1 // Random number extensions -*- C++ -*-
2 
3 // Copyright (C) 2012-2015 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file ext/random.tcc
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly. @headername{ext/random}
28  */
29 
30 #ifndef _EXT_RANDOM_TCC
31 #define _EXT_RANDOM_TCC 1
32 
33 #pragma GCC system_header
34 
35 namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
36 {
37 _GLIBCXX_BEGIN_NAMESPACE_VERSION
38 
39 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
40 
41   template<typename _UIntType, size_t __m,
42 	   size_t __pos1, size_t __sl1, size_t __sl2,
43 	   size_t __sr1, size_t __sr2,
44 	   uint32_t __msk1, uint32_t __msk2,
45 	   uint32_t __msk3, uint32_t __msk4,
46 	   uint32_t __parity1, uint32_t __parity2,
47 	   uint32_t __parity3, uint32_t __parity4>
48     void simd_fast_mersenne_twister_engine<_UIntType, __m,
49 					   __pos1, __sl1, __sl2, __sr1, __sr2,
50 					   __msk1, __msk2, __msk3, __msk4,
51 					   __parity1, __parity2, __parity3,
52 					   __parity4>::
seed(_UIntType __seed)53     seed(_UIntType __seed)
54     {
55       _M_state32[0] = static_cast<uint32_t>(__seed);
56       for (size_t __i = 1; __i < _M_nstate32; ++__i)
57 	_M_state32[__i] = (1812433253UL
58 			   * (_M_state32[__i - 1] ^ (_M_state32[__i - 1] >> 30))
59 			   + __i);
60       _M_pos = state_size;
61       _M_period_certification();
62     }
63 
64 
65   namespace {
66 
_Func1(uint32_t __x)67     inline uint32_t _Func1(uint32_t __x)
68     {
69       return (__x ^ (__x >> 27)) * UINT32_C(1664525);
70     }
71 
_Func2(uint32_t __x)72     inline uint32_t _Func2(uint32_t __x)
73     {
74       return (__x ^ (__x >> 27)) * UINT32_C(1566083941);
75     }
76 
77   }
78 
79 
80   template<typename _UIntType, size_t __m,
81 	   size_t __pos1, size_t __sl1, size_t __sl2,
82 	   size_t __sr1, size_t __sr2,
83 	   uint32_t __msk1, uint32_t __msk2,
84 	   uint32_t __msk3, uint32_t __msk4,
85 	   uint32_t __parity1, uint32_t __parity2,
86 	   uint32_t __parity3, uint32_t __parity4>
87     template<typename _Sseq>
88       typename std::enable_if<std::is_class<_Sseq>::value>::type
89       simd_fast_mersenne_twister_engine<_UIntType, __m,
90 					__pos1, __sl1, __sl2, __sr1, __sr2,
91 					__msk1, __msk2, __msk3, __msk4,
92 					__parity1, __parity2, __parity3,
93 					__parity4>::
seed(_Sseq & __q)94       seed(_Sseq& __q)
95       {
96 	size_t __lag;
97 
98 	if (_M_nstate32 >= 623)
99 	  __lag = 11;
100 	else if (_M_nstate32 >= 68)
101 	  __lag = 7;
102 	else if (_M_nstate32 >= 39)
103 	  __lag = 5;
104 	else
105 	  __lag = 3;
106 	const size_t __mid = (_M_nstate32 - __lag) / 2;
107 
108 	std::fill(_M_state32, _M_state32 + _M_nstate32, UINT32_C(0x8b8b8b8b));
109 	uint32_t __arr[_M_nstate32];
110 	__q.generate(__arr + 0, __arr + _M_nstate32);
111 
112 	uint32_t __r = _Func1(_M_state32[0] ^ _M_state32[__mid]
113 			      ^ _M_state32[_M_nstate32  - 1]);
114 	_M_state32[__mid] += __r;
115 	__r += _M_nstate32;
116 	_M_state32[__mid + __lag] += __r;
117 	_M_state32[0] = __r;
118 
119 	for (size_t __i = 1, __j = 0; __j < _M_nstate32; ++__j)
120 	  {
121 	    __r = _Func1(_M_state32[__i]
122 			 ^ _M_state32[(__i + __mid) % _M_nstate32]
123 			 ^ _M_state32[(__i + _M_nstate32 - 1) % _M_nstate32]);
124 	    _M_state32[(__i + __mid) % _M_nstate32] += __r;
125 	    __r += __arr[__j] + __i;
126 	    _M_state32[(__i + __mid + __lag) % _M_nstate32] += __r;
127 	    _M_state32[__i] = __r;
128 	    __i = (__i + 1) % _M_nstate32;
129 	  }
130 	for (size_t __j = 0; __j < _M_nstate32; ++__j)
131 	  {
132 	    const size_t __i = (__j + 1) % _M_nstate32;
133 	    __r = _Func2(_M_state32[__i]
134 			 + _M_state32[(__i + __mid) % _M_nstate32]
135 			 + _M_state32[(__i + _M_nstate32 - 1) % _M_nstate32]);
136 	    _M_state32[(__i + __mid) % _M_nstate32] ^= __r;
137 	    __r -= __i;
138 	    _M_state32[(__i + __mid + __lag) % _M_nstate32] ^= __r;
139 	    _M_state32[__i] = __r;
140 	  }
141 
142 	_M_pos = state_size;
143 	_M_period_certification();
144       }
145 
146 
147   template<typename _UIntType, size_t __m,
148 	   size_t __pos1, size_t __sl1, size_t __sl2,
149 	   size_t __sr1, size_t __sr2,
150 	   uint32_t __msk1, uint32_t __msk2,
151 	   uint32_t __msk3, uint32_t __msk4,
152 	   uint32_t __parity1, uint32_t __parity2,
153 	   uint32_t __parity3, uint32_t __parity4>
154     void simd_fast_mersenne_twister_engine<_UIntType, __m,
155 					   __pos1, __sl1, __sl2, __sr1, __sr2,
156 					   __msk1, __msk2, __msk3, __msk4,
157 					   __parity1, __parity2, __parity3,
158 					   __parity4>::
_M_period_certification(void)159     _M_period_certification(void)
160     {
161       static const uint32_t __parity[4] = { __parity1, __parity2,
162 					    __parity3, __parity4 };
163       uint32_t __inner = 0;
164       for (size_t __i = 0; __i < 4; ++__i)
165 	if (__parity[__i] != 0)
166 	  __inner ^= _M_state32[__i] & __parity[__i];
167 
168       if (__builtin_parity(__inner) & 1)
169 	return;
170       for (size_t __i = 0; __i < 4; ++__i)
171 	if (__parity[__i] != 0)
172 	  {
173 	    _M_state32[__i] ^= 1 << (__builtin_ffs(__parity[__i]) - 1);
174 	    return;
175 	  }
176       __builtin_unreachable();
177     }
178 
179 
180   template<typename _UIntType, size_t __m,
181 	   size_t __pos1, size_t __sl1, size_t __sl2,
182 	   size_t __sr1, size_t __sr2,
183 	   uint32_t __msk1, uint32_t __msk2,
184 	   uint32_t __msk3, uint32_t __msk4,
185 	   uint32_t __parity1, uint32_t __parity2,
186 	   uint32_t __parity3, uint32_t __parity4>
187     void simd_fast_mersenne_twister_engine<_UIntType, __m,
188 					   __pos1, __sl1, __sl2, __sr1, __sr2,
189 					   __msk1, __msk2, __msk3, __msk4,
190 					   __parity1, __parity2, __parity3,
191 					   __parity4>::
discard(unsigned long long __z)192     discard(unsigned long long __z)
193     {
194       while (__z > state_size - _M_pos)
195 	{
196 	  __z -= state_size - _M_pos;
197 
198 	  _M_gen_rand();
199 	}
200 
201       _M_pos += __z;
202     }
203 
204 
205 #ifndef  _GLIBCXX_OPT_HAVE_RANDOM_SFMT_GEN_READ
206 
207   namespace {
208 
209     template<size_t __shift>
__rshift(uint32_t * __out,const uint32_t * __in)210       inline void __rshift(uint32_t *__out, const uint32_t *__in)
211       {
212 	uint64_t __th = ((static_cast<uint64_t>(__in[3]) << 32)
213 			 | static_cast<uint64_t>(__in[2]));
214 	uint64_t __tl = ((static_cast<uint64_t>(__in[1]) << 32)
215 			 | static_cast<uint64_t>(__in[0]));
216 
217 	uint64_t __oh = __th >> (__shift * 8);
218 	uint64_t __ol = __tl >> (__shift * 8);
219 	__ol |= __th << (64 - __shift * 8);
220 	__out[1] = static_cast<uint32_t>(__ol >> 32);
221 	__out[0] = static_cast<uint32_t>(__ol);
222 	__out[3] = static_cast<uint32_t>(__oh >> 32);
223 	__out[2] = static_cast<uint32_t>(__oh);
224       }
225 
226 
227     template<size_t __shift>
__lshift(uint32_t * __out,const uint32_t * __in)228       inline void __lshift(uint32_t *__out, const uint32_t *__in)
229       {
230 	uint64_t __th = ((static_cast<uint64_t>(__in[3]) << 32)
231 			 | static_cast<uint64_t>(__in[2]));
232 	uint64_t __tl = ((static_cast<uint64_t>(__in[1]) << 32)
233 			 | static_cast<uint64_t>(__in[0]));
234 
235 	uint64_t __oh = __th << (__shift * 8);
236 	uint64_t __ol = __tl << (__shift * 8);
237 	__oh |= __tl >> (64 - __shift * 8);
