1 // hashtable.h header -*- C++ -*-
2
3 // Copyright (C) 2007-2015 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24
25 /** @file bits/hashtable.h
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28 */
29
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
32
33 #pragma GCC system_header
34
35 #include <bits/hashtable_policy.h>
36
_GLIBCXX_VISIBILITY(default)37 namespace std _GLIBCXX_VISIBILITY(default)
38 {
39 _GLIBCXX_BEGIN_NAMESPACE_VERSION
40
41 template<typename _Tp, typename _Hash>
42 using __cache_default
43 = __not_<__and_<// Do not cache for fast hasher.
44 __is_fast_hash<_Hash>,
45 // Mandatory to have erase not throwing.
46 __detail::__is_noexcept_hash<_Tp, _Hash>>>;
47
48 /**
49 * Primary class template _Hashtable.
50 *
51 * @ingroup hashtable-detail
52 *
53 * @tparam _Value CopyConstructible type.
54 *
55 * @tparam _Key CopyConstructible type.
56 *
57 * @tparam _Alloc An allocator type
58 * ([lib.allocator.requirements]) whose _Alloc::value_type is
59 * _Value. As a conforming extension, we allow for
60 * _Alloc::value_type != _Value.
61 *
62 * @tparam _ExtractKey Function object that takes an object of type
63 * _Value and returns a value of type _Key.
64 *
65 * @tparam _Equal Function object that takes two objects of type k
66 * and returns a bool-like value that is true if the two objects
67 * are considered equal.
68 *
69 * @tparam _H1 The hash function. A unary function object with
70 * argument type _Key and result type size_t. Return values should
71 * be distributed over the entire range [0, numeric_limits<size_t>:::max()].
72 *
73 * @tparam _H2 The range-hashing function (in the terminology of
74 * Tavori and Dreizin). A binary function object whose argument
75 * types and result type are all size_t. Given arguments r and N,
76 * the return value is in the range [0, N).
77 *
78 * @tparam _Hash The ranged hash function (Tavori and Dreizin). A
79 * binary function whose argument types are _Key and size_t and
80 * whose result type is size_t. Given arguments k and N, the
81 * return value is in the range [0, N). Default: hash(k, N) =
82 * h2(h1(k), N). If _Hash is anything other than the default, _H1
83 * and _H2 are ignored.
84 *
85 * @tparam _RehashPolicy Policy class with three members, all of
86 * which govern the bucket count. _M_next_bkt(n) returns a bucket
87 * count no smaller than n. _M_bkt_for_elements(n) returns a
88 * bucket count appropriate for an element count of n.
89 * _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
90 * current bucket count is n_bkt and the current element count is
91 * n_elt, we need to increase the bucket count. If so, returns
92 * make_pair(true, n), where n is the new bucket count. If not,
93 * returns make_pair(false, <anything>)
94 *
95 * @tparam _Traits Compile-time class with three boolean
96 * std::integral_constant members: __cache_hash_code, __constant_iterators,
97 * __unique_keys.
98 *
99 * Each _Hashtable data structure has:
100 *
101 * - _Bucket[] _M_buckets
102 * - _Hash_node_base _M_before_begin
103 * - size_type _M_bucket_count
104 * - size_type _M_element_count
105 *
106 * with _Bucket being _Hash_node* and _Hash_node containing:
107 *
108 * - _Hash_node* _M_next
109 * - Tp _M_value
110 * - size_t _M_hash_code if cache_hash_code is true
111 *
112 * In terms of Standard containers the hashtable is like the aggregation of:
113 *
114 * - std::forward_list<_Node> containing the elements
115 * - std::vector<std::forward_list<_Node>::iterator> representing the buckets
116 *
117 * The non-empty buckets contain the node before the first node in the
118 * bucket. This design makes it possible to implement something like a
119 * std::forward_list::insert_after on container insertion and
120 * std::forward_list::erase_after on container erase
121 * calls. _M_before_begin is equivalent to
122 * std::forward_list::before_begin. Empty buckets contain
123 * nullptr. Note that one of the non-empty buckets contains
124 * &_M_before_begin which is not a dereferenceable node so the
125 * node pointer in a bucket shall never be dereferenced, only its
126 * next node can be.
127 *
128 * Walking through a bucket's nodes requires a check on the hash code to
129 * see if each node is still in the bucket. Such a design assumes a
130 * quite efficient hash functor and is one of the reasons it is
131 * highly advisable to set __cache_hash_code to true.
132 *
133 * The container iterators are simply built from nodes. This way
134 * incrementing the iterator is perfectly efficient independent of
135 * how many empty buckets there are in the container.
136 *
137 * On insert we compute the element's hash code and use it to find the
138 * bucket index. If the element must be inserted in an empty bucket
139 * we add it at the beginning of the singly linked list and make the
140 * bucket point to _M_before_begin. The bucket that used to point to
141 * _M_before_begin, if any, is updated to point to its new before
142 * begin node.
143 *
144 * On erase, the simple iterator design requires using the hash
145 * functor to get the index of the bucket to update. For this
146 * reason, when __cache_hash_code is set to false the hash functor must
147 * not throw and this is enforced by a static assertion.
148 *
149 * Functionality is implemented by decomposition into base classes,
150 * where the derived _Hashtable class is used in _Map_base,
151 * _Insert, _Rehash_base, and _Equality base classes to access the
152 * "this" pointer. _Hashtable_base is used in the base classes as a
153 * non-recursive, fully-completed-type so that detailed nested type
154 * information, such as iterator type and node type, can be
155 * used. This is similar to the "Curiously Recurring Template
156 * Pattern" (CRTP) technique, but uses a reconstructed, not
157 * explicitly passed, template pattern.
158 *
159 * Base class templates are:
160 * - __detail::_Hashtable_base
161 * - __detail::_Map_base
162 * - __detail::_Insert
163 * - __detail::_Rehash_base
164 * - __detail::_Equality
165 */
166 template<typename _Key, typename _Value, typename _Alloc,
167 typename _ExtractKey, typename _Equal,
168 typename _H1, typename _H2, typename _Hash,
169 typename _RehashPolicy, typename _Traits>
170 class _Hashtable
171 : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
172 _H1, _H2, _Hash, _Traits>,
173 public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
174 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
175 public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
176 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
177 public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
178 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
179 public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
180 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
181 private __detail::_Hashtable_alloc<
182 typename __alloctr_rebind<_Alloc,
183 __detail::_Hash_node<_Value,
184 _Traits::__hash_cached::value> >::__type>
185 {
186 using __traits_type = _Traits;
187 using __hash_cached = typename __traits_type::__hash_cached;
188 using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
189 using __node_alloc_type =
190 typename __alloctr_rebind<_Alloc, __node_type>::__type;
191
192 using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;
193
194 using __value_alloc_traits =
195 typename __hashtable_alloc::__value_alloc_traits;
196 using __node_alloc_traits =
197 typename __hashtable_alloc::__node_alloc_traits;
198 using __node_base = typename __hashtable_alloc::__node_base;
199 using __bucket_type = typename __hashtable_alloc::__bucket_type;
200
201 public:
202 typedef _Key key_type;
203 typedef _Value value_type;
204 typedef _Alloc allocator_type;
205 typedef _Equal key_equal;
206
207 // mapped_type, if present, comes from _Map_base.
208 // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
209 typedef typename __value_alloc_traits::pointer pointer;
210 typedef typename __value_alloc_traits::const_pointer const_pointer;
211 typedef value_type& reference;
212 typedef const value_type& const_reference;
213
214 private:
215 using __rehash_type = _RehashPolicy;
216 using __rehash_state = typename __rehash_type::_State;
217
218 using __constant_iterators = typename __traits_type::__constant_iterators;
219 using __unique_keys = typename __traits_type::__unique_keys;
220
221 using __key_extract = typename std::conditional<
222 __constant_iterators::value,
223 __detail::_Identity,
224 __detail::_Select1st>::type;
225
226 using __hashtable_base = __detail::
227 _Hashtable_base<_Key, _Value, _ExtractKey,
228 _Equal, _H1, _H2, _Hash, _Traits>;
229
230 using __hash_code_base = typename __hashtable_base::__hash_code_base;
231 using __hash_code = typename __hashtable_base::__hash_code;
232 using __ireturn_type = typename __hashtable_base::__ireturn_type;
233
234 using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
235 _Equal, _H1, _H2, _Hash,
236 _RehashPolicy, _Traits>;
237
238 using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
239 _ExtractKey, _Equal,
240 _H1, _H2, _Hash,
241 _RehashPolicy, _Traits>;
242
243 using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
244 _Equal, _H1, _H2, _Hash,
245 _RehashPolicy, _Traits>;
246
247 using __reuse_or_alloc_node_type =
248 __detail::_ReuseOrAllocNode<__node_alloc_type>;
249
250 // Metaprogramming for picking apart hash caching.
