1 // Reference-counted versatile string base -*- C++ -*-
2 
3 // Copyright (C) 2005-2015 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file ext/rc_string_base.h
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly. @headername{ext/vstring.h}
28  */
29 
30 #ifndef _RC_STRING_BASE_H
31 #define _RC_STRING_BASE_H 1
32 
33 #include <ext/atomicity.h>
34 #include <bits/stl_iterator_base_funcs.h>
35 
_GLIBCXX_VISIBILITY(default)36 namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
37 {
38 _GLIBCXX_BEGIN_NAMESPACE_VERSION
39 
40   /**
41    *  Documentation?  What's that?
42    *  Nathan Myers <ncm@cantrip.org>.
43    *
44    *  A string looks like this:
45    *
46    *  @code
47    *                                        [_Rep]
48    *                                        _M_length
49    *   [__rc_string_base<char_type>]        _M_capacity
50    *   _M_dataplus                          _M_refcount
51    *   _M_p ---------------->               unnamed array of char_type
52    *  @endcode
53    *
54    *  Where the _M_p points to the first character in the string, and
55    *  you cast it to a pointer-to-_Rep and subtract 1 to get a
56    *  pointer to the header.
57    *
58    *  This approach has the enormous advantage that a string object
59    *  requires only one allocation.  All the ugliness is confined
60    *  within a single pair of inline functions, which each compile to
61    *  a single @a add instruction: _Rep::_M_refdata(), and
62    *  __rc_string_base::_M_rep(); and the allocation function which gets a
63    *  block of raw bytes and with room enough and constructs a _Rep
64    *  object at the front.
65    *
66    *  The reason you want _M_data pointing to the character array and
67    *  not the _Rep is so that the debugger can see the string
68    *  contents. (Probably we should add a non-inline member to get
69    *  the _Rep for the debugger to use, so users can check the actual
70    *  string length.)
71    *
72    *  Note that the _Rep object is a POD so that you can have a
73    *  static <em>empty string</em> _Rep object already @a constructed before
74    *  static constructors have run.  The reference-count encoding is
75    *  chosen so that a 0 indicates one reference, so you never try to
76    *  destroy the empty-string _Rep object.
77    *
78    *  All but the last paragraph is considered pretty conventional
79    *  for a C++ string implementation.
80   */
81  template<typename _CharT, typename _Traits, typename _Alloc>
82     class __rc_string_base
83     : protected __vstring_utility<_CharT, _Traits, _Alloc>
84     {
85     public:
86       typedef _Traits					    traits_type;
87       typedef typename _Traits::char_type		    value_type;
88       typedef _Alloc					    allocator_type;
89 
90       typedef __vstring_utility<_CharT, _Traits, _Alloc>    _Util_Base;
91       typedef typename _Util_Base::_CharT_alloc_type        _CharT_alloc_type;
92       typedef typename _CharT_alloc_type::size_type	    size_type;
93 
94     private:
95       // _Rep: string representation
96       //   Invariants:
97       //   1. String really contains _M_length + 1 characters: due to 21.3.4
98       //      must be kept null-terminated.
99       //   2. _M_capacity >= _M_length
100       //      Allocated memory is always (_M_capacity + 1) * sizeof(_CharT).
101       //   3. _M_refcount has three states:
102       //      -1: leaked, one reference, no ref-copies allowed, non-const.
103       //       0: one reference, non-const.
104       //     n>0: n + 1 references, operations require a lock, const.
105       //   4. All fields == 0 is an empty string, given the extra storage
106       //      beyond-the-end for a null terminator; thus, the shared
107       //      empty string representation needs no constructor.
108       struct _Rep
109       {
110 	union
111 	{
112 	  struct
113 	  {
114 	    size_type	    _M_length;
115 	    size_type	    _M_capacity;
116 	    _Atomic_word    _M_refcount;
117 	  }                 _M_info;
118 
119 	  // Only for alignment purposes.
