1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2020-2022 Loongson Technology Corporation Limited
4 *
5 * Derived from MIPS:
6 * Copyright (C) 2000, 2001 Kanoj Sarcar
7 * Copyright (C) 2000, 2001 Ralf Baechle
8 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
9 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
10 */
11 #include <linux/cpu.h>
12 #include <linux/cpumask.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/seq_file.h>
16 #include <linux/smp.h>
17 #include <linux/threads.h>
18 #include <linux/export.h>
19 #include <linux/syscore_ops.h>
20 #include <linux/time.h>
21 #include <linux/tracepoint.h>
22 #include <linux/sched/hotplug.h>
23 #include <linux/sched/task_stack.h>
24
25 #include <asm/cpu.h>
26 #include <asm/idle.h>
27 #include <asm/loongson.h>
28 #include <asm/mmu_context.h>
29 #include <asm/numa.h>
30 #include <asm/processor.h>
31 #include <asm/setup.h>
32 #include <asm/time.h>
33
34 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
35 EXPORT_SYMBOL(__cpu_number_map);
36
37 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
38 EXPORT_SYMBOL(__cpu_logical_map);
39
40 /* Number of threads (siblings) per CPU core */
41 int smp_num_siblings = 1;
42 EXPORT_SYMBOL(smp_num_siblings);
43
44 /* Representing the threads (siblings) of each logical CPU */
45 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
46 EXPORT_SYMBOL(cpu_sibling_map);
47
48 /* Representing the core map of multi-core chips of each logical CPU */
49 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
50 EXPORT_SYMBOL(cpu_core_map);
51
52 static DECLARE_COMPLETION(cpu_starting);
53 static DECLARE_COMPLETION(cpu_running);
54
55 /*
56 * A logcal cpu mask containing only one VPE per core to
57 * reduce the number of IPIs on large MT systems.
58 */
59 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
60 EXPORT_SYMBOL(cpu_foreign_map);
61
62 /* representing cpus for which sibling maps can be computed */
63 static cpumask_t cpu_sibling_setup_map;
64
65 /* representing cpus for which core maps can be computed */
66 static cpumask_t cpu_core_setup_map;
67
68 struct secondary_data cpuboot_data;
69 static DEFINE_PER_CPU(int, cpu_state);
70
71 enum ipi_msg_type {
72 IPI_RESCHEDULE,
73 IPI_CALL_FUNCTION,
74 };
75
76 static const char *ipi_types[NR_IPI] __tracepoint_string = {
77 [IPI_RESCHEDULE] = "Rescheduling interrupts",
78 [IPI_CALL_FUNCTION] = "Function call interrupts",
79 };
80
show_ipi_list(struct seq_file * p,int prec)81 void show_ipi_list(struct seq_file *p, int prec)
82 {
83 unsigned int cpu, i;
84
85 for (i = 0; i < NR_IPI; i++) {
86 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : "");
87 for_each_online_cpu(cpu)
88 seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]);
89 seq_printf(p, " LoongArch %d %s\n", i + 1, ipi_types[i]);
90 }
91 }
92
93 /* Send mailbox buffer via Mail_Send */
csr_mail_send(uint64_t data,int cpu,int mailbox)94 static void csr_mail_send(uint64_t data, int cpu, int mailbox)
95 {
96 uint64_t val;
97
98 /* Send high 32 bits */
99 val = IOCSR_MBUF_SEND_BLOCKING;
100 val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
101 val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
102 val |= (data & IOCSR_MBUF_SEND_H32_MASK);
103 iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
104
105 /* Send low 32 bits */
106 val = IOCSR_MBUF_SEND_BLOCKING;
107 val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
108 val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
109 val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT);
110 iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
111 };
112
ipi_read_clear(int cpu)113 static u32 ipi_read_clear(int cpu)
114 {
115 u32 action;
116
117 /* Load the ipi register to figure out what we're supposed to do */
118 action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS);
119 /* Clear the ipi register to clear the interrupt */
120 iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR);
121 smp_mb();
122
123 return action;
124 }
125
ipi_write_action(int cpu,u32 action)126 static void ipi_write_action(int cpu, u32 action)
127 {
128 unsigned int irq = 0;
129
130 while ((irq = ffs(action))) {
131 uint32_t val = IOCSR_IPI_SEND_BLOCKING;
132
133 val |= (irq - 1);
134 val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT);
135 iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND);
136 action &= ~BIT(irq - 1);
137 }
138 }
139
loongson_send_ipi_single(int cpu,unsigned int action)140 void loongson_send_ipi_single(int cpu, unsigned int action)
141 {
142 ipi_write_action(cpu_logical_map(cpu), (u32)action);
143 }
144
loongson_send_ipi_mask(const struct cpumask * mask,unsigned int action)145 void loongson_send_ipi_mask(const struct cpumask *mask, unsigned int action)
146 {
147 unsigned int i;
148
149 for_each_cpu(i, mask)
150 ipi_write_action(cpu_logical_map(i), (u32)action);
151 }
152
153 /*
154 * This function sends a 'reschedule' IPI to another CPU.