251 template<typename _Cond>
252 using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
253
254 template<typename _Cond>
255 using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
256
257 // Compile-time diagnostics.
258
259 // _Hash_code_base has everything protected, so use this derived type to
260 // access it.
261 struct __hash_code_base_access : __hash_code_base
262 { using __hash_code_base::_M_bucket_index; };
263
264 // Getting a bucket index from a node shall not throw because it is used
265 // in methods (erase, swap...) that shall not throw.
266 static_assert(noexcept(declval<const __hash_code_base_access&>()
267 ._M_bucket_index((const __node_type*)nullptr,
268 (std::size_t)0)),
269 "Cache the hash code or qualify your functors involved"
270 " in hash code and bucket index computation with noexcept");
271
272 // Following two static assertions are necessary to guarantee
273 // that local_iterator will be default constructible.
274
275 // When hash codes are cached local iterator inherits from H2 functor
276 // which must then be default constructible.
277 static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
278 "Functor used to map hash code to bucket index"
279 " must be default constructible");
280
281 template<typename _Keya, typename _Valuea, typename _Alloca,
282 typename _ExtractKeya, typename _Equala,
283 typename _H1a, typename _H2a, typename _Hasha,
284 typename _RehashPolicya, typename _Traitsa,
285 bool _Unique_keysa>
286 friend struct __detail::_Map_base;
287
288 template<typename _Keya, typename _Valuea, typename _Alloca,
289 typename _ExtractKeya, typename _Equala,
290 typename _H1a, typename _H2a, typename _Hasha,
291 typename _RehashPolicya, typename _Traitsa>
292 friend struct __detail::_Insert_base;
293
294 template<typename _Keya, typename _Valuea, typename _Alloca,
295 typename _ExtractKeya, typename _Equala,
296 typename _H1a, typename _H2a, typename _Hasha,
297 typename _RehashPolicya, typename _Traitsa,
298 bool _Constant_iteratorsa, bool _Unique_keysa>
299 friend struct __detail::_Insert;
300
301 public:
302 using size_type = typename __hashtable_base::size_type;
303 using difference_type = typename __hashtable_base::difference_type;
304
305 using iterator = typename __hashtable_base::iterator;
306 using const_iterator = typename __hashtable_base::const_iterator;
307
308 using local_iterator = typename __hashtable_base::local_iterator;
309 using const_local_iterator = typename __hashtable_base::
310 const_local_iterator;
311
312 private:
313 __bucket_type* _M_buckets = &_M_single_bucket;
314 size_type _M_bucket_count = 1;
315 __node_base _M_before_begin;
316 size_type _M_element_count = 0;
317 _RehashPolicy _M_rehash_policy;
318
319 // A single bucket used when only need for 1 bucket. Especially
320 // interesting in move semantic to leave hashtable with only 1 buckets
321 // which is not allocated so that we can have those operations noexcept
322 // qualified.
323 // Note that we can't leave hashtable with 0 bucket without adding
324 // numerous checks in the code to avoid 0 modulus.
325 __bucket_type _M_single_bucket = nullptr;
326
327 bool
328 _M_uses_single_bucket(__bucket_type* __bkts) const
329 { return __builtin_expect(__bkts == &_M_single_bucket, false); }
330
331 bool
332 _M_uses_single_bucket() const
333 { return _M_uses_single_bucket(_M_buckets); }
334
335 __hashtable_alloc&
336 _M_base_alloc() { return *this; }
337
338 __bucket_type*
339 _M_allocate_buckets(size_type __n)
340 {
341 if (__builtin_expect(__n == 1, false))
342 {
343 _M_single_bucket = nullptr;
344 return &_M_single_bucket;
345 }
346
347 return __hashtable_alloc::_M_allocate_buckets(__n);
348 }
349
350 void
351 _M_deallocate_buckets(__bucket_type* __bkts, size_type __n)
352 {
353 if (_M_uses_single_bucket(__bkts))
354 return;
355
356 __hashtable_alloc::_M_deallocate_buckets(__bkts, __n);
357 }
358
359 void
360 _M_deallocate_buckets()
361 { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
362
363 // Gets bucket begin, deals with the fact that non-empty buckets contain
364 // their before begin node.
365 __node_type*
366 _M_bucket_begin(size_type __bkt) const;
367
368 __node_type*
369 _M_begin() const
370 { return static_cast<__node_type*>(_M_before_begin._M_nxt); }
371
372 template<typename _NodeGenerator>
373 void
374 _M_assign(const _Hashtable&, const _NodeGenerator&);
375
376 void
377 _M_move_assign(_Hashtable&&, std::true_type);
378
379 void
380 _M_move_assign(_Hashtable&&, std::false_type);
381
382 void
383 _M_reset() noexcept;
384
385 _Hashtable(const _H1& __h1, const _H2& __h2, const _Hash& __h,
386 const _Equal& __eq, const _ExtractKey& __exk,
387 const allocator_type& __a)
388 : __hashtable_base(__exk, __h1, __h2, __h, __eq),
389 __hashtable_alloc(__node_alloc_type(__a))
390 { }
391
392 public:
393 // Constructor, destructor, assignment, swap
394 _Hashtable() = default;
395 _Hashtable(size_type __bucket_hint,
396 const _H1&, const _H2&, const _Hash&,
397 const _Equal&, const _ExtractKey&,
398 const allocator_type&);
399
400 template<typename _InputIterator>
401 _Hashtable(_InputIterator __first, _InputIterator __last,
402 size_type __bucket_hint,
403 const _H1&, const _H2&, const _Hash&,
404 const _Equal&, const _ExtractKey&,
405 const allocator_type&);
406
407 _Hashtable(const _Hashtable&);
408
409 _Hashtable(_Hashtable&&) noexcept;
410
411 _Hashtable(const _Hashtable&, const allocator_type&);
412
413 _Hashtable(_Hashtable&&, const allocator_type&);
414
415 // Use delegating constructors.
416 explicit
417 _Hashtable(const allocator_type& __a)
418 : __hashtable_alloc(__node_alloc_type(__a))
419 { }
420
421 explicit
422 _Hashtable(size_type __n,
423 const _H1& __hf = _H1(),
424 const key_equal& __eql = key_equal(),
425 const allocator_type& __a = allocator_type())
426 : _Hashtable(__n, __hf, _H2(), _Hash(), __eql,
427 __key_extract(), __a)
428 { }
429
430 template<typename _InputIterator>
431 _Hashtable(_InputIterator __f, _InputIterator __l,
432 size_type __n = 0,
433 const _H1& __hf = _H1(),
434 const key_equal& __eql = key_equal(),
435 const allocator_type& __a = allocator_type())
436 : _Hashtable(__f, __l, __n, __hf, _H2(), _Hash(), __eql,
437 __key_extract(), __a)
438 { }
439
440 _Hashtable(initializer_list<value_type> __l,
441 size_type __n = 0,
442 const _H1& __hf = _H1(),
443 const key_equal& __eql = key_equal(),
444 const allocator_type& __a = allocator_type())
445 : _Hashtable(__l.begin(), __l.end(), __n, __hf, _H2(), _Hash(), __eql,
446 __key_extract(), __a)
447 { }
448
449 _Hashtable&
450 operator=(const _Hashtable& __ht);
451
452 _Hashtable&
453 operator=(_Hashtable&& __ht)
454 noexcept(__node_alloc_traits::_S_nothrow_move())
455 {
456 constexpr bool __move_storage =
457 __node_alloc_traits::_S_propagate_on_move_assign()
458 || __node_alloc_traits::_S_always_equal();
459 _M_move_assign(std::move(__ht),
460 integral_constant<bool, __move_storage>());
461 return *this;
462 }
463
464 _Hashtable&
465 operator=(initializer_list<value_type> __l)
466 {
467 __reuse_or_alloc_node_type __roan(_M_begin(), *this);
468 _M_before_begin._M_nxt = nullptr;
469 clear();
470 this->_M_insert_range(__l.begin(), __l.end(), __roan);
471 return *this;
472 }
473
474 ~_Hashtable() noexcept;
475
476 void
477 swap(_Hashtable&)
478 noexcept(__node_alloc_traits::_S_nothrow_swap());
479
480 // Basic container operations
481 iterator
482 begin() noexcept
483 { return iterator(_M_begin()); }
484
485 const_iterator
486 begin() const noexcept
487 { return const_iterator(_M_begin()); }
488
489 iterator
490 end() noexcept
491 { return iterator(nullptr); }
492
493 const_iterator
494 end() const noexcept
495 { return const_iterator(nullptr); }
496
497 const_iterator
498 cbegin() const noexcept
499 { return const_iterator(_M_begin()); }
500
501 const_iterator
502 cend() const noexcept
503 { return const_iterator(nullptr); }
504
505 size_type
506 size() const noexcept
507 { return _M_element_count; }
508
509 bool
510 empty() const noexcept
511 { return size() == 0; }
512
513 allocator_type
514 get_allocator() const noexcept
515 { return allocator_type(this->_M_node_allocator()); }
516
517 size_type
518 max_size() const noexcept
519 { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
520
521 // Observers
522 key_equal
523 key_eq() const
524 { return this->_M_eq(); }
525
526 // hash_function, if present, comes from _Hash_code_base.
