1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/perf_event.h>
3 #include <linux/jump_label.h>
4 #include <linux/export.h>
5 #include <linux/types.h>
6 #include <linux/init.h>
7 #include <linux/slab.h>
8 #include <linux/delay.h>
9 #include <linux/jiffies.h>
10 #include <asm/apicdef.h>
11 #include <asm/apic.h>
12 #include <asm/nmi.h>
13
14 #include "../perf_event.h"
15
16 static DEFINE_PER_CPU(unsigned long, perf_nmi_tstamp);
17 static unsigned long perf_nmi_window;
18
19 /* AMD Event 0xFFF: Merge. Used with Large Increment per Cycle events */
20 #define AMD_MERGE_EVENT ((0xFULL << 32) | 0xFFULL)
21 #define AMD_MERGE_EVENT_ENABLE (AMD_MERGE_EVENT | ARCH_PERFMON_EVENTSEL_ENABLE)
22
23 /* PMC Enable and Overflow bits for PerfCntrGlobal* registers */
24 static u64 amd_pmu_global_cntr_mask __read_mostly;
25
26 static __initconst const u64 amd_hw_cache_event_ids
27 [PERF_COUNT_HW_CACHE_MAX]
28 [PERF_COUNT_HW_CACHE_OP_MAX]
29 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
30 {
31 [ C(L1D) ] = {
32 [ C(OP_READ) ] = {
33 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
34 [ C(RESULT_MISS) ] = 0x0141, /* Data Cache Misses */
35 },
36 [ C(OP_WRITE) ] = {
37 [ C(RESULT_ACCESS) ] = 0,
38 [ C(RESULT_MISS) ] = 0,
39 },
40 [ C(OP_PREFETCH) ] = {
41 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
42 [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
43 },
44 },
45 [ C(L1I ) ] = {
46 [ C(OP_READ) ] = {
47 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
48 [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
49 },
50 [ C(OP_WRITE) ] = {
51 [ C(RESULT_ACCESS) ] = -1,
52 [ C(RESULT_MISS) ] = -1,
53 },
54 [ C(OP_PREFETCH) ] = {
55 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
56 [ C(RESULT_MISS) ] = 0,
57 },
58 },
59 [ C(LL ) ] = {
60 [ C(OP_READ) ] = {
61 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
62 [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
63 },
64 [ C(OP_WRITE) ] = {
65 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
66 [ C(RESULT_MISS) ] = 0,
67 },
68 [ C(OP_PREFETCH) ] = {
69 [ C(RESULT_ACCESS) ] = 0,
70 [ C(RESULT_MISS) ] = 0,
71 },
72 },
73 [ C(DTLB) ] = {
74 [ C(OP_READ) ] = {
75 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
76 [ C(RESULT_MISS) ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
77 },
78 [ C(OP_WRITE) ] = {
79 [ C(RESULT_ACCESS) ] = 0,
80 [ C(RESULT_MISS) ] = 0,
81 },
82 [ C(OP_PREFETCH) ] = {
83 [ C(RESULT_ACCESS) ] = 0,
84 [ C(RESULT_MISS) ] = 0,
85 },
86 },
87 [ C(ITLB) ] = {
88 [ C(OP_READ) ] = {
89 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
90 [ C(RESULT_MISS) ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
91 },
92 [ C(OP_WRITE) ] = {
93 [ C(RESULT_ACCESS) ] = -1,
94 [ C(RESULT_MISS) ] = -1,
95 },
96 [ C(OP_PREFETCH) ] = {
97 [ C(RESULT_ACCESS) ] = -1,
98 [ C(RESULT_MISS) ] = -1,
99 },
100 },
101 [ C(BPU ) ] = {
102 [ C(OP_READ) ] = {
103 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
104 [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
105 },
106 [ C(OP_WRITE) ] = {
107 [ C(RESULT_ACCESS) ] = -1,
108 [ C(RESULT_MISS) ] = -1,
109 },
110 [ C(OP_PREFETCH) ] = {
111 [ C(RESULT_ACCESS) ] = -1,
112 [ C(RESULT_MISS) ] = -1,
113 },
114 },
115 [ C(NODE) ] = {
116 [ C(OP_READ) ] = {
117 [ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
118 [ C(RESULT_MISS) ] = 0x98e9, /* CPU Request to Memory, r */
119 },
120 [ C(OP_WRITE) ] = {
121 [ C(RESULT_ACCESS) ] = -1,
122 [ C(RESULT_MISS) ] = -1,
123 },
124 [ C(OP_PREFETCH) ] = {
125 [ C(RESULT_ACCESS) ] = -1,
126 [ C(RESULT_MISS) ] = -1,
127 },
128 },
129 };
130
131 static __initconst const u64 amd_hw_cache_event_ids_f17h
132 [PERF_COUNT_HW_CACHE_MAX]
133 [PERF_COUNT_HW_CACHE_OP_MAX]
134 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
135 [C(L1D)] = {
136 [C(OP_READ)] = {
137 [C(RESULT_ACCESS)] = 0x0040, /* Data Cache Accesses */
