. Especially
320       // interesting in move semantic to leave hashtable with only 1 buckets
321       // which is not allocated so that we can have those operations noexcept
322       // qualified.
323       // Note that we can't leave hashtable with 0 bucket without adding
324       // numerous checks in the code to avoid 0 modulus.
325       __bucket_type		_M_single_bucket;
326 
327       bool
328       _M_uses_single_bucket(__bucket_type* __bkts) const
329       { return __builtin_expect(__bkts == &_M_single_bucket, false); }
330 
331       bool
332       _M_uses_single_bucket() const
333       { return _M_uses_single_bucket(_M_buckets); }
334 
335       __hashtable_alloc&
336       _M_base_alloc() { return *this; }
337 
338       __bucket_type*
339       _M_allocate_buckets(size_type __n)
340       {
341 	if (__builtin_expect(__n == 1, false))
342 	  {
343 	    _M_single_bucket = nullptr;
344 	    return &_M_single_bucket;
345 	  }
346 
347 	return __hashtable_alloc::_M_allocate_buckets(__n);
348       }
349 
350       void
351       _M_deallocate_buckets(__bucket_type* __bkts, size_type __n)
352       {
353 	if (_M_uses_single_bucket(__bkts))
354 	  return;
355 
356 	__hashtable_alloc::_M_deallocate_buckets(__bkts, __n);
357       }
358 
359       void
360       _M_deallocate_buckets()
361       { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
362 
363       // Gets bucket begin, deals with the fact that non-empty buckets contain
364       // their before begin node.
365       __node_type*
366       _M_bucket_begin(size_type __bkt) const;
367 
368       __node_type*
369       _M_begin() const
370       { return static_cast<__node_type*>(_M_before_begin._M_nxt); }
371 
372       template<typename _NodeGenerator>
373 	void
374 	_M_assign(const _Hashtable&, const _NodeGenerator&);
375 
376       void
377       _M_move_assign(_Hashtable&&, std::true_type);
378 
379       void
380       _M_move_assign(_Hashtable&&, std::false_type);
381 
382       void
383       _M_reset() noexcept;
384 
385     public:
386       // Constructor, destructor, assignment, swap
387       _Hashtable(size_type __bucket_hint,
388 		 const _H1&, const _H2&, const _Hash&,
389 		 const _Equal&, const _ExtractKey&,
390 		 const allocator_type&);
391 
392       template<typename _InputIterator>
393 	_Hashtable(_InputIterator __first, _InputIterator __last,
394 		   size_type __bucket_hint,
395 		   const _H1&, const _H2&, const _Hash&,
396 		   const _Equal&, const _ExtractKey&,
397 		   const allocator_type&);
398 
399       _Hashtable(const _Hashtable&);
400 
401       _Hashtable(_Hashtable&&) noexcept;
402 
403       _Hashtable(const _Hashtable&, const allocator_type&);
404 
405       _Hashtable(_Hashtable&&, const allocator_type&);
406 
407       // Use delegating constructors.
408       explicit
409       _Hashtable(const allocator_type& __a)
410       : _Hashtable(10, _H1(), _H2(), _Hash(), key_equal(),
411 		   __key_extract(), __a)
412       { }
413 
414       explicit
415       _Hashtable(size_type __n = 10,
416 		 const _H1& __hf = _H1(),
417 		 const key_equal& __eql = key_equal(),
418 		 const allocator_type& __a = allocator_type())
419       : _Hashtable(__n, __hf, _H2(), _Hash(), __eql,
420 		   __key_extract(), __a)
421       { }
422 
423       template<typename _InputIterator>
424 	_Hashtable(_InputIterator __f, _InputIterator __l,
425 		   size_type __n = 0,
426 		   const _H1& __hf = _H1(),
427 		   const key_equal& __eql = key_equal(),
428 		   const allocator_type& __a = allocator_type())
429 	: _Hashtable(__f, __l, __n, __hf, _H2(), _Hash(), __eql,
430 		     __key_extract(), __a)
431 	{ }
432 
433       _Hashtable(initializer_list<value_type> __l,
434 		 size_type __n = 0,
435 		 const _H1& __hf = _H1(),
436 		 const key_equal& __eql = key_equal(),
437 		 const allocator_type& __a = allocator_type())
438       : _Hashtable(__l.begin(), __l.end(), __n, __hf, _H2(), _Hash(), __eql,
439 		   __key_extract(), __a)
440       { }
441 
442       _Hashtable&
443       operator=(const _Hashtable& __ht);
444 
445       _Hashtable&
446       operator=(_Hashtable&& __ht)
447       noexcept(__node_alloc_traits::_S_nothrow_move())
448       {
449         constexpr bool __move_storage =
450           __node_alloc_traits::_S_propagate_on_move_assign()
451           || __node_alloc_traits::_S_always_equal();
452         _M_move_assign(std::move(__ht),
453                        integral_constant<bool, __move_storage>());
454 	return *this;
455       }
456 
457       _Hashtable&
458       operator=(initializer_list<value_type> __l)
459       {
460 	__reuse_or_alloc_node_type __roan(_M_begin(), *this);
461 	_M_before_begin._M_nxt = nullptr;
462 	clear();
463 	this->_M_insert_range(__l.begin(), __l.end(), __roan);
464 	return *this;
465       }
466 
467       ~_Hashtable() noexcept;
468 
469       void
470       swap(_Hashtable&)
471       noexcept(__node_alloc_traits::_S_nothrow_swap());
472 
473       // Basic container operations
474       iterator
475       begin() noexcept
476       { return iterator(_M_begin()); }
477 
478       const_iterator
479       begin() const noexcept
480       { return const_iterator(_M_begin()); }
481 
482       iterator
483       end() noexcept
484       { return iterator(nullptr); }
485 
486       const_iterator
487       end() const noexcept
488       { return const_iterator(nullptr); }
489 
490       const_iterator
491       cbegin() const noexcept
492       { return const_iterator(_M_begin()); }
493 
494       const_iterator
495       cend() const noexcept
496       { return const_iterator(nullptr); }
497 
498       size_type
499       size() const noexcept
500       { return _M_element_count; }
501 
502       bool
503       empty() const noexcept
504       { return size() == 0; }
505 
506       allocator_type
507       get_allocator() const noexcept
508       { return allocator_type(this->_M_node_allocator()); }
509 
510       size_type
511       max_size() const noexcept
512       { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
513 
514       // Observers
515       key_equal
516       key_eq() const
517       { return this->_M_eq(); }
518 
519       // hash_function, if present, comes from _Hash_code_base.
520 
521       // Bucket operations
522       size_type
523       bucket_count() const noexcept
524       { return _M_bucket_count; }
525 
526       size_type
527       max_bucket_count() const noexcept
528       { return max_size(); }
529 
530       size_type
531       bucket_size(size_type __n) const
532       { return std::distance(begin(__n), end(__n)); }
533 
534       size_type
535       bucket(const key_type& __k) const
536       { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
537 
538       local_iterator
539       begin(size_type __n)
540       {
541 	return local_iterator(*this, _M_bucket_begin(__n),
542 			      __n, _M_bucket_count);
543       }
544 
545       local_iterator
546       end(size_type __n)
547       { return local_iterator(*this, nullptr, __n, _M_bucket_count); }
548 
549       const_local_iterator
550       begin(size_type __n) const
551       {
552 	return const_local_iterator(*this, _M_bucket_begin(__n),
553 				    __n, _M_bucket_count);
554       }
555 
556       const_local_iterator
557       end(size_type __n) const
558       { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
559 
560       // DR 691.