238 	__out[1] = static_cast<uint32_t>(__ol >> 32);
239 	__out[0] = static_cast<uint32_t>(__ol);
240 	__out[3] = static_cast<uint32_t>(__oh >> 32);
241 	__out[2] = static_cast<uint32_t>(__oh);
242       }
243 
244 
245     template<size_t __sl1, size_t __sl2, size_t __sr1, size_t __sr2,
246 	     uint32_t __msk1, uint32_t __msk2, uint32_t __msk3, uint32_t __msk4>
__recursion(uint32_t * __r,const uint32_t * __a,const uint32_t * __b,const uint32_t * __c,const uint32_t * __d)247       inline void __recursion(uint32_t *__r,
248 			      const uint32_t *__a, const uint32_t *__b,
249 			      const uint32_t *__c, const uint32_t *__d)
250       {
251 	uint32_t __x[4];
252 	uint32_t __y[4];
253 
254 	__lshift<__sl2>(__x, __a);
255 	__rshift<__sr2>(__y, __c);
256 	__r[0] = (__a[0] ^ __x[0] ^ ((__b[0] >> __sr1) & __msk1)
257 		  ^ __y[0] ^ (__d[0] << __sl1));
258 	__r[1] = (__a[1] ^ __x[1] ^ ((__b[1] >> __sr1) & __msk2)
259 		  ^ __y[1] ^ (__d[1] << __sl1));
260 	__r[2] = (__a[2] ^ __x[2] ^ ((__b[2] >> __sr1) & __msk3)
261 		  ^ __y[2] ^ (__d[2] << __sl1));
262 	__r[3] = (__a[3] ^ __x[3] ^ ((__b[3] >> __sr1) & __msk4)
263 		  ^ __y[3] ^ (__d[3] << __sl1));
264       }
265 
266   }
267 
268 
269   template<typename _UIntType, size_t __m,
270 	   size_t __pos1, size_t __sl1, size_t __sl2,
271 	   size_t __sr1, size_t __sr2,
272 	   uint32_t __msk1, uint32_t __msk2,
273 	   uint32_t __msk3, uint32_t __msk4,
274 	   uint32_t __parity1, uint32_t __parity2,
275 	   uint32_t __parity3, uint32_t __parity4>
276     void simd_fast_mersenne_twister_engine<_UIntType, __m,
277 					   __pos1, __sl1, __sl2, __sr1, __sr2,
278 					   __msk1, __msk2, __msk3, __msk4,
279 					   __parity1, __parity2, __parity3,
280 					   __parity4>::
_M_gen_rand(void)281     _M_gen_rand(void)
282     {
283       const uint32_t *__r1 = &_M_state32[_M_nstate32 - 8];
284       const uint32_t *__r2 = &_M_state32[_M_nstate32 - 4];
285       static constexpr size_t __pos1_32 = __pos1 * 4;
286 
287       size_t __i;
288       for (__i = 0; __i < _M_nstate32 - __pos1_32; __i += 4)
289 	{
290 	  __recursion<__sl1, __sl2, __sr1, __sr2,
291 		      __msk1, __msk2, __msk3, __msk4>
292 	    (&_M_state32[__i], &_M_state32[__i],
293 	     &_M_state32[__i + __pos1_32], __r1, __r2);
294 	  __r1 = __r2;
295 	  __r2 = &_M_state32[__i];
296 	}
297 
298       for (; __i < _M_nstate32; __i += 4)
299 	{
300 	  __recursion<__sl1, __sl2, __sr1, __sr2,
301 		      __msk1, __msk2, __msk3, __msk4>
302 	    (&_M_state32[__i], &_M_state32[__i],
303 	     &_M_state32[__i + __pos1_32 - _M_nstate32], __r1, __r2);
304 	  __r1 = __r2;
305 	  __r2 = &_M_state32[__i];
306 	}
307 
308       _M_pos = 0;
309     }
310 
311 #endif
312 
313 #ifndef _GLIBCXX_OPT_HAVE_RANDOM_SFMT_OPERATOREQUAL
314   template<typename _UIntType, size_t __m,
315 	   size_t __pos1, size_t __sl1, size_t __sl2,
316 	   size_t __sr1, size_t __sr2,
317 	   uint32_t __msk1, uint32_t __msk2,
318 	   uint32_t __msk3, uint32_t __msk4,
319 	   uint32_t __parity1, uint32_t __parity2,
320 	   uint32_t __parity3, uint32_t __parity4>
321     bool
operator ==(const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,__m,__pos1,__sl1,__sl2,__sr1,__sr2,__msk1,__msk2,__msk3,__msk4,__parity1,__parity2,__parity3,__parity4> & __lhs,const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,__m,__pos1,__sl1,__sl2,__sr1,__sr2,__msk1,__msk2,__msk3,__msk4,__parity1,__parity2,__parity3,__parity4> & __rhs)322     operator==(const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
323 	       __m, __pos1, __sl1, __sl2, __sr1, __sr2,
324 	       __msk1, __msk2, __msk3, __msk4,
325 	       __parity1, __parity2, __parity3, __parity4>& __lhs,
326 	       const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
327 	       __m, __pos1, __sl1, __sl2, __sr1, __sr2,
328 	       __msk1, __msk2, __msk3, __msk4,
329 	       __parity1, __parity2, __parity3, __parity4>& __rhs)
330     {
331       typedef __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
332 	       __m, __pos1, __sl1, __sl2, __sr1, __sr2,
333 	       __msk1, __msk2, __msk3, __msk4,
334 	       __parity1, __parity2, __parity3, __parity4> __engine;
335       return (std::equal(__lhs._M_stateT,
336 			 __lhs._M_stateT + __engine::state_size,
337 			 __rhs._M_stateT)
338 	      && __lhs._M_pos == __rhs._M_pos);
339     }
340 #endif
341 
342   template<typename _UIntType, size_t __m,
343 	   size_t __pos1, size_t __sl1, size_t __sl2,
344 	   size_t __sr1, size_t __sr2,
345 	   uint32_t __msk1, uint32_t __msk2,
346 	   uint32_t __msk3, uint32_t __msk4,
347 	   uint32_t __parity1, uint32_t __parity2,
348 	   uint32_t __parity3, uint32_t __parity4,
349 	   typename _CharT, typename _Traits>
350     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,__m,__pos1,__sl1,__sl2,__sr1,__sr2,__msk1,__msk2,__msk3,__msk4,__parity1,__parity2,__parity3,__parity4> & __x)351     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
352 	       const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
353 	       __m, __pos1, __sl1, __sl2, __sr1, __sr2,
354 	       __msk1, __msk2, __msk3, __msk4,
355 	       __parity1, __parity2, __parity3, __parity4>& __x)
356     {
357       typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
358       typedef typename __ostream_type::ios_base __ios_base;
359 
360       const typename __ios_base::fmtflags __flags = __os.flags();
361       const _CharT __fill = __os.fill();
362       const _CharT __space = __os.widen(' ');
363       __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
364       __os.fill(__space);
365 
366       for (size_t __i = 0; __i < __x._M_nstate32; ++__i)
367 	__os << __x._M_state32[__i] << __space;
368       __os << __x._M_pos;
369 
370       __os.flags(__flags);
371       __os.fill(__fill);
372       return __os;
373     }
374 
375 
376   template<typename _UIntType, size_t __m,
377 	   size_t __pos1, size_t __sl1, size_t __sl2,
378 	   size_t __sr1, size_t __sr2,
379 	   uint32_t __msk1, uint32_t __msk2,
380 	   uint32_t __msk3, uint32_t __msk4,
381 	   uint32_t __parity1, uint32_t __parity2,
382 	   uint32_t __parity3, uint32_t __parity4,
383 	   typename _CharT, typename _Traits>
384     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,__gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,__m,__pos1,__sl1,__sl2,__sr1,__sr2,__msk1,__msk2,__msk3,__msk4,__parity1,__parity2,__parity3,__parity4> & __x)385     operator>>(std::basic_istream<_CharT, _Traits>& __is,
386 	       __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
387 	       __m, __pos1, __sl1, __sl2, __sr1, __sr2,
388 	       __msk1, __msk2, __msk3, __msk4,
389 	       __parity1, __parity2, __parity3, __parity4>& __x)
390     {
391       typedef std::basic_istream<_CharT, _Traits> __istream_type;
392       typedef typename __istream_type::ios_base __ios_base;
393 
394       const typename __ios_base::fmtflags __flags = __is.flags();
395       __is.flags(__ios_base::dec | __ios_base::skipws);
396 
397       for (size_t __i = 0; __i < __x._M_nstate32; ++__i)
398 	__is >> __x._M_state32[__i];
399       __is >> __x._M_pos;
400 
401       __is.flags(__flags);
402       return __is;
403     }
404 
405 #endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
406 
407   /**
408    * Iteration method due to M.D. J<o:>hnk.