527
528 // Bucket operations
529 size_type
530 bucket_count() const noexcept
531 { return _M_bucket_count; }
532
533 size_type
534 max_bucket_count() const noexcept
535 { return max_size(); }
536
537 size_type
538 bucket_size(size_type __n) const
539 { return std::distance(begin(__n), end(__n)); }
540
541 size_type
542 bucket(const key_type& __k) const
543 { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
544
545 local_iterator
546 begin(size_type __n)
547 {
548 return local_iterator(*this, _M_bucket_begin(__n),
549 __n, _M_bucket_count);
550 }
551
552 local_iterator
553 end(size_type __n)
554 { return local_iterator(*this, nullptr, __n, _M_bucket_count); }
555
556 const_local_iterator
557 begin(size_type __n) const
558 {
559 return const_local_iterator(*this, _M_bucket_begin(__n),
560 __n, _M_bucket_count);
561 }
562
563 const_local_iterator
564 end(size_type __n) const
565 { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
566
567 // DR 691.
568 const_local_iterator
569 cbegin(size_type __n) const
570 {
571 return const_local_iterator(*this, _M_bucket_begin(__n),
572 __n, _M_bucket_count);
573 }
574
575 const_local_iterator
576 cend(size_type __n) const
577 { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
578
579 float
580 load_factor() const noexcept
581 {
582 return static_cast<float>(size()) / static_cast<float>(bucket_count());
583 }
584
585 // max_load_factor, if present, comes from _Rehash_base.
586
587 // Generalization of max_load_factor. Extension, not found in
588 // TR1. Only useful if _RehashPolicy is something other than
589 // the default.
590 const _RehashPolicy&
591 __rehash_policy() const
592 { return _M_rehash_policy; }
593
594 void
595 __rehash_policy(const _RehashPolicy&);
596
597 // Lookup.
598 iterator
599 find(const key_type& __k);
600
601 const_iterator
602 find(const key_type& __k) const;
603
604 size_type
605 count(const key_type& __k) const;
606
607 std::pair<iterator, iterator>
608 equal_range(const key_type& __k);
609
610 std::pair<const_iterator, const_iterator>
611 equal_range(const key_type& __k) const;
612
613 protected:
614 // Bucket index computation helpers.
615 size_type
616 _M_bucket_index(__node_type* __n) const noexcept
617 { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
618
619 size_type
620 _M_bucket_index(const key_type& __k, __hash_code __c) const
621 { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
622
623 // Find and insert helper functions and types
624 // Find the node before the one matching the criteria.
625 __node_base*
626 _M_find_before_node(size_type, const key_type&, __hash_code) const;
627
628 __node_type*
629 _M_find_node(size_type __bkt, const key_type& __key,
630 __hash_code __c) const
631 {
632 __node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
633 if (__before_n)
634 return static_cast<__node_type*>(__before_n->_M_nxt);
635 return nullptr;
636 }
637
638 // Insert a node at the beginning of a bucket.
639 void
640 _M_insert_bucket_begin(size_type, __node_type*);
641
642 // Remove the bucket first node
643 void
644 _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
645 size_type __next_bkt);
646
647 // Get the node before __n in the bucket __bkt
648 __node_base*
649 _M_get_previous_node(size_type __bkt, __node_base* __n);
650
651 // Insert node with hash code __code, in bucket bkt if no rehash (assumes
652 // no element with its key already present). Take ownership of the node,
653 // deallocate it on exception.
654 iterator
655 _M_insert_unique_node(size_type __bkt, __hash_code __code,
656 __node_type* __n);
657
658 // Insert node with hash code __code. Take ownership of the node,
659 // deallocate it on exception.
660 iterator
661 _M_insert_multi_node(__node_type* __hint,
662 __hash_code __code, __node_type* __n);
663
664 template<typename... _Args>
665 std::pair<iterator, bool>
666 _M_emplace(std::true_type, _Args&&... __args);
667
668 template<typename... _Args>
669 iterator
670 _M_emplace(std::false_type __uk, _Args&&... __args)
671 { return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }
672
673 // Emplace with hint, useless when keys are unique.
674 template<typename... _Args>
675 iterator
676 _M_emplace(const_iterator, std::true_type __uk, _Args&&... __args)
677 { return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }
678
679 template<typename... _Args>
680 iterator
681 _M_emplace(const_iterator, std::false_type, _Args&&... __args);
682
683 template<typename _Arg, typename _NodeGenerator>
684 std::pair<iterator, bool>
685 _M_insert(_Arg&&, const _NodeGenerator&, std::true_type);
686
687 template<typename _Arg, typename _NodeGenerator>
688 iterator
689 _M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
690 std::false_type __uk)
691 {
692 return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
693 __uk);
694 }
695
696 // Insert with hint, not used when keys are unique.
697 template<typename _Arg, typename _NodeGenerator>
698 iterator
699 _M_insert(const_iterator, _Arg&& __arg,
700 const _NodeGenerator& __node_gen, std::true_type __uk)
701 {
702 return
703 _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
704 }
705
706 // Insert with hint when keys are not unique.
707 template<typename _Arg, typename _NodeGenerator>
708 iterator
709 _M_insert(const_iterator, _Arg&&,
710 const _NodeGenerator&, std::false_type);
711
712 size_type
713 _M_erase(std::true_type, const key_type&);
714
715 size_type
716 _M_erase(std::false_type, const key_type&);
717
718 iterator
719 _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
720
721 public:
722 // Emplace
723 template<typename... _Args>
724 __ireturn_type
725 emplace(_Args&&... __args)
726 { return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
727
728 template<typename... _Args>
729 iterator
730 emplace_hint(const_iterator __hint, _Args&&... __args)
731 {
732 return _M_emplace(__hint, __unique_keys(),
733 std::forward<_Args>(__args)...);
734 }
735
736 // Insert member functions via inheritance.
737
738 // Erase
739 iterator
740 erase(const_iterator);
741
742 // LWG 2059.
743 iterator
744 erase(iterator __it)
745 { return erase(const_iterator(__it)); }
746
747 size_type
748 erase(const key_type& __k)
749 { return _M_erase(__unique_keys(), __k); }
750
751 iterator
752 erase(const_iterator, const_iterator);
753
754 void
755 clear() noexcept;
756
757 // Set number of buckets to be appropriate for container of n element.
758 void rehash(size_type __n);
759
760 // DR 1189.
761 // reserve, if present, comes from _Rehash_base.
762
763 private:
764 // Helper rehash method used when keys are unique.
765 void _M_rehash_aux(size_type __n, std::true_type);
766
767 // Helper rehash method used when keys can be non-unique.
768 void _M_rehash_aux(size_type __n, std::false_type);
769
770 // Unconditionally change size of bucket array to n, restore
771 // hash policy state to __state on exception.
772 void _M_rehash(size_type __n, const __rehash_state& __state);
773 };
774
775
776 // Definitions of class template _Hashtable's out-of-line member functions.