561       const_local_iterator
562       cbegin(size_type __n) const
563       {
564 	return const_local_iterator(*this, _M_bucket_begin(__n),
565 				    __n, _M_bucket_count);
566       }
567 
568       const_local_iterator
569       cend(size_type __n) const
570       { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
571 
572       float
573       load_factor() const noexcept
574       {
575 	return static_cast<float>(size()) / static_cast<float>(bucket_count());
576       }
577 
578       // max_load_factor, if present, comes from _Rehash_base.
579 
580       // Generalization of max_load_factor.  Extension, not found in
581       // TR1.  Only useful if _RehashPolicy is something other than
582       // the default.
583       const _RehashPolicy&
584       __rehash_policy() const
585       { return _M_rehash_policy; }
586 
587       void
588       __rehash_policy(const _RehashPolicy&);
589 
590       // Lookup.
591       iterator
592       find(const key_type& __k);
593 
594       const_iterator
595       find(const key_type& __k) const;
596 
597       size_type
598       count(const key_type& __k) const;
599 
600       std::pair<iterator, iterator>
601       equal_range(const key_type& __k);
602 
603       std::pair<const_iterator, const_iterator>
604       equal_range(const key_type& __k) const;
605 
606     protected:
607       // Bucket index computation helpers.
608       size_type
609       _M_bucket_index(__node_type* __n) const noexcept
610       { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
611 
612       size_type
613       _M_bucket_index(const key_type& __k, __hash_code __c) const
614       { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
615 
616       // Find and insert helper functions and types
617       // Find the node before the one matching the criteria.
618       __node_base*
619       _M_find_before_node(size_type, const key_type&, __hash_code) const;
620 
621       __node_type*
622       _M_find_node(size_type __bkt, const key_type& __key,
623 		   __hash_code __c) const
624       {
625 	__node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
626 	if (__before_n)
627 	  return static_cast<__node_type*>(__before_n->_M_nxt);
628 	return nullptr;
629       }
630 
631       // Insert a node at the beginning of a bucket.
632       void
633       _M_insert_bucket_begin(size_type, __node_type*);
634 
635       // Remove the bucket first node
636       void
637       _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
638 			     size_type __next_bkt);
639 
640       // Get the node before __n in the bucket __bkt
641       __node_base*
642       _M_get_previous_node(size_type __bkt, __node_base* __n);
643 
644       // Insert node with hash code __code, in bucket bkt if no rehash (assumes
645       // no element with its key already present). Take ownership of the node,
646       // deallocate it on exception.
647       iterator
648       _M_insert_unique_node(size_type __bkt, __hash_code __code,
649 			    __node_type* __n);
650 
651       // Insert node with hash code __code. Take ownership of the node,
652       // deallocate it on exception.
653       iterator
654       _M_insert_multi_node(__node_type* __hint,
655 			   __hash_code __code, __node_type* __n);
656 
657       template<typename... _Args>
658 	std::pair<iterator, bool>
659 	_M_emplace(std::true_type, _Args&&... __args);
660 
661       template<typename... _Args>
662 	iterator
663 	_M_emplace(std::false_type __uk, _Args&&... __args)
664 	{ return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }
665 
666       // Emplace with hint, useless when keys are unique.
667       template<typename... _Args>
668 	iterator
669 	_M_emplace(const_iterator, std::true_type __uk, _Args&&... __args)
670 	{ return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }
671 
672       template<typename... _Args>
673 	iterator
674 	_M_emplace(const_iterator, std::false_type, _Args&&... __args);
675 
676       template<typename _Arg, typename _NodeGenerator>
677 	std::pair<iterator, bool>
678 	_M_insert(_Arg&&, const _NodeGenerator&, std::true_type);
679 
680       template<typename _Arg, typename _NodeGenerator>
681 	iterator
682 	_M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
683 		  std::false_type __uk)
684 	{
685 	  return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
686 			   __uk);
687 	}
688 
689       // Insert with hint, not used when keys are unique.
690       template<typename _Arg, typename _NodeGenerator>
691 	iterator
692 	_M_insert(const_iterator, _Arg&& __arg, const _NodeGenerator& __node_gen,
693 		  std::true_type __uk)
694 	{
695 	  return
696 	    _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
697 	}
698 
699       // Insert with hint when keys are not unique.
700       template<typename _Arg, typename _NodeGenerator>
701 	iterator
702 	_M_insert(const_iterator, _Arg&&, const _NodeGenerator&, std::false_type);
703 
704       size_type
705       _M_erase(std::true_type, const key_type&);
706 
707       size_type
708       _M_erase(std::false_type, const key_type&);
709 
710       iterator
711       _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
712 
713     public:
714       // Emplace
715       template<typename... _Args>
716 	__ireturn_type
717 	emplace(_Args&&... __args)
718 	{ return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
719 
720       template<typename... _Args>
721 	iterator
722 	emplace_hint(const_iterator __hint, _Args&&... __args)
723 	{
724 	  return _M_emplace(__hint, __unique_keys(),
725 			    std::forward<_Args>(__args)...);
726 	}
727 
728       // Insert member functions via inheritance.
729 
730       // Erase
731       iterator
732       erase(const_iterator);
733 
734       // LWG 2059.
735       iterator
736       erase(iterator __it)
737       { return erase(const_iterator(__it)); }
738 
739       size_type
740       erase(const key_type& __k)
741       { return _M_erase(__unique_keys(), __k); }
742 
743       iterator
744       erase(const_iterator, const_iterator);
745 
746       void
747       clear() noexcept;
748 
749       // Set number of buckets to be appropriate for container of n element.
750       void rehash(size_type __n);
751 
752       // DR 1189.
753       // reserve, if present, comes from _Rehash_base.
754 
755     private:
756       // Helper rehash method used when keys are unique.
757       void _M_rehash_aux(size_type __n, std::true_type);
758 
759       // Helper rehash method used when keys can be non-unique.
760       void _M_rehash_aux(size_type __n, std::false_type);
761 
762       // Unconditionally change size of bucket array to n, restore
763       // hash policy state to __state on exception.
764       void _M_rehash(size_type __n, const __rehash_state& __state);
765     };
766 
767 
768   // Definitions of class template _Hashtable's out-of-line member functions.