120 	  _CharT            _M_align;
121 	};
122 
123 	typedef typename _Alloc::template rebind<_Rep>::other _Rep_alloc_type;
124 
125  	_CharT*
126 	_M_refdata() throw()
127 	{ return reinterpret_cast<_CharT*>(this + 1); }
128 
129 	_CharT*
130 	_M_refcopy() throw()
131 	{
132 	  __atomic_add_dispatch(&_M_info._M_refcount, 1);
133 	  return _M_refdata();
134 	}  // XXX MT
135 
136 	void
137 	_M_set_length(size_type __n)
138 	{
139 	  _M_info._M_refcount = 0;  // One reference.
140 	  _M_info._M_length = __n;
141 	  // grrr. (per 21.3.4)
142 	  // You cannot leave those LWG people alone for a second.
143 	  traits_type::assign(_M_refdata()[__n], _CharT());
144 	}
145 
146 	// Create & Destroy
147 	static _Rep*
148 	_S_create(size_type, size_type, const _Alloc&);
149 
150 	void
151 	_M_destroy(const _Alloc&) throw();
152 
153 	_CharT*
154 	_M_clone(const _Alloc&, size_type __res = 0);
155       };
156 
157       struct _Rep_empty
158       : public _Rep
159       {
160 	_CharT              _M_terminal;
161       };
162 
163       static _Rep_empty     _S_empty_rep;
164 
165       // The maximum number of individual char_type elements of an
166       // individual string is determined by _S_max_size. This is the
167       // value that will be returned by max_size().  (Whereas npos
168       // is the maximum number of bytes the allocator can allocate.)
169       // If one was to divvy up the theoretical largest size string,
170       // with a terminating character and m _CharT elements, it'd
171       // look like this:
172       // npos = sizeof(_Rep) + (m * sizeof(_CharT)) + sizeof(_CharT)
173       //        + sizeof(_Rep) - 1
174       // (NB: last two terms for rounding reasons, see _M_create below)
175       // Solving for m:
176       // m = ((npos - 2 * sizeof(_Rep) + 1) / sizeof(_CharT)) - 1
177       // In addition, this implementation halves this amount.
178       enum { _S_max_size = (((static_cast<size_type>(-1) - 2 * sizeof(_Rep)
179 			      + 1) / sizeof(_CharT)) - 1) / 2 };
180 
181       // Data Member (private):
182       mutable typename _Util_Base::template _Alloc_hider<_Alloc>  _M_dataplus;
183 
184       void
185       _M_data(_CharT* __p)
186       { _M_dataplus._M_p = __p; }
187 
188       _Rep*
189       _M_rep() const
190       { return &((reinterpret_cast<_Rep*>(_M_data()))[-1]); }
191 
192       _CharT*
193       _M_grab(const _Alloc& __alloc) const
194       {
195 	return (!_M_is_leaked() && _M_get_allocator() == __alloc)
196 		? _M_rep()->_M_refcopy() : _M_rep()->_M_clone(__alloc);
197       }
198 
199       void
200       _M_dispose()
201       {
202 	// Be race-detector-friendly.  For more info see bits/c++config.
203 	_GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(&_M_rep()->_M_info.
204 						_M_refcount);
205 	if (__exchange_and_add_dispatch(&_M_rep()->_M_info._M_refcount,
206 					-1) <= 0)
207 	  {
208 	    _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(&_M_rep()->_M_info.
