1 // hashtable.h header -*- C++ -*-
2 
3 // Copyright (C) 2007-2019 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable.h
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28  */
29 
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
32 
33 #pragma GCC system_header
34 
35 #include <bits/hashtable_policy.h>
36 #if __cplusplus > 201402L
37 # include <bits/node_handle.h>
38 #endif
39 
_GLIBCXX_VISIBILITY(default)40 namespace std _GLIBCXX_VISIBILITY(default)
41 {
42 _GLIBCXX_BEGIN_NAMESPACE_VERSION
43 
44   template<typename _Tp, typename _Hash>
45     using __cache_default
46       =  __not_<__and_<// Do not cache for fast hasher.
47 		       __is_fast_hash<_Hash>,
48 		       // Mandatory to have erase not throwing.
49 		       __is_nothrow_invocable<const _Hash&, const _Tp&>>>;
50 
51   /**
52    *  Primary class template _Hashtable.
53    *
54    *  @ingroup hashtable-detail
55    *
56    *  @tparam _Value  CopyConstructible type.
57    *
58    *  @tparam _Key    CopyConstructible type.
59    *
60    *  @tparam _Alloc  An allocator type
61    *  ([lib.allocator.requirements]) whose _Alloc::value_type is
62    *  _Value.  As a conforming extension, we allow for
63    *  _Alloc::value_type != _Value.
64    *
65    *  @tparam _ExtractKey  Function object that takes an object of type
66    *  _Value and returns a value of type _Key.
67    *
68    *  @tparam _Equal  Function object that takes two objects of type k
69    *  and returns a bool-like value that is true if the two objects
70    *  are considered equal.
71    *
72    *  @tparam _H1  The hash function. A unary function object with
73    *  argument type _Key and result type size_t. Return values should
74    *  be distributed over the entire range [0, numeric_limits<size_t>:::max()].
75    *
76    *  @tparam _H2  The range-hashing function (in the terminology of
77    *  Tavori and Dreizin).  A binary function object whose argument
78    *  types and result type are all size_t.  Given arguments r and N,
79    *  the return value is in the range [0, N).
80    *
81    *  @tparam _Hash  The ranged hash function (Tavori and Dreizin). A
82    *  binary function whose argument types are _Key and size_t and
83    *  whose result type is size_t.  Given arguments k and N, the
84    *  return value is in the range [0, N).  Default: hash(k, N) =
85    *  h2(h1(k), N).  If _Hash is anything other than the default, _H1
86    *  and _H2 are ignored.
87    *
88    *  @tparam _RehashPolicy  Policy class with three members, all of
89    *  which govern the bucket count. _M_next_bkt(n) returns a bucket
90    *  count no smaller than n.  _M_bkt_for_elements(n) returns a
91    *  bucket count appropriate for an element count of n.
92    *  _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
93    *  current bucket count is n_bkt and the current element count is
94    *  n_elt, we need to increase the bucket count.  If so, returns
95    *  make_pair(true, n), where n is the new bucket count.  If not,
96    *  returns make_pair(false, <anything>)
97    *
98    *  @tparam _Traits  Compile-time class with three boolean
99    *  std::integral_constant members:  __cache_hash_code, __constant_iterators,
100    *   __unique_keys.
101    *
102    *  Each _Hashtable data structure has:
103    *
104    *  - _Bucket[]       _M_buckets
105    *  - _Hash_node_base _M_before_begin
106    *  - size_type       _M_bucket_count
107    *  - size_type       _M_element_count
108    *
109    *  with _Bucket being _Hash_node* and _Hash_node containing:
110    *
111    *  - _Hash_node*   _M_next
112    *  - Tp            _M_value
113    *  - size_t        _M_hash_code if cache_hash_code is true
114    *
115    *  In terms of Standard containers the hashtable is like the aggregation of:
116    *
117    *  - std::forward_list<_Node> containing the elements
118    *  - std::vector<std::forward_list<_Node>::iterator> representing the buckets
119    *
120    *  The non-empty buckets contain the node before the first node in the
121    *  bucket. This design makes it possible to implement something like a
122    *  std::forward_list::insert_after on container insertion and
123    *  std::forward_list::erase_after on container erase
124    *  calls. _M_before_begin is equivalent to
125    *  std::forward_list::before_begin. Empty buckets contain
126    *  nullptr.  Note that one of the non-empty buckets contains
127    *  &_M_before_begin which is not a dereferenceable node so the
128    *  node pointer in a bucket shall never be dereferenced, only its
129    *  next node can be.
130    *
131    *  Walking through a bucket's nodes requires a check on the hash code to
132    *  see if each node is still in the bucket. Such a design assumes a
133    *  quite efficient hash functor and is one of the reasons it is
134    *  highly advisable to set __cache_hash_code to true.
135    *
136    *  The container iterators are simply built from nodes. This way
137    *  incrementing the iterator is perfectly efficient independent of
138    *  how many empty buckets there are in the container.
139    *
140    *  On insert we compute the element's hash code and use it to find the
141    *  bucket index. If the element must be inserted in an empty bucket
142    *  we add it at the beginning of the singly linked list and make the
143    *  bucket point to _M_before_begin. The bucket that used to point to
144    *  _M_before_begin, if any, is updated to point to its new before
145    *  begin node.
146    *
147    *  On erase, the simple iterator design requires using the hash
148    *  functor to get the index of the bucket to update. For this
149    *  reason, when __cache_hash_code is set to false the hash functor must
150    *  not throw and this is enforced by a static assertion.
151    *
152    *  Functionality is implemented by decomposition into base classes,
153    *  where the derived _Hashtable class is used in _Map_base,
154    *  _Insert, _Rehash_base, and _Equality base classes to access the
155    *  "this" pointer. _Hashtable_base is used in the base classes as a
156    *  non-recursive, fully-completed-type so that detailed nested type
157    *  information, such as iterator type and node type, can be
158    *  used. This is similar to the "Curiously Recurring Template
159    *  Pattern" (CRTP) technique, but uses a reconstructed, not
160    *  explicitly passed, template pattern.
161    *
162    *  Base class templates are:
163    *    - __detail::_Hashtable_base
164    *    - __detail::_Map_base
165    *    - __detail::_Insert
166    *    - __detail::_Rehash_base
167    *    - __detail::_Equality
168    */
169   template<typename _Key, typename _Value, typename _Alloc,
170 	   typename _ExtractKey, typename _Equal,
171 	   typename _H1, typename _H2, typename _Hash,
172 	   typename _RehashPolicy, typename _Traits>
173     class _Hashtable
174     : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
175 				       _H1, _H2, _Hash, _Traits>,
176       public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
177 				 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
178       public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
179 			       _H1, _H2, _Hash, _RehashPolicy, _Traits>,
180       public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
181 				    _H1, _H2, _Hash, _RehashPolicy, _Traits>,
182       public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
183 				 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
184       private __detail::_Hashtable_alloc<
185 	__alloc_rebind<_Alloc,
186 		       __detail::_Hash_node<_Value,
187 					    _Traits::__hash_cached::value>>>
188     {
189       static_assert(is_same<typename remove_cv<_Value>::type, _Value>::value,
190 	  "unordered container must have a non-const, non-volatile value_type");
191 #ifdef __STRICT_ANSI__
192       static_assert(is_same<typename _Alloc::value_type, _Value>{},
193 	  "unordered container must have the same value_type as its allocator");
194 #endif
195 
196       using __traits_type = _Traits;
197       using __hash_cached = typename __traits_type::__hash_cached;
198       using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
199       using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
200 
201       using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;
202 
203       using __value_alloc_traits =
204 	typename __hashtable_alloc::__value_alloc_traits;
205       using __node_alloc_traits =
206 	typename __hashtable_alloc::__node_alloc_traits;
207       using __node_base = typename __hashtable_alloc::__node_base;
208       using __bucket_type = typename __hashtable_alloc::__bucket_type;
209 
210     public:
211       typedef _Key						key_type;
212       typedef _Value						value_type;
213       typedef _Alloc						allocator_type;
214       typedef _Equal						key_equal;
215 
216       // mapped_type, if present, comes from _Map_base.
217       // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
218       typedef typename __value_alloc_traits::pointer		pointer;
219       typedef typename __value_alloc_traits::const_pointer	const_pointer;
220       typedef value_type&					reference;
221       typedef const value_type&					const_reference;
222 
223     private:
224       using __rehash_type = _RehashPolicy;
225       using __rehash_state = typename __rehash_type::_State;
226 
227       using __constant_iterators = typename __traits_type::__constant_iterators;
228       using __unique_keys = typename __traits_type::__unique_keys;
229 
230       using __key_extract = typename std::conditional<
231 					     __constant_iterators::value,
232 				       	     __detail::_Identity,
233 					     __detail::_Select1st>::type;
234 
235       using __hashtable_base = __detail::
236 			       _Hashtable_base<_Key, _Value, _ExtractKey,
237 					      _Equal, _H1, _H2, _Hash, _Traits>;
238 
239       using __hash_code_base =  typename __hashtable_base::__hash_code_base;
240       using __hash_code =  typename __hashtable_base::__hash_code;
241       using __ireturn_type = typename __hashtable_base::__ireturn_type;
242 
243       using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
244 					     _Equal, _H1, _H2, _Hash,
245 					     _RehashPolicy, _Traits>;
246 
247       using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
248 						   _ExtractKey, _Equal,
249 						   _H1, _H2, _Hash,
250 						   _RehashPolicy, _Traits>;
251 
252       using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
253 					    _Equal, _H1, _H2, _Hash,
254 					    _RehashPolicy, _Traits>;
255 
256       using __reuse_or_alloc_node_type =
257 	__detail::_ReuseOrAllocNode<__node_alloc_type>;
258 
259       // Metaprogramming for picking apart hash caching.