769   template<typename _Key, typename _Value,
770 	   typename _Alloc, typename _ExtractKey, typename _Equal,
771 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
772 	   typename _Traits>
773     typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
774 			_Equal, _H1, _H2, _Hash, _RehashPolicy,
775 			_Traits>::__node_type*
776     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
777 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
778     _M_bucket_begin(size_type __bkt) const
779     {
780       __node_base* __n = _M_buckets[__bkt];
781       return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
782     }
783 
784   template<typename _Key, typename _Value,
785 	   typename _Alloc, typename _ExtractKey, typename _Equal,
786 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
787 	   typename _Traits>
788     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
789 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
790     _Hashtable(size_type __bucket_hint,
791 	       const _H1& __h1, const _H2& __h2, const _Hash& __h,
792 	       const _Equal& __eq, const _ExtractKey& __exk,
793 	       const allocator_type& __a)
794     : __hashtable_base(__exk, __h1, __h2, __h, __eq),
795       __map_base(),
796       __rehash_base(),
797       __hashtable_alloc(__node_alloc_type(__a)),
798       _M_element_count(0),
799       _M_rehash_policy()
800     {
801       _M_bucket_count = _M_rehash_policy._M_next_bkt(__bucket_hint);
802       _M_buckets = _M_allocate_buckets(_M_bucket_count);
803     }
804 
805   template<typename _Key, typename _Value,
806 	   typename _Alloc, typename _ExtractKey, typename _Equal,
807 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
808 	   typename _Traits>
809     template<typename _InputIterator>
810       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
811 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
812       _Hashtable(_InputIterator __f, _InputIterator __l,
813 		 size_type __bucket_hint,
814 		 const _H1& __h1, const _H2& __h2, const _Hash& __h,
815 		 const _Equal& __eq, const _ExtractKey& __exk,
816 		 const allocator_type& __a)
817       : __hashtable_base(__exk, __h1, __h2, __h, __eq),
818 	__map_base(),
819 	__rehash_base(),
820 	__hashtable_alloc(__node_alloc_type(__a)),
821 	_M_element_count(0),
822 	_M_rehash_policy()
823       {
824 	auto __nb_elems = __detail::__distance_fw(__f, __l);
825 	_M_bucket_count =
826 	  _M_rehash_policy._M_next_bkt(
827 	    std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
828 		     __bucket_hint));
829 
830 	_M_buckets = _M_allocate_buckets(_M_bucket_count);
831 	__try
832 	  {
833 	    for (; __f != __l; ++__f)
834 	      this->insert(*__f);
835 	  }
836 	__catch(...)
837 	  {
838 	    clear();
839 	    _M_deallocate_buckets();
840 	    __throw_exception_again;
841 	  }
842       }
843 
844   template<typename _Key, typename _Value,
845 	   typename _Alloc, typename _ExtractKey, typename _Equal,
846 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
847 	   typename _Traits>
848     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
849 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>&
850     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
851 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::operator=(
852 		const _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
853 				 _H1, _H2, _Hash, _RehashPolicy, _Traits>& __ht)
854       {
855 	if (&__ht == this)
856 	  return *this;
857 
858 	if (__node_alloc_traits::_S_propagate_on_copy_assign())
859 	  {
860 	    auto& __this_alloc = this->_M_node_allocator();
861 	    auto& __that_alloc = __ht._M_node_allocator();
862 	    if (!__node_alloc_traits::_S_always_equal()
863 		&& __this_alloc != __that_alloc)
864 	      {
865 		// Replacement allocator cannot free existing storage.
866 		this->_M_deallocate_nodes(_M_begin());
867 		_M_before_begin._M_nxt = nullptr;
868 		_M_deallocate_buckets();
869 		_M_buckets = nullptr;
870 		std::__alloc_on_copy(__this_alloc, __that_alloc);
871 		__hashtable_base::operator=(__ht);
872 		_M_bucket_count = __ht._M_bucket_count;
873 		_M_element_count = __ht._M_element_count;
874 		_M_rehash_policy = __ht._M_rehash_policy;
875 		__try
876 		  {
877 		    _M_assign(__ht,
878 			      [this](const __node_type* __n)
879 			      { return this->_M_allocate_node(__n->_M_v()); });
880 		  }
881 		__catch(...)
882 		  {
883 		    // _M_assign took care of deallocating all memory. Now we
884 		    // must make sure this instance remains in a usable state.
885 		    _M_reset();
886 		    __throw_exception_again;
887 		  }
888 		return *this;
889 	      }
890 	    std::__alloc_on_copy(__this_alloc, __that_alloc);
891 	  }
892 
893 	// Reuse allocated buckets and nodes.
894 	__bucket_type* __former_buckets = nullptr;
895 	std::size_t __former_bucket_count = _M_bucket_count;
896 	const __rehash_state& __former_state = _M_rehash_policy._M_state();
897 
898 	if (_M_bucket_count != __ht._M_bucket_count)
899 	  {
900 	    __former_buckets = _M_buckets;
901 	    _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
902 	    _M_bucket_count = __ht._M_bucket_count;
903 	  }
904 	else
905 	  __builtin_memset(_M_buckets, 0,
906 			   _M_bucket_count * sizeof(__bucket_type));
907 
908 	__try
909 	  {
910 	    __hashtable_base::operator=(__ht);
911 	    _M_element_count = __ht._M_element_count;
912 	    _M_rehash_policy = __ht._M_rehash_policy;
913 	    __reuse_or_alloc_node_type __roan(_M_begin(), *this);
914 	    _M_before_begin._M_nxt = nullptr;
915 	    _M_assign(__ht,
916 		      [&__roan](const __node_type* __n)
917 		      { return __roan(__n->_M_v()); });
918 	    if (__former_buckets)
919 	      _M_deallocate_buckets(__former_buckets, __former_bucket_count);
920 	  }
921 	__catch(...)
922 	  {
923 	    if (__former_buckets)
924 	      {
925 		// Restore previous buckets.
926 		_M_deallocate_buckets();
927 		_M_rehash_policy._M_reset(__former_state);
928 		_M_buckets = __former_buckets;
929 		_M_bucket_count = __former_bucket_count;
930 	      }
931 	    __builtin_memset(_M_buckets, 0,
932 			     _M_bucket_count * sizeof(__bucket_type));
933 	    __throw_exception_again;
934 	  }
935 	return *this;
936       }
937 
938   template<typename _Key, typename _Value,
939 	   typename _Alloc, typename _ExtractKey, typename _Equal,
940 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
941 	   typename _Traits>
942     template<typename _NodeGenerator>
943       void
944       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
945 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
946       _M_assign(const _Hashtable& __ht, const _NodeGenerator& __node_gen)
947       {
948 	__bucket_type* __buckets = nullptr;
949 	if (!_M_buckets)
950 	  _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
951 
952 	__try
953 	  {
954 	    if (!__ht._M_before_begin._M_nxt)
955 	      return;
956 
957 	    // First deal with the special first node pointed to by
958 	    // _M_before_begin.
959 	    __node_type* __ht_n = __ht._M_begin();
960 	    __node_type* __this_n = __node_gen(__ht_n);
961 	    this->_M_copy_code(__this_n, __ht_n);
962 	    _M_before_begin._M_nxt = __this_n;
963 	    _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;
964 
965 	    // Then deal with other nodes.
966 	    __node_base* __prev_n = __this_n;
967 	    for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
968 	      {
969 		__this_n = __node_gen(__ht_n);
970 		__prev_n->_M_nxt = __this_n;
971 		this->_M_copy_code(__this_n, __ht_n);
972 		size_type __bkt = _M_bucket_index(__this_n);
973 		if (!_M_buckets[__bkt])
974 		  _M_buckets[__bkt] = __prev_n;
975 		__prev_n = __this_n;
976 	      }
977 	  }
978 	__catch(...)
979 	  {
980 	    clear();
981 	    if (__buckets)
982 	      _M_deallocate_buckets();
983 	    __throw_exception_again;
984 	  }
985       }
986 
987   template<typename _Key, typename _Value,
988 	   typename _Alloc, typename _ExtractKey, typename _Equal,
989 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
990 	   typename _Traits>
991     void
992     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
993 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
994     _M_reset() noexcept
995     {
996       _M_rehash_policy._M_reset();
997       _M_bucket_count = 1;
998       _M_single_bucket = nullptr;
999       _M_buckets = &_M_single_bucket;
1000       _M_before_begin._M_nxt = nullptr;
1001       _M_element_count = 0;
1002     }
1003 
1004   template<typename _Key, typename _Value,
1005 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1006 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1007 	   typename _Traits>
1008     void
1009     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1010 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1011     _M_move_assign(_Hashtable&& __ht, std::true_type)
1012     {
1013       this->_M_deallocate_nodes(_M_begin());
1014       _M_deallocate_buckets();
1015       __hashtable_base::operator=(std::move(__ht));
1016       _M_rehash_policy = __ht._M_rehash_policy;
1017       if (!__ht._M_uses_single_bucket())
1018 	_M_buckets = __ht._M_buckets;
1019       else
1020 	{
1021 	  _M_buckets = &_M_single_bucket;
1022 	  _M_single_bucket = __ht._M_single_bucket;
1023 	}
1024       _M_bucket_count = __ht._M_bucket_count;
1025       _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1026       _M_element_count = __ht._M_element_count;
1027       std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1028 
1029       // Fix buckets containing the _M_before_begin pointers that can't be
1030       // moved.