209 						   _M_refcount);
210 	    _M_rep()->_M_destroy(_M_get_allocator());
211 	  }
212       }  // XXX MT
213 
214       bool
215       _M_is_leaked() const
216       { return _M_rep()->_M_info._M_refcount < 0; }
217 
218       void
219       _M_set_sharable()
220       { _M_rep()->_M_info._M_refcount = 0; }
221 
222       void
223       _M_leak_hard();
224 
225       // _S_construct_aux is used to implement the 21.3.1 para 15 which
226       // requires special behaviour if _InIterator is an integral type
227       template<typename _InIterator>
228 	static _CharT*
229 	_S_construct_aux(_InIterator __beg, _InIterator __end,
230 			 const _Alloc& __a, std::__false_type)
231 	{
232 	  typedef typename iterator_traits<_InIterator>::iterator_category _Tag;
233 	  return _S_construct(__beg, __end, __a, _Tag());
234 	}
235 
236       // _GLIBCXX_RESOLVE_LIB_DEFECTS
237       // 438. Ambiguity in the "do the right thing" clause
238       template<typename _Integer>
239 	static _CharT*
240 	_S_construct_aux(_Integer __beg, _Integer __end,
241 			 const _Alloc& __a, std::__true_type)
242 	{ return _S_construct_aux_2(static_cast<size_type>(__beg),
243 				    __end, __a); }
244 
245       static _CharT*
246       _S_construct_aux_2(size_type __req, _CharT __c, const _Alloc& __a)
247       { return _S_construct(__req, __c, __a); }
248 
249       template<typename _InIterator>
250 	static _CharT*
251 	_S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a)
252 	{
253 	  typedef typename std::__is_integer<_InIterator>::__type _Integral;
254 	  return _S_construct_aux(__beg, __end, __a, _Integral());
255 	}
256 
257       // For Input Iterators, used in istreambuf_iterators, etc.
258       template<typename _InIterator>
259 	static _CharT*
260 	 _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a,
261 		      std::input_iterator_tag);
262 
263       // For forward_iterators up to random_access_iterators, used for
264       // string::iterator, _CharT*, etc.
265       template<typename _FwdIterator>
266 	static _CharT*
267 	_S_construct(_FwdIterator __beg, _FwdIterator __end, const _Alloc& __a,
268 		     std::forward_iterator_tag);
269 
270       static _CharT*
271       _S_construct(size_type __req, _CharT __c, const _Alloc& __a);
272 
273     public:
274       size_type
275       _M_max_size() const
276       { return size_type(_S_max_size); }
277 
278       _CharT*
279       _M_data() const
280       { return _M_dataplus._M_p; }
281 
282       size_type
283       _M_length() const
284       { return _M_rep()->_M_info._M_length; }
285 
286       size_type
287       _M_capacity() const
288       { return _M_rep()->_M_info._M_capacity; }
289 
290       bool
291       _M_is_shared() const
292       { return _M_rep()->_M_info._M_refcount > 0; }
293 
294       void
295       _M_set_leaked()
296       { _M_rep()->_M_info._M_refcount = -1; }
297 
298       void
299       _M_leak()    // for use in begin() & non-const op[]
300       {
301 	if (!_M_is_leaked())
302 	  _M_leak_hard();
303       }
304 
305       void
306       _M_set_length(size_type __n)
307       { _M_rep()->_M_set_length(__n); }
308 
309       __rc_string_base()
310       : _M_dataplus(_S_empty_rep._M_refcopy()) { }
311 
312       __rc_string_base(const _Alloc& __a);
313 
314       __rc_string_base(const __rc_string_base& __rcs);
315 
316 #if __cplusplus >= 201103L
317       __rc_string_base(__rc_string_base&& __rcs)
318       : _M_dataplus(__rcs._M_dataplus)
319       { __rcs._M_data(_S_empty_rep._M_refcopy()); }
320 #endif
321 
322       __rc_string_base(size_type __n, _CharT __c, const _Alloc& __a);
323 
324       template<typename _InputIterator>
325 	__rc_string_base(_InputIterator __beg, _InputIterator __end,
326 			 const _Alloc& __a);
327 
328       ~__rc_string_base()
329       { _M_dispose(); }
330 
331       allocator_type&
332       _M_get_allocator()
333       { return _M_dataplus; }
334 
335       const allocator_type&
336       _M_get_allocator() const
337       { return _M_dataplus; }
338 
339       void
340       _M_swap(__rc_string_base& __rcs);
341 
342       void
343       _M_assign(const __rc_string_base& __rcs);
344 
345       void
346       _M_reserve(size_type __res);
