1 // Multimap implementation -*- C++ -*-
2
3 // Copyright (C) 2001-2015 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24
25 /*
26 *
27 * Copyright (c) 1994
28 * Hewlett-Packard Company
29 *
30 * Permission to use, copy, modify, distribute and sell this software
31 * and its documentation for any purpose is hereby granted without fee,
32 * provided that the above copyright notice appear in all copies and
33 * that both that copyright notice and this permission notice appear
34 * in supporting documentation. Hewlett-Packard Company makes no
35 * representations about the suitability of this software for any
36 * purpose. It is provided "as is" without express or implied warranty.
37 *
38 *
39 * Copyright (c) 1996,1997
40 * Silicon Graphics Computer Systems, Inc.
41 *
42 * Permission to use, copy, modify, distribute and sell this software
43 * and its documentation for any purpose is hereby granted without fee,
44 * provided that the above copyright notice appear in all copies and
45 * that both that copyright notice and this permission notice appear
46 * in supporting documentation. Silicon Graphics makes no
47 * representations about the suitability of this software for any
48 * purpose. It is provided "as is" without express or implied warranty.
49 */
50
51 /** @file bits/stl_multimap.h
52 * This is an internal header file, included by other library headers.
53 * Do not attempt to use it directly. @headername{map}
54 */
55
56 #ifndef _STL_MULTIMAP_H
57 #define _STL_MULTIMAP_H 1
58
59 #include <bits/concept_check.h>
60 #if __cplusplus >= 201103L
61 #include <initializer_list>
62 #endif
63
_GLIBCXX_VISIBILITY(default)64 namespace std _GLIBCXX_VISIBILITY(default)
65 {
66 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
67
68 /**
69 * @brief A standard container made up of (key,value) pairs, which can be
70 * retrieved based on a key, in logarithmic time.
71 *
72 * @ingroup associative_containers
73 *
74 * @tparam _Key Type of key objects.
75 * @tparam _Tp Type of mapped objects.
76 * @tparam _Compare Comparison function object type, defaults to less<_Key>.
77 * @tparam _Alloc Allocator type, defaults to
78 * allocator<pair<const _Key, _Tp>.
79 *
80 * Meets the requirements of a <a href="tables.html#65">container</a>, a
81 * <a href="tables.html#66">reversible container</a>, and an
82 * <a href="tables.html#69">associative container</a> (using equivalent
83 * keys). For a @c multimap<Key,T> the key_type is Key, the mapped_type
84 * is T, and the value_type is std::pair<const Key,T>.
85 *
86 * Multimaps support bidirectional iterators.
87 *
88 * The private tree data is declared exactly the same way for map and
89 * multimap; the distinction is made entirely in how the tree functions are
90 * called (*_unique versus *_equal, same as the standard).
91 */
92 template <typename _Key, typename _Tp,
93 typename _Compare = std::less<_Key>,
94 typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
95 class multimap
96 {
97 public:
98 typedef _Key key_type;
99 typedef _Tp mapped_type;
100 typedef std::pair<const _Key, _Tp> value_type;
101 typedef _Compare key_compare;
102 typedef _Alloc allocator_type;
103
104 private:
105 // concept requirements
106 typedef typename _Alloc::value_type _Alloc_value_type;
107 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
108 __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
109 _BinaryFunctionConcept)
110 __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
111
112 public:
113 class value_compare
114 : public std::binary_function<value_type, value_type, bool>
115 {
116 friend class multimap<_Key, _Tp, _Compare, _Alloc>;
117 protected:
118 _Compare comp;
119
120 value_compare(_Compare __c)
121 : comp(__c) { }
122
123 public:
124 bool operator()(const value_type& __x, const value_type& __y) const
125 { return comp(__x.first, __y.first); }
126 };
127
128 private:
129 /// This turns a red-black tree into a [multi]map.
130 typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
131 rebind<value_type>::other _Pair_alloc_type;
132
133 typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
134 key_compare, _Pair_alloc_type> _Rep_type;
135 /// The actual tree structure.