409    *
410    * M.D. J<o:>hnk, Erzeugung von betaverteilten und gammaverteilten
411    * Zufallszahlen, Metrika, Volume 8, 1964
412    */
413   template<typename _RealType>
414     template<typename _UniformRandomNumberGenerator>
415       typename beta_distribution<_RealType>::result_type
416       beta_distribution<_RealType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __param)417       operator()(_UniformRandomNumberGenerator& __urng,
418 		 const param_type& __param)
419       {
420 	std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
421 	  __aurng(__urng);
422 
423 	result_type __x, __y;
424 	do
425 	  {
426 	    __x = std::exp(std::log(__aurng()) / __param.alpha());
427 	    __y = std::exp(std::log(__aurng()) / __param.beta());
428 	  }
429 	while (__x + __y > result_type(1));
430 
431 	return __x / (__x + __y);
432       }
433 
434   template<typename _RealType>
435     template<typename _OutputIterator,
436 	     typename _UniformRandomNumberGenerator>
437       void
438       beta_distribution<_RealType>::
__generate_impl(_OutputIterator __f,_OutputIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __param)439       __generate_impl(_OutputIterator __f, _OutputIterator __t,
440 		      _UniformRandomNumberGenerator& __urng,
441 		      const param_type& __param)
442       {
443 	__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
444 
445 	std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
446 	  __aurng(__urng);
447 
448 	while (__f != __t)
449 	  {
450 	    result_type __x, __y;
451 	    do
452 	      {
453 		__x = std::exp(std::log(__aurng()) / __param.alpha());
454 		__y = std::exp(std::log(__aurng()) / __param.beta());
455 	      }
456 	    while (__x + __y > result_type(1));
457 
458 	    *__f++ = __x / (__x + __y);
459 	  }
460       }
461 
462   template<typename _RealType, typename _CharT, typename _Traits>
463     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const __gnu_cxx::beta_distribution<_RealType> & __x)464     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
465 	       const __gnu_cxx::beta_distribution<_RealType>& __x)
466     {
467       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
468       typedef typename __ostream_type::ios_base    __ios_base;
469 
470       const typename __ios_base::fmtflags __flags = __os.flags();
471       const _CharT __fill = __os.fill();
472       const std::streamsize __precision = __os.precision();
473       const _CharT __space = __os.widen(' ');
474       __os.flags(__ios_base::scientific | __ios_base::left);
475       __os.fill(__space);
476       __os.precision(std::numeric_limits<_RealType>::max_digits10);
477 
478       __os << __x.alpha() << __space << __x.beta();
479 
480       __os.flags(__flags);
481       __os.fill(__fill);
482       __os.precision(__precision);
483       return __os;
484     }
485 
486   template<typename _RealType, typename _CharT, typename _Traits>
487     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,__gnu_cxx::beta_distribution<_RealType> & __x)488     operator>>(std::basic_istream<_CharT, _Traits>& __is,
489 	       __gnu_cxx::beta_distribution<_RealType>& __x)
490     {
491       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
492       typedef typename __istream_type::ios_base    __ios_base;
493 
494       const typename __ios_base::fmtflags __flags = __is.flags();
495       __is.flags(__ios_base::dec | __ios_base::skipws);
496 
497       _RealType __alpha_val, __beta_val;
498       __is >> __alpha_val >> __beta_val;
499       __x.param(typename __gnu_cxx::beta_distribution<_RealType>::
500 		param_type(__alpha_val, __beta_val));
501 
502       __is.flags(__flags);
503       return __is;
504     }
505 
506 
507   template<std::size_t _Dimen, typename _RealType>
508     template<typename _InputIterator1, typename _InputIterator2>
509       void
510       normal_mv_distribution<_Dimen, _RealType>::param_type::
_M_init_full(_InputIterator1 __meanbegin,_InputIterator1 __meanend,_InputIterator2 __varcovbegin,_InputIterator2 __varcovend)511       _M_init_full(_InputIterator1 __meanbegin, _InputIterator1 __meanend,
512 		   _InputIterator2 __varcovbegin, _InputIterator2 __varcovend)
513       {
514 	__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
515 	__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
516 	std::fill(std::copy(__meanbegin, __meanend, _M_mean.begin()),
517 		  _M_mean.end(), _RealType(0));
518 
519 	// Perform the Cholesky decomposition
520 	auto __w = _M_t.begin();
521 	for (size_t __j = 0; __j < _Dimen; ++__j)
522 	  {
523 	    _RealType __sum = _RealType(0);
524 
525 	    auto __slitbegin = __w;
526 	    auto __cit = _M_t.begin();
527 	    for (size_t __i = 0; __i < __j; ++__i)
528 	      {
529 		auto __slit = __slitbegin;
530 		_RealType __s = *__varcovbegin++;
531 		for (size_t __k = 0; __k < __i; ++__k)
532 		  __s -= *__slit++ * *__cit++;
533 
534 		*__w++ = __s /= *__cit++;
535 		__sum += __s * __s;
536 	      }
537 
538 	    __sum = *__varcovbegin - __sum;
539 	    if (__builtin_expect(__sum <= _RealType(0), 0))
540 	      std::__throw_runtime_error(__N("normal_mv_distribution::"
541 					     "param_type::_M_init_full"));
542 	    *__w++ = std::sqrt(__sum);
543 
544 	    std::advance(__varcovbegin, _Dimen - __j);
545 	  }
546       }
547 
548   template<std::size_t _Dimen, typename _RealType>
549     template<typename _InputIterator1, typename _InputIterator2>
550       void
551       normal_mv_distribution<_Dimen, _RealType>::param_type::
_M_init_lower(_InputIterator1 __meanbegin,_InputIterator1 __meanend,_InputIterator2 __varcovbegin,_InputIterator2 __varcovend)552       _M_init_lower(_InputIterator1 __meanbegin, _InputIterator1 __meanend,
553 		    _InputIterator2 __varcovbegin, _InputIterator2 __varcovend)
554       {
555 	__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
556 	__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
557 	std::fill(std::copy(__meanbegin, __meanend, _M_mean.begin()),
558 		  _M_mean.end(), _RealType(0));
559 
560 	// Perform the Cholesky decomposition
561 	auto __w = _M_t.begin();
562 	for (size_t __j = 0; __j < _Dimen; ++__j)
563 	  {
564 	    _RealType __sum = _RealType(0);
565 
566 	    auto __slitbegin = __w;
567 	    auto __cit = _M_t.begin();
568 	    for (size_t __i = 0; __i < __j; ++__i)
569 	      {
570 		auto __slit = __slitbegin;
571 		_RealType __s = *__varcovbegin++;
572 		for (size_t __k = 0; __k < __i; ++__k)
573 		  __s -= *__slit++ * *__cit++;
574 
575 		*__w++ = __s /= *__cit++;
576 		__sum += __s * __s;
577 	      }
578 
579 	    __sum = *__varcovbegin++ - __sum;
580 	    if (__builtin_expect(__sum <= _RealType(0), 0))
581 	      std::__throw_runtime_error(__N("normal_mv_distribution::"
582 					     "param_type::_M_init_full"));
583 	    *__w++ = std::sqrt(__sum);
584 	  }
585       }
586 
587   template<std::size_t _Dimen, typename _RealType>
588     template<typename _InputIterator1, typename _InputIterator2>
589       void
590       normal_mv_distribution<_Dimen, _RealType>::param_type::
_M_init_diagonal(_InputIterator1 __meanbegin,_InputIterator1 __meanend,_InputIterator2 __varbegin,_InputIterator2 __varend)591       _M_init_diagonal(_InputIterator1 __meanbegin, _InputIterator1 __meanend,
592 		       _InputIterator2 __varbegin, _InputIterator2 __varend)
593       {
594 	__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
595 	__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
596 	std::fill(std::copy(__meanbegin, __meanend, _M_mean.begin()),
597 		  _M_mean.end(), _RealType(0));
598 
599 	auto __w = _M_t.begin();
600 	size_t __step = 0;
601 	while (__varbegin != __varend)
602 	  {
603 	    std::fill_n(__w, __step, _RealType(0));
604 	    __w += __step++;
605 	    if (__builtin_expect(*__varbegin < _RealType(0), 0))
606 	      std::__throw_runtime_error(__N("normal_mv_distribution::"
607 					     "param_type::_M_init_diagonal"));
608 	    *__w++ = std::sqrt(*__varbegin++);
609 	  }
610       }
611 
612   template<std::size_t _Dimen, typename _RealType>
613     template<typename _UniformRandomNumberGenerator>
614       typename normal_mv_distribution<_Dimen, _RealType>::result_type
615       normal_mv_distribution<_Dimen, _RealType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __param)616       operator()(_UniformRandomNumberGenerator& __urng,
617 		 const param_type& __param)
618       {
619 	result_type __ret;
620 
621 	_M_nd.__generate(__ret.begin(), __ret.end(), __urng);
622 
623 	auto __t_it = __param._M_t.crbegin();