260       template<typename _Cond>
261 	using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
262 
263       template<typename _Cond>
264 	using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
265 
266       // Compile-time diagnostics.
267 
268       // _Hash_code_base has everything protected, so use this derived type to
269       // access it.
270       struct __hash_code_base_access : __hash_code_base
271       { using __hash_code_base::_M_bucket_index; };
272 
273       // Getting a bucket index from a node shall not throw because it is used
274       // in methods (erase, swap...) that shall not throw.
275       static_assert(noexcept(declval<const __hash_code_base_access&>()
276 			     ._M_bucket_index((const __node_type*)nullptr,
277 					      (std::size_t)0)),
278 		    "Cache the hash code or qualify your functors involved"
279 		    " in hash code and bucket index computation with noexcept");
280 
281       // Following two static assertions are necessary to guarantee
282       // that local_iterator will be default constructible.
283 
284       // When hash codes are cached local iterator inherits from H2 functor
285       // which must then be default constructible.
286       static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
287 		    "Functor used to map hash code to bucket index"
288 		    " must be default constructible");
289 
290       template<typename _Keya, typename _Valuea, typename _Alloca,
291 	       typename _ExtractKeya, typename _Equala,
292 	       typename _H1a, typename _H2a, typename _Hasha,
293 	       typename _RehashPolicya, typename _Traitsa,
294 	       bool _Unique_keysa>
295 	friend struct __detail::_Map_base;
296 
297       template<typename _Keya, typename _Valuea, typename _Alloca,
298 	       typename _ExtractKeya, typename _Equala,
299 	       typename _H1a, typename _H2a, typename _Hasha,
300 	       typename _RehashPolicya, typename _Traitsa>
301 	friend struct __detail::_Insert_base;
302 
303       template<typename _Keya, typename _Valuea, typename _Alloca,
304 	       typename _ExtractKeya, typename _Equala,
305 	       typename _H1a, typename _H2a, typename _Hasha,
306 	       typename _RehashPolicya, typename _Traitsa,
307 	       bool _Constant_iteratorsa>
308 	friend struct __detail::_Insert;
309 
310     public:
311       using size_type = typename __hashtable_base::size_type;
312       using difference_type = typename __hashtable_base::difference_type;
313 
314       using iterator = typename __hashtable_base::iterator;
315       using const_iterator = typename __hashtable_base::const_iterator;
316 
317       using local_iterator = typename __hashtable_base::local_iterator;
318       using const_local_iterator = typename __hashtable_base::
319 				   const_local_iterator;
320 
321 #if __cplusplus > 201402L
322       using node_type = _Node_handle<_Key, _Value, __node_alloc_type>;
323       using insert_return_type = _Node_insert_return<iterator, node_type>;
324 #endif
325 
326     private:
327       __bucket_type*		_M_buckets		= &_M_single_bucket;
328       size_type			_M_bucket_count		= 1;
329       __node_base		_M_before_begin;
330       size_type			_M_element_count	= 0;
331       _RehashPolicy		_M_rehash_policy;
332 
333       // A single bucket used when only need for 1 bucket. Especially
334       // interesting in move semantic to leave hashtable with only 1 buckets
335       // which is not allocated so that we can have those operations noexcept
336       // qualified.
337       // Note that we can't leave hashtable with 0 bucket without adding
338       // numerous checks in the code to avoid 0 modulus.
339       __bucket_type		_M_single_bucket	= nullptr;
340 
341       bool
342       _M_uses_single_bucket(__bucket_type* __bkts) const
343       { return __builtin_expect(__bkts == &_M_single_bucket, false); }
344 
345       bool
346       _M_uses_single_bucket() const
347       { return _M_uses_single_bucket(_M_buckets); }
348 
349       __hashtable_alloc&
350       _M_base_alloc() { return *this; }
351 
352       __bucket_type*
353       _M_allocate_buckets(size_type __n)
354       {
355 	if (__builtin_expect(__n == 1, false))
356 	  {
357 	    _M_single_bucket = nullptr;
358 	    return &_M_single_bucket;
359 	  }
360 
361 	return __hashtable_alloc::_M_allocate_buckets(__n);
362       }
363 
364       void
365       _M_deallocate_buckets(__bucket_type* __bkts, size_type __n)
366       {
367 	if (_M_uses_single_bucket(__bkts))
368 	  return;
369 
370 	__hashtable_alloc::_M_deallocate_buckets(__bkts, __n);
371       }
372 
373       void
374       _M_deallocate_buckets()
375       { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
376 
377       // Gets bucket begin, deals with the fact that non-empty buckets contain
378       // their before begin node.
379       __node_type*
380       _M_bucket_begin(size_type __bkt) const;
381 
382       __node_type*
383       _M_begin() const
384       { return static_cast<__node_type*>(_M_before_begin._M_nxt); }
385 
386       // Assign *this using another _Hashtable instance. Either elements
387       // are copy or move depends on the _NodeGenerator.
388       template<typename _Ht, typename _NodeGenerator>
389 	void
390 	_M_assign_elements(_Ht&&, const _NodeGenerator&);
391 
392       template<typename _NodeGenerator>
393 	void
394 	_M_assign(const _Hashtable&, const _NodeGenerator&);
395 
396       void
397       _M_move_assign(_Hashtable&&, std::true_type);
398 
399       void
400       _M_move_assign(_Hashtable&&, std::false_type);
401 
402       void
403       _M_reset() noexcept;
404 
405       _Hashtable(const _H1& __h1, const _H2& __h2, const _Hash& __h,
406 		 const _Equal& __eq, const _ExtractKey& __exk,
407 		 const allocator_type& __a)
408 	: __hashtable_base(__exk, __h1, __h2, __h, __eq),
409 	  __hashtable_alloc(__node_alloc_type(__a))
410       { }
411 
412       template<bool _No_realloc = true>
413 	static constexpr bool
414 	_S_nothrow_move()
415 	{
416 #if __cplusplus <= 201402L
417 	  return __and_<__bool_constant<_No_realloc>,
418 			is_nothrow_copy_constructible<_H1>,
419 			is_nothrow_copy_constructible<_Equal>>::value;
420 #else
421 	  if constexpr (_No_realloc)
422 	    if constexpr (is_nothrow_copy_constructible<_H1>())
423 	      return is_nothrow_copy_constructible<_Equal>();
424 	  return false;
425 #endif
426 	}
427 
428       _Hashtable(_Hashtable&& __ht, __node_alloc_type&& __a,
429 		 true_type /* alloc always equal */)
430 	noexcept(_S_nothrow_move());
431 
432       _Hashtable(_Hashtable&&, __node_alloc_type&&,
433 		 false_type /* alloc always equal */);
434 
435 
436     public:
437       // Constructor, destructor, assignment, swap
438       _Hashtable() = default;
439       _Hashtable(size_type __bucket_hint,
440 		 const _H1&, const _H2&, const _Hash&,
441 		 const _Equal&, const _ExtractKey&,
442 		 const allocator_type&);
443 
444       template<typename _InputIterator>
445 	_Hashtable(_InputIterator __first, _InputIterator __last,
446 		   size_type __bucket_hint,
447 		   const _H1&, const _H2&, const _Hash&,
448 		   const _Equal&, const _ExtractKey&,
449 		   const allocator_type&);
450 
451       _Hashtable(const _Hashtable&);
452 
453       _Hashtable(_Hashtable&& __ht)
454 	noexcept(_S_nothrow_move())
455       : _Hashtable(std::move(__ht), std::move(__ht._M_node_allocator()),
456 		   true_type{})
457       { }
458 
459       _Hashtable(const _Hashtable&, const allocator_type&);
460 
461       _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
462 	noexcept(_S_nothrow_move<__node_alloc_traits::_S_always_equal()>())
463       : _Hashtable(std::move(__ht), __node_alloc_type(__a),
464 		   typename __node_alloc_traits::is_always_equal{})
465       { }
466 
467       // Use delegating constructors.