136 _Rep_type _M_t;
137
138 typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits;
139
140 public:
141 // many of these are specified differently in ISO, but the following are
142 // "functionally equivalent"
143 typedef typename _Alloc_traits::pointer pointer;
144 typedef typename _Alloc_traits::const_pointer const_pointer;
145 typedef typename _Alloc_traits::reference reference;
146 typedef typename _Alloc_traits::const_reference const_reference;
147 typedef typename _Rep_type::iterator iterator;
148 typedef typename _Rep_type::const_iterator const_iterator;
149 typedef typename _Rep_type::size_type size_type;
150 typedef typename _Rep_type::difference_type difference_type;
151 typedef typename _Rep_type::reverse_iterator reverse_iterator;
152 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
153
154 // [23.3.2] construct/copy/destroy
155 // (get_allocator() is also listed in this section)
156
157 /**
158 * @brief Default constructor creates no elements.
159 */
160 multimap()
161 #if __cplusplus >= 201103L
162 noexcept(is_nothrow_default_constructible<allocator_type>::value
163 && is_nothrow_default_constructible<key_compare>::value)
164 #endif
165 : _M_t() { }
166
167 /**
168 * @brief Creates a %multimap with no elements.
169 * @param __comp A comparison object.
170 * @param __a An allocator object.
171 */
172 explicit
173 multimap(const _Compare& __comp,
174 const allocator_type& __a = allocator_type())
175 : _M_t(__comp, _Pair_alloc_type(__a)) { }
176
177 /**
178 * @brief %Multimap copy constructor.
179 * @param __x A %multimap of identical element and allocator types.
180 *
181 * The newly-created %multimap uses a copy of the allocation object
182 * used by @a __x.
183 */
184 multimap(const multimap& __x)
185 : _M_t(__x._M_t) { }
186
187 #if __cplusplus >= 201103L
188 /**
189 * @brief %Multimap move constructor.
190 * @param __x A %multimap of identical element and allocator types.
191 *
192 * The newly-created %multimap contains the exact contents of @a __x.
193 * The contents of @a __x are a valid, but unspecified %multimap.
194 */
195 multimap(multimap&& __x)
196 noexcept(is_nothrow_copy_constructible<_Compare>::value)
197 : _M_t(std::move(__x._M_t)) { }
198
199 /**
200 * @brief Builds a %multimap from an initializer_list.
201 * @param __l An initializer_list.
202 * @param __comp A comparison functor.
203 * @param __a An allocator object.
204 *
205 * Create a %multimap consisting of copies of the elements from
206 * the initializer_list. This is linear in N if the list is already
207 * sorted, and NlogN otherwise (where N is @a __l.size()).
208 */
209 multimap(initializer_list<value_type> __l,
210 const _Compare& __comp = _Compare(),
211 const allocator_type& __a = allocator_type())
212 : _M_t(__comp, _Pair_alloc_type(__a))
213 { _M_t._M_insert_equal(__l.begin(), __l.end()); }
214
215 /// Allocator-extended default constructor.
216 explicit
217 multimap(const allocator_type& __a)
218 : _M_t(_Compare(), _Pair_alloc_type(__a)) { }
219
220 /// Allocator-extended copy constructor.
221 multimap(const multimap& __m, const allocator_type& __a)
222 : _M_t(__m._M_t, _Pair_alloc_type(__a)) { }
223
224 /// Allocator-extended move constructor.
225 multimap(multimap&& __m, const allocator_type& __a)
226 noexcept(is_nothrow_copy_constructible<_Compare>::value
227 && _Alloc_traits::_S_always_equal())
228 : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }
229
230 /// Allocator-extended initialier-list constructor.
231 multimap(initializer_list<value_type> __l, const allocator_type& __a)
232 : _M_t(_Compare(), _Pair_alloc_type(__a))
233 { _M_t._M_insert_equal(__l.begin(), __l.end()); }
234
235 /// Allocator-extended range constructor.
236 template<typename _InputIterator>
237 multimap(_InputIterator __first, _InputIterator __last,
238 const allocator_type& __a)
239 : _M_t(_Compare(), _Pair_alloc_type(__a))
240 { _M_t._M_insert_equal(__first, __last); }
241 #endif
242
243 /**
244 * @brief Builds a %multimap from a range.
245 * @param __first An input iterator.
246 * @param __last An input iterator.
247 *
248 * Create a %multimap consisting of copies of the elements from
249 * [__first,__last). This is linear in N if the range is already sorted,
250 * and NlogN otherwise (where N is distance(__first,__last)).