777 template<typename _Key, typename _Value,
778 typename _Alloc, typename _ExtractKey, typename _Equal,
779 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
780 typename _Traits>
781 auto
782 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
783 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
784 _M_bucket_begin(size_type __bkt) const
785 -> __node_type*
786 {
787 __node_base* __n = _M_buckets[__bkt];
788 return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
789 }
790
791 template<typename _Key, typename _Value,
792 typename _Alloc, typename _ExtractKey, typename _Equal,
793 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
794 typename _Traits>
795 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
796 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
797 _Hashtable(size_type __bucket_hint,
798 const _H1& __h1, const _H2& __h2, const _Hash& __h,
799 const _Equal& __eq, const _ExtractKey& __exk,
800 const allocator_type& __a)
801 : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
802 {
803 auto __bkt = _M_rehash_policy._M_next_bkt(__bucket_hint);
804 if (__bkt > _M_bucket_count)
805 {
806 _M_buckets = _M_allocate_buckets(__bkt);
807 _M_bucket_count = __bkt;
808 }
809 }
810
811 template<typename _Key, typename _Value,
812 typename _Alloc, typename _ExtractKey, typename _Equal,
813 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
814 typename _Traits>
815 template<typename _InputIterator>
816 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
817 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
818 _Hashtable(_InputIterator __f, _InputIterator __l,
819 size_type __bucket_hint,
820 const _H1& __h1, const _H2& __h2, const _Hash& __h,
821 const _Equal& __eq, const _ExtractKey& __exk,
822 const allocator_type& __a)
823 : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
824 {
825 auto __nb_elems = __detail::__distance_fw(__f, __l);
826 auto __bkt_count =
827 _M_rehash_policy._M_next_bkt(
828 std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
829 __bucket_hint));
830
831 if (__bkt_count > _M_bucket_count)
832 {
833 _M_buckets = _M_allocate_buckets(__bkt_count);
834 _M_bucket_count = __bkt_count;
835 }
836
837 for (; __f != __l; ++__f)
838 this->insert(*__f);
839 }
840
841 template<typename _Key, typename _Value,
842 typename _Alloc, typename _ExtractKey, typename _Equal,
843 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
844 typename _Traits>
845 auto
846 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
847 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
848 operator=(const _Hashtable& __ht)
849 -> _Hashtable&
850 {
851 if (&__ht == this)
852 return *this;
853
854 if (__node_alloc_traits::_S_propagate_on_copy_assign())
855 {
856 auto& __this_alloc = this->_M_node_allocator();
857 auto& __that_alloc = __ht._M_node_allocator();
858 if (!__node_alloc_traits::_S_always_equal()
859 && __this_alloc != __that_alloc)
860 {
861 // Replacement allocator cannot free existing storage.
862 this->_M_deallocate_nodes(_M_begin());
863 _M_before_begin._M_nxt = nullptr;
864 _M_deallocate_buckets();
865 _M_buckets = nullptr;
866 std::__alloc_on_copy(__this_alloc, __that_alloc);
867 __hashtable_base::operator=(__ht);
868 _M_bucket_count = __ht._M_bucket_count;
869 _M_element_count = __ht._M_element_count;
870 _M_rehash_policy = __ht._M_rehash_policy;
871 __try
872 {
873 _M_assign(__ht,
874 [this](const __node_type* __n)
875 { return this->_M_allocate_node(__n->_M_v()); });
876 }
877 __catch(...)
878 {
879 // _M_assign took care of deallocating all memory. Now we
880 // must make sure this instance remains in a usable state.
881 _M_reset();
882 __throw_exception_again;
883 }
884 return *this;
885 }
886 std::__alloc_on_copy(__this_alloc, __that_alloc);
887 }
888
889 // Reuse allocated buckets and nodes.
890 __bucket_type* __former_buckets = nullptr;
891 std::size_t __former_bucket_count = _M_bucket_count;
892 const __rehash_state& __former_state = _M_rehash_policy._M_state();
893
894 if (_M_bucket_count != __ht._M_bucket_count)
895 {
896 __former_buckets = _M_buckets;
897 _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
898 _M_bucket_count = __ht._M_bucket_count;
899 }
900 else
901 __builtin_memset(_M_buckets, 0,
902 _M_bucket_count * sizeof(__bucket_type));
903
904 __try
905 {
906 __hashtable_base::operator=(__ht);
907 _M_element_count = __ht._M_element_count;
908 _M_rehash_policy = __ht._M_rehash_policy;
909 __reuse_or_alloc_node_type __roan(_M_begin(), *this);
910 _M_before_begin._M_nxt = nullptr;
911 _M_assign(__ht,
912 [&__roan](const __node_type* __n)
913 { return __roan(__n->_M_v()); });
914 if (__former_buckets)
915 _M_deallocate_buckets(__former_buckets, __former_bucket_count);
916 }
917 __catch(...)
918 {
919 if (__former_buckets)
920 {
921 // Restore previous buckets.
922 _M_deallocate_buckets();
923 _M_rehash_policy._M_reset(__former_state);
924 _M_buckets = __former_buckets;
925 _M_bucket_count = __former_bucket_count;
926 }
927 __builtin_memset(_M_buckets, 0,
928 _M_bucket_count * sizeof(__bucket_type));
929 __throw_exception_again;
930 }
931 return *this;
932 }
933
934 template<typename _Key, typename _Value,
935 typename _Alloc, typename _ExtractKey, typename _Equal,
936 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
937 typename _Traits>
938 template<typename _NodeGenerator>
939 void
940 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
941 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
942 _M_assign(const _Hashtable& __ht, const _NodeGenerator& __node_gen)
943 {
944 __bucket_type* __buckets = nullptr;
945 if (!_M_buckets)
946 _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
947
948 __try
949 {
950 if (!__ht._M_before_begin._M_nxt)
951 return;
952
953 // First deal with the special first node pointed to by
954 // _M_before_begin.
955 __node_type* __ht_n = __ht._M_begin();
956 __node_type* __this_n = __node_gen(__ht_n);
957 this->_M_copy_code(__this_n, __ht_n);
958 _M_before_begin._M_nxt = __this_n;
959 _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;
960
961 // Then deal with other nodes.
962 __node_base* __prev_n = __this_n;
963 for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
964 {
965 __this_n = __node_gen(__ht_n);
966 __prev_n->_M_nxt = __this_n;
967 this->_M_copy_code(__this_n, __ht_n);
968 size_type __bkt = _M_bucket_index(__this_n);
969 if (!_M_buckets[__bkt])
970 _M_buckets[__bkt] = __prev_n;
971 __prev_n = __this_n;
972 }
973 }
974 __catch(...)
975 {
976 clear();
977 if (__buckets)
978 _M_deallocate_buckets();
979 __throw_exception_again;
980 }
981 }
982
983 template<typename _Key, typename _Value,
984 typename _Alloc, typename _ExtractKey, typename _Equal,
985 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
986 typename _Traits>
987 void
988 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
989 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
990 _M_reset() noexcept
991 {
992 _M_rehash_policy._M_reset();
993 _M_bucket_count = 1;
994 _M_single_bucket = nullptr;
995 _M_buckets = &_M_single_bucket;
996 _M_before_begin._M_nxt = nullptr;
997 _M_element_count = 0;
998 }
999
1000 template<typename _Key, typename _Value,
1001 typename _Alloc, typename _ExtractKey, typename _Equal,
1002 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1003 typename _Traits>
1004 void
1005 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1006 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1007 _M_move_assign(_Hashtable&& __ht, std::true_type)
1008 {
1009 this->_M_deallocate_nodes(_M_begin());
1010 _M_deallocate_buckets();
1011 __hashtable_base::operator=(std::move(__ht));
1012 _M_rehash_policy = __ht._M_rehash_policy;
1013 if (!__ht._M_uses_single_bucket())
1014 _M_buckets = __ht._M_buckets;
1015 else
1016 {
1017 _M_buckets = &_M_single_bucket;
1018 _M_single_bucket = __ht._M_single_bucket;
1019 }
1020 _M_bucket_count = __ht._M_bucket_count;
1021 _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1022 _M_element_count = __ht._M_element_count;
1023 std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1024
1025 // Fix buckets containing the _M_before_begin pointers that can't be
1026 // moved.
1027 if (_M_begin())
1028 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1029 __ht._M_reset();
1030 }
1031
1032 template<typename _Key, typename _Value,
1033 typename _Alloc, typename _ExtractKey, typename _Equal,
1034 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1035 typename _Traits>
1036 void
1037 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1038 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1039 _M_move_assign(_Hashtable&& __ht, std::false_type)
1040 {
1041 if (__ht._M_node_allocator() == this->_M_node_allocator())
1042 _M_move_assign(std::move(__ht), std::true_type());
1043 else
1044 {
1045 // Can't move memory, move elements then.