347 
348       void
349       _M_mutate(size_type __pos, size_type __len1, const _CharT* __s,
350 		size_type __len2);
351 
352       void
353       _M_erase(size_type __pos, size_type __n);
354 
355       void
356       _M_clear()
357       { _M_erase(size_type(0), _M_length()); }
358 
359       bool
360       _M_compare(const __rc_string_base&) const
361       { return false; }
362     };
363 
364   template<typename _CharT, typename _Traits, typename _Alloc>
365     typename __rc_string_base<_CharT, _Traits, _Alloc>::_Rep_empty
366     __rc_string_base<_CharT, _Traits, _Alloc>::_S_empty_rep;
367 
368   template<typename _CharT, typename _Traits, typename _Alloc>
369     typename __rc_string_base<_CharT, _Traits, _Alloc>::_Rep*
370     __rc_string_base<_CharT, _Traits, _Alloc>::_Rep::
371     _S_create(size_type __capacity, size_type __old_capacity,
372 	      const _Alloc& __alloc)
373     {
374       // _GLIBCXX_RESOLVE_LIB_DEFECTS
375       // 83.  String::npos vs. string::max_size()
376       if (__capacity > size_type(_S_max_size))
377 	std::__throw_length_error(__N("__rc_string_base::_Rep::_S_create"));
378 
379       // The standard places no restriction on allocating more memory
380       // than is strictly needed within this layer at the moment or as
381       // requested by an explicit application call to reserve().
382 
383       // Many malloc implementations perform quite poorly when an
384       // application attempts to allocate memory in a stepwise fashion
385       // growing each allocation size by only 1 char.  Additionally,
386       // it makes little sense to allocate less linear memory than the
387       // natural blocking size of the malloc implementation.
388       // Unfortunately, we would need a somewhat low-level calculation
389       // with tuned parameters to get this perfect for any particular
390       // malloc implementation.  Fortunately, generalizations about
391       // common features seen among implementations seems to suffice.
392 
393       // __pagesize need not match the actual VM page size for good
394       // results in practice, thus we pick a common value on the low
395       // side.  __malloc_header_size is an estimate of the amount of
396       // overhead per memory allocation (in practice seen N * sizeof
397       // (void*) where N is 0, 2 or 4).  According to folklore,
398       // picking this value on the high side is better than
399       // low-balling it (especially when this algorithm is used with
400       // malloc implementations that allocate memory blocks rounded up
401       // to a size which is a power of 2).
402       const size_type __pagesize = 4096;
403       const size_type __malloc_header_size = 4 * sizeof(void*);
404 
405       // The below implements an exponential growth policy, necessary to
406       // meet amortized linear time requirements of the library: see
407       // http://gcc.gnu.org/ml/libstdc++/2001-07/msg00085.html.
408       if (__capacity > __old_capacity && __capacity < 2 * __old_capacity)
409 	{
410 	  __capacity = 2 * __old_capacity;
411 	  // Never allocate a string bigger than _S_max_size.
412 	  if (__capacity > size_type(_S_max_size))
413 	    __capacity = size_type(_S_max_size);
414 	}
415 
416       // NB: Need an array of char_type[__capacity], plus a terminating
417       // null char_type() element, plus enough for the _Rep data structure,
418       // plus sizeof(_Rep) - 1 to upper round to a size multiple of
419       // sizeof(_Rep).
420       // Whew. Seemingly so needy, yet so elemental.
421       size_type __size = ((__capacity + 1) * sizeof(_CharT)
422 			  + 2 * sizeof(_Rep) - 1);
423 
424       const size_type __adj_size = __size + __malloc_header_size;
425       if (__adj_size > __pagesize && __capacity > __old_capacity)
426 	{
427 	  const size_type __extra = __pagesize - __adj_size % __pagesize;
428 	  __capacity += __extra / sizeof(_CharT);
429 	  if (__capacity > size_type(_S_max_size))
430 	    __capacity = size_type(_S_max_size);
431 	  __size = (__capacity + 1) * sizeof(_CharT) + 2 * sizeof(_Rep) - 1;
432 	}
433 
434       // NB: Might throw, but no worries about a leak, mate: _Rep()
435       // does not throw.