1031       if (_M_begin())
1032 	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1033       __ht._M_reset();
1034     }
1035 
1036   template<typename _Key, typename _Value,
1037 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1038 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1039 	   typename _Traits>
1040     void
1041     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1042 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1043     _M_move_assign(_Hashtable&& __ht, std::false_type)
1044     {
1045       if (__ht._M_node_allocator() == this->_M_node_allocator())
1046 	_M_move_assign(std::move(__ht), std::true_type());
1047       else
1048 	{
1049 	  // Can't move memory, move elements then.
1050 	  __bucket_type* __former_buckets = nullptr;
1051 	  size_type __former_bucket_count = _M_bucket_count;
1052 	  const __rehash_state& __former_state = _M_rehash_policy._M_state();
1053 
1054 	  if (_M_bucket_count != __ht._M_bucket_count)
1055 	    {
1056 	      __former_buckets = _M_buckets;
1057 	      _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1058 	      _M_bucket_count = __ht._M_bucket_count;
1059 	    }
1060 	  else
1061 	    __builtin_memset(_M_buckets, 0,
1062 			     _M_bucket_count * sizeof(__bucket_type));
1063 
1064 	  __try
1065 	    {
1066 	      __hashtable_base::operator=(std::move(__ht));
1067 	      _M_element_count = __ht._M_element_count;
1068 	      _M_rehash_policy = __ht._M_rehash_policy;
1069 	      __reuse_or_alloc_node_type __roan(_M_begin(), *this);
1070 	      _M_before_begin._M_nxt = nullptr;
1071 	      _M_assign(__ht,
1072 			[&__roan](__node_type* __n)
1073 			{ return __roan(std::move_if_noexcept(__n->_M_v())); });
1074 	      __ht.clear();
1075 	    }
1076 	  __catch(...)
1077 	    {
1078 	      if (__former_buckets)
1079 		{
1080 		  _M_deallocate_buckets();
1081 		  _M_rehash_policy._M_reset(__former_state);
1082 		  _M_buckets = __former_buckets;
1083 		  _M_bucket_count = __former_bucket_count;
1084 		}
1085 	      __builtin_memset(_M_buckets, 0,
1086 			       _M_bucket_count * sizeof(__bucket_type));
1087 	      __throw_exception_again;
1088 	    }
1089 	}
1090     }
1091 
1092   template<typename _Key, typename _Value,
1093 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1094 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1095 	   typename _Traits>
1096     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1097 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1098     _Hashtable(const _Hashtable& __ht)
1099     : __hashtable_base(__ht),
1100       __map_base(__ht),
1101       __rehash_base(__ht),
1102       __hashtable_alloc(
1103 	__node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1104       _M_buckets(),
1105       _M_bucket_count(__ht._M_bucket_count),
1106       _M_element_count(__ht._M_element_count),
1107       _M_rehash_policy(__ht._M_rehash_policy)
1108     {
1109       _M_assign(__ht,
1110 		[this](const __node_type* __n)
1111 		{ return this->_M_allocate_node(__n->_M_v()); });
1112     }
1113 
1114   template<typename _Key, typename _Value,
1115 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1116 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1117 	   typename _Traits>
1118     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1119 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1120     _Hashtable(_Hashtable&& __ht) noexcept
1121     : __hashtable_base(__ht),
1122       __map_base(__ht),
1123       __rehash_base(__ht),
1124       __hashtable_alloc(std::move(__ht._M_base_alloc())),
1125       _M_buckets(__ht._M_buckets),
1126       _M_bucket_count(__ht._M_bucket_count),
1127       _M_before_begin(__ht._M_before_begin._M_nxt),
1128       _M_element_count(__ht._M_element_count),
1129       _M_rehash_policy(__ht._M_rehash_policy)
1130     {
1131       // Update, if necessary, buckets if __ht is using its single bucket.
1132       if (__ht._M_uses_single_bucket())
1133 	{
1134 	  _M_buckets = &_M_single_bucket;
1135 	  _M_single_bucket = __ht._M_single_bucket;
1136 	}
1137 
1138       // Update, if necessary, bucket pointing to before begin that hasn't
1139       // moved.
1140       if (_M_begin())
1141 	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1142 
1143       __ht._M_reset();
1144     }
1145 
1146   template<typename _Key, typename _Value,
1147 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1148 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1149 	   typename _Traits>
1150     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1151 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1152     _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1153     : __hashtable_base(__ht),
1154       __map_base(__ht),
1155       __rehash_base(__ht),
1156       __hashtable_alloc(__node_alloc_type(__a)),
1157       _M_buckets(),
1158       _M_bucket_count(__ht._M_bucket_count),
1159       _M_element_count(__ht._M_element_count),
1160       _M_rehash_policy(__ht._M_rehash_policy)
1161     {
1162       _M_assign(__ht,
1163 		[this](const __node_type* __n)
1164 		{ return this->_M_allocate_node(__n->_M_v()); });
1165     }
1166 
1167   template<typename _Key, typename _Value,
1168 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1169 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1170 	   typename _Traits>
1171     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1172 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1173     _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
1174     : __hashtable_base(__ht),
1175       __map_base(__ht),
1176       __rehash_base(__ht),
1177       __hashtable_alloc(__node_alloc_type(__a)),
1178       _M_buckets(),
1179       _M_bucket_count(__ht._M_bucket_count),
1180       _M_element_count(__ht._M_element_count),
1181       _M_rehash_policy(__ht._M_rehash_policy)
1182     {
1183       if (__ht._M_node_allocator() == this->_M_node_allocator())
1184 	{
1185 	  if (__ht._M_uses_single_bucket())
1186 	    {
1187 	      _M_buckets = &_M_single_bucket;
1188 	      _M_single_bucket = __ht._M_single_bucket;
1189 	    }
1190 	  else
1191 	    _M_buckets = __ht._M_buckets;
1192 
1193 	  _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1194 	  // Update, if necessary, bucket pointing to before begin that hasn't
1195 	  // moved.
1196 	  if (_M_begin())
1197 	    _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1198 	  __ht._M_reset();
1199 	}
1200       else
1201 	{
1202 	  _M_assign(__ht,
1203 		    [this](__node_type* __n)
1204 		    {
1205 		      return this->_M_allocate_node(
1206 					std::move_if_noexcept(__n->_M_v()));
1207 		    });
1208 	  __ht.clear();
1209 	}
1210     }
1211 
1212   template<typename _Key, typename _Value,
1213 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1214 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1215 	   typename _Traits>
1216     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1217 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1218     ~_Hashtable() noexcept
1219     {
1220       clear();
1221       if (_M_buckets)
1222 	_M_deallocate_buckets();
1223     }
1224 
1225   template<typename _Key, typename _Value,
1226 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1227 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1228 	   typename _Traits>
1229     void
1230     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1231 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1232     swap(_Hashtable& __x)
1233     noexcept(__node_alloc_traits::_S_nothrow_swap())
1234     {
1235       // The only base class with member variables is hash_code_base.