138 [C(RESULT_MISS)] = 0xc860, /* L2$ access from DC Miss */
139 },
140 [C(OP_WRITE)] = {
141 [C(RESULT_ACCESS)] = 0,
142 [C(RESULT_MISS)] = 0,
143 },
144 [C(OP_PREFETCH)] = {
145 [C(RESULT_ACCESS)] = 0xff5a, /* h/w prefetch DC Fills */
146 [C(RESULT_MISS)] = 0,
147 },
148 },
149 [C(L1I)] = {
150 [C(OP_READ)] = {
151 [C(RESULT_ACCESS)] = 0x0080, /* Instruction cache fetches */
152 [C(RESULT_MISS)] = 0x0081, /* Instruction cache misses */
153 },
154 [C(OP_WRITE)] = {
155 [C(RESULT_ACCESS)] = -1,
156 [C(RESULT_MISS)] = -1,
157 },
158 [C(OP_PREFETCH)] = {
159 [C(RESULT_ACCESS)] = 0,
160 [C(RESULT_MISS)] = 0,
161 },
162 },
163 [C(LL)] = {
164 [C(OP_READ)] = {
165 [C(RESULT_ACCESS)] = 0,
166 [C(RESULT_MISS)] = 0,
167 },
168 [C(OP_WRITE)] = {
169 [C(RESULT_ACCESS)] = 0,
170 [C(RESULT_MISS)] = 0,
171 },
172 [C(OP_PREFETCH)] = {
173 [C(RESULT_ACCESS)] = 0,
174 [C(RESULT_MISS)] = 0,
175 },
176 },
177 [C(DTLB)] = {
178 [C(OP_READ)] = {
179 [C(RESULT_ACCESS)] = 0xff45, /* All L2 DTLB accesses */
180 [C(RESULT_MISS)] = 0xf045, /* L2 DTLB misses (PT walks) */
181 },
182 [C(OP_WRITE)] = {
183 [C(RESULT_ACCESS)] = 0,
184 [C(RESULT_MISS)] = 0,
185 },
186 [C(OP_PREFETCH)] = {
187 [C(RESULT_ACCESS)] = 0,
188 [C(RESULT_MISS)] = 0,
189 },
190 },
191 [C(ITLB)] = {
192 [C(OP_READ)] = {
193 [C(RESULT_ACCESS)] = 0x0084, /* L1 ITLB misses, L2 ITLB hits */
194 [C(RESULT_MISS)] = 0xff85, /* L1 ITLB misses, L2 misses */
195 },
196 [C(OP_WRITE)] = {
197 [C(RESULT_ACCESS)] = -1,
198 [C(RESULT_MISS)] = -1,
199 },
200 [C(OP_PREFETCH)] = {
201 [C(RESULT_ACCESS)] = -1,
202 [C(RESULT_MISS)] = -1,
203 },
204 },
205 [C(BPU)] = {
206 [C(OP_READ)] = {
207 [C(RESULT_ACCESS)] = 0x00c2, /* Retired Branch Instr. */
208 [C(RESULT_MISS)] = 0x00c3, /* Retired Mispredicted BI */
209 },
210 [C(OP_WRITE)] = {
211 [C(RESULT_ACCESS)] = -1,
212 [C(RESULT_MISS)] = -1,
213 },
214 [C(OP_PREFETCH)] = {
215 [C(RESULT_ACCESS)] = -1,
216 [C(RESULT_MISS)] = -1,
217 },
218 },
219 [C(NODE)] = {
220 [C(OP_READ)] = {
221 [C(RESULT_ACCESS)] = 0,
222 [C(RESULT_MISS)] = 0,
223 },
224 [C(OP_WRITE)] = {
225 [C(RESULT_ACCESS)] = -1,
226 [C(RESULT_MISS)] = -1,
227 },
228 [C(OP_PREFETCH)] = {
229 [C(RESULT_ACCESS)] = -1,
230 [C(RESULT_MISS)] = -1,
231 },
232 },
233 };
234
235 /*
236 * AMD Performance Monitor K7 and later, up to and including Family 16h:
237 */
238 static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
239 {
240 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
241 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
242 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x077d,
243 [PERF_COUNT_HW_CACHE_MISSES] = 0x077e,
244 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
245 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
246 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00d0, /* "Decoder empty" event */
247 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x00d1, /* "Dispatch stalls" event */
248 };
249
250 /*
251 * AMD Performance Monitor Family 17h and later:
252 */
253 static const u64 amd_f17h_perfmon_event_map[PERF_COUNT_HW_MAX] =
254 {
255 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
256 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
257 [PERF_COUNT_HW_CACHE_REFERENCES] = 0xff60,
258 [PERF_COUNT_HW_CACHE_MISSES] = 0x0964,
259 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
260 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
261 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x0287,
262 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x0187,
263 };
264
amd_pmu_event_map(int hw_event)265 static u64 amd_pmu_event_map(int hw_event)
266 {
267 if (boot_cpu_data.x86 >= 0x17)
268 return amd_f17h_perfmon_event_map[hw_event];
269
270 return amd_perfmon_event_map[hw_event];
271 }
272
273 /*
274 * Previously calculated offsets
275 */
276 static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
277 static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;