251 */
252 template<typename _InputIterator>
253 multimap(_InputIterator __first, _InputIterator __last)
254 : _M_t()
255 { _M_t._M_insert_equal(__first, __last); }
256
257 /**
258 * @brief Builds a %multimap from a range.
259 * @param __first An input iterator.
260 * @param __last An input iterator.
261 * @param __comp A comparison functor.
262 * @param __a An allocator object.
263 *
264 * Create a %multimap consisting of copies of the elements from
265 * [__first,__last). This is linear in N if the range is already sorted,
266 * and NlogN otherwise (where N is distance(__first,__last)).
267 */
268 template<typename _InputIterator>
269 multimap(_InputIterator __first, _InputIterator __last,
270 const _Compare& __comp,
271 const allocator_type& __a = allocator_type())
272 : _M_t(__comp, _Pair_alloc_type(__a))
273 { _M_t._M_insert_equal(__first, __last); }
274
275 // FIXME There is no dtor declared, but we should have something generated
276 // by Doxygen. I don't know what tags to add to this paragraph to make
277 // that happen:
278 /**
279 * The dtor only erases the elements, and note that if the elements
280 * themselves are pointers, the pointed-to memory is not touched in any
281 * way. Managing the pointer is the user's responsibility.
282 */
283
284 /**
285 * @brief %Multimap assignment operator.
286 * @param __x A %multimap of identical element and allocator types.
287 *
288 * All the elements of @a __x are copied, but unlike the copy
289 * constructor, the allocator object is not copied.
290 */
291 multimap&
292 operator=(const multimap& __x)
293 {
294 _M_t = __x._M_t;
295 return *this;
296 }
297
298 #if __cplusplus >= 201103L
299 /// Move assignment operator.
300 multimap&
301 operator=(multimap&&) = default;
302
303 /**
304 * @brief %Multimap list assignment operator.
305 * @param __l An initializer_list.
306 *
307 * This function fills a %multimap with copies of the elements
308 * in the initializer list @a __l.
309 *
310 * Note that the assignment completely changes the %multimap and
311 * that the resulting %multimap's size is the same as the number
312 * of elements assigned. Old data may be lost.
313 */
314 multimap&
315 operator=(initializer_list<value_type> __l)
316 {
317 _M_t._M_assign_equal(__l.begin(), __l.end());
318 return *this;
319 }
320 #endif
321
322 /// Get a copy of the memory allocation object.
323 allocator_type
324 get_allocator() const _GLIBCXX_NOEXCEPT
325 { return allocator_type(_M_t.get_allocator()); }
326
327 // iterators
328 /**
329 * Returns a read/write iterator that points to the first pair in the
330 * %multimap. Iteration is done in ascending order according to the
331 * keys.
332 */
333 iterator
334 begin() _GLIBCXX_NOEXCEPT
335 { return _M_t.begin(); }
336
337 /**
338 * Returns a read-only (constant) iterator that points to the first pair
339 * in the %multimap. Iteration is done in ascending order according to
340 * the keys.
341 */
342 const_iterator
343 begin() const _GLIBCXX_NOEXCEPT
344 { return _M_t.begin(); }
345
346 /**
347 * Returns a read/write iterator that points one past the last pair in
348 * the %multimap. Iteration is done in ascending order according to the
349 * keys.
350 */
351 iterator
352 end() _GLIBCXX_NOEXCEPT
353 { return _M_t.end(); }
354
355 /**
356 * Returns a read-only (constant) iterator that points one past the last
357 * pair in the %multimap. Iteration is done in ascending order according
358 * to the keys.
359 */
360 const_iterator
361 end() const _GLIBCXX_NOEXCEPT
362 { return _M_t.end(); }
363
364 /**
365 * Returns a read/write reverse iterator that points to the last pair in
366 * the %multimap. Iteration is done in descending order according to the
367 * keys.
368 */
369 reverse_iterator
370 rbegin() _GLIBCXX_NOEXCEPT
371 { return _M_t.rbegin(); }
372
373 /**
374 * Returns a read-only (constant) reverse iterator that points to the
375 * last pair in the %multimap. Iteration is done in descending order
376 * according to the keys.
377 */
378 const_reverse_iterator
379 rbegin() const _GLIBCXX_NOEXCEPT
380 { return _M_t.rbegin(); }
381
382 /**
383 * Returns a read/write reverse iterator that points to one before the
384 * first pair in the %multimap. Iteration is done in descending order
385 * according to the keys.