468       explicit
469       _Hashtable(const allocator_type& __a)
470 	: __hashtable_alloc(__node_alloc_type(__a))
471       { }
472 
473       explicit
474       _Hashtable(size_type __n,
475 		 const _H1& __hf = _H1(),
476 		 const key_equal& __eql = key_equal(),
477 		 const allocator_type& __a = allocator_type())
478       : _Hashtable(__n, __hf, _H2(), _Hash(), __eql,
479 		   __key_extract(), __a)
480       { }
481 
482       template<typename _InputIterator>
483 	_Hashtable(_InputIterator __f, _InputIterator __l,
484 		   size_type __n = 0,
485 		   const _H1& __hf = _H1(),
486 		   const key_equal& __eql = key_equal(),
487 		   const allocator_type& __a = allocator_type())
488 	: _Hashtable(__f, __l, __n, __hf, _H2(), _Hash(), __eql,
489 		     __key_extract(), __a)
490 	{ }
491 
492       _Hashtable(initializer_list<value_type> __l,
493 		 size_type __n = 0,
494 		 const _H1& __hf = _H1(),
495 		 const key_equal& __eql = key_equal(),
496 		 const allocator_type& __a = allocator_type())
497       : _Hashtable(__l.begin(), __l.end(), __n, __hf, _H2(), _Hash(), __eql,
498 		   __key_extract(), __a)
499       { }
500 
501       _Hashtable&
502       operator=(const _Hashtable& __ht);
503 
504       _Hashtable&
505       operator=(_Hashtable&& __ht)
506       noexcept(__node_alloc_traits::_S_nothrow_move()
507 	       && is_nothrow_move_assignable<_H1>::value
508 	       && is_nothrow_move_assignable<_Equal>::value)
509       {
510         constexpr bool __move_storage =
511 	  __node_alloc_traits::_S_propagate_on_move_assign()
512 	  || __node_alloc_traits::_S_always_equal();
513 	_M_move_assign(std::move(__ht), __bool_constant<__move_storage>());
514 	return *this;
515       }
516 
517       _Hashtable&
518       operator=(initializer_list<value_type> __l)
519       {
520 	__reuse_or_alloc_node_type __roan(_M_begin(), *this);
521 	_M_before_begin._M_nxt = nullptr;
522 	clear();
523 	this->_M_insert_range(__l.begin(), __l.end(), __roan, __unique_keys());
524 	return *this;
525       }
526 
527       ~_Hashtable() noexcept;
528 
529       void
530       swap(_Hashtable&)
531       noexcept(__and_<__is_nothrow_swappable<_H1>,
532 	                  __is_nothrow_swappable<_Equal>>::value);
533 
534       // Basic container operations
535       iterator
536       begin() noexcept
537       { return iterator(_M_begin()); }
538 
539       const_iterator
540       begin() const noexcept
541       { return const_iterator(_M_begin()); }
542 
543       iterator
544       end() noexcept
545       { return iterator(nullptr); }
546 
547       const_iterator
548       end() const noexcept
549       { return const_iterator(nullptr); }
550 
551       const_iterator
552       cbegin() const noexcept
553       { return const_iterator(_M_begin()); }
554 
555       const_iterator
556       cend() const noexcept
557       { return const_iterator(nullptr); }
558 
559       size_type
560       size() const noexcept
561       { return _M_element_count; }
562 
563       _GLIBCXX_NODISCARD bool
564       empty() const noexcept
565       { return size() == 0; }
566 
567       allocator_type
568       get_allocator() const noexcept
569       { return allocator_type(this->_M_node_allocator()); }
570 
571       size_type
572       max_size() const noexcept
573       { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
574 
575       // Observers
576       key_equal
577       key_eq() const
578       { return this->_M_eq(); }
579 
580       // hash_function, if present, comes from _Hash_code_base.
581 
582       // Bucket operations
583       size_type
584       bucket_count() const noexcept
585       { return _M_bucket_count; }
586 
587       size_type
588       max_bucket_count() const noexcept
589       { return max_size(); }
590 
591       size_type
592       bucket_size(size_type __n) const
593       { return std::distance(begin(__n), end(__n)); }
594 
595       size_type
596       bucket(const key_type& __k) const
597       { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
598 
599       local_iterator
600       begin(size_type __n)
601       {
602 	return local_iterator(*this, _M_bucket_begin(__n),
603 			      __n, _M_bucket_count);
604       }
605 
606       local_iterator
607       end(size_type __n)
608       { return local_iterator(*this, nullptr, __n, _M_bucket_count); }
609 
610       const_local_iterator
611       begin(size_type __n) const
612       {
613 	return const_local_iterator(*this, _M_bucket_begin(__n),
614 				    __n, _M_bucket_count);
615       }
616 
617       const_local_iterator
618       end(size_type __n) const
619       { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
620 
621       // DR 691.
622       const_local_iterator
623       cbegin(size_type __n) const
624       {
625 	return const_local_iterator(*this, _M_bucket_begin(__n),
626 				    __n, _M_bucket_count);
627       }
628 
629       const_local_iterator
630       cend(size_type __n) const
631       { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
632 
633       float
634       load_factor() const noexcept
635       {
636 	return static_cast<float>(size()) / static_cast<float>(bucket_count());
637       }
638 
639       // max_load_factor, if present, comes from _Rehash_base.
640 
641       // Generalization of max_load_factor.  Extension, not found in
642       // TR1.  Only useful if _RehashPolicy is something other than
643       // the default.
644       const _RehashPolicy&
645       __rehash_policy() const
646       { return _M_rehash_policy; }
647 
648       void
649       __rehash_policy(const _RehashPolicy& __pol)
650       { _M_rehash_policy = __pol; }
651 
652       // Lookup.
653       iterator
654       find(const key_type& __k);
655 
656       const_iterator
657       find(const key_type& __k) const;
658 
659       size_type
660       count(const key_type& __k) const;
661 
662       std::pair<iterator, iterator>
663       equal_range(const key_type& __k);
664 
665       std::pair<const_iterator, const_iterator>
666       equal_range(const key_type& __k) const;
667 
668     protected:
669       // Bucket index computation helpers.
670       size_type
671       _M_bucket_index(__node_type* __n) const noexcept
672       { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
673 
674       size_type
675       _M_bucket_index(const key_type& __k, __hash_code __c) const
676       { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
677 
678       // Find and insert helper functions and types
679       // Find the node before the one matching the criteria.
680       __node_base*
681       _M_find_before_node(size_type, const key_type&, __hash_code) const;
682 
683       __node_type*
684       _M_find_node(size_type __bkt, const key_type& __key,
685 		   __hash_code __c) const
686       {
687 	__node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
688 	if (__before_n)
689 	  return static_cast<__node_type*>(__before_n->_M_nxt);
690 	return nullptr;
691       }
692 
693       // Insert a node at the beginning of a bucket.
694       void
695       _M_insert_bucket_begin(size_type, __node_type*);
696 
697       // Remove the bucket first node
698       void
699       _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
700 			     size_type __next_bkt);
701 
702       // Get the node before __n in the bucket __bkt
703       __node_base*
704       _M_get_previous_node(size_type __bkt, __node_base* __n);
705 
706       // Insert node with hash code __code, in bucket bkt if no rehash (assumes
707       // no element with its key already present). Take ownership of the node,
708       // deallocate it on exception.
709       iterator
710       _M_insert_unique_node(size_type __bkt, __hash_code __code,
711 			    __node_type* __n, size_type __n_elt = 1);
712 
713       // Insert node with hash code __code. Take ownership of the node,
714       // deallocate it on exception.
715       iterator
716       _M_insert_multi_node(__node_type* __hint,
717 			   __hash_code __code, __node_type* __n);
718 
719       template<typename... _Args>
720 	std::pair<iterator, bool>
721 	_M_emplace(std::true_type, _Args&&... __args);
722 
723       template<typename... _Args>
724 	iterator
725 	_M_emplace(std::false_type __uk, _Args&&... __args)
726 	{ return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }
727 
728       // Emplace with hint, useless when keys are unique.
729       template<typename... _Args>
730 	iterator
731 	_M_emplace(const_iterator, std::true_type __uk, _Args&&... __args)
732 	{ return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }
733 
734       template<typename... _Args>
735 	iterator
736 	_M_emplace(const_iterator, std::false_type, _Args&&... __args);
737 
738       template<typename _Arg, typename _NodeGenerator>
739 	std::pair<iterator, bool>
740 	_M_insert(_Arg&&, const _NodeGenerator&, true_type, size_type = 1);
741 
742       template<typename _Arg, typename _NodeGenerator>
743 	iterator
744 	_M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
745 		  false_type __uk)
746 	{
747 	  return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
748 			   __uk);
749 	}
750 
751       // Insert with hint, not used when keys are unique.
752       template<typename _Arg, typename _NodeGenerator>
753 	iterator
754 	_M_insert(const_iterator, _Arg&& __arg,
755 		  const _NodeGenerator& __node_gen, true_type __uk)
756 	{
757 	  return
758 	    _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
759 	}
760 
761       // Insert with hint when keys are not unique.
762       template<typename _Arg, typename _NodeGenerator>
763 	iterator
764 	_M_insert(const_iterator, _Arg&&,
765 		  const _NodeGenerator&, false_type);
766 
767       size_type
768       _M_erase(std::true_type, const key_type&);
769 
770       size_type
771       _M_erase(std::false_type, const key_type&);
772 
773       iterator
774       _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
775 
776     public:
777       // Emplace
778       template<typename... _Args>
779 	__ireturn_type
780 	emplace(_Args&&... __args)
781 	{ return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
782 
783       template<typename... _Args>
784 	iterator
785 	emplace_hint(const_iterator __hint, _Args&&... __args)
786 	{
787 	  return _M_emplace(__hint, __unique_keys(),
788 			    std::forward<_Args>(__args)...);
789 	}
790 
791       // Insert member functions via inheritance.
792 
793       // Erase
794       iterator
795       erase(const_iterator);
796 
797       // LWG 2059.
798       iterator
799       erase(iterator __it)
800       { return erase(const_iterator(__it)); }
801 
802       size_type
803       erase(const key_type& __k)
804       { return _M_erase(__unique_keys(), __k); }
805 
806       iterator
807       erase(const_iterator, const_iterator);
808 
809       void
810       clear() noexcept;
811 
812       // Set number of buckets to be appropriate for container of n element.
813       void rehash(size_type __n);
814 
815       // DR 1189.
816       // reserve, if present, comes from _Rehash_base.
817 
818 #if __cplusplus > 201402L
819       /// Re-insert an extracted node into a container with unique keys.