624 	for (size_t __i = _Dimen; __i > 0; --__i)
625 	  {
626 	    _RealType __sum = _RealType(0);
627 	    for (size_t __j = __i; __j > 0; --__j)
628 	      __sum += __ret[__j - 1] * *__t_it++;
629 	    __ret[__i - 1] = __sum;
630 	  }
631 
632 	return __ret;
633       }
634 
635   template<std::size_t _Dimen, typename _RealType>
636     template<typename _ForwardIterator, typename _UniformRandomNumberGenerator>
637       void
638       normal_mv_distribution<_Dimen, _RealType>::
__generate_impl(_ForwardIterator __f,_ForwardIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __param)639       __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
640 		      _UniformRandomNumberGenerator& __urng,
641 		      const param_type& __param)
642       {
643 	__glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
644 				    _ForwardIterator>)
645 	while (__f != __t)
646 	  *__f++ = this->operator()(__urng, __param);
647       }
648 
649   template<size_t _Dimen, typename _RealType>
650     bool
operator ==(const __gnu_cxx::normal_mv_distribution<_Dimen,_RealType> & __d1,const __gnu_cxx::normal_mv_distribution<_Dimen,_RealType> & __d2)651     operator==(const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>&
652 	       __d1,
653 	       const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>&
654 	       __d2)
655     {
656       return __d1._M_param == __d2._M_param && __d1._M_nd == __d2._M_nd;
657     }
658 
659   template<size_t _Dimen, typename _RealType, typename _CharT, typename _Traits>
660     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const __gnu_cxx::normal_mv_distribution<_Dimen,_RealType> & __x)661     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
662 	       const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>& __x)
663     {
664       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
665       typedef typename __ostream_type::ios_base    __ios_base;
666 
667       const typename __ios_base::fmtflags __flags = __os.flags();
668       const _CharT __fill = __os.fill();
669       const std::streamsize __precision = __os.precision();
670       const _CharT __space = __os.widen(' ');
671       __os.flags(__ios_base::scientific | __ios_base::left);
672       __os.fill(__space);
673       __os.precision(std::numeric_limits<_RealType>::max_digits10);
674 
675       auto __mean = __x._M_param.mean();
676       for (auto __it : __mean)
677 	__os << __it << __space;
678       auto __t = __x._M_param.varcov();
679       for (auto __it : __t)
680 	__os << __it << __space;
681 
682       __os << __x._M_nd;
683 
684       __os.flags(__flags);
685       __os.fill(__fill);
686       __os.precision(__precision);
687       return __os;
688     }
689 
690   template<size_t _Dimen, typename _RealType, typename _CharT, typename _Traits>
691     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,__gnu_cxx::normal_mv_distribution<_Dimen,_RealType> & __x)692     operator>>(std::basic_istream<_CharT, _Traits>& __is,
693 	       __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>& __x)
694     {
695       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
696       typedef typename __istream_type::ios_base    __ios_base;
697 
698       const typename __ios_base::fmtflags __flags = __is.flags();
699       __is.flags(__ios_base::dec | __ios_base::skipws);
700 
701       std::array<_RealType, _Dimen> __mean;
702       for (auto& __it : __mean)
703 	__is >> __it;
704       std::array<_RealType, _Dimen * (_Dimen + 1) / 2> __varcov;
705       for (auto& __it : __varcov)
706 	__is >> __it;
707 
708       __is >> __x._M_nd;
709 
710       __x.param(typename normal_mv_distribution<_Dimen, _RealType>::
711 		param_type(__mean.begin(), __mean.end(),
712 			   __varcov.begin(), __varcov.end()));
713 
714       __is.flags(__flags);
715       return __is;
716     }
717 
718 
719   template<typename _RealType>
720     template<typename _OutputIterator,
721 	     typename _UniformRandomNumberGenerator>
722       void
723       rice_distribution<_RealType>::
__generate_impl(_OutputIterator __f,_OutputIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __p)724       __generate_impl(_OutputIterator __f, _OutputIterator __t,
725 		      _UniformRandomNumberGenerator& __urng,
726 		      const param_type& __p)
727       {
728 	__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
729 
730 	while (__f != __t)
731 	  {
732 	    typename std::normal_distribution<result_type>::param_type
733 	      __px(__p.nu(), __p.sigma()), __py(result_type(0), __p.sigma());
734 	    result_type __x = this->_M_ndx(__px, __urng);
735 	    result_type __y = this->_M_ndy(__py, __urng);
736 #if _GLIBCXX_USE_C99_MATH_TR1
737 	    *__f++ = std::hypot(__x, __y);
738 #else
739 	    *__f++ = std::sqrt(__x * __x + __y * __y);
740 #endif
741 	  }
742       }
743 
744   template<typename _RealType, typename _CharT, typename _Traits>
745     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const rice_distribution<_RealType> & __x)746     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
747 	       const rice_distribution<_RealType>& __x)
748     {
749       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
750       typedef typename __ostream_type::ios_base    __ios_base;
751 
752       const typename __ios_base::fmtflags __flags = __os.flags();
753       const _CharT __fill = __os.fill();
754       const std::streamsize __precision = __os.precision();
755       const _CharT __space = __os.widen(' ');
756       __os.flags(__ios_base::scientific | __ios_base::left);
757       __os.fill(__space);
758       __os.precision(std::numeric_limits<_RealType>::max_digits10);
759 
760       __os << __x.nu() << __space << __x.sigma();
761       __os << __space << __x._M_ndx;
762       __os << __space << __x._M_ndy;
763 
764       __os.flags(__flags);
765       __os.fill(__fill);
766       __os.precision(__precision);
767       return __os;
768     }
769 
770   template<typename _RealType, typename _CharT, typename _Traits>
771     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,rice_distribution<_RealType> & __x)772     operator>>(std::basic_istream<_CharT, _Traits>& __is,
773 	       rice_distribution<_RealType>& __x)
774     {
775       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
776       typedef typename __istream_type::ios_base    __ios_base;
777 
778       const typename __ios_base::fmtflags __flags = __is.flags();
779       __is.flags(__ios_base::dec | __ios_base::skipws);
780 
781       _RealType __nu_val, __sigma_val;
782       __is >> __nu_val >> __sigma_val;
783       __is >> __x._M_ndx;
784       __is >> __x._M_ndy;
785       __x.param(typename rice_distribution<_RealType>::
786 		param_type(__nu_val, __sigma_val));
787 
788       __is.flags(__flags);
789       return __is;
790     }
791 
792 
793   template<typename _RealType>
794     template<typename _OutputIterator,
795 	     typename _UniformRandomNumberGenerator>
796       void
797       nakagami_distribution<_RealType>::
__generate_impl(_OutputIterator __f,_OutputIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __p)798       __generate_impl(_OutputIterator __f, _OutputIterator __t,
799 		      _UniformRandomNumberGenerator& __urng,
800 		      const param_type& __p)
801       {
802 	__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
803 
804 	typename std::gamma_distribution<result_type>::param_type
805 	  __pg(__p.mu(), __p.omega() / __p.mu());
806 	while (__f != __t)
807 	  *__f++ = std::sqrt(this->_M_gd(__pg, __urng));
808       }
809 
810   template<typename _RealType, typename _CharT, typename _Traits>
811     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const nakagami_distribution<_RealType> & __x)812     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
813 	       const nakagami_distribution<_RealType>& __x)
814     {
815       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
816       typedef typename __ostream_type::ios_base    __ios_base;
817 
818       const typename __ios_base::fmtflags __flags = __os.flags();
819       const _CharT __fill = __os.fill();
820       const std::streamsize __precision = __os.precision();
821       const _CharT __space = __os.widen(' ');
822       __os.flags(__ios_base::scientific | __ios_base::left);
823       __os.fill(__space);
824       __os.precision(std::numeric_limits<_RealType>::max_digits10);
825 
826       __os << __x.mu() << __space << __x.omega();
827       __os << __space << __x._M_gd;
828 
829       __os.flags(__flags);
830       __os.fill(__fill);