386 */
387 reverse_iterator
388 rend() _GLIBCXX_NOEXCEPT
389 { return _M_t.rend(); }
390
391 /**
392 * Returns a read-only (constant) reverse iterator that points to one
393 * before the first pair in the %multimap. Iteration is done in
394 * descending order according to the keys.
395 */
396 const_reverse_iterator
397 rend() const _GLIBCXX_NOEXCEPT
398 { return _M_t.rend(); }
399
400 #if __cplusplus >= 201103L
401 /**
402 * Returns a read-only (constant) iterator that points to the first pair
403 * in the %multimap. Iteration is done in ascending order according to
404 * the keys.
405 */
406 const_iterator
407 cbegin() const noexcept
408 { return _M_t.begin(); }
409
410 /**
411 * Returns a read-only (constant) iterator that points one past the last
412 * pair in the %multimap. Iteration is done in ascending order according
413 * to the keys.
414 */
415 const_iterator
416 cend() const noexcept
417 { return _M_t.end(); }
418
419 /**
420 * Returns a read-only (constant) reverse iterator that points to the
421 * last pair in the %multimap. Iteration is done in descending order
422 * according to the keys.
423 */
424 const_reverse_iterator
425 crbegin() const noexcept
426 { return _M_t.rbegin(); }
427
428 /**
429 * Returns a read-only (constant) reverse iterator that points to one
430 * before the first pair in the %multimap. Iteration is done in
431 * descending order according to the keys.
432 */
433 const_reverse_iterator
434 crend() const noexcept
435 { return _M_t.rend(); }
436 #endif
437
438 // capacity
439 /** Returns true if the %multimap is empty. */
440 bool
441 empty() const _GLIBCXX_NOEXCEPT
442 { return _M_t.empty(); }
443
444 /** Returns the size of the %multimap. */
445 size_type
446 size() const _GLIBCXX_NOEXCEPT
447 { return _M_t.size(); }
448
449 /** Returns the maximum size of the %multimap. */
450 size_type
451 max_size() const _GLIBCXX_NOEXCEPT
452 { return _M_t.max_size(); }
453
454 // modifiers
455 #if __cplusplus >= 201103L
456 /**
457 * @brief Build and insert a std::pair into the %multimap.
458 *
459 * @param __args Arguments used to generate a new pair instance (see
460 * std::piecewise_contruct for passing arguments to each
461 * part of the pair constructor).
462 *
463 * @return An iterator that points to the inserted (key,value) pair.
464 *
465 * This function builds and inserts a (key, value) %pair into the
466 * %multimap.
467 * Contrary to a std::map the %multimap does not rely on unique keys and
468 * thus multiple pairs with the same key can be inserted.
469 *
470 * Insertion requires logarithmic time.
471 */
472 template<typename... _Args>
473 iterator
474 emplace(_Args&&... __args)
475 { return _M_t._M_emplace_equal(std::forward<_Args>(__args)...); }
476
477 /**
478 * @brief Builds and inserts a std::pair into the %multimap.
479 *
480 * @param __pos An iterator that serves as a hint as to where the pair
481 * should be inserted.
482 * @param __args Arguments used to generate a new pair instance (see
483 * std::piecewise_contruct for passing arguments to each
484 * part of the pair constructor).
485 * @return An iterator that points to the inserted (key,value) pair.
486 *
487 * This function inserts a (key, value) pair into the %multimap.
488 * Contrary to a std::map the %multimap does not rely on unique keys and
489 * thus multiple pairs with the same key can be inserted.
490 * Note that the first parameter is only a hint and can potentially
491 * improve the performance of the insertion process. A bad hint would
492 * cause no gains in efficiency.
493 *
494 * For more on @a hinting, see:
495 * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
496 *
497 * Insertion requires logarithmic time (if the hint is not taken).
498 */
499 template<typename... _Args>
500 iterator
501 emplace_hint(const_iterator __pos, _Args&&... __args)
502 {
503 return _M_t._M_emplace_hint_equal(__pos,
504 std::forward<_Args>(__args)...);
505 }
506 #endif
507
508 /**
509 * @brief Inserts a std::pair into the %multimap.
510 * @param __x Pair to be inserted (see std::make_pair for easy creation
511 * of pairs).
512 * @return An iterator that points to the inserted (key,value) pair.