436       _Rep* __place = _Rep_alloc_type(__alloc).allocate(__size / sizeof(_Rep));
437       _Rep* __p = new (__place) _Rep;
438       __p->_M_info._M_capacity = __capacity;
439       return __p;
440     }
441 
442   template<typename _CharT, typename _Traits, typename _Alloc>
443     void
444     __rc_string_base<_CharT, _Traits, _Alloc>::_Rep::
445     _M_destroy(const _Alloc& __a) throw ()
446     {
447       const size_type __size = ((_M_info._M_capacity + 1) * sizeof(_CharT)
448 				+ 2 * sizeof(_Rep) - 1);
449       _Rep_alloc_type(__a).deallocate(this, __size / sizeof(_Rep));
450     }
451 
452   template<typename _CharT, typename _Traits, typename _Alloc>
453     _CharT*
454     __rc_string_base<_CharT, _Traits, _Alloc>::_Rep::
455     _M_clone(const _Alloc& __alloc, size_type __res)
456     {
457       // Requested capacity of the clone.
458       const size_type __requested_cap = _M_info._M_length + __res;
459       _Rep* __r = _Rep::_S_create(__requested_cap, _M_info._M_capacity,
460 				  __alloc);
461 
462       if (_M_info._M_length)
463 	__rc_string_base::_S_copy(__r->_M_refdata(), _M_refdata(), _M_info._M_length);
464 
465       __r->_M_set_length(_M_info._M_length);
466       return __r->_M_refdata();
467     }
468 
469   template<typename _CharT, typename _Traits, typename _Alloc>
470     __rc_string_base<_CharT, _Traits, _Alloc>::
471     __rc_string_base(const _Alloc& __a)
472     : _M_dataplus(__a, _S_construct(size_type(), _CharT(), __a)) { }
473 
474   template<typename _CharT, typename _Traits, typename _Alloc>
475     __rc_string_base<_CharT, _Traits, _Alloc>::
476     __rc_string_base(const __rc_string_base& __rcs)
477     : _M_dataplus(__rcs._M_get_allocator(),
478 		  __rcs._M_grab(__rcs._M_get_allocator())) { }
479 
480   template<typename _CharT, typename _Traits, typename _Alloc>
481     __rc_string_base<_CharT, _Traits, _Alloc>::
482     __rc_string_base(size_type __n, _CharT __c, const _Alloc& __a)
483     : _M_dataplus(__a, _S_construct(__n, __c, __a)) { }
484 
485   template<typename _CharT, typename _Traits, typename _Alloc>
486     template<typename _InputIterator>
487     __rc_string_base<_CharT, _Traits, _Alloc>::
488     __rc_string_base(_InputIterator __beg, _InputIterator __end,
489 		     const _Alloc& __a)
490     : _M_dataplus(__a, _S_construct(__beg, __end, __a)) { }
491 
492   template<typename _CharT, typename _Traits, typename _Alloc>
493     void
494     __rc_string_base<_CharT, _Traits, _Alloc>::
495     _M_leak_hard()
496     {
497       if (_M_is_shared())
498 	_M_erase(0, 0);
499       _M_set_leaked();
500     }
501 
502   // NB: This is the special case for Input Iterators, used in
503   // istreambuf_iterators, etc.
504   // Input Iterators have a cost structure very different from
505   // pointers, calling for a different coding style.
506   template<typename _CharT, typename _Traits, typename _Alloc>
507     template<typename _InIterator>
508       _CharT*
509       __rc_string_base<_CharT, _Traits, _Alloc>::
510       _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a,
511 		   std::input_iterator_tag)
512       {
513 	if (__beg == __end && __a == _Alloc())
514 	  return _S_empty_rep._M_refcopy();
515 
516 	// Avoid reallocation for common case.