1046 __bucket_type* __former_buckets = nullptr;
1047 size_type __former_bucket_count = _M_bucket_count;
1048 const __rehash_state& __former_state = _M_rehash_policy._M_state();
1049
1050 if (_M_bucket_count != __ht._M_bucket_count)
1051 {
1052 __former_buckets = _M_buckets;
1053 _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1054 _M_bucket_count = __ht._M_bucket_count;
1055 }
1056 else
1057 __builtin_memset(_M_buckets, 0,
1058 _M_bucket_count * sizeof(__bucket_type));
1059
1060 __try
1061 {
1062 __hashtable_base::operator=(std::move(__ht));
1063 _M_element_count = __ht._M_element_count;
1064 _M_rehash_policy = __ht._M_rehash_policy;
1065 __reuse_or_alloc_node_type __roan(_M_begin(), *this);
1066 _M_before_begin._M_nxt = nullptr;
1067 _M_assign(__ht,
1068 [&__roan](__node_type* __n)
1069 { return __roan(std::move_if_noexcept(__n->_M_v())); });
1070 __ht.clear();
1071 }
1072 __catch(...)
1073 {
1074 if (__former_buckets)
1075 {
1076 _M_deallocate_buckets();
1077 _M_rehash_policy._M_reset(__former_state);
1078 _M_buckets = __former_buckets;
1079 _M_bucket_count = __former_bucket_count;
1080 }
1081 __builtin_memset(_M_buckets, 0,
1082 _M_bucket_count * sizeof(__bucket_type));
1083 __throw_exception_again;
1084 }
1085 }
1086 }
1087
1088 template<typename _Key, typename _Value,
1089 typename _Alloc, typename _ExtractKey, typename _Equal,
1090 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1091 typename _Traits>
1092 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1093 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1094 _Hashtable(const _Hashtable& __ht)
1095 : __hashtable_base(__ht),
1096 __map_base(__ht),
1097 __rehash_base(__ht),
1098 __hashtable_alloc(
1099 __node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1100 _M_buckets(nullptr),
1101 _M_bucket_count(__ht._M_bucket_count),
1102 _M_element_count(__ht._M_element_count),
1103 _M_rehash_policy(__ht._M_rehash_policy)
1104 {
1105 _M_assign(__ht,
1106 [this](const __node_type* __n)
1107 { return this->_M_allocate_node(__n->_M_v()); });
1108 }
1109
1110 template<typename _Key, typename _Value,
1111 typename _Alloc, typename _ExtractKey, typename _Equal,
1112 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1113 typename _Traits>
1114 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1115 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1116 _Hashtable(_Hashtable&& __ht) noexcept
1117 : __hashtable_base(__ht),
1118 __map_base(__ht),
1119 __rehash_base(__ht),
1120 __hashtable_alloc(std::move(__ht._M_base_alloc())),
1121 _M_buckets(__ht._M_buckets),
1122 _M_bucket_count(__ht._M_bucket_count),
1123 _M_before_begin(__ht._M_before_begin._M_nxt),
1124 _M_element_count(__ht._M_element_count),
1125 _M_rehash_policy(__ht._M_rehash_policy)
1126 {
1127 // Update, if necessary, buckets if __ht is using its single bucket.
1128 if (__ht._M_uses_single_bucket())
1129 {
1130 _M_buckets = &_M_single_bucket;
1131 _M_single_bucket = __ht._M_single_bucket;
1132 }
1133
1134 // Update, if necessary, bucket pointing to before begin that hasn't
1135 // moved.
1136 if (_M_begin())
1137 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1138
1139 __ht._M_reset();
1140 }
1141
1142 template<typename _Key, typename _Value,
1143 typename _Alloc, typename _ExtractKey, typename _Equal,
1144 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1145 typename _Traits>
1146 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1147 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1148 _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1149 : __hashtable_base(__ht),
1150 __map_base(__ht),
1151 __rehash_base(__ht),
1152 __hashtable_alloc(__node_alloc_type(__a)),
1153 _M_buckets(),
1154 _M_bucket_count(__ht._M_bucket_count),
1155 _M_element_count(__ht._M_element_count),
1156 _M_rehash_policy(__ht._M_rehash_policy)
1157 {
1158 _M_assign(__ht,
1159 [this](const __node_type* __n)
1160 { return this->_M_allocate_node(__n->_M_v()); });
1161 }
1162
1163 template<typename _Key, typename _Value,
1164 typename _Alloc, typename _ExtractKey, typename _Equal,
1165 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1166 typename _Traits>
1167 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1168 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1169 _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
1170 : __hashtable_base(__ht),
1171 __map_base(__ht),
1172 __rehash_base(__ht),
1173 __hashtable_alloc(__node_alloc_type(__a)),
1174 _M_buckets(nullptr),
1175 _M_bucket_count(__ht._M_bucket_count),
1176 _M_element_count(__ht._M_element_count),
1177 _M_rehash_policy(__ht._M_rehash_policy)
1178 {
1179 if (__ht._M_node_allocator() == this->_M_node_allocator())
1180 {
1181 if (__ht._M_uses_single_bucket())
1182 {
1183 _M_buckets = &_M_single_bucket;
1184 _M_single_bucket = __ht._M_single_bucket;
1185 }
1186 else
1187 _M_buckets = __ht._M_buckets;
1188
1189 _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1190 // Update, if necessary, bucket pointing to before begin that hasn't
1191 // moved.
1192 if (_M_begin())
1193 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1194 __ht._M_reset();
1195 }
1196 else
1197 {
1198 _M_assign(__ht,
1199 [this](__node_type* __n)
1200 {
1201 return this->_M_allocate_node(
1202 std::move_if_noexcept(__n->_M_v()));
1203 });
1204 __ht.clear();
1205 }
1206 }
1207
1208 template<typename _Key, typename _Value,
1209 typename _Alloc, typename _ExtractKey, typename _Equal,
1210 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1211 typename _Traits>
1212 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1213 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1214 ~_Hashtable() noexcept
1215 {
1216 clear();
1217 _M_deallocate_buckets();
1218 }
1219
1220 template<typename _Key, typename _Value,
1221 typename _Alloc, typename _ExtractKey, typename _Equal,
1222 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1223 typename _Traits>
1224 void
1225 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1226 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1227 swap(_Hashtable& __x)
1228 noexcept(__node_alloc_traits::_S_nothrow_swap())
1229 {
1230 // The only base class with member variables is hash_code_base.
1231 // We define _Hash_code_base::_M_swap because different
1232 // specializations have different members.
1233 this->_M_swap(__x);
1234
1235 std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1236 std::swap(_M_rehash_policy, __x._M_rehash_policy);
1237
1238 // Deal properly with potentially moved instances.
1239 if (this->_M_uses_single_bucket())
1240 {
1241 if (!__x._M_uses_single_bucket())
1242 {
1243 _M_buckets = __x._M_buckets;
1244 __x._M_buckets = &__x._M_single_bucket;
1245 }
1246 }
1247 else if (__x._M_uses_single_bucket())
1248 {
1249 __x._M_buckets = _M_buckets;
1250 _M_buckets = &_M_single_bucket;
1251 }
1252 else
1253 std::swap(_M_buckets, __x._M_buckets);
1254
1255 std::swap(_M_bucket_count, __x._M_bucket_count);
1256 std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1257 std::swap(_M_element_count, __x._M_element_count);
1258 std::swap(_M_single_bucket, __x._M_single_bucket);
1259
1260 // Fix buckets containing the _M_before_begin pointers that can't be
1261 // swapped.