1236       // We define _Hash_code_base::_M_swap because different
1237       // specializations have different members.
1238       this->_M_swap(__x);
1239 
1240       std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1241       std::swap(_M_rehash_policy, __x._M_rehash_policy);
1242 
1243       // Deal properly with potentially moved instances.
1244       if (this->_M_uses_single_bucket())
1245 	{
1246 	  if (!__x._M_uses_single_bucket())
1247 	    {
1248 	      _M_buckets = __x._M_buckets;
1249 	      __x._M_buckets = &__x._M_single_bucket;
1250 	    }
1251 	}
1252       else if (__x._M_uses_single_bucket())
1253 	{
1254 	  __x._M_buckets = _M_buckets;
1255 	  _M_buckets = &_M_single_bucket;
1256 	}
1257       else
1258 	std::swap(_M_buckets, __x._M_buckets);
1259 
1260       std::swap(_M_bucket_count, __x._M_bucket_count);
1261       std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1262       std::swap(_M_element_count, __x._M_element_count);
1263       std::swap(_M_single_bucket, __x._M_single_bucket);
1264 
1265       // Fix buckets containing the _M_before_begin pointers that can't be
1266       // swapped.
1267       if (_M_begin())
1268 	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1269 
1270       if (__x._M_begin())
1271 	__x._M_buckets[__x._M_bucket_index(__x._M_begin())]
1272 	  = &__x._M_before_begin;
1273     }
1274 
1275   template<typename _Key, typename _Value,
1276 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1277 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1278 	   typename _Traits>
1279     void
1280     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1281 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1282     __rehash_policy(const _RehashPolicy& __pol)
1283     {
1284       auto __do_rehash =
1285 	__pol._M_need_rehash(_M_bucket_count, _M_element_count, 0);
1286       if (__do_rehash.first)
1287 	_M_rehash(__do_rehash.second, _M_rehash_policy._M_state());
1288       _M_rehash_policy = __pol;
1289     }
1290 
1291   template<typename _Key, typename _Value,
1292 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1293 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1294 	   typename _Traits>
1295     typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1296 			_H1, _H2, _Hash, _RehashPolicy,
1297 			_Traits>::iterator
1298     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1299 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1300     find(const key_type& __k)
1301     {
1302       __hash_code __code = this->_M_hash_code(__k);
1303       std::size_t __n = _M_bucket_index(__k, __code);
1304       __node_type* __p = _M_find_node(__n, __k, __code);
1305       return __p ? iterator(__p) : end();
1306     }
1307 
1308   template<typename _Key, typename _Value,
1309 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1310 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1311 	   typename _Traits>
1312     typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1313 			_H1, _H2, _Hash, _RehashPolicy,
1314 			_Traits>::const_iterator
1315     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1316 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1317     find(const key_type& __k) const
1318     {
1319       __hash_code __code = this->_M_hash_code(__k);
1320       std::size_t __n = _M_bucket_index(__k, __code);
1321       __node_type* __p = _M_find_node(__n, __k, __code);
1322       return __p ? const_iterator(__p) : end();
1323     }
1324 
1325   template<typename _Key, typename _Value,
1326 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1327 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1328 	   typename _Traits>
1329     typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1330 			_H1, _H2, _Hash, _RehashPolicy,
1331 			_Traits>::size_type
1332     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1333 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1334     count(const key_type& __k) const
1335     {
1336       __hash_code __code = this->_M_hash_code(__k);
1337       std::size_t __n = _M_bucket_index(__k, __code);
1338       __node_type* __p = _M_bucket_begin(__n);
1339       if (!__p)
1340 	return 0;
1341 
1342       std::size_t __result = 0;
1343       for (;; __p = __p->_M_next())
1344 	{
1345 	  if (this->_M_equals(__k, __code, __p))
1346 	    ++__result;
1347 	  else if (__result)
1348 	    // All equivalent values are next to each other, if we
1349 	    // found a non-equivalent value after an equivalent one it
1350 	    // means that we won't find any new equivalent value.
1351 	    break;
1352 	  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1353 	    break;
1354 	}
1355       return __result;
1356     }
1357 
1358   template<typename _Key, typename _Value,
1359 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1360 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1361 	   typename _Traits>
1362     std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1363 				  _ExtractKey, _Equal, _H1,
1364 				  _H2, _Hash, _RehashPolicy,
1365 				  _Traits>::iterator,
1366 	      typename _Hashtable<_Key, _Value, _Alloc,
1367 				  _ExtractKey, _Equal, _H1,
1368 				  _H2, _Hash, _RehashPolicy,
1369 				  _Traits>::iterator>
1370     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1371 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1372     equal_range(const key_type& __k)
1373     {
1374       __hash_code __code = this->_M_hash_code(__k);
1375       std::size_t __n = _M_bucket_index(__k, __code);
1376       __node_type* __p = _M_find_node(__n, __k, __code);
1377 
1378       if (__p)
1379 	{
1380 	  __node_type* __p1 = __p->_M_next();
1381 	  while (__p1 && _M_bucket_index(__p1) == __n
1382 		 && this->_M_equals(__k, __code, __p1))
1383 	    __p1 = __p1->_M_next();
1384 
1385 	  return std::make_pair(iterator(__p), iterator(__p1));
1386 	}
1387       else
1388 	return std::make_pair(end(), end());
1389     }
1390 
1391   template<typename _Key, typename _Value,
1392 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1393 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1394 	   typename _Traits>
1395     std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1396 				  _ExtractKey, _Equal, _H1,
1397 				  _H2, _Hash, _RehashPolicy,
1398 				  _Traits>::const_iterator,
1399 	      typename _Hashtable<_Key, _Value, _Alloc,
1400 				  _ExtractKey, _Equal, _H1,
1401 				  _H2, _Hash, _RehashPolicy,
1402 				  _Traits>::const_iterator>
1403     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1404 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1405     equal_range(const key_type& __k) const
1406     {
1407       __hash_code __code = this->_M_hash_code(__k);
1408       std::size_t __n = _M_bucket_index(__k, __code);
1409       __node_type* __p = _M_find_node(__n, __k, __code);
1410 
1411       if (__p)
1412 	{
1413 	  __node_type* __p1 = __p->_M_next();
1414 	  while (__p1 && _M_bucket_index(__p1) == __n
1415 		 && this->_M_equals(__k, __code, __p1))
1416 	    __p1 = __p1->_M_next();
1417 
1418 	  return std::make_pair(const_iterator(__p), const_iterator(__p1));
1419 	}
1420       else
1421 	return std::make_pair(end(), end());
1422     }
1423 
1424   // Find the node whose key compares equal to k in the bucket n.
1425   // Return nullptr if no node is found.