517 	_CharT __buf[128];
518 	size_type __len = 0;
519 	while (__beg != __end && __len < sizeof(__buf) / sizeof(_CharT))
520 	  {
521 	    __buf[__len++] = *__beg;
522 	    ++__beg;
523 	  }
524 	_Rep* __r = _Rep::_S_create(__len, size_type(0), __a);
525 	_S_copy(__r->_M_refdata(), __buf, __len);
526 	__try
527 	  {
528 	    while (__beg != __end)
529 	      {
530 		if (__len == __r->_M_info._M_capacity)
531 		  {
532 		    // Allocate more space.
533 		    _Rep* __another = _Rep::_S_create(__len + 1, __len, __a);
534 		    _S_copy(__another->_M_refdata(), __r->_M_refdata(), __len);
535 		    __r->_M_destroy(__a);
536 		    __r = __another;
537 		  }
538 		__r->_M_refdata()[__len++] = *__beg;
539 		++__beg;
540 	      }
541 	  }
542 	__catch(...)
543 	  {
544 	    __r->_M_destroy(__a);
545 	    __throw_exception_again;
546 	  }
547 	__r->_M_set_length(__len);
548 	return __r->_M_refdata();
549       }
550 
551   template<typename _CharT, typename _Traits, typename _Alloc>
552     template<typename _InIterator>
553       _CharT*
554       __rc_string_base<_CharT, _Traits, _Alloc>::
555       _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a,
556 		   std::forward_iterator_tag)
557       {
558 	if (__beg == __end && __a == _Alloc())
559 	  return _S_empty_rep._M_refcopy();
560 
561 	// NB: Not required, but considered best practice.
562 	if (__is_null_pointer(__beg) && __beg != __end)
563 	  std::__throw_logic_error(__N("__rc_string_base::"
564 				       "_S_construct null not valid"));
565 
566 	const size_type __dnew = static_cast<size_type>(std::distance(__beg,
567 								      __end));
568 	// Check for out_of_range and length_error exceptions.
569 	_Rep* __r = _Rep::_S_create(__dnew, size_type(0), __a);
570 	__try
571 	  { __rc_string_base::_S_copy_chars(__r->_M_refdata(), __beg, __end); }
572 	__catch(...)
573 	  {
574 	    __r->_M_destroy(__a);
575 	    __throw_exception_again;
576 	  }
577 	__r->_M_set_length(__dnew);
578 	return __r->_M_refdata();
579       }
580 
581   template<typename _CharT, typename _Traits, typename _Alloc>
582     _CharT*
583     __rc_string_base<_CharT, _Traits, _Alloc>::
584     _S_construct(size_type __n, _CharT __c, const _Alloc& __a)
585     {
586       if (__n == 0 && __a == _Alloc())
587 	return _S_empty_rep._M_refcopy();
588 
589       // Check for out_of_range and length_error exceptions.
590       _Rep* __r = _Rep::_S_create(__n, size_type(0), __a);
591       if (__n)
592 	__rc_string_base::_S_assign(__r->_M_refdata(), __n, __c);
593 
594       __r->_M_set_length(__n);
595       return __r->_M_refdata();
596     }
597 
598   template<typename _CharT, typename _Traits, typename _Alloc>
599     void
600     __rc_string_base<_CharT, _Traits, _Alloc>::
601     _M_swap(__rc_string_base& __rcs)
602     {
603       if (_M_is_leaked())
604 	_M_set_sharable();
605       if (__rcs._M_is_leaked())
606 	__rcs._M_set_sharable();
607 
608       _CharT* __tmp = _M_data();
609       _M_data(__rcs._M_data());
610       __rcs._M_data(__tmp);
611 
612       // _GLIBCXX_RESOLVE_LIB_DEFECTS
613       // 431. Swapping containers with unequal allocators.