1262 if (_M_begin())
1263 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1264
1265 if (__x._M_begin())
1266 __x._M_buckets[__x._M_bucket_index(__x._M_begin())]
1267 = &__x._M_before_begin;
1268 }
1269
1270 template<typename _Key, typename _Value,
1271 typename _Alloc, typename _ExtractKey, typename _Equal,
1272 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1273 typename _Traits>
1274 void
1275 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1276 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1277 __rehash_policy(const _RehashPolicy& __pol)
1278 {
1279 auto __do_rehash =
1280 __pol._M_need_rehash(_M_bucket_count, _M_element_count, 0);
1281 if (__do_rehash.first)
1282 _M_rehash(__do_rehash.second, _M_rehash_policy._M_state());
1283 _M_rehash_policy = __pol;
1284 }
1285
1286 template<typename _Key, typename _Value,
1287 typename _Alloc, typename _ExtractKey, typename _Equal,
1288 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1289 typename _Traits>
1290 auto
1291 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1292 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1293 find(const key_type& __k)
1294 -> iterator
1295 {
1296 __hash_code __code = this->_M_hash_code(__k);
1297 std::size_t __n = _M_bucket_index(__k, __code);
1298 __node_type* __p = _M_find_node(__n, __k, __code);
1299 return __p ? iterator(__p) : end();
1300 }
1301
1302 template<typename _Key, typename _Value,
1303 typename _Alloc, typename _ExtractKey, typename _Equal,
1304 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1305 typename _Traits>
1306 auto
1307 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1308 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1309 find(const key_type& __k) const
1310 -> const_iterator
1311 {
1312 __hash_code __code = this->_M_hash_code(__k);
1313 std::size_t __n = _M_bucket_index(__k, __code);
1314 __node_type* __p = _M_find_node(__n, __k, __code);
1315 return __p ? const_iterator(__p) : end();
1316 }
1317
1318 template<typename _Key, typename _Value,
1319 typename _Alloc, typename _ExtractKey, typename _Equal,
1320 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1321 typename _Traits>
1322 auto
1323 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1324 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1325 count(const key_type& __k) const
1326 -> size_type
1327 {
1328 __hash_code __code = this->_M_hash_code(__k);
1329 std::size_t __n = _M_bucket_index(__k, __code);
1330 __node_type* __p = _M_bucket_begin(__n);
1331 if (!__p)
1332 return 0;
1333
1334 std::size_t __result = 0;
1335 for (;; __p = __p->_M_next())
1336 {
1337 if (this->_M_equals(__k, __code, __p))
1338 ++__result;
1339 else if (__result)
1340 // All equivalent values are next to each other, if we
1341 // found a non-equivalent value after an equivalent one it
1342 // means that we won't find any new equivalent value.
1343 break;
1344 if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1345 break;
1346 }
1347 return __result;
1348 }
1349
1350 template<typename _Key, typename _Value,
1351 typename _Alloc, typename _ExtractKey, typename _Equal,
1352 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1353 typename _Traits>
1354 auto
1355 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1356 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1357 equal_range(const key_type& __k)
1358 -> pair<iterator, iterator>
1359 {
1360 __hash_code __code = this->_M_hash_code(__k);
1361 std::size_t __n = _M_bucket_index(__k, __code);
1362 __node_type* __p = _M_find_node(__n, __k, __code);
1363
1364 if (__p)
1365 {
1366 __node_type* __p1 = __p->_M_next();
1367 while (__p1 && _M_bucket_index(__p1) == __n
1368 && this->_M_equals(__k, __code, __p1))
1369 __p1 = __p1->_M_next();
1370
1371 return std::make_pair(iterator(__p), iterator(__p1));
1372 }
1373 else
1374 return std::make_pair(end(), end());
1375 }
1376
1377 template<typename _Key, typename _Value,
1378 typename _Alloc, typename _ExtractKey, typename _Equal,
1379 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1380 typename _Traits>
1381 auto
1382 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1383 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1384 equal_range(const key_type& __k) const
1385 -> pair<const_iterator, const_iterator>
1386 {
1387 __hash_code __code = this->_M_hash_code(__k);
1388 std::size_t __n = _M_bucket_index(__k, __code);
1389 __node_type* __p = _M_find_node(__n, __k, __code);
1390
1391 if (__p)
1392 {
1393 __node_type* __p1 = __p->_M_next();
1394 while (__p1 && _M_bucket_index(__p1) == __n
1395 && this->_M_equals(__k, __code, __p1))
1396 __p1 = __p1->_M_next();
1397
1398 return std::make_pair(const_iterator(__p), const_iterator(__p1));
1399 }
1400 else
1401 return std::make_pair(end(), end());
1402 }
1403
1404 // Find the node whose key compares equal to k in the bucket n.
1405 // Return nullptr if no node is found.
1406 template<typename _Key, typename _Value,
1407 typename _Alloc, typename _ExtractKey, typename _Equal,
1408 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1409 typename _Traits>
1410 auto
1411 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1412 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1413 _M_find_before_node(size_type __n, const key_type& __k,
1414 __hash_code __code) const
1415 -> __node_base*
1416 {
1417 __node_base* __prev_p = _M_buckets[__n];
1418 if (!__prev_p)
1419 return nullptr;
1420
1421 for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
1422 __p = __p->_M_next())
1423 {
1424 if (this->_M_equals(__k, __code, __p))
1425 return __prev_p;
1426
1427 if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1428 break;
1429 __prev_p = __p;
1430 }
1431 return nullptr;
1432 }
1433
1434 template<typename _Key, typename _Value,
1435 typename _Alloc, typename _ExtractKey, typename _Equal,
1436 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1437 typename _Traits>
1438 void
1439 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1440 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1441 _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1442 {
1443 if (_M_buckets[__bkt])
1444 {
1445 // Bucket is not empty, we just need to insert the new node
1446 // after the bucket before begin.
1447 __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1448 _M_buckets[__bkt]->_M_nxt = __node;
1449 }
1450 else
1451 {
1452 // The bucket is empty, the new node is inserted at the
1453 // beginning of the singly-linked list and the bucket will
1454 // contain _M_before_begin pointer.
1455 __node->_M_nxt = _M_before_begin._M_nxt;
1456 _M_before_begin._M_nxt = __node;
1457 if (__node->_M_nxt)
1458 // We must update former begin bucket that is pointing to
1459 // _M_before_begin.
1460 _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1461 _M_buckets[__bkt] = &_M_before_begin;
1462 }
1463 }
1464
1465 template<typename _Key, typename _Value,
1466 typename _Alloc, typename _ExtractKey, typename _Equal,
1467 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1468 typename _Traits>
1469 void
1470 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1471 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1472 _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1473 size_type __next_bkt)
1474 {
1475 if (!__next || __next_bkt != __bkt)
1476 {
1477 // Bucket is now empty
1478 // First update next bucket if any
1479 if (__next)
1480 _M_buckets[__next_bkt] = _M_buckets[__bkt];
1481
1482 // Second update before begin node if necessary
1483 if (&_M_before_begin == _M_buckets[__bkt])
1484 _M_before_begin._M_nxt = __next;
1485 _M_buckets[__bkt] = nullptr;
1486 }
1487 }
1488
1489 template<typename _Key, typename _Value,
1490 typename _Alloc, typename _ExtractKey, typename _Equal,
1491 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1492 typename _Traits>
1493 auto
1494 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1495 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1496 _M_get_previous_node(size_type __bkt, __node_base* __n)
1497 -> __node_base*
1498 {
1499 __node_base* __prev_n = _M_buckets[__bkt];
1500 while (__prev_n->_M_nxt != __n)
1501 __prev_n = __prev_n->_M_nxt;
1502 return __prev_n;
1503 }
1504
1505 template<typename _Key, typename _Value,
1506 typename _Alloc, typename _ExtractKey, typename _Equal,
1507 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1508 typename _Traits>
1509 template<typename... _Args>
1510 auto
1511 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1512 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1513 _M_emplace(std::true_type, _Args&&... __args)
1514 -> pair<iterator, bool>
1515 {
1516 // First build the node to get access to the hash code
1517 __node_type* __node = this->_M_allocate_node(std::forward<_Args>(__args)...);
1518 const key_type& __k = this->_M_extract()(__node->_M_v());
1519 __hash_code __code;
1520 __try
1521 {
1522 __code = this->_M_hash_code(__k);
1523 }
1524 __catch(...)
1525 {
1526 this->_M_deallocate_node(__node);
1527 __throw_exception_again;
1528 }
1529
1530 size_type __bkt = _M_bucket_index(__k, __code);
1531 if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1532 {
1533 // There is already an equivalent node, no insertion
1534 this->_M_deallocate_node(__node);
1535 return std::make_pair(iterator(__p), false);
1536 }
1537
1538 // Insert the node
1539 return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
1540 true);
1541 }
1542
1543 template<typename _Key, typename _Value,
1544 typename _Alloc, typename _ExtractKey, typename _Equal,
1545 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1546 typename _Traits>
1547 template<typename... _Args>
1548 auto
1549 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1550 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1551 _M_emplace(const_iterator __hint, std::false_type, _Args&&... __args)
1552 -> iterator
1553 {
1554 // First build the node to get its hash code.
1555 __node_type* __node =
1556 this->_M_allocate_node(std::forward<_Args>(__args)...);
1557
1558 __hash_code __code;
1559 __try
1560 {
1561 __code = this->_M_hash_code(this->_M_extract()(__node->_M_v()));
1562 }
1563 __catch(...)