820       insert_return_type
821       _M_reinsert_node(node_type&& __nh)
822       {
823 	insert_return_type __ret;
824 	if (__nh.empty())
825 	  __ret.position = end();
826 	else
827 	  {
828 	    __glibcxx_assert(get_allocator() == __nh.get_allocator());
829 
830 	    const key_type& __k = __nh._M_key();
831 	    __hash_code __code = this->_M_hash_code(__k);
832 	    size_type __bkt = _M_bucket_index(__k, __code);
833 	    if (__node_type* __n = _M_find_node(__bkt, __k, __code))
834 	      {
835 		__ret.node = std::move(__nh);
836 		__ret.position = iterator(__n);
837 		__ret.inserted = false;
838 	      }
839 	    else
840 	      {
841 		__ret.position
842 		  = _M_insert_unique_node(__bkt, __code, __nh._M_ptr);
843 		__nh._M_ptr = nullptr;
844 		__ret.inserted = true;
845 	      }
846 	  }
847 	return __ret;
848       }
849 
850       /// Re-insert an extracted node into a container with equivalent keys.
851       iterator
852       _M_reinsert_node_multi(const_iterator __hint, node_type&& __nh)
853       {
854 	iterator __ret;
855 	if (__nh.empty())
856 	  __ret = end();
857 	else
858 	  {
859 	    __glibcxx_assert(get_allocator() == __nh.get_allocator());
860 
861 	    auto __code = this->_M_hash_code(__nh._M_key());
862 	    auto __node = std::exchange(__nh._M_ptr, nullptr);
863 	    // FIXME: this deallocates the node on exception.
864 	    __ret = _M_insert_multi_node(__hint._M_cur, __code, __node);
865 	  }
866 	return __ret;
867       }
868 
869       /// Extract a node.
870       node_type
871       extract(const_iterator __pos)
872       {
873 	__node_type* __n = __pos._M_cur;
874 	size_t __bkt = _M_bucket_index(__n);
875 
876 	// Look for previous node to unlink it from the erased one, this
877 	// is why we need buckets to contain the before begin to make
878 	// this search fast.
879 	__node_base* __prev_n = _M_get_previous_node(__bkt, __n);
880 
881 	if (__prev_n == _M_buckets[__bkt])
882 	  _M_remove_bucket_begin(__bkt, __n->_M_next(),
883 	     __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
884 	else if (__n->_M_nxt)
885 	  {
886 	    size_type __next_bkt = _M_bucket_index(__n->_M_next());
887 	    if (__next_bkt != __bkt)
888 	      _M_buckets[__next_bkt] = __prev_n;
889 	  }
890 
891 	__prev_n->_M_nxt = __n->_M_nxt;
892 	__n->_M_nxt = nullptr;
893 	--_M_element_count;
894 	return { __n, this->_M_node_allocator() };
895       }
896 
897       /// Extract a node.
898       node_type
899       extract(const _Key& __k)
900       {
901 	node_type __nh;
902 	auto __pos = find(__k);
903 	if (__pos != end())
904 	  __nh = extract(const_iterator(__pos));
905 	return __nh;
906       }
907 
908       /// Merge from a compatible container into one with unique keys.
909       template<typename _Compatible_Hashtable>
910 	void
911 	_M_merge_unique(_Compatible_Hashtable& __src) noexcept
912 	{
913 	  static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
914 	      node_type>, "Node types are compatible");
915 	  __glibcxx_assert(get_allocator() == __src.get_allocator());
916 
917 	  auto __n_elt = __src.size();
918 	  for (auto __i = __src.begin(), __end = __src.end(); __i != __end;)
919 	    {
920 	      auto __pos = __i++;
921 	      const key_type& __k = this->_M_extract()(__pos._M_cur->_M_v());
922 	      __hash_code __code = this->_M_hash_code(__k);
923 	      size_type __bkt = _M_bucket_index(__k, __code);
924 	      if (_M_find_node(__bkt, __k, __code) == nullptr)
925 		{
926 		  auto __nh = __src.extract(__pos);
927 		  _M_insert_unique_node(__bkt, __code, __nh._M_ptr, __n_elt);
928 		  __nh._M_ptr = nullptr;
929 		  __n_elt = 1;
930 		}
931 	      else if (__n_elt != 1)
932 		--__n_elt;
933 	    }
934 	}
935 
936       /// Merge from a compatible container into one with equivalent keys.
937       template<typename _Compatible_Hashtable>
938 	void
939 	_M_merge_multi(_Compatible_Hashtable& __src) noexcept
940 	{
941 	  static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
942 	      node_type>, "Node types are compatible");
943 	  __glibcxx_assert(get_allocator() == __src.get_allocator());
944 
945 	  this->reserve(size() + __src.size());
946 	  for (auto __i = __src.begin(), __end = __src.end(); __i != __end;)
947 	    _M_reinsert_node_multi(cend(), __src.extract(__i++));
948 	}
949 #endif // C++17
950 
951     private:
952       // Helper rehash method used when keys are unique.
953       void _M_rehash_aux(size_type __n, std::true_type);
954 
955       // Helper rehash method used when keys can be non-unique.
956       void _M_rehash_aux(size_type __n, std::false_type);
957 
958       // Unconditionally change size of bucket array to n, restore
959       // hash policy state to __state on exception.
960       void _M_rehash(size_type __n, const __rehash_state& __state);
961     };
962 
963 
964   // Definitions of class template _Hashtable's out-of-line member functions.
965   template<typename _Key, typename _Value,
966 	   typename _Alloc, typename _ExtractKey, typename _Equal,
967 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
968 	   typename _Traits>
969     auto
970     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
971 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
972     _M_bucket_begin(size_type __bkt) const
973     -> __node_type*
974     {
975       __node_base* __n = _M_buckets[__bkt];
976       return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
977     }
978 
979   template<typename _Key, typename _Value,
980 	   typename _Alloc, typename _ExtractKey, typename _Equal,
981 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
982 	   typename _Traits>
983     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
984 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
985     _Hashtable(size_type __bucket_hint,
986 	       const _H1& __h1, const _H2& __h2, const _Hash& __h,
987 	       const _Equal& __eq, const _ExtractKey& __exk,
988 	       const allocator_type& __a)
989       : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
990     {
991       auto __bkt = _M_rehash_policy._M_next_bkt(__bucket_hint);
992       if (__bkt > _M_bucket_count)
993 	{
994 	  _M_buckets = _M_allocate_buckets(__bkt);
995 	  _M_bucket_count = __bkt;
996 	}
997     }
998 
999   template<typename _Key, typename _Value,
1000 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1001 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1002 	   typename _Traits>
1003     template<typename _InputIterator>
1004       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1005 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1006       _Hashtable(_InputIterator __f, _InputIterator __l,
1007 		 size_type __bucket_hint,
1008 		 const _H1& __h1, const _H2& __h2, const _Hash& __h,
1009 		 const _Equal& __eq, const _ExtractKey& __exk,
1010 		 const allocator_type& __a)
1011 	: _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
1012       {
1013 	auto __nb_elems = __detail::__distance_fw(__f, __l);
1014 	auto __bkt_count =
1015 	  _M_rehash_policy._M_next_bkt(
1016 	    std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
1017 		     __bucket_hint));
1018 
1019 	if (__bkt_count > _M_bucket_count)
1020 	  {
1021 	    _M_buckets = _M_allocate_buckets(__bkt_count);
1022 	    _M_bucket_count = __bkt_count;
1023 	  }
1024 
1025 	for (; __f != __l; ++__f)
1026 	  this->insert(*__f);
1027       }
1028 
1029   template<typename _Key, typename _Value,
1030 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1031 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1032 	   typename _Traits>
1033     auto
1034     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1035 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1036     operator=(const _Hashtable& __ht)
1037     -> _Hashtable&
1038     {
1039       if (&__ht == this)
1040 	return *this;
1041 
1042       if (__node_alloc_traits::_S_propagate_on_copy_assign())
1043 	{
1044 	  auto& __this_alloc = this->_M_node_allocator();
1045 	  auto& __that_alloc = __ht._M_node_allocator();
1046 	  if (!__node_alloc_traits::_S_always_equal()
1047 	      && __this_alloc != __that_alloc)
1048 	    {
1049 	      // Replacement allocator cannot free existing storage.
1050 	      this->_M_deallocate_nodes(_M_begin());
1051 	      _M_before_begin._M_nxt = nullptr;
1052 	      _M_deallocate_buckets();
1053 	      _M_buckets = nullptr;
1054 	      std::__alloc_on_copy(__this_alloc, __that_alloc);
1055 	      __hashtable_base::operator=(__ht);
1056 	      _M_bucket_count = __ht._M_bucket_count;
1057 	      _M_element_count = __ht._M_element_count;
1058 	      _M_rehash_policy = __ht._M_rehash_policy;
1059 	      __try
1060 		{
1061 		  _M_assign(__ht,
1062 			    [this](const __node_type* __n)
1063 			    { return this->_M_allocate_node(__n->_M_v()); });
1064 		}
1065 	      __catch(...)
1066 		{
1067 		  // _M_assign took care of deallocating all memory. Now we
1068 		  // must make sure this instance remains in a usable state.
1069 		  _M_reset();
1070 		  __throw_exception_again;
1071 		}
1072 	      return *this;
1073 	    }
1074 	  std::__alloc_on_copy(__this_alloc, __that_alloc);
1075 	}
1076 
1077       // Reuse allocated buckets and nodes.