831       __os.precision(__precision);
832       return __os;
833     }
834 
835   template<typename _RealType, typename _CharT, typename _Traits>
836     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,nakagami_distribution<_RealType> & __x)837     operator>>(std::basic_istream<_CharT, _Traits>& __is,
838 	       nakagami_distribution<_RealType>& __x)
839     {
840       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
841       typedef typename __istream_type::ios_base    __ios_base;
842 
843       const typename __ios_base::fmtflags __flags = __is.flags();
844       __is.flags(__ios_base::dec | __ios_base::skipws);
845 
846       _RealType __mu_val, __omega_val;
847       __is >> __mu_val >> __omega_val;
848       __is >> __x._M_gd;
849       __x.param(typename nakagami_distribution<_RealType>::
850 		param_type(__mu_val, __omega_val));
851 
852       __is.flags(__flags);
853       return __is;
854     }
855 
856 
857   template<typename _RealType>
858     template<typename _OutputIterator,
859 	     typename _UniformRandomNumberGenerator>
860       void
861       pareto_distribution<_RealType>::
__generate_impl(_OutputIterator __f,_OutputIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __p)862       __generate_impl(_OutputIterator __f, _OutputIterator __t,
863 		      _UniformRandomNumberGenerator& __urng,
864 		      const param_type& __p)
865       {
866 	__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
867 
868 	result_type __mu_val = __p.mu();
869 	result_type __malphinv = -result_type(1) / __p.alpha();
870 	while (__f != __t)
871 	  *__f++ = __mu_val * std::pow(this->_M_ud(__urng), __malphinv);
872       }
873 
874   template<typename _RealType, typename _CharT, typename _Traits>
875     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const pareto_distribution<_RealType> & __x)876     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
877 	       const pareto_distribution<_RealType>& __x)
878     {
879       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
880       typedef typename __ostream_type::ios_base    __ios_base;
881 
882       const typename __ios_base::fmtflags __flags = __os.flags();
883       const _CharT __fill = __os.fill();
884       const std::streamsize __precision = __os.precision();
885       const _CharT __space = __os.widen(' ');
886       __os.flags(__ios_base::scientific | __ios_base::left);
887       __os.fill(__space);
888       __os.precision(std::numeric_limits<_RealType>::max_digits10);
889 
890       __os << __x.alpha() << __space << __x.mu();
891       __os << __space << __x._M_ud;
892 
893       __os.flags(__flags);
894       __os.fill(__fill);
895       __os.precision(__precision);
896       return __os;
897     }
898 
899   template<typename _RealType, typename _CharT, typename _Traits>
900     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,pareto_distribution<_RealType> & __x)901     operator>>(std::basic_istream<_CharT, _Traits>& __is,
902 	       pareto_distribution<_RealType>& __x)
903     {
904       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
905       typedef typename __istream_type::ios_base    __ios_base;
906 
907       const typename __ios_base::fmtflags __flags = __is.flags();
908       __is.flags(__ios_base::dec | __ios_base::skipws);
909 
910       _RealType __alpha_val, __mu_val;
911       __is >> __alpha_val >> __mu_val;
912       __is >> __x._M_ud;
913       __x.param(typename pareto_distribution<_RealType>::
914 		param_type(__alpha_val, __mu_val));
915 
916       __is.flags(__flags);
917       return __is;
918     }
919 
920 
921   template<typename _RealType>
922     template<typename _UniformRandomNumberGenerator>
923       typename k_distribution<_RealType>::result_type
924       k_distribution<_RealType>::
operator ()(_UniformRandomNumberGenerator & __urng)925       operator()(_UniformRandomNumberGenerator& __urng)
926       {
927 	result_type __x = this->_M_gd1(__urng);
928 	result_type __y = this->_M_gd2(__urng);
929 	return std::sqrt(__x * __y);
930       }
931 
932   template<typename _RealType>
933     template<typename _UniformRandomNumberGenerator>
934       typename k_distribution<_RealType>::result_type
935       k_distribution<_RealType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __p)936       operator()(_UniformRandomNumberGenerator& __urng,
937 		 const param_type& __p)
938       {
939 	typename std::gamma_distribution<result_type>::param_type
940 	  __p1(__p.lambda(), result_type(1) / __p.lambda()),
941 	  __p2(__p.nu(), __p.mu() / __p.nu());
942 	result_type __x = this->_M_gd1(__p1, __urng);
943 	result_type __y = this->_M_gd2(__p2, __urng);
944 	return std::sqrt(__x * __y);
945       }
946 
947   template<typename _RealType>
948     template<typename _OutputIterator,
949 	     typename _UniformRandomNumberGenerator>
950       void
951       k_distribution<_RealType>::
__generate_impl(_OutputIterator __f,_OutputIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __p)952       __generate_impl(_OutputIterator __f, _OutputIterator __t,
953 		      _UniformRandomNumberGenerator& __urng,
954 		      const param_type& __p)
955       {
956 	__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
957 
958 	typename std::gamma_distribution<result_type>::param_type
959 	  __p1(__p.lambda(), result_type(1) / __p.lambda()),
960 	  __p2(__p.nu(), __p.mu() / __p.nu());
961 	while (__f != __t)
962 	  {
963 	    result_type __x = this->_M_gd1(__p1, __urng);
964 	    result_type __y = this->_M_gd2(__p2, __urng);
965 	    *__f++ = std::sqrt(__x * __y);
966 	  }
967       }
968 
969   template<typename _RealType, typename _CharT, typename _Traits>
970     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const k_distribution<_RealType> & __x)971     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
972 	       const k_distribution<_RealType>& __x)
973     {
974       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
975       typedef typename __ostream_type::ios_base    __ios_base;
976 
977       const typename __ios_base::fmtflags __flags = __os.flags();
978       const _CharT __fill = __os.fill();
979       const std::streamsize __precision = __os.precision();
980       const _CharT __space = __os.widen(' ');
981       __os.flags(__ios_base::scientific | __ios_base::left);
982       __os.fill(__space);
983       __os.precision(std::numeric_limits<_RealType>::max_digits10);
984 
985       __os << __x.lambda() << __space << __x.mu() << __space << __x.nu();
986       __os << __space << __x._M_gd1;
987       __os << __space << __x._M_gd2;
988 
989       __os.flags(__flags);
990       __os.fill(__fill);
991       __os.precision(__precision);
992       return __os;
993     }
994 
995   template<typename _RealType, typename _CharT, typename _Traits>
996     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,k_distribution<_RealType> & __x)997     operator>>(std::basic_istream<_CharT, _Traits>& __is,
998 	       k_distribution<_RealType>& __x)
999     {
1000       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1001       typedef typename __istream_type::ios_base    __ios_base;
1002 
1003       const typename __ios_base::fmtflags __flags = __is.flags();
1004       __is.flags(__ios_base::dec | __ios_base::skipws);
1005 
1006       _RealType __lambda_val, __mu_val, __nu_val;
1007       __is >> __lambda_val >> __mu_val >> __nu_val;
1008       __is >> __x._M_gd1;
1009       __is >> __x._M_gd2;
1010       __x.param(typename k_distribution<_RealType>::
1011 		param_type(__lambda_val, __mu_val, __nu_val));
1012 
1013       __is.flags(__flags);
1014       return __is;
1015     }
1016 
1017 
1018   template<typename _RealType>
1019     template<typename _OutputIterator,
1020 	     typename _UniformRandomNumberGenerator>
1021       void
1022       arcsine_distribution<_RealType>::
__generate_impl(_OutputIterator __f,_OutputIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __p)1023       __generate_impl(_OutputIterator __f, _OutputIterator __t,
1024 		      _UniformRandomNumberGenerator& __urng,
1025 		      const param_type& __p)
1026       {
1027 	__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
1028 
1029 	result_type __dif = __p.b() - __p.a();
1030 	result_type __sum = __p.a() + __p.b();
1031 	while (__f != __t)
1032 	  {
1033 	    result_type __x = std::sin(this->_M_ud(__urng));
1034 	    *__f++ = (__x * __dif + __sum) / result_type(2);
1035 	  }
1036       }
1037 
1038   template<typename _RealType, typename _CharT, typename _Traits>