1426   template<typename _Key, typename _Value,
1427 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1428 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1429 	   typename _Traits>
1430     typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1431 			_Equal, _H1, _H2, _Hash, _RehashPolicy,
1432 			_Traits>::__node_base*
1433     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1434 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1435     _M_find_before_node(size_type __n, const key_type& __k,
1436 			__hash_code __code) const
1437     {
1438       __node_base* __prev_p = _M_buckets[__n];
1439       if (!__prev_p)
1440 	return nullptr;
1441 
1442       for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
1443 	   __p = __p->_M_next())
1444 	{
1445 	  if (this->_M_equals(__k, __code, __p))
1446 	    return __prev_p;
1447 
1448 	  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1449 	    break;
1450 	  __prev_p = __p;
1451 	}
1452       return nullptr;
1453     }
1454 
1455   template<typename _Key, typename _Value,
1456 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1457 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1458 	   typename _Traits>
1459     void
1460     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1461 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1462     _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1463     {
1464       if (_M_buckets[__bkt])
1465 	{
1466 	  // Bucket is not empty, we just need to insert the new node
1467 	  // after the bucket before begin.
1468 	  __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1469 	  _M_buckets[__bkt]->_M_nxt = __node;
1470 	}
1471       else
1472 	{
1473 	  // The bucket is empty, the new node is inserted at the
1474 	  // beginning of the singly-linked list and the bucket will
1475 	  // contain _M_before_begin pointer.
1476 	  __node->_M_nxt = _M_before_begin._M_nxt;
1477 	  _M_before_begin._M_nxt = __node;
1478 	  if (__node->_M_nxt)
1479 	    // We must update former begin bucket that is pointing to
1480 	    // _M_before_begin.
1481 	    _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1482 	  _M_buckets[__bkt] = &_M_before_begin;
1483 	}
1484     }
1485 
1486   template<typename _Key, typename _Value,
1487 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1488 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1489 	   typename _Traits>
1490     void
1491     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1492 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1493     _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1494 			   size_type __next_bkt)
1495     {
1496       if (!__next || __next_bkt != __bkt)
1497 	{
1498 	  // Bucket is now empty
1499 	  // First update next bucket if any
1500 	  if (__next)
1501 	    _M_buckets[__next_bkt] = _M_buckets[__bkt];
1502 
1503 	  // Second update before begin node if necessary
1504 	  if (&_M_before_begin == _M_buckets[__bkt])
1505 	    _M_before_begin._M_nxt = __next;
1506 	  _M_buckets[__bkt] = nullptr;
1507 	}
1508     }
1509 
1510   template<typename _Key, typename _Value,
1511 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1512 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1513 	   typename _Traits>
1514     typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1515 			_Equal, _H1, _H2, _Hash, _RehashPolicy,
1516 			_Traits>::__node_base*
1517     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1518 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1519     _M_get_previous_node(size_type __bkt, __node_base* __n)
1520     {
1521       __node_base* __prev_n = _M_buckets[__bkt];
1522       while (__prev_n->_M_nxt != __n)
1523 	__prev_n = __prev_n->_M_nxt;
1524       return __prev_n;
1525     }
1526 
1527   template<typename _Key, typename _Value,
1528 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1529 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1530 	   typename _Traits>
1531     template<typename... _Args>
1532       std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1533 				    _ExtractKey, _Equal, _H1,
1534 				    _H2, _Hash, _RehashPolicy,
1535 				    _Traits>::iterator, bool>
1536       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1537 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1538       _M_emplace(std::true_type, _Args&&... __args)
1539       {
1540 	// First build the node to get access to the hash code
1541 	__node_type* __node = this->_M_allocate_node(std::forward<_Args>(__args)...);
1542 	const key_type& __k = this->_M_extract()(__node->_M_v());
1543 	__hash_code __code;
1544 	__try
1545 	  {
1546 	    __code = this->_M_hash_code(__k);
1547 	  }
1548 	__catch(...)
1549 	  {
1550 	    this->_M_deallocate_node(__node);
1551 	    __throw_exception_again;
1552 	  }
1553 
1554 	size_type __bkt = _M_bucket_index(__k, __code);
1555 	if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1556 	  {
1557 	    // There is already an equivalent node, no insertion
1558 	    this->_M_deallocate_node(__node);
1559 	    return std::make_pair(iterator(__p), false);
1560 	  }
1561 
1562 	// Insert the node
1563 	return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
1564 			      true);
1565       }
1566 
1567   template<typename _Key, typename _Value,
1568 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1569 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1570 	   typename _Traits>
1571     template<typename... _Args>
1572       typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1573 			  _H1, _H2, _Hash, _RehashPolicy,
1574 			  _Traits>::iterator
1575       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1576 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1577       _M_emplace(const_iterator __hint, std::false_type, _Args&&... __args)
1578       {
1579 	// First build the node to get its hash code.
1580 	__node_type* __node =
1581 	  this->_M_allocate_node(std::forward<_Args>(__args)...);
1582 
1583 	__hash_code __code;
1584 	__try
1585 	  {
1586 	    __code = this->_M_hash_code(this->_M_extract()(__node->_M_v()));
1587 	  }
1588 	__catch(...)
1589 	  {
1590 	    this->_M_deallocate_node(__node);
1591 	    __throw_exception_again;
1592 	  }
1593 
1594 	return _M_insert_multi_node(__hint._M_cur, __code, __node);
1595       }
1596 
1597   template<typename _Key, typename _Value,
1598 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1599 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1600 	   typename _Traits>
1601     typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1602 			_H1, _H2, _Hash, _RehashPolicy,
1603 			_Traits>::iterator
1604     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1605 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1606     _M_insert_unique_node(size_type __bkt, __hash_code __code,
1607 			  __node_type* __node)
1608     {
1609       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1610       std::pair<bool, std::size_t> __do_rehash
1611 	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1612 
1613       __try
1614 	{
1615 	  if (__do_rehash.first)
1616 	    {
1617 	      _M_rehash(__do_rehash.second, __saved_state);
1618 	      __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v()), __code);
1619 	    }
1620 
1621 	  this->_M_store_code(__node, __code);
1622 
1623 	  // Always insert at the beginning of the bucket.
1624 	  _M_insert_bucket_begin(__bkt, __node);
1625 	  ++_M_element_count;
1626 	  return iterator(__node);
1627 	}
1628       __catch(...)
1629 	{
1630 	  this->_M_deallocate_node(__node);
1631 	  __throw_exception_again;
1632 	}
1633     }
1634 
1635   // Insert node, in bucket bkt if no rehash (assumes no element with its key
1636   // already present). Take ownership of the node, deallocate it on exception.
1637   template<typename _Key, typename _Value,
1638 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1639 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1640 	   typename _Traits>
1641     typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1642 			_H1, _H2, _Hash, _RehashPolicy,
1643 			_Traits>::iterator
1644     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1645 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1646     _M_insert_multi_node(__node_type* __hint, __hash_code __code,
1647 			 __node_type* __node)
1648     {
1649       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1650       std::pair<bool, std::size_t> __do_rehash
1651 	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1652 
1653       __try
1654 	{
1655 	  if (__do_rehash.first)
1656 	    _M_rehash(__do_rehash.second, __saved_state);
1657 
1658 	  this->_M_store_code(__node, __code);
1659 	  const key_type& __k = this->_M_extract()(__node->_M_v());
1660 	  size_type __bkt = _M_bucket_index(__k, __code);
1661 
1662 	  // Find the node before an equivalent one or use hint if it exists and
1663 	  // if it is equivalent.
1664 	  __node_base* __prev
1665 	    = __builtin_expect(__hint != nullptr, false)
1666 	      && this->_M_equals(__k, __code, __hint)
1667 		? __hint
1668 		: _M_find_before_node(__bkt, __k, __code);
1669 	  if (__prev)
1670 	    {
1671 	      // Insert after the node before the equivalent one.