1078       _M_assign_elements(__ht,
1079 	[](const __reuse_or_alloc_node_type& __roan, const __node_type* __n)
1080 	{ return __roan(__n->_M_v()); });
1081       return *this;
1082     }
1083 
1084   template<typename _Key, typename _Value,
1085 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1086 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1087 	   typename _Traits>
1088     template<typename _Ht, typename _NodeGenerator>
1089       void
1090       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1091 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1092       _M_assign_elements(_Ht&& __ht, const _NodeGenerator& __node_gen)
1093       {
1094 	__bucket_type* __former_buckets = nullptr;
1095 	std::size_t __former_bucket_count = _M_bucket_count;
1096 	const __rehash_state& __former_state = _M_rehash_policy._M_state();
1097 
1098 	if (_M_bucket_count != __ht._M_bucket_count)
1099 	  {
1100 	    __former_buckets = _M_buckets;
1101 	    _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1102 	    _M_bucket_count = __ht._M_bucket_count;
1103 	  }
1104 	else
1105 	  __builtin_memset(_M_buckets, 0,
1106 			   _M_bucket_count * sizeof(__bucket_type));
1107 
1108 	__try
1109 	  {
1110 	    __hashtable_base::operator=(std::forward<_Ht>(__ht));
1111 	    _M_element_count = __ht._M_element_count;
1112 	    _M_rehash_policy = __ht._M_rehash_policy;
1113 	    __reuse_or_alloc_node_type __roan(_M_begin(), *this);
1114 	    _M_before_begin._M_nxt = nullptr;
1115 	    _M_assign(__ht,
1116 		      [&__node_gen, &__roan](__node_type* __n)
1117 		      { return __node_gen(__roan, __n); });
1118 	    if (__former_buckets)
1119 	      _M_deallocate_buckets(__former_buckets, __former_bucket_count);
1120 	  }
1121 	__catch(...)
1122 	  {
1123 	    if (__former_buckets)
1124 	      {
1125 		// Restore previous buckets.
1126 		_M_deallocate_buckets();
1127 		_M_rehash_policy._M_reset(__former_state);
1128 		_M_buckets = __former_buckets;
1129 		_M_bucket_count = __former_bucket_count;
1130 	      }
1131 	    __builtin_memset(_M_buckets, 0,
1132 			     _M_bucket_count * sizeof(__bucket_type));
1133 	    __throw_exception_again;
1134 	  }
1135       }
1136 
1137   template<typename _Key, typename _Value,
1138 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1139 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1140 	   typename _Traits>
1141     template<typename _NodeGenerator>
1142       void
1143       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1144 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1145       _M_assign(const _Hashtable& __ht, const _NodeGenerator& __node_gen)
1146       {
1147 	__bucket_type* __buckets = nullptr;
1148 	if (!_M_buckets)
1149 	  _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
1150 
1151 	__try
1152 	  {
1153 	    if (!__ht._M_before_begin._M_nxt)
1154 	      return;
1155 
1156 	    // First deal with the special first node pointed to by
1157 	    // _M_before_begin.
1158 	    __node_type* __ht_n = __ht._M_begin();
1159 	    __node_type* __this_n = __node_gen(__ht_n);
1160 	    this->_M_copy_code(__this_n, __ht_n);
1161 	    _M_before_begin._M_nxt = __this_n;
1162 	    _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;
1163 
1164 	    // Then deal with other nodes.
1165 	    __node_base* __prev_n = __this_n;
1166 	    for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
1167 	      {
1168 		__this_n = __node_gen(__ht_n);
1169 		__prev_n->_M_nxt = __this_n;
1170 		this->_M_copy_code(__this_n, __ht_n);
1171 		size_type __bkt = _M_bucket_index(__this_n);
1172 		if (!_M_buckets[__bkt])
1173 		  _M_buckets[__bkt] = __prev_n;
1174 		__prev_n = __this_n;
1175 	      }
1176 	  }
1177 	__catch(...)
1178 	  {
1179 	    clear();
1180 	    if (__buckets)
1181 	      _M_deallocate_buckets();
1182 	    __throw_exception_again;
1183 	  }
1184       }
1185 
1186   template<typename _Key, typename _Value,
1187 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1188 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1189 	   typename _Traits>
1190     void
1191     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1192 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1193     _M_reset() noexcept
1194     {
1195       _M_rehash_policy._M_reset();
1196       _M_bucket_count = 1;
1197       _M_single_bucket = nullptr;
1198       _M_buckets = &_M_single_bucket;
1199       _M_before_begin._M_nxt = nullptr;
1200       _M_element_count = 0;
1201     }
1202 
1203   template<typename _Key, typename _Value,
1204 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1205 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1206 	   typename _Traits>
1207     void
1208     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1209 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1210     _M_move_assign(_Hashtable&& __ht, std::true_type)
1211     {
1212       this->_M_deallocate_nodes(_M_begin());
1213       _M_deallocate_buckets();
1214       __hashtable_base::operator=(std::move(__ht));
1215       _M_rehash_policy = __ht._M_rehash_policy;
1216       if (!__ht._M_uses_single_bucket())
1217 	_M_buckets = __ht._M_buckets;
1218       else
1219 	{
1220 	  _M_buckets = &_M_single_bucket;
1221 	  _M_single_bucket = __ht._M_single_bucket;
1222 	}
1223       _M_bucket_count = __ht._M_bucket_count;
1224       _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1225       _M_element_count = __ht._M_element_count;
1226       std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1227 
1228       // Fix buckets containing the _M_before_begin pointers that can't be
1229       // moved.
1230       if (_M_begin())
1231 	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1232       __ht._M_reset();
1233     }
1234 
1235   template<typename _Key, typename _Value,
1236 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1237 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1238 	   typename _Traits>
1239     void
1240     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1241 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1242     _M_move_assign(_Hashtable&& __ht, std::false_type)
1243     {
1244       if (__ht._M_node_allocator() == this->_M_node_allocator())
1245 	_M_move_assign(std::move(__ht), std::true_type());
1246       else
1247 	{
1248 	  // Can't move memory, move elements then.
1249 	  _M_assign_elements(std::move(__ht),
1250 		[](const __reuse_or_alloc_node_type& __roan, __node_type* __n)
1251 		{ return __roan(std::move_if_noexcept(__n->_M_v())); });
1252 	  __ht.clear();
1253 	}
1254     }
1255 
1256   template<typename _Key, typename _Value,
1257 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1258 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1259 	   typename _Traits>
1260     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1261 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1262     _Hashtable(const _Hashtable& __ht)
1263     : __hashtable_base(__ht),
1264       __map_base(__ht),
1265       __rehash_base(__ht),
1266       __hashtable_alloc(
1267 	__node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1268       _M_buckets(nullptr),
1269       _M_bucket_count(__ht._M_bucket_count),
1270       _M_element_count(__ht._M_element_count),
1271       _M_rehash_policy(__ht._M_rehash_policy)
1272     {
1273       _M_assign(__ht,
1274 		[this](const __node_type* __n)
1275 		{ return this->_M_allocate_node(__n->_M_v()); });
1276     }
1277 
1278   template<typename _Key, typename _Value,
1279 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1280 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1281 	   typename _Traits>
1282     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1283 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1284     _Hashtable(_Hashtable&& __ht, __node_alloc_type&& __a,
1285 	       true_type /* alloc always equal */)
1286     noexcept(_S_nothrow_move())
1287     : __hashtable_base(__ht),
1288       __map_base(__ht),
1289       __rehash_base(__ht),
1290       __hashtable_alloc(std::move(__a)),
1291       _M_buckets(__ht._M_buckets),
1292       _M_bucket_count(__ht._M_bucket_count),
1293       _M_before_begin(__ht._M_before_begin._M_nxt),
1294       _M_element_count(__ht._M_element_count),
1295       _M_rehash_policy(__ht._M_rehash_policy)
1296     {
1297       // Update buckets if __ht is using its single bucket.
1298       if (__ht._M_uses_single_bucket())
1299 	{
1300 	  _M_buckets = &_M_single_bucket;
1301 	  _M_single_bucket = __ht._M_single_bucket;
1302 	}
1303 
1304       // Update, if necessary, bucket pointing to before begin that hasn't
1305       // moved.
1306       if (_M_begin())
1307 	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1308 
1309       __ht._M_reset();
1310     }
1311 
1312   template<typename _Key, typename _Value,
1313 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1314 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1315 	   typename _Traits>
1316     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1317 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1318     _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1319     : __hashtable_base(__ht),
1320       __map_base(__ht),
1321       __rehash_base(__ht),
1322       __hashtable_alloc(__node_alloc_type(__a)),
1323       _M_buckets(),
1324       _M_bucket_count(__ht._M_bucket_count),
1325       _M_element_count(__ht._M_element_count),
1326       _M_rehash_policy(__ht._M_rehash_policy)
1327     {
1328       _M_assign(__ht,
1329 		[this](const __node_type* __n)
1330 		{ return this->_M_allocate_node(__n->_M_v()); });
1331     }
1332 
1333   template<typename _Key, typename _Value,
1334 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1335 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1336 	   typename _Traits>
1337     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1338 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1339     _Hashtable(_Hashtable&& __ht, __node_alloc_type&& __a,
1340 	       false_type /* alloc always equal */)
1341     : __hashtable_base(__ht),
1342       __map_base(__ht),
1343       __rehash_base(__ht),
1344       __hashtable_alloc(std::move(__a)),
1345       _M_buckets(nullptr),
1346       _M_bucket_count(__ht._M_bucket_count),
1347       _M_element_count(__ht._M_element_count),
1348       _M_rehash_policy(__ht._M_rehash_policy)
1349     {
1350       if (__ht._M_node_allocator() == this->_M_node_allocator())
1351 	{
1352 	  if (__ht._M_uses_single_bucket())
1353 	    {
1354 	      _M_buckets = &_M_single_bucket;
1355 	      _M_single_bucket = __ht._M_single_bucket;
1356 	    }
1357 	  else
1358 	    _M_buckets = __ht._M_buckets;
1359 
1360 	  _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1361 	  // Update, if necessary, bucket pointing to before begin that hasn't
1362 	  // moved.