155 * it goes straight through and wastes no time serializing
156 * anything. Worst case is that we lose a reschedule ...
157 */
smp_send_reschedule(int cpu)158 void smp_send_reschedule(int cpu)
159 {
160 loongson_send_ipi_single(cpu, SMP_RESCHEDULE);
161 }
162 EXPORT_SYMBOL_GPL(smp_send_reschedule);
163
loongson_ipi_interrupt(int irq,void * dev)164 irqreturn_t loongson_ipi_interrupt(int irq, void *dev)
165 {
166 unsigned int action;
167 unsigned int cpu = smp_processor_id();
168
169 action = ipi_read_clear(cpu_logical_map(cpu));
170
171 if (action & SMP_RESCHEDULE) {
172 scheduler_ipi();
173 per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++;
174 }
175
176 if (action & SMP_CALL_FUNCTION) {
177 generic_smp_call_function_interrupt();
178 per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++;
179 }
180
181 return IRQ_HANDLED;
182 }
183
fdt_smp_setup(void)184 static void __init fdt_smp_setup(void)
185 {
186 #ifdef CONFIG_OF
187 unsigned int cpu, cpuid;
188 struct device_node *node = NULL;
189
190 for_each_of_cpu_node(node) {
191 if (!of_device_is_available(node))
192 continue;
193
194 cpuid = of_get_cpu_hwid(node, 0);
195 if (cpuid >= nr_cpu_ids)
196 continue;
197
198 if (cpuid == loongson_sysconf.boot_cpu_id) {
199 cpu = 0;
200 numa_add_cpu(cpu);
201 } else {
202 cpu = cpumask_next_zero(-1, cpu_present_mask);
203 }
204
205 num_processors++;
206 set_cpu_possible(cpu, true);
207 set_cpu_present(cpu, true);
208 __cpu_number_map[cpuid] = cpu;
209 __cpu_logical_map[cpu] = cpuid;
210 }
211
212 loongson_sysconf.nr_cpus = num_processors;
213 #endif
214 }
215
loongson_smp_setup(void)216 void __init loongson_smp_setup(void)
217 {
218 fdt_smp_setup();
219
220 cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package;
221 cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package;
222
223 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
224 pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus);
225 }
226
loongson_prepare_cpus(unsigned int max_cpus)227 void __init loongson_prepare_cpus(unsigned int max_cpus)
228 {
229 int i = 0;
230
231 for (i = 0; i < loongson_sysconf.nr_cpus; i++) {
232 set_cpu_present(i, true);
233 csr_mail_send(0, __cpu_logical_map[i], 0);
234 }
235
236 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
237 }
238
239 /*
240 * Setup the PC, SP, and TP of a secondary processor and start it running!