513 *
514 * This function inserts a (key, value) pair into the %multimap.
515 * Contrary to a std::map the %multimap does not rely on unique keys and
516 * thus multiple pairs with the same key can be inserted.
517 *
518 * Insertion requires logarithmic time.
519 */
520 iterator
521 insert(const value_type& __x)
522 { return _M_t._M_insert_equal(__x); }
523
524 #if __cplusplus >= 201103L
525 template<typename _Pair, typename = typename
526 std::enable_if<std::is_constructible<value_type,
527 _Pair&&>::value>::type>
528 iterator
529 insert(_Pair&& __x)
530 { return _M_t._M_insert_equal(std::forward<_Pair>(__x)); }
531 #endif
532
533 /**
534 * @brief Inserts a std::pair into the %multimap.
535 * @param __position An iterator that serves as a hint as to where the
536 * pair should be inserted.
537 * @param __x Pair to be inserted (see std::make_pair for easy creation
538 * of pairs).
539 * @return An iterator that points to the inserted (key,value) pair.
540 *
541 * This function inserts a (key, value) pair into the %multimap.
542 * Contrary to a std::map the %multimap does not rely on unique keys and
543 * thus multiple pairs with the same key can be inserted.
544 * Note that the first parameter is only a hint and can potentially
545 * improve the performance of the insertion process. A bad hint would
546 * cause no gains in efficiency.
547 *
548 * For more on @a hinting, see:
549 * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
550 *
551 * Insertion requires logarithmic time (if the hint is not taken).
552 */
553 iterator
554 #if __cplusplus >= 201103L
555 insert(const_iterator __position, const value_type& __x)
556 #else
557 insert(iterator __position, const value_type& __x)
558 #endif
559 { return _M_t._M_insert_equal_(__position, __x); }
560
561 #if __cplusplus >= 201103L
562 template<typename _Pair, typename = typename
563 std::enable_if<std::is_constructible<value_type,
564 _Pair&&>::value>::type>
565 iterator
566 insert(const_iterator __position, _Pair&& __x)
567 { return _M_t._M_insert_equal_(__position,
568 std::forward<_Pair>(__x)); }
569 #endif
570
571 /**
572 * @brief A template function that attempts to insert a range
573 * of elements.
574 * @param __first Iterator pointing to the start of the range to be
575 * inserted.
576 * @param __last Iterator pointing to the end of the range.
577 *
578 * Complexity similar to that of the range constructor.
579 */
580 template<typename _InputIterator>
581 void
582 insert(_InputIterator __first, _InputIterator __last)
583 { _M_t._M_insert_equal(__first, __last); }
584
585 #if __cplusplus >= 201103L
586 /**
587 * @brief Attempts to insert a list of std::pairs into the %multimap.
588 * @param __l A std::initializer_list<value_type> of pairs to be
589 * inserted.
590 *
591 * Complexity similar to that of the range constructor.
592 */
593 void
594 insert(initializer_list<value_type> __l)
595 { this->insert(__l.begin(), __l.end()); }
596 #endif
597
598 #if __cplusplus >= 201103L
599 // _GLIBCXX_RESOLVE_LIB_DEFECTS
600 // DR 130. Associative erase should return an iterator.
601 /**
602 * @brief Erases an element from a %multimap.
603 * @param __position An iterator pointing to the element to be erased.
604 * @return An iterator pointing to the element immediately following
605 * @a position prior to the element being erased. If no such
606 * element exists, end() is returned.
607 *
608 * This function erases an element, pointed to by the given iterator,
609 * from a %multimap. Note that this function only erases the element,
610 * and that if the element is itself a pointer, the pointed-to memory is
611 * not touched in any way. Managing the pointer is the user's
612 * responsibility.
613 */
614 iterator
615 erase(const_iterator __position)
616 { return _M_t.erase(__position); }
617
618 // LWG 2059.
619 _GLIBCXX_ABI_TAG_CXX11
620 iterator
621 erase(iterator __position)
622 { return _M_t.erase(__position); }
623 #else
624 /**
625 * @brief Erases an element from a %multimap.
626 * @param __position An iterator pointing to the element to be erased.
627 *
628 * This function erases an element, pointed to by the given iterator,
629 * from a %multimap. Note that this function only erases the element,
630 * and that if the element is itself a pointer, the pointed-to memory is
631 * not touched in any way. Managing the pointer is the user's
632 * responsibility.