1564 {
1565 this->_M_deallocate_node(__node);
1566 __throw_exception_again;
1567 }
1568
1569 return _M_insert_multi_node(__hint._M_cur, __code, __node);
1570 }
1571
1572 template<typename _Key, typename _Value,
1573 typename _Alloc, typename _ExtractKey, typename _Equal,
1574 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1575 typename _Traits>
1576 auto
1577 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1578 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1579 _M_insert_unique_node(size_type __bkt, __hash_code __code,
1580 __node_type* __node)
1581 -> iterator
1582 {
1583 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1584 std::pair<bool, std::size_t> __do_rehash
1585 = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1586
1587 __try
1588 {
1589 if (__do_rehash.first)
1590 {
1591 _M_rehash(__do_rehash.second, __saved_state);
1592 __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v()), __code);
1593 }
1594
1595 this->_M_store_code(__node, __code);
1596
1597 // Always insert at the beginning of the bucket.
1598 _M_insert_bucket_begin(__bkt, __node);
1599 ++_M_element_count;
1600 return iterator(__node);
1601 }
1602 __catch(...)
1603 {
1604 this->_M_deallocate_node(__node);
1605 __throw_exception_again;
1606 }
1607 }
1608
1609 // Insert node, in bucket bkt if no rehash (assumes no element with its key
1610 // already present). Take ownership of the node, deallocate it on exception.
1611 template<typename _Key, typename _Value,
1612 typename _Alloc, typename _ExtractKey, typename _Equal,
1613 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1614 typename _Traits>
1615 auto
1616 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1617 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1618 _M_insert_multi_node(__node_type* __hint, __hash_code __code,
1619 __node_type* __node)
1620 -> iterator
1621 {
1622 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1623 std::pair<bool, std::size_t> __do_rehash
1624 = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1625
1626 __try
1627 {
1628 if (__do_rehash.first)
1629 _M_rehash(__do_rehash.second, __saved_state);
1630
1631 this->_M_store_code(__node, __code);
1632 const key_type& __k = this->_M_extract()(__node->_M_v());
1633 size_type __bkt = _M_bucket_index(__k, __code);
1634
1635 // Find the node before an equivalent one or use hint if it exists and
1636 // if it is equivalent.
1637 __node_base* __prev
1638 = __builtin_expect(__hint != nullptr, false)
1639 && this->_M_equals(__k, __code, __hint)
1640 ? __hint
1641 : _M_find_before_node(__bkt, __k, __code);
1642 if (__prev)
1643 {
1644 // Insert after the node before the equivalent one.
1645 __node->_M_nxt = __prev->_M_nxt;
1646 __prev->_M_nxt = __node;
1647 if (__builtin_expect(__prev == __hint, false))
1648 // hint might be the last bucket node, in this case we need to
1649 // update next bucket.
1650 if (__node->_M_nxt
1651 && !this->_M_equals(__k, __code, __node->_M_next()))
1652 {
1653 size_type __next_bkt = _M_bucket_index(__node->_M_next());
1654 if (__next_bkt != __bkt)
1655 _M_buckets[__next_bkt] = __node;
1656 }
1657 }
1658 else
1659 // The inserted node has no equivalent in the
1660 // hashtable. We must insert the new node at the
1661 // beginning of the bucket to preserve equivalent
1662 // elements' relative positions.
1663 _M_insert_bucket_begin(__bkt, __node);
1664 ++_M_element_count;
1665 return iterator(__node);
1666 }
1667 __catch(...)
1668 {
1669 this->_M_deallocate_node(__node);
1670 __throw_exception_again;
1671 }
1672 }
1673
1674 // Insert v if no element with its key is already present.
1675 template<typename _Key, typename _Value,
1676 typename _Alloc, typename _ExtractKey, typename _Equal,
1677 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1678 typename _Traits>
1679 template<typename _Arg, typename _NodeGenerator>
1680 auto
1681 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1682 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1683 _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, std::true_type)
1684 -> pair<iterator, bool>
1685 {
1686 const key_type& __k = this->_M_extract()(__v);
1687 __hash_code __code = this->_M_hash_code(__k);
1688 size_type __bkt = _M_bucket_index(__k, __code);
1689
1690 __node_type* __n = _M_find_node(__bkt, __k, __code);
1691 if (__n)
1692 return std::make_pair(iterator(__n), false);
1693
1694 __n = __node_gen(std::forward<_Arg>(__v));
1695 return std::make_pair(_M_insert_unique_node(__bkt, __code, __n), true);
1696 }
1697
1698 // Insert v unconditionally.
1699 template<typename _Key, typename _Value,
1700 typename _Alloc, typename _ExtractKey, typename _Equal,
1701 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1702 typename _Traits>
1703 template<typename _Arg, typename _NodeGenerator>
1704 auto
1705 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1706 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1707 _M_insert(const_iterator __hint, _Arg&& __v,
1708 const _NodeGenerator& __node_gen, std::false_type)
1709 -> iterator
1710 {
1711 // First compute the hash code so that we don't do anything if it
1712 // throws.
1713 __hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1714
1715 // Second allocate new node so that we don't rehash if it throws.
1716 __node_type* __node = __node_gen(std::forward<_Arg>(__v));
1717
1718 return _M_insert_multi_node(__hint._M_cur, __code, __node);
1719 }
1720
1721 template<typename _Key, typename _Value,
1722 typename _Alloc, typename _ExtractKey, typename _Equal,
1723 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1724 typename _Traits>
1725 auto
1726 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1727 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1728 erase(const_iterator __it)
1729 -> iterator
1730 {
1731 __node_type* __n = __it._M_cur;
1732 std::size_t __bkt = _M_bucket_index(__n);
1733
1734 // Look for previous node to unlink it from the erased one, this
1735 // is why we need buckets to contain the before begin to make
1736 // this search fast.
1737 __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1738 return _M_erase(__bkt, __prev_n, __n);
1739 }
1740
1741 template<typename _Key, typename _Value,
1742 typename _Alloc, typename _ExtractKey, typename _Equal,
1743 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1744 typename _Traits>
1745 auto
1746 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1747 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1748 _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1749 -> iterator
1750 {
1751 if (__prev_n == _M_buckets[__bkt])
1752 _M_remove_bucket_begin(__bkt, __n->_M_next(),
1753 __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1754 else if (__n->_M_nxt)
1755 {
1756 size_type __next_bkt = _M_bucket_index(__n->_M_next());
1757 if (__next_bkt != __bkt)
1758 _M_buckets[__next_bkt] = __prev_n;
1759 }
1760
1761 __prev_n->_M_nxt = __n->_M_nxt;
1762 iterator __result(__n->_M_next());
1763 this->_M_deallocate_node(__n);
1764 --_M_element_count;
1765
1766 return __result;
1767 }
1768
1769 template<typename _Key, typename _Value,
1770 typename _Alloc, typename _ExtractKey, typename _Equal,
1771 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1772 typename _Traits>
1773 auto
1774 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1775 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1776 _M_erase(std::true_type, const key_type& __k)
1777 -> size_type
1778 {
1779 __hash_code __code = this->_M_hash_code(__k);
1780 std::size_t __bkt = _M_bucket_index(__k, __code);
1781
1782 // Look for the node before the first matching node.
1783 __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1784 if (!__prev_n)
1785 return 0;
1786
1787 // We found a matching node, erase it.
1788 __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1789 _M_erase(__bkt, __prev_n, __n);
1790 return 1;
1791 }
1792
1793 template<typename _Key, typename _Value,
1794 typename _Alloc, typename _ExtractKey, typename _Equal,
1795 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1796 typename _Traits>
1797 auto
1798 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1799 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1800 _M_erase(std::false_type, const key_type& __k)
1801 -> size_type
1802 {
1803 __hash_code __code = this->_M_hash_code(__k);
1804 std::size_t __bkt = _M_bucket_index(__k, __code);
1805
1806 // Look for the node before the first matching node.
1807 __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1808 if (!__prev_n)
1809 return 0;
1810
1811 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1812 // 526. Is it undefined if a function in the standard changes
1813 // in parameters?
1814 // We use one loop to find all matching nodes and another to deallocate
1815 // them so that the key stays valid during the first loop. It might be
1816 // invalidated indirectly when destroying nodes.