1039     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const arcsine_distribution<_RealType> & __x)1040     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1041 	       const arcsine_distribution<_RealType>& __x)
1042     {
1043       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1044       typedef typename __ostream_type::ios_base    __ios_base;
1045 
1046       const typename __ios_base::fmtflags __flags = __os.flags();
1047       const _CharT __fill = __os.fill();
1048       const std::streamsize __precision = __os.precision();
1049       const _CharT __space = __os.widen(' ');
1050       __os.flags(__ios_base::scientific | __ios_base::left);
1051       __os.fill(__space);
1052       __os.precision(std::numeric_limits<_RealType>::max_digits10);
1053 
1054       __os << __x.a() << __space << __x.b();
1055       __os << __space << __x._M_ud;
1056 
1057       __os.flags(__flags);
1058       __os.fill(__fill);
1059       __os.precision(__precision);
1060       return __os;
1061     }
1062 
1063   template<typename _RealType, typename _CharT, typename _Traits>
1064     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,arcsine_distribution<_RealType> & __x)1065     operator>>(std::basic_istream<_CharT, _Traits>& __is,
1066 	       arcsine_distribution<_RealType>& __x)
1067     {
1068       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1069       typedef typename __istream_type::ios_base    __ios_base;
1070 
1071       const typename __ios_base::fmtflags __flags = __is.flags();
1072       __is.flags(__ios_base::dec | __ios_base::skipws);
1073 
1074       _RealType __a, __b;
1075       __is >> __a >> __b;
1076       __is >> __x._M_ud;
1077       __x.param(typename arcsine_distribution<_RealType>::
1078 		param_type(__a, __b));
1079 
1080       __is.flags(__flags);
1081       return __is;
1082     }
1083 
1084 
1085   template<typename _RealType>
1086     template<typename _UniformRandomNumberGenerator>
1087       typename hoyt_distribution<_RealType>::result_type
1088       hoyt_distribution<_RealType>::
operator ()(_UniformRandomNumberGenerator & __urng)1089       operator()(_UniformRandomNumberGenerator& __urng)
1090       {
1091 	result_type __x = this->_M_ad(__urng);
1092 	result_type __y = this->_M_ed(__urng);
1093 	return (result_type(2) * this->q()
1094 		  / (result_type(1) + this->q() * this->q()))
1095 	       * std::sqrt(this->omega() * __x * __y);
1096       }
1097 
1098   template<typename _RealType>
1099     template<typename _UniformRandomNumberGenerator>
1100       typename hoyt_distribution<_RealType>::result_type
1101       hoyt_distribution<_RealType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __p)1102       operator()(_UniformRandomNumberGenerator& __urng,
1103 		 const param_type& __p)
1104       {
1105 	result_type __q2 = __p.q() * __p.q();
1106 	result_type __num = result_type(0.5L) * (result_type(1) + __q2);
1107 	typename __gnu_cxx::arcsine_distribution<result_type>::param_type
1108 	  __pa(__num, __num / __q2);
1109 	result_type __x = this->_M_ad(__pa, __urng);
1110 	result_type __y = this->_M_ed(__urng);
1111 	return (result_type(2) * __p.q() / (result_type(1) + __q2))
1112 	       * std::sqrt(__p.omega() * __x * __y);
1113       }
1114 
1115   template<typename _RealType>
1116     template<typename _OutputIterator,
1117 	     typename _UniformRandomNumberGenerator>
1118       void
1119       hoyt_distribution<_RealType>::
__generate_impl(_OutputIterator __f,_OutputIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __p)1120       __generate_impl(_OutputIterator __f, _OutputIterator __t,
1121 		      _UniformRandomNumberGenerator& __urng,
1122 		      const param_type& __p)
1123       {
1124 	__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
1125 
1126 	result_type __2q = result_type(2) * __p.q();
1127 	result_type __q2 = __p.q() * __p.q();
1128 	result_type __q2p1 = result_type(1) + __q2;
1129 	result_type __num = result_type(0.5L) * __q2p1;
1130 	result_type __omega = __p.omega();
1131 	typename __gnu_cxx::arcsine_distribution<result_type>::param_type
1132 	  __pa(__num, __num / __q2);
1133 	while (__f != __t)
1134 	  {
1135 	    result_type __x = this->_M_ad(__pa, __urng);
1136 	    result_type __y = this->_M_ed(__urng);
1137 	    *__f++ = (__2q / __q2p1) * std::sqrt(__omega * __x * __y);
1138 	  }
1139       }
1140 
1141   template<typename _RealType, typename _CharT, typename _Traits>
1142     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const hoyt_distribution<_RealType> & __x)1143     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1144 	       const hoyt_distribution<_RealType>& __x)
1145     {
1146       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1147       typedef typename __ostream_type::ios_base    __ios_base;
1148 
1149       const typename __ios_base::fmtflags __flags = __os.flags();
1150       const _CharT __fill = __os.fill();
1151       const std::streamsize __precision = __os.precision();
1152       const _CharT __space = __os.widen(' ');
1153       __os.flags(__ios_base::scientific | __ios_base::left);
1154       __os.fill(__space);
1155       __os.precision(std::numeric_limits<_RealType>::max_digits10);
1156 
1157       __os << __x.q() << __space << __x.omega();
1158       __os << __space << __x._M_ad;
1159       __os << __space << __x._M_ed;
1160 
1161       __os.flags(__flags);
1162       __os.fill(__fill);
1163       __os.precision(__precision);
1164       return __os;
1165     }
1166 
1167   template<typename _RealType, typename _CharT, typename _Traits>
1168     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,hoyt_distribution<_RealType> & __x)1169     operator>>(std::basic_istream<_CharT, _Traits>& __is,
1170 	       hoyt_distribution<_RealType>& __x)
1171     {
1172       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1173       typedef typename __istream_type::ios_base    __ios_base;
1174 
1175       const typename __ios_base::fmtflags __flags = __is.flags();
1176       __is.flags(__ios_base::dec | __ios_base::skipws);
1177 
1178       _RealType __q, __omega;
1179       __is >> __q >> __omega;
1180       __is >> __x._M_ad;
1181       __is >> __x._M_ed;
1182       __x.param(typename hoyt_distribution<_RealType>::
1183 		param_type(__q, __omega));
1184 
1185       __is.flags(__flags);
1186       return __is;
1187     }
1188 
1189 
1190   template<typename _RealType>
1191     template<typename _OutputIterator,
1192 	     typename _UniformRandomNumberGenerator>
1193       void
1194       triangular_distribution<_RealType>::
__generate_impl(_OutputIterator __f,_OutputIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __param)1195       __generate_impl(_OutputIterator __f, _OutputIterator __t,
1196 		      _UniformRandomNumberGenerator& __urng,
1197 		      const param_type& __param)
1198       {
1199 	__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
1200 
1201 	while (__f != __t)
1202 	  *__f++ = this->operator()(__urng, __param);
1203       }
1204 
1205   template<typename _RealType, typename _CharT, typename _Traits>
1206     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const __gnu_cxx::triangular_distribution<_RealType> & __x)1207     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1208 	       const __gnu_cxx::triangular_distribution<_RealType>& __x)
1209     {
1210       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1211       typedef typename __ostream_type::ios_base    __ios_base;
1212 
1213       const typename __ios_base::fmtflags __flags = __os.flags();
1214       const _CharT __fill = __os.fill();
1215       const std::streamsize __precision = __os.precision();
1216       const _CharT __space = __os.widen(' ');
1217       __os.flags(__ios_base::scientific | __ios_base::left);
1218       __os.fill(__space);
1219       __os.precision(std::numeric_limits<_RealType>::max_digits10);
1220 
1221       __os << __x.a() << __space << __x.b() << __space << __x.c();
1222 
1223       __os.flags(__flags);
1224       __os.fill(__fill);
1225       __os.precision(__precision);
1226       return __os;
1227     }
1228 
1229   template<typename _RealType, typename _CharT, typename _Traits>
1230     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,__gnu_cxx::triangular_distribution<_RealType> & __x)1231     operator>>(std::basic_istream<_CharT, _Traits>& __is,
1232 	       __gnu_cxx::triangular_distribution<_RealType>& __x)
1233     {
1234       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1235       typedef typename __istream_type::ios_base    __ios_base;
1236 