241 */
loongson_boot_secondary(int cpu,struct task_struct * idle)242 void loongson_boot_secondary(int cpu, struct task_struct *idle)
243 {
244 unsigned long entry;
245
246 pr_info("Booting CPU#%d...\n", cpu);
247
248 entry = __pa_symbol((unsigned long)&smpboot_entry);
249 cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle);
250 cpuboot_data.thread_info = (unsigned long)task_thread_info(idle);
251
252 csr_mail_send(entry, cpu_logical_map(cpu), 0);
253
254 loongson_send_ipi_single(cpu, SMP_BOOT_CPU);
255 }
256
257 /*
258 * SMP init and finish on secondary CPUs
259 */
loongson_init_secondary(void)260 void loongson_init_secondary(void)
261 {
262 unsigned int cpu = smp_processor_id();
263 unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 |
264 ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER;
265
266 change_csr_ecfg(ECFG0_IM, imask);
267
268 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
269
270 #ifdef CONFIG_NUMA
271 numa_add_cpu(cpu);
272 #endif
273 per_cpu(cpu_state, cpu) = CPU_ONLINE;
274 cpu_data[cpu].core =
275 cpu_logical_map(cpu) % loongson_sysconf.cores_per_package;
276 cpu_data[cpu].package =
277 cpu_logical_map(cpu) / loongson_sysconf.cores_per_package;
278 }
279
loongson_smp_finish(void)280 void loongson_smp_finish(void)
281 {
282 local_irq_enable();
283 iocsr_write64(0, LOONGARCH_IOCSR_MBUF0);
284 pr_info("CPU#%d finished\n", smp_processor_id());
285 }
286
287 #ifdef CONFIG_HOTPLUG_CPU
288
loongson_cpu_disable(void)289 int loongson_cpu_disable(void)
290 {
291 unsigned long flags;
292 unsigned int cpu = smp_processor_id();
293
294 if (io_master(cpu))
295 return -EBUSY;
296
297 #ifdef CONFIG_NUMA
298 numa_remove_cpu(cpu);
299 #endif
300 set_cpu_online(cpu, false);
301 calculate_cpu_foreign_map();
302 local_irq_save(flags);
303 irq_migrate_all_off_this_cpu();
304 clear_csr_ecfg(ECFG0_IM);
305 local_irq_restore(flags);
306 local_flush_tlb_all();
307
308 return 0;
309 }
310
loongson_cpu_die(unsigned int cpu)311 void loongson_cpu_die(unsigned int cpu)
312 {
313 while (per_cpu(cpu_state, cpu) != CPU_DEAD)
314 cpu_relax();
315
316 mb();
317 }
318
play_dead(void)319 void play_dead(void)
320 {
321 register uint64_t addr;
322 register void (*init_fn)(void);
323
324 idle_task_exit();
325 local_irq_enable();
326 set_csr_ecfg(ECFGF_IPI);
327 __this_cpu_write(cpu_state, CPU_DEAD);
328
329 __smp_mb();
330 do {
331 __asm__ __volatile__("idle 0\n\t");
332 addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0);
333 } while (addr == 0);
334
335 init_fn = (void *)TO_CACHE(addr);
336 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR);
337
338 init_fn();
339 unreachable();
340 }
341
342 #endif
343
344 /*
345 * Power management
346 */
347 #ifdef CONFIG_PM
348
loongson_ipi_suspend(void)349 static int loongson_ipi_suspend(void)
350 {
351 return 0;
352 }
353
loongson_ipi_resume(void)354 static void loongson_ipi_resume(void)
355 {
356 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
357 }
358
359 static struct syscore_ops loongson_ipi_syscore_ops = {
360 .resume = loongson_ipi_resume,
361 .suspend = loongson_ipi_suspend,
362 };
363
364 /*
365 * Enable boot cpu ipi before enabling nonboot cpus
366 * during syscore_resume.
367 */
ipi_pm_init(void)368 static int __init ipi_pm_init(void)
369 {
370 register_syscore_ops(&loongson_ipi_syscore_ops);
371 return 0;
372 }
373
374 core_initcall(ipi_pm_init);
375 #endif
376
set_cpu_sibling_map(int cpu)377 static inline void set_cpu_sibling_map(int cpu)
378 {
379 int i;
380
381 cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
382
383 if (smp_num_siblings <= 1)
384 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
385 else {
386 for_each_cpu(i, &cpu_sibling_setup_map) {
387 if (cpus_are_siblings(cpu, i)) {
388 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
389 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
390 }
391 }
392 }
393 }
394
set_cpu_core_map(int cpu)395 static inline void set_cpu_core_map(int cpu)
396 {
397 int i;
398
399 cpumask_set_cpu(cpu, &cpu_core_setup_map);
400
401 for_each_cpu(i, &cpu_core_setup_map) {
402 if (cpu_data[cpu].package == cpu_data[i].package) {
403 cpumask_set_cpu(i, &cpu_core_map[cpu]);
404 cpumask_set_cpu(cpu, &cpu_core_map[i]);
405 }
406 }
407 }
408
409 /*
410 * Calculate a new cpu_foreign_map mask whenever a
411 * new cpu appears or disappears.