1363 	  if (_M_begin())
1364 	    _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1365 	  __ht._M_reset();
1366 	}
1367       else
1368 	{
1369 	  _M_assign(__ht,
1370 		    [this](__node_type* __n)
1371 		    {
1372 		      return this->_M_allocate_node(
1373 					std::move_if_noexcept(__n->_M_v()));
1374 		    });
1375 	  __ht.clear();
1376 	}
1377     }
1378 
1379   template<typename _Key, typename _Value,
1380 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1381 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1382 	   typename _Traits>
1383     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1384 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1385     ~_Hashtable() noexcept
1386     {
1387       clear();
1388       _M_deallocate_buckets();
1389     }
1390 
1391   template<typename _Key, typename _Value,
1392 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1393 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1394 	   typename _Traits>
1395     void
1396     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1397 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1398     swap(_Hashtable& __x)
1399     noexcept(__and_<__is_nothrow_swappable<_H1>,
1400 	                __is_nothrow_swappable<_Equal>>::value)
1401     {
1402       // The only base class with member variables is hash_code_base.
1403       // We define _Hash_code_base::_M_swap because different
1404       // specializations have different members.
1405       this->_M_swap(__x);
1406 
1407       std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1408       std::swap(_M_rehash_policy, __x._M_rehash_policy);
1409 
1410       // Deal properly with potentially moved instances.
1411       if (this->_M_uses_single_bucket())
1412 	{
1413 	  if (!__x._M_uses_single_bucket())
1414 	    {
1415 	      _M_buckets = __x._M_buckets;
1416 	      __x._M_buckets = &__x._M_single_bucket;
1417 	    }
1418 	}
1419       else if (__x._M_uses_single_bucket())
1420 	{
1421 	  __x._M_buckets = _M_buckets;
1422 	  _M_buckets = &_M_single_bucket;
1423 	}
1424       else
1425 	std::swap(_M_buckets, __x._M_buckets);
1426 
1427       std::swap(_M_bucket_count, __x._M_bucket_count);
1428       std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1429       std::swap(_M_element_count, __x._M_element_count);
1430       std::swap(_M_single_bucket, __x._M_single_bucket);
1431 
1432       // Fix buckets containing the _M_before_begin pointers that can't be
1433       // swapped.
1434       if (_M_begin())
1435 	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1436 
1437       if (__x._M_begin())
1438 	__x._M_buckets[__x._M_bucket_index(__x._M_begin())]
1439 	  = &__x._M_before_begin;
1440     }
1441 
1442   template<typename _Key, typename _Value,
1443 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1444 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1445 	   typename _Traits>
1446     auto
1447     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1448 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1449     find(const key_type& __k)
1450     -> iterator
1451     {
1452       __hash_code __code = this->_M_hash_code(__k);
1453       std::size_t __n = _M_bucket_index(__k, __code);
1454       __node_type* __p = _M_find_node(__n, __k, __code);
1455       return __p ? iterator(__p) : end();
1456     }
1457 
1458   template<typename _Key, typename _Value,
1459 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1460 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1461 	   typename _Traits>
1462     auto
1463     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1464 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1465     find(const key_type& __k) const
1466     -> const_iterator
1467     {
1468       __hash_code __code = this->_M_hash_code(__k);
1469       std::size_t __n = _M_bucket_index(__k, __code);
1470       __node_type* __p = _M_find_node(__n, __k, __code);
1471       return __p ? const_iterator(__p) : end();
1472     }
1473 
1474   template<typename _Key, typename _Value,
1475 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1476 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1477 	   typename _Traits>
1478     auto
1479     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1480 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1481     count(const key_type& __k) const
1482     -> size_type
1483     {
1484       __hash_code __code = this->_M_hash_code(__k);
1485       std::size_t __n = _M_bucket_index(__k, __code);
1486       __node_type* __p = _M_bucket_begin(__n);
1487       if (!__p)
1488 	return 0;
1489 
1490       std::size_t __result = 0;
1491       for (;; __p = __p->_M_next())
1492 	{
1493 	  if (this->_M_equals(__k, __code, __p))
1494 	    ++__result;
1495 	  else if (__result)
1496 	    // All equivalent values are next to each other, if we
1497 	    // found a non-equivalent value after an equivalent one it
1498 	    // means that we won't find any new equivalent value.
1499 	    break;
1500 	  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1501 	    break;
1502 	}
1503       return __result;
1504     }
1505 
1506   template<typename _Key, typename _Value,
1507 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1508 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1509 	   typename _Traits>
1510     auto
1511     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1512 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1513     equal_range(const key_type& __k)
1514     -> pair<iterator, iterator>
1515     {
1516       __hash_code __code = this->_M_hash_code(__k);
1517       std::size_t __n = _M_bucket_index(__k, __code);
1518       __node_type* __p = _M_find_node(__n, __k, __code);
1519 
1520       if (__p)
1521 	{
1522 	  __node_type* __p1 = __p->_M_next();
1523 	  while (__p1 && _M_bucket_index(__p1) == __n
1524 		 && this->_M_equals(__k, __code, __p1))
1525 	    __p1 = __p1->_M_next();
1526 
1527 	  return std::make_pair(iterator(__p), iterator(__p1));
1528 	}
1529       else
1530 	return std::make_pair(end(), end());
1531     }
1532 
1533   template<typename _Key, typename _Value,
1534 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1535 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1536 	   typename _Traits>
1537     auto
1538     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1539 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1540     equal_range(const key_type& __k) const
1541     -> pair<const_iterator, const_iterator>
1542     {
1543       __hash_code __code = this->_M_hash_code(__k);
1544       std::size_t __n = _M_bucket_index(__k, __code);
1545       __node_type* __p = _M_find_node(__n, __k, __code);
1546 
1547       if (__p)
1548 	{
1549 	  __node_type* __p1 = __p->_M_next();
1550 	  while (__p1 && _M_bucket_index(__p1) == __n
1551 		 && this->_M_equals(__k, __code, __p1))
1552 	    __p1 = __p1->_M_next();
1553 
1554 	  return std::make_pair(const_iterator(__p), const_iterator(__p1));
1555 	}
1556       else
1557 	return std::make_pair(end(), end());
1558     }
1559 
1560   // Find the node whose key compares equal to k in the bucket n.
1561   // Return nullptr if no node is found.
1562   template<typename _Key, typename _Value,
1563 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1564 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1565 	   typename _Traits>
1566     auto
1567     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1568 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1569     _M_find_before_node(size_type __n, const key_type& __k,
1570 			__hash_code __code) const
1571     -> __node_base*
1572     {
1573       __node_base* __prev_p = _M_buckets[__n];
1574       if (!__prev_p)
1575 	return nullptr;
1576 
1577       for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
1578 	   __p = __p->_M_next())
1579 	{
1580 	  if (this->_M_equals(__k, __code, __p))
1581 	    return __prev_p;
1582 
1583 	  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1584 	    break;
1585 	  __prev_p = __p;
1586 	}
1587       return nullptr;
1588     }
1589 
1590   template<typename _Key, typename _Value,
1591 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1592 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1593 	   typename _Traits>
1594     void
1595     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1596 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1597     _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1598     {
1599       if (_M_buckets[__bkt])
1600 	{
1601 	  // Bucket is not empty, we just need to insert the new node
1602 	  // after the bucket before begin.
1603 	  __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1604 	  _M_buckets[__bkt]->_M_nxt = __node;
1605 	}
1606       else
1607 	{
1608 	  // The bucket is empty, the new node is inserted at the
1609 	  // beginning of the singly-linked list and the bucket will
1610 	  // contain _M_before_begin pointer.
1611 	  __node->_M_nxt = _M_before_begin._M_nxt;
1612 	  _M_before_begin._M_nxt = __node;
1613 	  if (__node->_M_nxt)
1614 	    // We must update former begin bucket that is pointing to
1615 	    // _M_before_begin.
1616 	    _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1617 	  _M_buckets[__bkt] = &_M_before_begin;
1618 	}
1619     }
1620 
1621   template<typename _Key, typename _Value,
1622 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1623 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1624 	   typename _Traits>
1625     void
1626     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1627 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1628     _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1629 			   size_type __next_bkt)
1630     {
1631       if (!__next || __next_bkt != __bkt)
1632 	{
1633 	  // Bucket is now empty
1634 	  // First update next bucket if any
1635 	  if (__next)
1636 	    _M_buckets[__next_bkt] = _M_buckets[__bkt];
1637 
1638 	  // Second update before begin node if necessary
1639 	  if (&_M_before_begin == _M_buckets[__bkt])
1640 	    _M_before_begin._M_nxt = __next;
1641 	  _M_buckets[__bkt] = nullptr;
1642 	}
1643     }
1644 
1645   template<typename _Key, typename _Value,
1646 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1647 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1648 	   typename _Traits>
1649     auto
1650     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1651 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1652     _M_get_previous_node(size_type __bkt, __node_base* __n)
1653     -> __node_base*
1654     {
1655       __node_base* __prev_n = _M_buckets[__bkt];
1656       while (__prev_n->_M_nxt != __n)
1657 	__prev_n = __prev_n->_M_nxt;
1658       return __prev_n;
1659     }
1660 
1661   template<typename _Key, typename _Value,
1662 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1663 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1664 	   typename _Traits>
1665     template<typename... _Args>
1666       auto
1667       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1668 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1669       _M_emplace(std::true_type, _Args&&... __args)
1670       -> pair<iterator, bool>
1671       {
1672 	// First build the node to get access to the hash code
1673 	__node_type* __node = this->_M_allocate_node(std::forward<_Args>(__args)...);
1674 	const key_type& __k = this->_M_extract()(__node->_M_v());
1675 	__hash_code __code;
1676 	__try
1677 	  {
1678 	    __code = this->_M_hash_code(__k);
1679 	  }
1680 	__catch(...)