1237       const typename __ios_base::fmtflags __flags = __is.flags();
1238       __is.flags(__ios_base::dec | __ios_base::skipws);
1239 
1240       _RealType __a, __b, __c;
1241       __is >> __a >> __b >> __c;
1242       __x.param(typename __gnu_cxx::triangular_distribution<_RealType>::
1243 		param_type(__a, __b, __c));
1244 
1245       __is.flags(__flags);
1246       return __is;
1247     }
1248 
1249 
1250   template<typename _RealType>
1251     template<typename _UniformRandomNumberGenerator>
1252       typename von_mises_distribution<_RealType>::result_type
1253       von_mises_distribution<_RealType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __p)1254       operator()(_UniformRandomNumberGenerator& __urng,
1255 		 const param_type& __p)
1256       {
1257 	const result_type __pi
1258 	  = __gnu_cxx::__math_constants<result_type>::__pi;
1259 	std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
1260 	  __aurng(__urng);
1261 
1262 	result_type __f;
1263 	while (1)
1264 	  {
1265 	    result_type __rnd = std::cos(__pi * __aurng());
1266 	    __f = (result_type(1) + __p._M_r * __rnd) / (__p._M_r + __rnd);
1267 	    result_type __c = __p._M_kappa * (__p._M_r - __f);
1268 
1269 	    result_type __rnd2 = __aurng();
1270 	    if (__c * (result_type(2) - __c) > __rnd2)
1271 	      break;
1272 	    if (std::log(__c / __rnd2) >= __c - result_type(1))
1273 	      break;
1274 	  }
1275 
1276 	result_type __res = std::acos(__f);
1277 #if _GLIBCXX_USE_C99_MATH_TR1
1278 	__res = std::copysign(__res, __aurng() - result_type(0.5));
1279 #else
1280 	if (__aurng() < result_type(0.5))
1281 	  __res = -__res;
1282 #endif
1283 	__res += __p._M_mu;
1284 	if (__res > __pi)
1285 	  __res -= result_type(2) * __pi;
1286 	else if (__res < -__pi)
1287 	  __res += result_type(2) * __pi;
1288 	return __res;
1289       }
1290 
1291   template<typename _RealType>
1292     template<typename _OutputIterator,
1293 	     typename _UniformRandomNumberGenerator>
1294       void
1295       von_mises_distribution<_RealType>::
__generate_impl(_OutputIterator __f,_OutputIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __param)1296       __generate_impl(_OutputIterator __f, _OutputIterator __t,
1297 		      _UniformRandomNumberGenerator& __urng,
1298 		      const param_type& __param)
1299       {
1300 	__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
1301 
1302 	while (__f != __t)
1303 	  *__f++ = this->operator()(__urng, __param);
1304       }
1305 
1306   template<typename _RealType, typename _CharT, typename _Traits>
1307     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const __gnu_cxx::von_mises_distribution<_RealType> & __x)1308     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1309 	       const __gnu_cxx::von_mises_distribution<_RealType>& __x)
1310     {
1311       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1312       typedef typename __ostream_type::ios_base    __ios_base;
1313 
1314       const typename __ios_base::fmtflags __flags = __os.flags();
1315       const _CharT __fill = __os.fill();
1316       const std::streamsize __precision = __os.precision();
1317       const _CharT __space = __os.widen(' ');
1318       __os.flags(__ios_base::scientific | __ios_base::left);
1319       __os.fill(__space);
1320       __os.precision(std::numeric_limits<_RealType>::max_digits10);
1321 
1322       __os << __x.mu() << __space << __x.kappa();
1323 
1324       __os.flags(__flags);
1325       __os.fill(__fill);
1326       __os.precision(__precision);
1327       return __os;
1328     }
1329 
1330   template<typename _RealType, typename _CharT, typename _Traits>
1331     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,__gnu_cxx::von_mises_distribution<_RealType> & __x)1332     operator>>(std::basic_istream<_CharT, _Traits>& __is,
1333 	       __gnu_cxx::von_mises_distribution<_RealType>& __x)
1334     {
1335       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1336       typedef typename __istream_type::ios_base    __ios_base;
1337 
1338       const typename __ios_base::fmtflags __flags = __is.flags();
1339       __is.flags(__ios_base::dec | __ios_base::skipws);
1340 
1341       _RealType __mu, __kappa;
1342       __is >> __mu >> __kappa;
1343       __x.param(typename __gnu_cxx::von_mises_distribution<_RealType>::
1344 		param_type(__mu, __kappa));
1345 
1346       __is.flags(__flags);
1347       return __is;
1348     }
1349 
1350 
1351   template<typename _UIntType>
1352     template<typename _UniformRandomNumberGenerator>
1353       typename hypergeometric_distribution<_UIntType>::result_type
1354       hypergeometric_distribution<_UIntType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __param)1355       operator()(_UniformRandomNumberGenerator& __urng,
1356 		 const param_type& __param)
1357       {
1358 	std::__detail::_Adaptor<_UniformRandomNumberGenerator, double>
1359 	  __aurng(__urng);
1360 
1361 	result_type __a = __param.successful_size();
1362 	result_type __b = __param.total_size();
1363 	result_type __k = 0;
1364 
1365 	if (__param.total_draws() < __param.total_size() / 2)
1366 	  {
1367 	    for (result_type __i = 0; __i < __param.total_draws(); ++__i)
1368 	      {
1369 		if (__b * __aurng() < __a)
1370 		  {
1371 		    ++__k;
1372 		    if (__k == __param.successful_size())
1373 		      return __k;
1374 		   --__a;
1375 		  }
1376 		--__b;
1377 	      }
1378 	    return __k;
1379 	  }
1380 	else
1381 	  {
1382 	    for (result_type __i = 0; __i < __param.unsuccessful_size(); ++__i)
1383 	      {
1384 		if (__b * __aurng() < __a)
1385 		  {
1386 		    ++__k;
1387 		    if (__k == __param.successful_size())
1388 		      return __param.successful_size() - __k;
1389 		    --__a;
1390 		  }
1391 		--__b;
1392 	      }
1393 	    return __param.successful_size() - __k;
1394 	  }
1395       }
1396 
1397   template<typename _UIntType>
1398     template<typename _OutputIterator,
1399 	     typename _UniformRandomNumberGenerator>
1400       void
1401       hypergeometric_distribution<_UIntType>::
__generate_impl(_OutputIterator __f,_OutputIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __param)1402       __generate_impl(_OutputIterator __f, _OutputIterator __t,
1403 		      _UniformRandomNumberGenerator& __urng,
1404 		      const param_type& __param)
1405       {
1406 	__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
1407 
1408 	while (__f != __t)
1409 	  *__f++ = this->operator()(__urng);
1410       }
1411 
1412   template<typename _UIntType, typename _CharT, typename _Traits>
1413     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const __gnu_cxx::hypergeometric_distribution<_UIntType> & __x)1414     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1415 	       const __gnu_cxx::hypergeometric_distribution<_UIntType>& __x)
1416     {
1417       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1418       typedef typename __ostream_type::ios_base    __ios_base;
1419 
1420       const typename __ios_base::fmtflags __flags = __os.flags();
1421       const _CharT __fill = __os.fill();
1422       const std::streamsize __precision = __os.precision();
1423       const _CharT __space = __os.widen(' ');
1424       __os.flags(__ios_base::scientific | __ios_base::left);
1425       __os.fill(__space);
1426       __os.precision(std::numeric_limits<_UIntType>::max_digits10);
1427 
1428       __os << __x.total_size() << __space << __x.successful_size() << __space
1429 	   << __x.total_draws();
1430 
1431       __os.flags(__flags);
1432       __os.fill(__fill);
1433       __os.precision(__precision);
1434       return __os;
1435     }
1436 
1437   template<typename _UIntType, typename _CharT, typename _Traits>
1438     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,__gnu_cxx::hypergeometric_distribution<_UIntType> & __x)1439     operator>>(std::basic_istream<_CharT, _Traits>& __is,
1440 	       __gnu_cxx::hypergeometric_distribution<_UIntType>& __x)
1441     {
1442       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1443       typedef typename __istream_type::ios_base    __ios_base;
1444 
1445       const typename __ios_base::fmtflags __flags = __is.flags();
1446       __is.flags(__ios_base::dec | __ios_base::skipws);
1447 
1448       _UIntType __total_size, __successful_size, __total_draws;
1449       __is >> __total_size >> __successful_size >> __total_draws;
1450       __x.param(typename __gnu_cxx::hypergeometric_distribution<_UIntType>::
1451 		param_type(__total_size, __successful_size, __total_draws));
1452 
1453       __is.flags(__flags);
1454       return __is;