633 */
634 void
635 erase(iterator __position)
636 { _M_t.erase(__position); }
637 #endif
638
639 /**
640 * @brief Erases elements according to the provided key.
641 * @param __x Key of element to be erased.
642 * @return The number of elements erased.
643 *
644 * This function erases all elements located by the given key from a
645 * %multimap.
646 * Note that this function only erases the element, and that if
647 * the element is itself a pointer, the pointed-to memory is not touched
648 * in any way. Managing the pointer is the user's responsibility.
649 */
650 size_type
651 erase(const key_type& __x)
652 { return _M_t.erase(__x); }
653
654 #if __cplusplus >= 201103L
655 // _GLIBCXX_RESOLVE_LIB_DEFECTS
656 // DR 130. Associative erase should return an iterator.
657 /**
658 * @brief Erases a [first,last) range of elements from a %multimap.
659 * @param __first Iterator pointing to the start of the range to be
660 * erased.
661 * @param __last Iterator pointing to the end of the range to be
662 * erased .
663 * @return The iterator @a __last.
664 *
665 * This function erases a sequence of elements from a %multimap.
666 * Note that this function only erases the elements, and that if
667 * the elements themselves are pointers, the pointed-to memory is not
668 * touched in any way. Managing the pointer is the user's
669 * responsibility.
670 */
671 iterator
672 erase(const_iterator __first, const_iterator __last)
673 { return _M_t.erase(__first, __last); }
674 #else
675 // _GLIBCXX_RESOLVE_LIB_DEFECTS
676 // DR 130. Associative erase should return an iterator.
677 /**
678 * @brief Erases a [first,last) range of elements from a %multimap.
679 * @param __first Iterator pointing to the start of the range to be
680 * erased.
681 * @param __last Iterator pointing to the end of the range to
682 * be erased.
683 *
684 * This function erases a sequence of elements from a %multimap.
685 * Note that this function only erases the elements, and that if
686 * the elements themselves are pointers, the pointed-to memory is not
687 * touched in any way. Managing the pointer is the user's
688 * responsibility.
689 */
690 void
691 erase(iterator __first, iterator __last)
692 { _M_t.erase(__first, __last); }
693 #endif
694
695 /**
696 * @brief Swaps data with another %multimap.
697 * @param __x A %multimap of the same element and allocator types.
698 *
699 * This exchanges the elements between two multimaps in constant time.
700 * (It is only swapping a pointer, an integer, and an instance of
701 * the @c Compare type (which itself is often stateless and empty), so it
702 * should be quite fast.)
703 * Note that the global std::swap() function is specialized such that
704 * std::swap(m1,m2) will feed to this function.
705 */
706 void
707 swap(multimap& __x)
708 #if __cplusplus >= 201103L
709 noexcept(_Alloc_traits::_S_nothrow_swap())
710 #endif
711 { _M_t.swap(__x._M_t); }
712
713 /**
714 * Erases all elements in a %multimap. Note that this function only
715 * erases the elements, and that if the elements themselves are pointers,
716 * the pointed-to memory is not touched in any way. Managing the pointer
717 * is the user's responsibility.
718 */
719 void
720 clear() _GLIBCXX_NOEXCEPT
721 { _M_t.clear(); }
722
723 // observers
724 /**
725 * Returns the key comparison object out of which the %multimap
726 * was constructed.
727 */
728 key_compare
729 key_comp() const
730 { return _M_t.key_comp(); }
731
732 /**
733 * Returns a value comparison object, built from the key comparison
734 * object out of which the %multimap was constructed.
735 */
736 value_compare
737 value_comp() const
738 { return value_compare(_M_t.key_comp()); }
739
740 // multimap operations
741
742 //@{
743 /**
744 * @brief Tries to locate an element in a %multimap.
745 * @param __x Key of (key, value) pair to be located.
746 * @return Iterator pointing to sought-after element,
747 * or end() if not found.
748 *
749 * This function takes a key and tries to locate the element with which
750 * the key matches. If successful the function returns an iterator
751 * pointing to the sought after %pair. If unsuccessful it returns the
752 * past-the-end ( @c end() ) iterator.