1681 	  {
1682 	    this->_M_deallocate_node(__node);
1683 	    __throw_exception_again;
1684 	  }
1685 
1686 	size_type __bkt = _M_bucket_index(__k, __code);
1687 	if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1688 	  {
1689 	    // There is already an equivalent node, no insertion
1690 	    this->_M_deallocate_node(__node);
1691 	    return std::make_pair(iterator(__p), false);
1692 	  }
1693 
1694 	// Insert the node
1695 	return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
1696 			      true);
1697       }
1698 
1699   template<typename _Key, typename _Value,
1700 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1701 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1702 	   typename _Traits>
1703     template<typename... _Args>
1704       auto
1705       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1706 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1707       _M_emplace(const_iterator __hint, std::false_type, _Args&&... __args)
1708       -> iterator
1709       {
1710 	// First build the node to get its hash code.
1711 	__node_type* __node =
1712 	  this->_M_allocate_node(std::forward<_Args>(__args)...);
1713 
1714 	__hash_code __code;
1715 	__try
1716 	  {
1717 	    __code = this->_M_hash_code(this->_M_extract()(__node->_M_v()));
1718 	  }
1719 	__catch(...)
1720 	  {
1721 	    this->_M_deallocate_node(__node);
1722 	    __throw_exception_again;
1723 	  }
1724 
1725 	return _M_insert_multi_node(__hint._M_cur, __code, __node);
1726       }
1727 
1728   template<typename _Key, typename _Value,
1729 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1730 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1731 	   typename _Traits>
1732     auto
1733     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1734 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1735     _M_insert_unique_node(size_type __bkt, __hash_code __code,
1736 			  __node_type* __node, size_type __n_elt)
1737     -> iterator
1738     {
1739       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1740       std::pair<bool, std::size_t> __do_rehash
1741 	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count,
1742 					  __n_elt);
1743 
1744       __try
1745 	{
1746 	  if (__do_rehash.first)
1747 	    {
1748 	      _M_rehash(__do_rehash.second, __saved_state);
1749 	      __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v()), __code);
1750 	    }
1751 
1752 	  this->_M_store_code(__node, __code);
1753 
1754 	  // Always insert at the beginning of the bucket.
1755 	  _M_insert_bucket_begin(__bkt, __node);
1756 	  ++_M_element_count;
1757 	  return iterator(__node);
1758 	}
1759       __catch(...)
1760 	{
1761 	  this->_M_deallocate_node(__node);
1762 	  __throw_exception_again;
1763 	}
1764     }
1765 
1766   // Insert node, in bucket bkt if no rehash (assumes no element with its key
1767   // already present). Take ownership of the node, deallocate it on exception.
1768   template<typename _Key, typename _Value,
1769 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1770 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1771 	   typename _Traits>
1772     auto
1773     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1774 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1775     _M_insert_multi_node(__node_type* __hint, __hash_code __code,
1776 			 __node_type* __node)
1777     -> iterator
1778     {
1779       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1780       std::pair<bool, std::size_t> __do_rehash
1781 	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1782 
1783       __try
1784 	{
1785 	  if (__do_rehash.first)
1786 	    _M_rehash(__do_rehash.second, __saved_state);
1787 
1788 	  this->_M_store_code(__node, __code);
1789 	  const key_type& __k = this->_M_extract()(__node->_M_v());
1790 	  size_type __bkt = _M_bucket_index(__k, __code);
1791 
1792 	  // Find the node before an equivalent one or use hint if it exists and
1793 	  // if it is equivalent.
1794 	  __node_base* __prev
1795 	    = __builtin_expect(__hint != nullptr, false)
1796 	      && this->_M_equals(__k, __code, __hint)
1797 		? __hint
1798 		: _M_find_before_node(__bkt, __k, __code);
1799 	  if (__prev)
1800 	    {
1801 	      // Insert after the node before the equivalent one.
1802 	      __node->_M_nxt = __prev->_M_nxt;
1803 	      __prev->_M_nxt = __node;
1804 	      if (__builtin_expect(__prev == __hint, false))
1805 	      	// hint might be the last bucket node, in this case we need to
1806 	      	// update next bucket.
1807 	      	if (__node->_M_nxt
1808 	      	    && !this->_M_equals(__k, __code, __node->_M_next()))
1809 	      	  {
1810 	      	    size_type __next_bkt = _M_bucket_index(__node->_M_next());
1811 	      	    if (__next_bkt != __bkt)
1812 	      	      _M_buckets[__next_bkt] = __node;
1813 	      	  }
1814 	    }
1815 	  else
1816 	    // The inserted node has no equivalent in the
1817 	    // hashtable. We must insert the new node at the
1818 	    // beginning of the bucket to preserve equivalent
1819 	    // elements' relative positions.
1820 	    _M_insert_bucket_begin(__bkt, __node);
1821 	  ++_M_element_count;
1822 	  return iterator(__node);
1823 	}
1824       __catch(...)
1825 	{
1826 	  this->_M_deallocate_node(__node);
1827 	  __throw_exception_again;
1828 	}
1829     }
1830 
1831   // Insert v if no element with its key is already present.
1832   template<typename _Key, typename _Value,
1833 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1834 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1835 	   typename _Traits>
1836     template<typename _Arg, typename _NodeGenerator>
1837       auto
1838       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1839 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1840       _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, true_type,
1841 		size_type __n_elt)
1842       -> pair<iterator, bool>
1843       {
1844 	const key_type& __k = this->_M_extract()(__v);
1845 	__hash_code __code = this->_M_hash_code(__k);
1846 	size_type __bkt = _M_bucket_index(__k, __code);
1847 
1848 	__node_type* __n = _M_find_node(__bkt, __k, __code);
1849 	if (__n)
1850 	  return std::make_pair(iterator(__n), false);
1851 
1852 	__n = __node_gen(std::forward<_Arg>(__v));
1853 	return { _M_insert_unique_node(__bkt, __code, __n, __n_elt), true };
1854       }
1855 
1856   // Insert v unconditionally.
1857   template<typename _Key, typename _Value,
1858 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1859 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1860 	   typename _Traits>
1861     template<typename _Arg, typename _NodeGenerator>
1862       auto
1863       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1864 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1865       _M_insert(const_iterator __hint, _Arg&& __v,
1866 		const _NodeGenerator& __node_gen, false_type)
1867       -> iterator
1868       {
1869 	// First compute the hash code so that we don't do anything if it
1870 	// throws.
1871 	__hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1872 
1873 	// Second allocate new node so that we don't rehash if it throws.
1874 	__node_type* __node = __node_gen(std::forward<_Arg>(__v));
1875 
1876 	return _M_insert_multi_node(__hint._M_cur, __code, __node);
1877       }
1878 
1879   template<typename _Key, typename _Value,
1880 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1881 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1882 	   typename _Traits>
1883     auto
1884     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1885 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1886     erase(const_iterator __it)
1887     -> iterator
1888     {
1889       __node_type* __n = __it._M_cur;
1890       std::size_t __bkt = _M_bucket_index(__n);
1891 
1892       // Look for previous node to unlink it from the erased one, this
1893       // is why we need buckets to contain the before begin to make
1894       // this search fast.
1895       __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1896       return _M_erase(__bkt, __prev_n, __n);
1897     }
1898 
1899   template<typename _Key, typename _Value,
1900 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1901 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1902 	   typename _Traits>
1903     auto
1904     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1905 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1906     _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1907     -> iterator
1908     {
1909       if (__prev_n == _M_buckets[__bkt])
1910 	_M_remove_bucket_begin(__bkt, __n->_M_next(),
1911 	   __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1912       else if (__n->_M_nxt)
1913 	{
1914 	  size_type __next_bkt = _M_bucket_index(__n->_M_next());
1915 	  if (__next_bkt != __bkt)
1916 	    _M_buckets[__next_bkt] = __prev_n;
1917 	}
1918 
1919       __prev_n->_M_nxt = __n->_M_nxt;
1920       iterator __result(__n->_M_next());
1921       this->_M_deallocate_node(__n);
1922       --_M_element_count;
1923 
1924       return __result;
1925     }
1926 
1927   template<typename _Key, typename _Value,
1928 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1929 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1930 	   typename _Traits>
1931     auto
1932     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1933 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1934     _M_erase(std::true_type, const key_type& __k)
1935     -> size_type
1936     {
1937       __hash_code __code = this->_M_hash_code(__k);
1938       std::size_t __bkt = _M_bucket_index(__k, __code);
1939 
1940       // Look for the node before the first matching node.
1941       __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1942       if (!__prev_n)
1943 	return 0;
1944 
1945       // We found a matching node, erase it.
1946       __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1947       _M_erase(__bkt, __prev_n, __n);
1948       return 1;
1949     }
1950 
1951   template<typename _Key, typename _Value,
1952 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1953 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1954 	   typename _Traits>
1955     auto
1956     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1957 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1958     _M_erase(std::false_type, const key_type& __k)
1959     -> size_type
1960     {
1961       __hash_code __code = this->_M_hash_code(__k);
1962       std::size_t __bkt = _M_bucket_index(__k, __code);
1963 
1964       // Look for the node before the first matching node.