1817 __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1818 __node_type* __n_last = __n;
1819 std::size_t __n_last_bkt = __bkt;
1820 do
1821 {
1822 __n_last = __n_last->_M_next();
1823 if (!__n_last)
1824 break;
1825 __n_last_bkt = _M_bucket_index(__n_last);
1826 }
1827 while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1828
1829 // Deallocate nodes.
1830 size_type __result = 0;
1831 do
1832 {
1833 __node_type* __p = __n->_M_next();
1834 this->_M_deallocate_node(__n);
1835 __n = __p;
1836 ++__result;
1837 --_M_element_count;
1838 }
1839 while (__n != __n_last);
1840
1841 if (__prev_n == _M_buckets[__bkt])
1842 _M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
1843 else if (__n_last && __n_last_bkt != __bkt)
1844 _M_buckets[__n_last_bkt] = __prev_n;
1845 __prev_n->_M_nxt = __n_last;
1846 return __result;
1847 }
1848
1849 template<typename _Key, typename _Value,
1850 typename _Alloc, typename _ExtractKey, typename _Equal,
1851 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1852 typename _Traits>
1853 auto
1854 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1855 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1856 erase(const_iterator __first, const_iterator __last)
1857 -> iterator
1858 {
1859 __node_type* __n = __first._M_cur;
1860 __node_type* __last_n = __last._M_cur;
1861 if (__n == __last_n)
1862 return iterator(__n);
1863
1864 std::size_t __bkt = _M_bucket_index(__n);
1865
1866 __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1867 bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
1868 std::size_t __n_bkt = __bkt;
1869 for (;;)
1870 {
1871 do
1872 {
1873 __node_type* __tmp = __n;
1874 __n = __n->_M_next();
1875 this->_M_deallocate_node(__tmp);
1876 --_M_element_count;
1877 if (!__n)
1878 break;
1879 __n_bkt = _M_bucket_index(__n);
1880 }
1881 while (__n != __last_n && __n_bkt == __bkt);
1882 if (__is_bucket_begin)
1883 _M_remove_bucket_begin(__bkt, __n, __n_bkt);
1884 if (__n == __last_n)
1885 break;
1886 __is_bucket_begin = true;
1887 __bkt = __n_bkt;
1888 }
1889
1890 if (__n && (__n_bkt != __bkt || __is_bucket_begin))
1891 _M_buckets[__n_bkt] = __prev_n;
1892 __prev_n->_M_nxt = __n;
1893 return iterator(__n);
1894 }
1895
1896 template<typename _Key, typename _Value,
1897 typename _Alloc, typename _ExtractKey, typename _Equal,
1898 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1899 typename _Traits>
1900 void
1901 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1902 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1903 clear() noexcept
1904 {
1905 this->_M_deallocate_nodes(_M_begin());
1906 __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
1907 _M_element_count = 0;
1908 _M_before_begin._M_nxt = nullptr;
1909 }
1910
1911 template<typename _Key, typename _Value,
1912 typename _Alloc, typename _ExtractKey, typename _Equal,
1913 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1914 typename _Traits>
1915 void
1916 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1917 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1918 rehash(size_type __n)
1919 {
1920 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1921 std::size_t __buckets
1922 = std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
1923 __n);
1924 __buckets = _M_rehash_policy._M_next_bkt(__buckets);
1925
1926 if (__buckets != _M_bucket_count)
1927 _M_rehash(__buckets, __saved_state);
1928 else
1929 // No rehash, restore previous state to keep a consistent state.
1930 _M_rehash_policy._M_reset(__saved_state);
1931 }
1932
1933 template<typename _Key, typename _Value,
1934 typename _Alloc, typename _ExtractKey, typename _Equal,
1935 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1936 typename _Traits>
1937 void
1938 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1939 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1940 _M_rehash(size_type __n, const __rehash_state& __state)
1941 {
1942 __try
1943 {
1944 _M_rehash_aux(__n, __unique_keys());
1945 }
1946 __catch(...)
1947 {
1948 // A failure here means that buckets allocation failed. We only
1949 // have to restore hash policy previous state.
1950 _M_rehash_policy._M_reset(__state);
1951 __throw_exception_again;
1952 }
1953 }
1954
1955 // Rehash when there is no equivalent elements.
1956 template<typename _Key, typename _Value,
1957 typename _Alloc, typename _ExtractKey, typename _Equal,
1958 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1959 typename _Traits>
1960 void
1961 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1962 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1963 _M_rehash_aux(size_type __n, std::true_type)
1964 {
1965 __bucket_type* __new_buckets = _M_allocate_buckets(__n);
1966 __node_type* __p = _M_begin();
1967 _M_before_begin._M_nxt = nullptr;
1968 std::size_t __bbegin_bkt = 0;
1969 while (__p)
1970 {
1971 __node_type* __next = __p->_M_next();
1972 std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
1973 if (!__new_buckets[__bkt])
1974 {
1975 __p->_M_nxt = _M_before_begin._M_nxt;
1976 _M_before_begin._M_nxt = __p;
1977 __new_buckets[__bkt] = &_M_before_begin;
1978 if (__p->_M_nxt)
1979 __new_buckets[__bbegin_bkt] = __p;
1980 __bbegin_bkt = __bkt;
1981 }
1982 else
1983 {
1984 __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
1985 __new_buckets[__bkt]->_M_nxt = __p;
1986 }
1987 __p = __next;
1988 }
1989
1990 _M_deallocate_buckets();
1991 _M_bucket_count = __n;
1992 _M_buckets = __new_buckets;
1993 }
1994
1995 // Rehash when there can be equivalent elements, preserve their relative
1996 // order.
1997 template<typename _Key, typename _Value,
1998 typename _Alloc, typename _ExtractKey, typename _Equal,
1999 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2000 typename _Traits>
2001 void
2002 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2003 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2004 _M_rehash_aux(size_type __n, std::false_type)
2005 {
2006 __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2007
2008 __node_type* __p = _M_begin();
2009 _M_before_begin._M_nxt = nullptr;
2010 std::size_t __bbegin_bkt = 0;
2011 std::size_t __prev_bkt = 0;
2012 __node_type* __prev_p = nullptr;
2013 bool __check_bucket = false;
2014
2015 while (__p)
2016 {
2017 __node_type* __next = __p->_M_next();
2018 std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2019
2020 if (__prev_p && __prev_bkt == __bkt)
2021 {
2022 // Previous insert was already in this bucket, we insert after
2023 // the previously inserted one to preserve equivalent elements
2024 // relative order.
2025 __p->_M_nxt = __prev_p->_M_nxt;
2026 __prev_p->_M_nxt = __p;
2027
2028 // Inserting after a node in a bucket require to check that we
2029 // haven't change the bucket last node, in this case next
2030 // bucket containing its before begin node must be updated. We
2031 // schedule a check as soon as we move out of the sequence of
2032 // equivalent nodes to limit the number of checks.
2033 __check_bucket = true;
2034 }
2035 else
2036 {
2037 if (__check_bucket)
2038 {
2039 // Check if we shall update the next bucket because of
2040 // insertions into __prev_bkt bucket.
2041 if (__prev_p->_M_nxt)
2042 {
2043 std::size_t __next_bkt
2044 = __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2045 __n);
2046 if (__next_bkt != __prev_bkt)
2047 __new_buckets[__next_bkt] = __prev_p;
2048 }
2049 __check_bucket = false;
2050 }
2051
2052 if (!__new_buckets[__bkt])
2053 {
2054 __p->_M_nxt = _M_before_begin._M_nxt;
2055 _M_before_begin._M_nxt = __p;
2056 __new_buckets[__bkt] = &_M_before_begin;
2057 if (__p->_M_nxt)
2058 __new_buckets[__bbegin_bkt] = __p;
2059 __bbegin_bkt = __bkt;
2060 }
2061 else
2062 {
2063 __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2064 __new_buckets[__bkt]->_M_nxt = __p;
2065 }
2066 }
2067 __prev_p = __p;
2068 __prev_bkt = __bkt;
2069 __p = __next;
2070 }
2071
2072 if (__check_bucket && __prev_p->_M_nxt)
2073 {
2074 std::size_t __next_bkt
2075 = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
2076 if (__next_bkt != __prev_bkt)
2077 __new_buckets[__next_bkt] = __prev_p;
2078 }
2079
2080 _M_deallocate_buckets();
2081 _M_bucket_count = __n;
2082 _M_buckets = __new_buckets;
2083 }
2084
2085 _GLIBCXX_END_NAMESPACE_VERSION
2086 } // namespace std
2087
2088 #endif // _HASHTABLE_H
2089