753 */
754 iterator
755 find(const key_type& __x)
756 { return _M_t.find(__x); }
757
758 #if __cplusplus > 201103L
759 template<typename _Kt>
760 auto
761 find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x))
762 { return _M_t._M_find_tr(__x); }
763 #endif
764 //@}
765
766 //@{
767 /**
768 * @brief Tries to locate an element in a %multimap.
769 * @param __x Key of (key, value) pair to be located.
770 * @return Read-only (constant) iterator pointing to sought-after
771 * element, or end() if not found.
772 *
773 * This function takes a key and tries to locate the element with which
774 * the key matches. If successful the function returns a constant
775 * iterator pointing to the sought after %pair. If unsuccessful it
776 * returns the past-the-end ( @c end() ) iterator.
777 */
778 const_iterator
779 find(const key_type& __x) const
780 { return _M_t.find(__x); }
781
782 #if __cplusplus > 201103L
783 template<typename _Kt>
784 auto
785 find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x))
786 { return _M_t._M_find_tr(__x); }
787 #endif
788 //@}
789
790 //@{
791 /**
792 * @brief Finds the number of elements with given key.
793 * @param __x Key of (key, value) pairs to be located.
794 * @return Number of elements with specified key.
795 */
796 size_type
797 count(const key_type& __x) const
798 { return _M_t.count(__x); }
799
800 #if __cplusplus > 201103L
801 template<typename _Kt>
802 auto
803 count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x))
804 { return _M_t._M_count_tr(__x); }
805 #endif
806 //@}
807
808 //@{
809 /**
810 * @brief Finds the beginning of a subsequence matching given key.
811 * @param __x Key of (key, value) pair to be located.
812 * @return Iterator pointing to first element equal to or greater
813 * than key, or end().
814 *
815 * This function returns the first element of a subsequence of elements
816 * that matches the given key. If unsuccessful it returns an iterator
817 * pointing to the first element that has a greater value than given key
818 * or end() if no such element exists.
819 */
820 iterator
821 lower_bound(const key_type& __x)
822 { return _M_t.lower_bound(__x); }
823
824 #if __cplusplus > 201103L
825 template<typename _Kt>
826 auto
827 lower_bound(const _Kt& __x)
828 -> decltype(iterator(_M_t._M_lower_bound_tr(__x)))
829 { return iterator(_M_t._M_lower_bound_tr(__x)); }
830 #endif
831 //@}
832
833 //@{
834 /**
835 * @brief Finds the beginning of a subsequence matching given key.
836 * @param __x Key of (key, value) pair to be located.
837 * @return Read-only (constant) iterator pointing to first element
838 * equal to or greater than key, or end().
839 *
840 * This function returns the first element of a subsequence of
841 * elements that matches the given key. If unsuccessful the
842 * iterator will point to the next greatest element or, if no
843 * such greater element exists, to end().
844 */
845 const_iterator
846 lower_bound(const key_type& __x) const
847 { return _M_t.lower_bound(__x); }
848
849 #if __cplusplus > 201103L
850 template<typename _Kt>
851 auto
852 lower_bound(const _Kt& __x) const
853 -> decltype(const_iterator(_M_t._M_lower_bound_tr(__x)))
854 { return const_iterator(_M_t._M_lower_bound_tr(__x)); }
855 #endif
856 //@}
857
858 //@{
859 /**
860 * @brief Finds the end of a subsequence matching given key.
861 * @param __x Key of (key, value) pair to be located.
862 * @return Iterator pointing to the first element
863 * greater than key, or end().
864 */
865 iterator
866 upper_bound(const key_type& __x)
867 { return _M_t.upper_bound(__x); }
868
869 #if __cplusplus > 201103L
870 template<typename _Kt>
871 auto
872 upper_bound(const _Kt& __x)
873 -> decltype(iterator(_M_t._M_upper_bound_tr(__x)))
874 { return iterator(_M_t._M_upper_bound_tr(__x)); }
875 #endif
876 //@}
877
878 //@{
879 /**
880 * @brief Finds the end of a subsequence matching given key.
881 * @param __x Key of (key, value) pair to be located.
882 * @return Read-only (constant) iterator pointing to first iterator
883 * greater than key, or end().