412 */
calculate_cpu_foreign_map(void)413 void calculate_cpu_foreign_map(void)
414 {
415 int i, k, core_present;
416 cpumask_t temp_foreign_map;
417
418 /* Re-calculate the mask */
419 cpumask_clear(&temp_foreign_map);
420 for_each_online_cpu(i) {
421 core_present = 0;
422 for_each_cpu(k, &temp_foreign_map)
423 if (cpus_are_siblings(i, k))
424 core_present = 1;
425 if (!core_present)
426 cpumask_set_cpu(i, &temp_foreign_map);
427 }
428
429 for_each_online_cpu(i)
430 cpumask_andnot(&cpu_foreign_map[i],
431 &temp_foreign_map, &cpu_sibling_map[i]);
432 }
433
434 /* Preload SMP state for boot cpu */
smp_prepare_boot_cpu(void)435 void smp_prepare_boot_cpu(void)
436 {
437 unsigned int cpu, node, rr_node;
438
439 set_cpu_possible(0, true);
440 set_cpu_online(0, true);
441 set_my_cpu_offset(per_cpu_offset(0));
442
443 rr_node = first_node(node_online_map);
444 for_each_possible_cpu(cpu) {
445 node = early_cpu_to_node(cpu);
446
447 /*
448 * The mapping between present cpus and nodes has been
449 * built during MADT and SRAT parsing.
450 *
451 * If possible cpus = present cpus here, early_cpu_to_node
452 * will return valid node.
453 *
454 * If possible cpus > present cpus here (e.g. some possible
455 * cpus will be added by cpu-hotplug later), for possible but
456 * not present cpus, early_cpu_to_node will return NUMA_NO_NODE,
457 * and we just map them to online nodes in round-robin way.
458 * Once hotplugged, new correct mapping will be built for them.
459 */
460 if (node != NUMA_NO_NODE)
461 set_cpu_numa_node(cpu, node);
462 else {
463 set_cpu_numa_node(cpu, rr_node);
464 rr_node = next_node_in(rr_node, node_online_map);
465 }
466 }
467 }
468
469 /* called from main before smp_init() */
smp_prepare_cpus(unsigned int max_cpus)470 void __init smp_prepare_cpus(unsigned int max_cpus)
471 {
472 init_new_context(current, &init_mm);
473 current_thread_info()->cpu = 0;
474 loongson_prepare_cpus(max_cpus);
475 set_cpu_sibling_map(0);
476 set_cpu_core_map(0);
477 calculate_cpu_foreign_map();
478 #ifndef CONFIG_HOTPLUG_CPU
479 init_cpu_present(cpu_possible_mask);
480 #endif
481 }
482
__cpu_up(unsigned int cpu,struct task_struct * tidle)483 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
484 {
485 loongson_boot_secondary(cpu, tidle);
486
487 /* Wait for CPU to start and be ready to sync counters */
488 if (!wait_for_completion_timeout(&cpu_starting,
489 msecs_to_jiffies(5000))) {
490 pr_crit("CPU%u: failed to start\n", cpu);
491 return -EIO;
492 }
493
494 /* Wait for CPU to finish startup & mark itself online before return */
495 wait_for_completion(&cpu_running);
496
497 return 0;
498 }
499
500 /*
501 * First C code run on the secondary CPUs after being started up by
502 * the master.
503 */
start_secondary(void)504 asmlinkage void start_secondary(void)
505 {
506 unsigned int cpu;
507
508 sync_counter();
509 cpu = smp_processor_id();
510 set_my_cpu_offset(per_cpu_offset(cpu));
511
512 cpu_probe();
513 constant_clockevent_init();
514 loongson_init_secondary();
515
516 set_cpu_sibling_map(cpu);
517 set_cpu_core_map(cpu);
518
519 notify_cpu_starting(cpu);
520
521 /* Notify boot CPU that we're starting */
522 complete(&cpu_starting);
523
524 /* The CPU is running, now mark it online */
525 set_cpu_online(cpu, true);
526
527 calculate_cpu_foreign_map();
528
529 /*
530 * Notify boot CPU that we're up & online and it can safely return
531 * from __cpu_up()
532 */
533 complete(&cpu_running);
534
535 /*
536 * irq will be enabled in loongson_smp_finish(), enabling it too
537 * early is dangerous.