1965       __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1966       if (!__prev_n)
1967 	return 0;
1968 
1969       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1970       // 526. Is it undefined if a function in the standard changes
1971       // in parameters?
1972       // We use one loop to find all matching nodes and another to deallocate
1973       // them so that the key stays valid during the first loop. It might be
1974       // invalidated indirectly when destroying nodes.
1975       __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1976       __node_type* __n_last = __n;
1977       std::size_t __n_last_bkt = __bkt;
1978       do
1979 	{
1980 	  __n_last = __n_last->_M_next();
1981 	  if (!__n_last)
1982 	    break;
1983 	  __n_last_bkt = _M_bucket_index(__n_last);
1984 	}
1985       while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1986 
1987       // Deallocate nodes.
1988       size_type __result = 0;
1989       do
1990 	{
1991 	  __node_type* __p = __n->_M_next();
1992 	  this->_M_deallocate_node(__n);
1993 	  __n = __p;
1994 	  ++__result;
1995 	  --_M_element_count;
1996 	}
1997       while (__n != __n_last);
1998 
1999       if (__prev_n == _M_buckets[__bkt])
2000 	_M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
2001       else if (__n_last && __n_last_bkt != __bkt)
2002 	_M_buckets[__n_last_bkt] = __prev_n;
2003       __prev_n->_M_nxt = __n_last;
2004       return __result;
2005     }
2006 
2007   template<typename _Key, typename _Value,
2008 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2009 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2010 	   typename _Traits>
2011     auto
2012     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2013 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2014     erase(const_iterator __first, const_iterator __last)
2015     -> iterator
2016     {
2017       __node_type* __n = __first._M_cur;
2018       __node_type* __last_n = __last._M_cur;
2019       if (__n == __last_n)
2020 	return iterator(__n);
2021 
2022       std::size_t __bkt = _M_bucket_index(__n);
2023 
2024       __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
2025       bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
2026       std::size_t __n_bkt = __bkt;
2027       for (;;)
2028 	{
2029 	  do
2030 	    {
2031 	      __node_type* __tmp = __n;
2032 	      __n = __n->_M_next();
2033 	      this->_M_deallocate_node(__tmp);
2034 	      --_M_element_count;
2035 	      if (!__n)
2036 		break;
2037 	      __n_bkt = _M_bucket_index(__n);
2038 	    }
2039 	  while (__n != __last_n && __n_bkt == __bkt);
2040 	  if (__is_bucket_begin)
2041 	    _M_remove_bucket_begin(__bkt, __n, __n_bkt);
2042 	  if (__n == __last_n)
2043 	    break;
2044 	  __is_bucket_begin = true;
2045 	  __bkt = __n_bkt;
2046 	}
2047 
2048       if (__n && (__n_bkt != __bkt || __is_bucket_begin))
2049 	_M_buckets[__n_bkt] = __prev_n;
2050       __prev_n->_M_nxt = __n;
2051       return iterator(__n);
2052     }
2053 
2054   template<typename _Key, typename _Value,
2055 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2056 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2057 	   typename _Traits>
2058     void
2059     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2060 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2061     clear() noexcept
2062     {
2063       this->_M_deallocate_nodes(_M_begin());
2064       __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
2065       _M_element_count = 0;
2066       _M_before_begin._M_nxt = nullptr;
2067     }
2068 
2069   template<typename _Key, typename _Value,
2070 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2071 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2072 	   typename _Traits>
2073     void
2074     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2075 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2076     rehash(size_type __n)
2077     {
2078       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
2079       std::size_t __buckets
2080 	= std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
2081 		   __n);
2082       __buckets = _M_rehash_policy._M_next_bkt(__buckets);
2083 
2084       if (__buckets != _M_bucket_count)
2085 	_M_rehash(__buckets, __saved_state);
2086       else
2087 	// No rehash, restore previous state to keep a consistent state.
2088 	_M_rehash_policy._M_reset(__saved_state);
2089     }
2090 
2091   template<typename _Key, typename _Value,
2092 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2093 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2094 	   typename _Traits>
2095     void
2096     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2097 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2098     _M_rehash(size_type __n, const __rehash_state& __state)
2099     {
2100       __try
2101 	{
2102 	  _M_rehash_aux(__n, __unique_keys());
2103 	}
2104       __catch(...)
2105 	{
2106 	  // A failure here means that buckets allocation failed.  We only
2107 	  // have to restore hash policy previous state.
2108 	  _M_rehash_policy._M_reset(__state);
2109 	  __throw_exception_again;
2110 	}
2111     }
2112 
2113   // Rehash when there is no equivalent elements.
2114   template<typename _Key, typename _Value,
2115 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2116 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2117 	   typename _Traits>
2118     void
2119     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2120 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2121     _M_rehash_aux(size_type __n, std::true_type)
2122     {
2123       __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2124       __node_type* __p = _M_begin();
2125       _M_before_begin._M_nxt = nullptr;
2126       std::size_t __bbegin_bkt = 0;
2127       while (__p)
2128 	{
2129 	  __node_type* __next = __p->_M_next();
2130 	  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2131 	  if (!__new_buckets[__bkt])
2132 	    {
2133 	      __p->_M_nxt = _M_before_begin._M_nxt;
2134 	      _M_before_begin._M_nxt = __p;
2135 	      __new_buckets[__bkt] = &_M_before_begin;
2136 	      if (__p->_M_nxt)
2137 		__new_buckets[__bbegin_bkt] = __p;
2138 	      __bbegin_bkt = __bkt;
2139 	    }
2140 	  else
2141 	    {
2142 	      __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2143 	      __new_buckets[__bkt]->_M_nxt = __p;
2144 	    }
2145 	  __p = __next;
2146 	}
2147 
2148       _M_deallocate_buckets();
2149       _M_bucket_count = __n;
2150       _M_buckets = __new_buckets;
2151     }
2152 
2153   // Rehash when there can be equivalent elements, preserve their relative
2154   // order.
2155   template<typename _Key, typename _Value,
2156 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2157 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2158 	   typename _Traits>
2159     void
2160     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2161 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2162     _M_rehash_aux(size_type __n, std::false_type)
2163     {
2164       __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2165 
2166       __node_type* __p = _M_begin();
2167       _M_before_begin._M_nxt = nullptr;
2168       std::size_t __bbegin_bkt = 0;
2169       std::size_t __prev_bkt = 0;
2170       __node_type* __prev_p = nullptr;
2171       bool __check_bucket = false;
2172 
2173       while (__p)
2174 	{
2175 	  __node_type* __next = __p->_M_next();
2176 	  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2177 
2178 	  if (__prev_p && __prev_bkt == __bkt)
2179 	    {
2180 	      // Previous insert was already in this bucket, we insert after
2181 	      // the previously inserted one to preserve equivalent elements
2182 	      // relative order.
2183 	      __p->_M_nxt = __prev_p->_M_nxt;
2184 	      __prev_p->_M_nxt = __p;
2185 
2186 	      // Inserting after a node in a bucket require to check that we
2187 	      // haven't change the bucket last node, in this case next
2188 	      // bucket containing its before begin node must be updated. We
2189 	      // schedule a check as soon as we move out of the sequence of
2190 	      // equivalent nodes to limit the number of checks.
2191 	      __check_bucket = true;
2192 	    }
2193 	  else
2194 	    {
2195 	      if (__check_bucket)
2196 		{
2197 		  // Check if we shall update the next bucket because of
2198 		  // insertions into __prev_bkt bucket.
2199 		  if (__prev_p->_M_nxt)
2200 		    {
2201 		      std::size_t __next_bkt
2202 			= __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2203 							    __n);
2204 		      if (__next_bkt != __prev_bkt)
2205 			__new_buckets[__next_bkt] = __prev_p;
2206 		    }
2207 		  __check_bucket = false;
2208 		}
2209 
2210 	      if (!__new_buckets[__bkt])
2211 		{
2212 		  __p->_M_nxt = _M_before_begin._M_nxt;
2213 		  _M_before_begin._M_nxt = __p;
2214 		  __new_buckets[__bkt] = &_M_before_begin;
2215 		  if (__p->_M_nxt)
2216 		    __new_buckets[__bbegin_bkt] = __p;
2217 		  __bbegin_bkt = __bkt;
2218 		}
2219 	      else
2220 		{
2221 		  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2222 		  __new_buckets[__bkt]->_M_nxt = __p;
2223 		}
2224 	    }
2225 	  __prev_p = __p;
2226 	  __prev_bkt = __bkt;
2227 	  __p = __next;
2228 	}
2229 
2230       if (__check_bucket && __prev_p->_M_nxt)
2231 	{
2232 	  std::size_t __next_bkt
2233 	    = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
2234 	  if (__next_bkt != __prev_bkt)
2235 	    __new_buckets[__next_bkt] = __prev_p;
2236 	}
2237 
2238       _M_deallocate_buckets();
2239       _M_bucket_count = __n;
2240       _M_buckets = __new_buckets;
2241     }
2242 
2243 #if __cplusplus > 201402L
2244   template<typename, typename, typename> class _Hash_merge_helper { };
2245 #endif // C++17
2246 
2247 #if __cpp_deduction_guides >= 201606
2248   // Used to constrain deduction guides
2249   template<typename _Hash>
2250     using _RequireNotAllocatorOrIntegral
2251       = __enable_if_t<!__or_<is_integral<_Hash>, __is_allocator<_Hash>>::value>;
2252 #endif
2253 
2254 _GLIBCXX_END_NAMESPACE_VERSION
2255 } // namespace std
2256 
2257 #endif // _HASHTABLE_H
2258