614       std::__alloc_swap<allocator_type>::_S_do_it(_M_get_allocator(),
615 						  __rcs._M_get_allocator());
616     }
617 
618   template<typename _CharT, typename _Traits, typename _Alloc>
619     void
620     __rc_string_base<_CharT, _Traits, _Alloc>::
621     _M_assign(const __rc_string_base& __rcs)
622     {
623       if (_M_rep() != __rcs._M_rep())
624 	{
625 	  _CharT* __tmp = __rcs._M_grab(_M_get_allocator());
626 	  _M_dispose();
627 	  _M_data(__tmp);
628 	}
629     }
630 
631   template<typename _CharT, typename _Traits, typename _Alloc>
632     void
633     __rc_string_base<_CharT, _Traits, _Alloc>::
634     _M_reserve(size_type __res)
635     {
636       // Make sure we don't shrink below the current size.
637       if (__res < _M_length())
638 	__res = _M_length();
639 
640       if (__res != _M_capacity() || _M_is_shared())
641 	{
642 	  _CharT* __tmp = _M_rep()->_M_clone(_M_get_allocator(),
643 					     __res - _M_length());
644 	  _M_dispose();
645 	  _M_data(__tmp);
646 	}
647     }
648 
649   template<typename _CharT, typename _Traits, typename _Alloc>
650     void
651     __rc_string_base<_CharT, _Traits, _Alloc>::
652     _M_mutate(size_type __pos, size_type __len1, const _CharT* __s,
653 	      size_type __len2)
654     {
655       const size_type __how_much = _M_length() - __pos - __len1;
656 
657       _Rep* __r = _Rep::_S_create(_M_length() + __len2 - __len1,
658 				  _M_capacity(), _M_get_allocator());
659 
660       if (__pos)
661 	this->_S_copy(__r->_M_refdata(), _M_data(), __pos);
662       if (__s && __len2)
663 	this->_S_copy(__r->_M_refdata() + __pos, __s, __len2);
664       if (__how_much)
665 	this->_S_copy(__r->_M_refdata() + __pos + __len2,
666 		_M_data() + __pos + __len1, __how_much);
667 
668       _M_dispose();
669       _M_data(__r->_M_refdata());
670     }
671 
672   template<typename _CharT, typename _Traits, typename _Alloc>
673     void
674     __rc_string_base<_CharT, _Traits, _Alloc>::
675     _M_erase(size_type __pos, size_type __n)
676     {
677       const size_type __new_size = _M_length() - __n;
678       const size_type __how_much = _M_length() - __pos - __n;
679 
680       if (_M_is_shared())
681 	{
682 	  // Must reallocate.
683 	  _Rep* __r = _Rep::_S_create(__new_size, _M_capacity(),
684 				      _M_get_allocator());
685 
686 	  if (__pos)
687 	    this->_S_copy(__r->_M_refdata(), _M_data(), __pos);
688 	  if (__how_much)
689 	    this->_S_copy(__r->_M_refdata() + __pos,
690 		    _M_data() + __pos + __n, __how_much);
691 
692 	  _M_dispose();
693 	  _M_data(__r->_M_refdata());
694 	}
695       else if (__how_much && __n)
696 	{
697 	  // Work in-place.
698 	  this->_S_move(_M_data() + __pos,
699 		  _M_data() + __pos + __n, __how_much);
700 	}
701 
702       _M_rep()->_M_set_length(__new_size);
703     }
704 
705   template<>
706     inline bool
707     __rc_string_base<char, std::char_traits<char>,
708 		     std::allocator<char> >::
709     _M_compare(const __rc_string_base& __rcs) const
710     {
711       if (_M_rep() == __rcs._M_rep())
712 	return true;
713       return false;
714     }
715 
716 #ifdef _GLIBCXX_USE_WCHAR_T
717   template<>
718     inline bool
719     __rc_string_base<wchar_t, std::char_traits<wchar_t>,
720 		     std::allocator<wchar_t> >::
721     _M_compare(const __rc_string_base& __rcs) const
722     {
723       if (_M_rep() == __rcs._M_rep())
724 	return true;
725       return false;
726     }
727 #endif
728 
729 _GLIBCXX_END_NAMESPACE_VERSION
730 } // namespace
731 
732 #endif /* _RC_STRING_BASE_H */
733