1455     }
1456 
1457 
1458   template<typename _RealType>
1459     template<typename _UniformRandomNumberGenerator>
1460       typename logistic_distribution<_RealType>::result_type
1461       logistic_distribution<_RealType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __p)1462       operator()(_UniformRandomNumberGenerator& __urng,
1463 		 const param_type& __p)
1464       {
1465 	std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
1466 	  __aurng(__urng);
1467 
1468 	result_type __arg = result_type(1);
1469 	while (__arg == result_type(1) || __arg == result_type(0))
1470 	  __arg = __aurng();
1471 	return __p.a()
1472 	     + __p.b() * std::log(__arg / (result_type(1) - __arg));
1473       }
1474 
1475   template<typename _RealType>
1476     template<typename _OutputIterator,
1477 	     typename _UniformRandomNumberGenerator>
1478       void
1479       logistic_distribution<_RealType>::
__generate_impl(_OutputIterator __f,_OutputIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __p)1480       __generate_impl(_OutputIterator __f, _OutputIterator __t,
1481 		      _UniformRandomNumberGenerator& __urng,
1482 		      const param_type& __p)
1483       {
1484 	__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
1485 	std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
1486 	  __aurng(__urng);
1487 
1488 	while (__f != __t)
1489 	  {
1490 	    result_type __arg = result_type(1);
1491 	    while (__arg == result_type(1) || __arg == result_type(0))
1492 	      __arg = __aurng();
1493 	    *__f++ = __p.a()
1494 		   + __p.b() * std::log(__arg / (result_type(1) - __arg));
1495 	  }
1496       }
1497 
1498   template<typename _RealType, typename _CharT, typename _Traits>
1499     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const logistic_distribution<_RealType> & __x)1500     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1501 	       const logistic_distribution<_RealType>& __x)
1502     {
1503       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1504       typedef typename __ostream_type::ios_base    __ios_base;
1505 
1506       const typename __ios_base::fmtflags __flags = __os.flags();
1507       const _CharT __fill = __os.fill();
1508       const std::streamsize __precision = __os.precision();
1509       const _CharT __space = __os.widen(' ');
1510       __os.flags(__ios_base::scientific | __ios_base::left);
1511       __os.fill(__space);
1512       __os.precision(std::numeric_limits<_RealType>::max_digits10);
1513 
1514       __os << __x.a() << __space << __x.b();
1515 
1516       __os.flags(__flags);
1517       __os.fill(__fill);
1518       __os.precision(__precision);
1519       return __os;
1520     }
1521 
1522   template<typename _RealType, typename _CharT, typename _Traits>
1523     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,logistic_distribution<_RealType> & __x)1524     operator>>(std::basic_istream<_CharT, _Traits>& __is,
1525 	       logistic_distribution<_RealType>& __x)
1526     {
1527       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1528       typedef typename __istream_type::ios_base    __ios_base;
1529 
1530       const typename __ios_base::fmtflags __flags = __is.flags();
1531       __is.flags(__ios_base::dec | __ios_base::skipws);
1532 
1533       _RealType __a, __b;
1534       __is >> __a >> __b;
1535       __x.param(typename logistic_distribution<_RealType>::
1536 		param_type(__a, __b));
1537 
1538       __is.flags(__flags);
1539       return __is;
1540     }
1541 
1542 
1543   namespace {
1544 
1545     // Helper class for the uniform_on_sphere_distribution generation
1546     // function.
1547     template<std::size_t _Dimen, typename _RealType>
1548       class uniform_on_sphere_helper
1549       {
1550 	typedef typename uniform_on_sphere_distribution<_Dimen, _RealType>::
1551 	  result_type result_type;
1552 
1553       public:
1554 	template<typename _NormalDistribution,
1555 		 typename _UniformRandomNumberGenerator>
operator ()(_NormalDistribution & __nd,_UniformRandomNumberGenerator & __urng)1556 	result_type operator()(_NormalDistribution& __nd,
1557 			       _UniformRandomNumberGenerator& __urng)
1558         {
1559 	  result_type __ret;
1560 	  typename result_type::value_type __norm;
1561 
1562 	  do
1563 	    {
1564 	      auto __sum = _RealType(0);
1565 
1566 	      std::generate(__ret.begin(), __ret.end(),
1567 			    [&__nd, &__urng, &__sum](){
1568 			      _RealType __t = __nd(__urng);
1569 			      __sum += __t * __t;
1570 			      return __t; });
1571 	      __norm = std::sqrt(__sum);
1572 	    }
1573 	  while (__norm == _RealType(0) || ! std::isfinite(__norm));
1574 
1575 	  std::transform(__ret.begin(), __ret.end(), __ret.begin(),
1576 			 [__norm](_RealType __val){ return __val / __norm; });
1577 
1578 	  return __ret;
1579         }
1580       };
1581 
1582 
1583     template<typename _RealType>
1584       class uniform_on_sphere_helper<2, _RealType>
1585       {
1586 	typedef typename uniform_on_sphere_distribution<2, _RealType>::
1587 	  result_type result_type;
1588 
1589       public:
1590 	template<typename _NormalDistribution,
1591 		 typename _UniformRandomNumberGenerator>
operator ()(_NormalDistribution &,_UniformRandomNumberGenerator & __urng)1592 	result_type operator()(_NormalDistribution&,
1593 			       _UniformRandomNumberGenerator& __urng)
1594         {
1595 	  result_type __ret;
1596 	  _RealType __sq;
1597 	  std::__detail::_Adaptor<_UniformRandomNumberGenerator,
1598 				  _RealType> __aurng(__urng);
1599 
1600 	  do
1601 	    {
1602 	      __ret[0] = _RealType(2) * __aurng() - _RealType(1);
1603 	      __ret[1] = _RealType(2) * __aurng() - _RealType(1);
1604 
1605 	      __sq = __ret[0] * __ret[0] + __ret[1] * __ret[1];
1606 	    }
1607 	  while (__sq == _RealType(0) || __sq > _RealType(1));
1608 
1609 #if _GLIBCXX_USE_C99_MATH_TR1
1610 	  // Yes, we do not just use sqrt(__sq) because hypot() is more
1611 	  // accurate.
1612 	  auto __norm = std::hypot(__ret[0], __ret[1]);
1613 #else
1614 	  auto __norm = std::sqrt(__sq);
1615 #endif
1616 	  __ret[0] /= __norm;
1617 	  __ret[1] /= __norm;
1618 
1619 	  return __ret;
1620         }
1621       };
1622 
1623   }
1624 
1625 
1626   template<std::size_t _Dimen, typename _RealType>
1627     template<typename _UniformRandomNumberGenerator>
1628       typename uniform_on_sphere_distribution<_Dimen, _RealType>::result_type
1629       uniform_on_sphere_distribution<_Dimen, _RealType>::
operator ()(_UniformRandomNumberGenerator & __urng,const param_type & __p)1630       operator()(_UniformRandomNumberGenerator& __urng,
1631 		 const param_type& __p)
1632       {
1633         uniform_on_sphere_helper<_Dimen, _RealType> __helper;
1634         return __helper(_M_nd, __urng);
1635       }
1636 
1637   template<std::size_t _Dimen, typename _RealType>
1638     template<typename _OutputIterator,
1639 	     typename _UniformRandomNumberGenerator>
1640       void
1641       uniform_on_sphere_distribution<_Dimen, _RealType>::
__generate_impl(_OutputIterator __f,_OutputIterator __t,_UniformRandomNumberGenerator & __urng,const param_type & __param)1642       __generate_impl(_OutputIterator __f, _OutputIterator __t,
1643 		      _UniformRandomNumberGenerator& __urng,
1644 		      const param_type& __param)
1645       {
1646 	__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
1647 
1648 	while (__f != __t)
1649 	  *__f++ = this->operator()(__urng, __param);
1650       }
1651 
1652   template<std::size_t _Dimen, typename _RealType, typename _CharT,
1653 	   typename _Traits>
1654     std::basic_ostream<_CharT, _Traits>&
operator <<(std::basic_ostream<_CharT,_Traits> & __os,const __gnu_cxx::uniform_on_sphere_distribution<_Dimen,_RealType> & __x)1655     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1656 	       const __gnu_cxx::uniform_on_sphere_distribution<_Dimen,
1657 							       _RealType>& __x)
1658     {
1659       return __os << __x._M_nd;
1660     }
1661 
1662   template<std::size_t _Dimen, typename _RealType, typename _CharT,
1663 	   typename _Traits>
1664     std::basic_istream<_CharT, _Traits>&
operator >>(std::basic_istream<_CharT,_Traits> & __is,__gnu_cxx::uniform_on_sphere_distribution<_Dimen,_RealType> & __x)1665     operator>>(std::basic_istream<_CharT, _Traits>& __is,
1666 	       __gnu_cxx::uniform_on_sphere_distribution<_Dimen,
1667 							 _RealType>& __x)
1668     {
1669       return __is >> __x._M_nd;
1670     }
1671 
1672 _GLIBCXX_END_NAMESPACE_VERSION
1673 } // namespace
1674 
1675 
1676 #endif // _EXT_RANDOM_TCC
1677