884 */
885 const_iterator
886 upper_bound(const key_type& __x) const
887 { return _M_t.upper_bound(__x); }
888
889 #if __cplusplus > 201103L
890 template<typename _Kt>
891 auto
892 upper_bound(const _Kt& __x) const
893 -> decltype(const_iterator(_M_t._M_upper_bound_tr(__x)))
894 { return const_iterator(_M_t._M_upper_bound_tr(__x)); }
895 #endif
896 //@}
897
898 //@{
899 /**
900 * @brief Finds a subsequence matching given key.
901 * @param __x Key of (key, value) pairs to be located.
902 * @return Pair of iterators that possibly points to the subsequence
903 * matching given key.
904 *
905 * This function is equivalent to
906 * @code
907 * std::make_pair(c.lower_bound(val),
908 * c.upper_bound(val))
909 * @endcode
910 * (but is faster than making the calls separately).
911 */
912 std::pair<iterator, iterator>
913 equal_range(const key_type& __x)
914 { return _M_t.equal_range(__x); }
915
916 #if __cplusplus > 201103L
917 template<typename _Kt>
918 auto
919 equal_range(const _Kt& __x)
920 -> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)))
921 { return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); }
922 #endif
923 //@}
924
925 //@{
926 /**
927 * @brief Finds a subsequence matching given key.
928 * @param __x Key of (key, value) pairs to be located.
929 * @return Pair of read-only (constant) iterators that possibly points
930 * to the subsequence matching given key.
931 *
932 * This function is equivalent to
933 * @code
934 * std::make_pair(c.lower_bound(val),
935 * c.upper_bound(val))
936 * @endcode
937 * (but is faster than making the calls separately).
938 */
939 std::pair<const_iterator, const_iterator>
940 equal_range(const key_type& __x) const
941 { return _M_t.equal_range(__x); }
942
943 #if __cplusplus > 201103L
944 template<typename _Kt>
945 auto
946 equal_range(const _Kt& __x) const
947 -> decltype(pair<const_iterator, const_iterator>(
948 _M_t._M_equal_range_tr(__x)))
949 {
950 return pair<const_iterator, const_iterator>(
951 _M_t._M_equal_range_tr(__x));
952 }
953 #endif
954 //@}
955
956 template<typename _K1, typename _T1, typename _C1, typename _A1>
957 friend bool
958 operator==(const multimap<_K1, _T1, _C1, _A1>&,
959 const multimap<_K1, _T1, _C1, _A1>&);
960
961 template<typename _K1, typename _T1, typename _C1, typename _A1>
962 friend bool
963 operator<(const multimap<_K1, _T1, _C1, _A1>&,
964 const multimap<_K1, _T1, _C1, _A1>&);
965 };
966
967 /**
968 * @brief Multimap equality comparison.
969 * @param __x A %multimap.
970 * @param __y A %multimap of the same type as @a __x.
971 * @return True iff the size and elements of the maps are equal.
972 *
973 * This is an equivalence relation. It is linear in the size of the
974 * multimaps. Multimaps are considered equivalent if their sizes are equal,
975 * and if corresponding elements compare equal.
976 */
977 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
978 inline bool
979 operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
980 const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
981 { return __x._M_t == __y._M_t; }
982
983 /**
984 * @brief Multimap ordering relation.
985 * @param __x A %multimap.
986 * @param __y A %multimap of the same type as @a __x.
987 * @return True iff @a x is lexicographically less than @a y.
988 *
989 * This is a total ordering relation. It is linear in the size of the
990 * multimaps. The elements must be comparable with @c <.
991 *
992 * See std::lexicographical_compare() for how the determination is made.
993 */
994 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
995 inline bool
996 operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
997 const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
998 { return __x._M_t < __y._M_t; }
999
1000 /// Based on operator==
1001 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1002 inline bool
1003 operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1004 const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1005 { return !(__x == __y); }
1006
1007 /// Based on operator<
1008 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1009 inline bool
1010 operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1011 const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1012 { return __y < __x; }
1013
1014 /// Based on operator<
1015 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1016 inline bool
1017 operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1018 const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1019 { return !(__y < __x); }
1020
1021 /// Based on operator<
1022 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1023 inline bool
1024 operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1025 const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1026 { return !(__x < __y); }
1027
1028 /// See std::multimap::swap().
1029 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1030 inline void
1031 swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1032 multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1033 { __x.swap(__y); }
1034
1035 _GLIBCXX_END_NAMESPACE_CONTAINER
1036 } // namespace std
1037
1038 #endif /* _STL_MULTIMAP_H */
1039