538 */
539 WARN_ON_ONCE(!irqs_disabled());
540 loongson_smp_finish();
541
542 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
543 }
544
smp_cpus_done(unsigned int max_cpus)545 void __init smp_cpus_done(unsigned int max_cpus)
546 {
547 }
548
stop_this_cpu(void * dummy)549 static void stop_this_cpu(void *dummy)
550 {
551 set_cpu_online(smp_processor_id(), false);
552 calculate_cpu_foreign_map();
553 local_irq_disable();
554 while (true);
555 }
556
smp_send_stop(void)557 void smp_send_stop(void)
558 {
559 smp_call_function(stop_this_cpu, NULL, 0);
560 }
561
setup_profiling_timer(unsigned int multiplier)562 int setup_profiling_timer(unsigned int multiplier)
563 {
564 return 0;
565 }
566
flush_tlb_all_ipi(void * info)567 static void flush_tlb_all_ipi(void *info)
568 {
569 local_flush_tlb_all();
570 }
571
flush_tlb_all(void)572 void flush_tlb_all(void)
573 {
574 on_each_cpu(flush_tlb_all_ipi, NULL, 1);
575 }
576
flush_tlb_mm_ipi(void * mm)577 static void flush_tlb_mm_ipi(void *mm)
578 {
579 local_flush_tlb_mm((struct mm_struct *)mm);
580 }
581
flush_tlb_mm(struct mm_struct * mm)582 void flush_tlb_mm(struct mm_struct *mm)
583 {
584 if (atomic_read(&mm->mm_users) == 0)
585 return; /* happens as a result of exit_mmap() */
586
587 preempt_disable();
588
589 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
590 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1);
591 } else {
592 unsigned int cpu;
593
594 for_each_online_cpu(cpu) {
595 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
596 cpu_context(cpu, mm) = 0;
597 }
598 local_flush_tlb_mm(mm);
599 }
600
601 preempt_enable();
602 }
603
604 struct flush_tlb_data {
605 struct vm_area_struct *vma;
606 unsigned long addr1;
607 unsigned long addr2;
608 };
609
flush_tlb_range_ipi(void * info)610 static void flush_tlb_range_ipi(void *info)
611 {
612 struct flush_tlb_data *fd = info;
613
614 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
615 }
616
flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)617 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
618 {
619 struct mm_struct *mm = vma->vm_mm;
620
621 preempt_disable();
622 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
623 struct flush_tlb_data fd = {
624 .vma = vma,
625 .addr1 = start,
626 .addr2 = end,
627 };
628
629 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1);
630 } else {
631 unsigned int cpu;
632
633 for_each_online_cpu(cpu) {
634 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
635 cpu_context(cpu, mm) = 0;
636 }
637 local_flush_tlb_range(vma, start, end);
638 }
639 preempt_enable();
640 }
641
flush_tlb_kernel_range_ipi(void * info)642 static void flush_tlb_kernel_range_ipi(void *info)
643 {
644 struct flush_tlb_data *fd = info;
645
646 local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
647 }
648
flush_tlb_kernel_range(unsigned long start,unsigned long end)649 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
650 {
651 struct flush_tlb_data fd = {
652 .addr1 = start,
653 .addr2 = end,
654 };
655
656 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
657 }
658
flush_tlb_page_ipi(void * info)659 static void flush_tlb_page_ipi(void *info)
660 {
661 struct flush_tlb_data *fd = info;
662
663 local_flush_tlb_page(fd->vma, fd->addr1);
664 }
665
flush_tlb_page(struct vm_area_struct * vma,unsigned long page)666 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
667 {
668 preempt_disable();
669 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
670 struct flush_tlb_data fd = {
671 .vma = vma,
672 .addr1 = page,
673 };
674
675 on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1);
676 } else {
677 unsigned int cpu;
678
679 for_each_online_cpu(cpu) {
680 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
681 cpu_context(cpu, vma->vm_mm) = 0;
682 }
683 local_flush_tlb_page(vma, page);
684 }
685 preempt_enable();
686 }
687 EXPORT_SYMBOL(flush_tlb_page);
688
flush_tlb_one_ipi(void * info)689 static void flush_tlb_one_ipi(void *info)
690 {
691 unsigned long vaddr = (unsigned long) info;
692
693 local_flush_tlb_one(vaddr);
694 }
695
flush_tlb_one(unsigned long vaddr)696 void flush_tlb_one(unsigned long vaddr)
697 {
698 on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1);
699 }
700 EXPORT_SYMBOL(flush_tlb_one);
701