1672 	      __node->_M_nxt = __prev->_M_nxt;
1673 	      __prev->_M_nxt = __node;
1674 	      if (__builtin_expect(__prev == __hint, false))
1675 	      	// hint might be the last bucket node, in this case we need to
1676 	      	// update next bucket.
1677 	      	if (__node->_M_nxt
1678 	      	    && !this->_M_equals(__k, __code, __node->_M_next()))
1679 	      	  {
1680 	      	    size_type __next_bkt = _M_bucket_index(__node->_M_next());
1681 	      	    if (__next_bkt != __bkt)
1682 	      	      _M_buckets[__next_bkt] = __node;
1683 	      	  }
1684 	    }
1685 	  else
1686 	    // The inserted node has no equivalent in the
1687 	    // hashtable. We must insert the new node at the
1688 	    // beginning of the bucket to preserve equivalent
1689 	    // elements' relative positions.
1690 	    _M_insert_bucket_begin(__bkt, __node);
1691 	  ++_M_element_count;
1692 	  return iterator(__node);
1693 	}
1694       __catch(...)
1695 	{
1696 	  this->_M_deallocate_node(__node);
1697 	  __throw_exception_again;
1698 	}
1699     }
1700 
1701   // Insert v if no element with its key is already present.
1702   template<typename _Key, typename _Value,
1703 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1704 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1705 	   typename _Traits>
1706     template<typename _Arg, typename _NodeGenerator>
1707       std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1708 				    _ExtractKey, _Equal, _H1,
1709 				    _H2, _Hash, _RehashPolicy,
1710 				    _Traits>::iterator, bool>
1711       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1712 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1713       _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, std::true_type)
1714       {
1715 	const key_type& __k = this->_M_extract()(__v);
1716 	__hash_code __code = this->_M_hash_code(__k);
1717 	size_type __bkt = _M_bucket_index(__k, __code);
1718 
1719 	__node_type* __n = _M_find_node(__bkt, __k, __code);
1720 	if (__n)
1721 	  return std::make_pair(iterator(__n), false);
1722 
1723 	__n = __node_gen(std::forward<_Arg>(__v));
1724 	return std::make_pair(_M_insert_unique_node(__bkt, __code, __n), true);
1725       }
1726 
1727   // Insert v unconditionally.
1728   template<typename _Key, typename _Value,
1729 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1730 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1731 	   typename _Traits>
1732     template<typename _Arg, typename _NodeGenerator>
1733       typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1734 			  _H1, _H2, _Hash, _RehashPolicy,
1735 			  _Traits>::iterator
1736       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1737 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1738       _M_insert(const_iterator __hint, _Arg&& __v,
1739 		const _NodeGenerator& __node_gen,
1740 		std::false_type)
1741       {
1742 	// First compute the hash code so that we don't do anything if it
1743 	// throws.
1744 	__hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1745 
1746 	// Second allocate new node so that we don't rehash if it throws.
1747 	__node_type* __node = __node_gen(std::forward<_Arg>(__v));
1748 
1749 	return _M_insert_multi_node(__hint._M_cur, __code, __node);
1750       }
1751 
1752   template<typename _Key, typename _Value,
1753 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1754 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1755 	   typename _Traits>
1756     typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1757 			_H1, _H2, _Hash, _RehashPolicy,
1758 			_Traits>::iterator
1759     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1760 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1761     erase(const_iterator __it)
1762     {
1763       __node_type* __n = __it._M_cur;
1764       std::size_t __bkt = _M_bucket_index(__n);
1765 
1766       // Look for previous node to unlink it from the erased one, this
1767       // is why we need buckets to contain the before begin to make
1768       // this search fast.
1769       __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1770       return _M_erase(__bkt, __prev_n, __n);
1771     }
1772 
1773   template<typename _Key, typename _Value,
1774 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1775 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1776 	   typename _Traits>
1777     typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1778 			_H1, _H2, _Hash, _RehashPolicy,
1779 			_Traits>::iterator
1780     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1781 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1782     _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1783     {
1784       if (__prev_n == _M_buckets[__bkt])
1785 	_M_remove_bucket_begin(__bkt, __n->_M_next(),
1786 	   __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1787       else if (__n->_M_nxt)
1788 	{
1789 	  size_type __next_bkt = _M_bucket_index(__n->_M_next());
1790 	  if (__next_bkt != __bkt)
1791 	    _M_buckets[__next_bkt] = __prev_n;
1792 	}
1793 
1794       __prev_n->_M_nxt = __n->_M_nxt;
1795       iterator __result(__n->_M_next());
1796       this->_M_deallocate_node(__n);
1797       --_M_element_count;
1798 
1799       return __result;
1800     }
1801 
1802   template<typename _Key, typename _Value,
1803 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1804 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1805 	   typename _Traits>
1806     typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1807 			_H1, _H2, _Hash, _RehashPolicy,
1808 			_Traits>::size_type
1809     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1810 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1811     _M_erase(std::true_type, const key_type& __k)
1812     {
1813       __hash_code __code = this->_M_hash_code(__k);
1814       std::size_t __bkt = _M_bucket_index(__k, __code);
1815 
1816       // Look for the node before the first matching node.
1817       __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1818       if (!__prev_n)
1819 	return 0;
1820 
1821       // We found a matching node, erase it.
1822       __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1823       _M_erase(__bkt, __prev_n, __n);
1824       return 1;
1825     }
1826 
1827   template<typename _Key, typename _Value,
1828 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1829 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1830 	   typename _Traits>
1831     typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1832 			_H1, _H2, _Hash, _RehashPolicy,
1833 			_Traits>::size_type
1834     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1835 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1836     _M_erase(std::false_type, const key_type& __k)
1837     {
1838       __hash_code __code = this->_M_hash_code(__k);
1839       std::size_t __bkt = _M_bucket_index(__k, __code);
1840 
1841       // Look for the node before the first matching node.
1842       __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1843       if (!__prev_n)
1844 	return 0;
1845 
1846       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1847       // 526. Is it undefined if a function in the standard changes
1848       // in parameters?
1849       // We use one loop to find all matching nodes and another to deallocate
1850       // them so that the key stays valid during the first loop. It might be
1851       // invalidated indirectly when destroying nodes.
1852       __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1853       __node_type* __n_last = __n;
1854       std::size_t __n_last_bkt = __bkt;
1855       do
1856 	{
1857 	  __n_last = __n_last->_M_next();
1858 	  if (!__n_last)
1859 	    break;
1860 	  __n_last_bkt = _M_bucket_index(__n_last);
1861 	}
1862       while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1863 
1864       // Deallocate nodes.
1865       size_type __result = 0;
1866       do
1867 	{
1868 	  __node_type* __p = __n->_M_next();
1869 	  this->_M_deallocate_node(__n);
1870 	  __n = __p;
1871 	  ++__result;
1872 	  --_M_element_count;
1873 	}
1874       while (__n != __n_last);
1875 
1876       if (__prev_n == _M_buckets[__bkt])
1877 	_M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
1878       else if (__n_last && __n_last_bkt != __bkt)
1879 	_M_buckets[__n_last_bkt] = __prev_n;
1880       __prev_n->_M_nxt = __n_last;
1881       return __result;
1882     }
1883 
1884   template<typename _Key, typename _Value,
1885 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1886 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1887 	   typename _Traits>
1888     typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1889 			_H1, _H2, _Hash, _RehashPolicy,
1890 			_Traits>::iterator
1891     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1892 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1893     erase(const_iterator __first, const_iterator __last)
1894     {
1895       __node_type* __n = __first._M_cur;
1896       __node_type* __last_n = __last._M_cur;
1897       if (__n == __last_n)
1898 	return iterator(__n);
1899 
1900       std::size_t __bkt = _M_bucket_index(__n);
1901 
1902       __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1903       bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
1904       std::size_t __n_bkt = __bkt;
1905       for (;;)
1906 	{
1907 	  do
1908 	    {
1909 	      __node_type* __tmp = __n;
1910 	      __n = __n->_M_next();
1911 	      this->_M_deallocate_node(__tmp);
1912 	      --_M_element_count;
1913 	      if (!__n)
1914 		break;
1915 	      __n_bkt = _M_bucket_index(__n);
1916 	    }
1917 	  while (__n != __last_n && __n_bkt == __bkt);
1918 	  if (__is_bucket_begin)
1919 	    _M_remove_bucket_begin(__bkt, __n, __n_bkt);
1920 	  if (__n == __last_n)
1921 	    break;
1922 	  __is_bucket_begin = true;
1923 	  __bkt = __n_bkt;
1924 	}
1925 
1926       if (__n && (__n_bkt != __bkt || __is_bucket_begin))
1927 	_M_buckets[__n_bkt] = __prev_n;
1928       __prev_n->_M_nxt = __n;
1929       return iterator(__n);
1930     }
1931 
1932   template<typename _Key, typename _Value,
1933 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1934 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1935 	   typename _Traits>
1936     void
1937     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1938 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1939     clear() noexcept
1940     {
1941       this->_M_deallocate_nodes(_M_begin());
1942       __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
1943       _M_element_count = 0;
1944       _M_before_begin._M_nxt = nullptr;
1945     }
1946 
1947   template<typename _Key, typename _Value,
1948 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1949 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1950 	   typename _Traits>
1951     void
1952     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1953 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1954     rehash(size_type __n)
1955     {
1956       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1957       std::size_t __buckets
1958 	= std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
1959 		   __n);
1960       __buckets = _M_rehash_policy._M_next_bkt(__buckets);
1961 
1962       if (__buckets != _M_bucket_count)
1963 	_M_rehash(__buckets, __saved_state);
1964       else
1965 	// No rehash, restore previous state to keep a consistent state.
1966 	_M_rehash_policy._M_reset(__saved_state);
1967     }
1968 
1969   template<typename _Key, typename _Value,
1970 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1971 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1972 	   typename _Traits>
1973     void
1974     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1975 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1976     _M_rehash(size_type __n, const __rehash_state& __state)
1977     {
1978       __try
1979 	{
1980 	  _M_rehash_aux(__n, __unique_keys());
1981 	}
1982       __catch(...)
1983 	{
1984 	  // A failure here means that buckets allocation failed.  We only
1985 	  // have to restore hash policy previous state.
1986 	  _M_rehash_policy._M_reset(__state);
1987 	  __throw_exception_again;
1988 	}
1989     }
1990 
1991   // Rehash when there is no equivalent elements.
1992   template<typename _Key, typename _Value,
1993 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1994 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1995 	   typename _Traits>
1996     void
1997     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1998 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1999     _M_rehash_aux(size_type __n, std::true_type)
2000     {
2001       __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2002       __node_type* __p = _M_begin();
2003       _M_before_begin._M_nxt = nullptr;
2004       std::size_t __bbegin_bkt = 0;
2005       while (__p)
2006 	{
2007 	  __node_type* __next = __p->_M_next();
2008 	  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2009 	  if (!__new_buckets[__bkt])
2010 	    {
2011 	      __p->_M_nxt = _M_before_begin._M_nxt;
2012 	      _M_before_begin._M_nxt = __p;
2013 	      __new_buckets[__bkt] = &_M_before_begin;
2014 	      if (__p->_M_nxt)
2015 		__new_buckets[__bbegin_bkt] = __p;
2016 	      __bbegin_bkt = __bkt;
2017 	    }
2018 	  else
2019 	    {
2020 	      __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2021 	      __new_buckets[__bkt]->_M_nxt = __p;
2022 	    }
2023 	  __p = __next;
2024 	}
2025 
2026       _M_deallocate_buckets();
2027       _M_bucket_count = __n;
2028       _M_buckets = __new_buckets;
2029     }
2030 
2031   // Rehash when there can be equivalent elements, preserve their relative
2032   // order.
2033   template<typename _Key, typename _Value,
2034 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2035 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2036 	   typename _Traits>
2037     void
2038     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2039 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2040     _M_rehash_aux(size_type __n, std::false_type)
2041     {
2042       __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2043 
2044       __node_type* __p = _M_begin();
2045       _M_before_begin._M_nxt = nullptr;
2046       std::size_t __bbegin_bkt = 0;
2047       std::size_t __prev_bkt = 0;
2048       __node_type* __prev_p = nullptr;
2049       bool __check_bucket = false;
2050 
2051       while (__p)
2052 	{
2053 	  __node_type* __next = __p->_M_next();
2054 	  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2055 
2056 	  if (__prev_p && __prev_bkt == __bkt)
2057 	    {
2058 	      // Previous insert was already in this bucket, we insert after
2059 	      // the previously inserted one to preserve equivalent elements
2060 	      // relative order.
2061 	      __p->_M_nxt = __prev_p->_M_nxt;
2062 	      __prev_p->_M_nxt = __p;
2063 
2064 	      // Inserting after a node in a bucket require to check that we
2065 	      // haven't change the bucket last node, in this case next
2066 	      // bucket containing its before begin node must be updated. We
2067 	      // schedule a check as soon as we move out of the sequence of
2068 	      // equivalent nodes to limit the number of checks.
2069 	      __check_bucket = true;
2070 	    }
2071 	  else
2072 	    {
2073 	      if (__check_bucket)
2074 		{
2075 		  // Check if we shall update the next bucket because of
2076 		  // insertions into __prev_bkt bucket.
2077 		  if (__prev_p->_M_nxt)
2078 		    {
2079 		      std::size_t __next_bkt
2080 			= __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2081 							    __n);
2082 		      if (__next_bkt != __prev_bkt)
2083 			__new_buckets[__next_bkt] = __prev_p;
2084 		    }
2085 		  __check_bucket = false;
2086 		}
2087 
2088 	      if (!__new_buckets[__bkt])
2089 		{
2090 		  __p->_M_nxt = _M_before_begin._M_nxt;
2091 		  _M_before_begin._M_nxt = __p;
2092 		  __new_buckets[__bkt] = &_M_before_begin;
2093 		  if (__p->_M_nxt)
2094 		    __new_buckets[__bbegin_bkt] = __p;
2095 		  __bbegin_bkt = __bkt;
2096 		}
2097 	      else
2098 		{
2099 		  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2100 		  __new_buckets[__bkt]->_M_nxt = __p;
2101 		}
2102 	    }
2103 	  __prev_p = __p;
2104 	  __prev_bkt = __bkt;
2105 	  __p = __next;
2106 	}
2107 
2108       if (__check_bucket && __prev_p->_M_nxt)
2109 	{
2110 	  std::size_t __next_bkt
2111 	    = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
2112 	  if (__next_bkt != __prev_bkt)
2113 	    __new_buckets[__next_bkt] = __prev_p;
2114 	}
2115 
2116       _M_deallocate_buckets();
2117       _M_bucket_count = __n;
2118       _M_buckets = __new_buckets;
2119     }
2120 
2121 _GLIBCXX_END_NAMESPACE_VERSION
2122 } // namespace std
2123 
2124 #endif // _HASHTABLE_H
2125