278
279 /*
280 * Legacy CPUs:
281 * 4 counters starting at 0xc0010000 each offset by 1
282 *
283 * CPUs with core performance counter extensions:
284 * 6 counters starting at 0xc0010200 each offset by 2
285 */
amd_pmu_addr_offset(int index,bool eventsel)286 static inline int amd_pmu_addr_offset(int index, bool eventsel)
287 {
288 int offset;
289
290 if (!index)
291 return index;
292
293 if (eventsel)
294 offset = event_offsets[index];
295 else
296 offset = count_offsets[index];
297
298 if (offset)
299 return offset;
300
301 if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
302 offset = index;
303 else
304 offset = index << 1;
305
306 if (eventsel)
307 event_offsets[index] = offset;
308 else
309 count_offsets[index] = offset;
310
311 return offset;
312 }
313
314 /*
315 * AMD64 events are detected based on their event codes.
316 */
amd_get_event_code(struct hw_perf_event * hwc)317 static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
318 {
319 return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
320 }
321
amd_is_pair_event_code(struct hw_perf_event * hwc)322 static inline bool amd_is_pair_event_code(struct hw_perf_event *hwc)
323 {
324 if (!(x86_pmu.flags & PMU_FL_PAIR))
325 return false;
326
327 switch (amd_get_event_code(hwc)) {
328 case 0x003: return true; /* Retired SSE/AVX FLOPs */
329 default: return false;
330 }
331 }
332
333 DEFINE_STATIC_CALL_RET0(amd_pmu_branch_hw_config, *x86_pmu.hw_config);
334
amd_core_hw_config(struct perf_event * event)335 static int amd_core_hw_config(struct perf_event *event)
336 {
337 if (event->attr.exclude_host && event->attr.exclude_guest)
338 /*
339 * When HO == GO == 1 the hardware treats that as GO == HO == 0
340 * and will count in both modes. We don't want to count in that
341 * case so we emulate no-counting by setting US = OS = 0.
342 */
343 event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
344 ARCH_PERFMON_EVENTSEL_OS);
345 else if (event->attr.exclude_host)
346 event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
347 else if (event->attr.exclude_guest)
348 event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
349
350 if ((x86_pmu.flags & PMU_FL_PAIR) && amd_is_pair_event_code(&event->hw))
351 event->hw.flags |= PERF_X86_EVENT_PAIR;
352
353 if (has_branch_stack(event))
354 return static_call(amd_pmu_branch_hw_config)(event);
355
356 return 0;
357 }
358
amd_is_nb_event(struct hw_perf_event * hwc)359 static inline int amd_is_nb_event(struct hw_perf_event *hwc)
360 {
361 return (hwc->config & 0xe0) == 0xe0;
362 }
363
amd_has_nb(struct cpu_hw_events * cpuc)364 static inline int amd_has_nb(struct cpu_hw_events *cpuc)
365 {
366 struct amd_nb *nb = cpuc->amd_nb;
367
368 return nb && nb->nb_id != -1;
369 }
370
amd_pmu_hw_config(struct perf_event * event)371 static int amd_pmu_hw_config(struct perf_event *event)
372 {
373 int ret;
374
375 /* pass precise event sampling to ibs: */
376 if (event->attr.precise_ip && get_ibs_caps())
377 return -ENOENT;
378
379 if (has_branch_stack(event) && !x86_pmu.lbr_nr)
380 return -EOPNOTSUPP;
381
382 ret = x86_pmu_hw_config(event);
383 if (ret)
384 return ret;
385
386 if (event->attr.type == PERF_TYPE_RAW)
387 event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
388
389 return amd_core_hw_config(event);
390 }
391
__amd_put_nb_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)392 static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
393 struct perf_event *event)
394 {
395 struct amd_nb *nb = cpuc->amd_nb;
396 int i;
397
398 /*
399 * need to scan whole list because event may not have
400 * been assigned during scheduling
401 *
402 * no race condition possible because event can only
403 * be removed on one CPU at a time AND PMU is disabled
404 * when we come here
405 */
406 for (i = 0; i < x86_pmu.num_counters; i++) {
407 if (cmpxchg(nb->owners + i, event, NULL) == event)
408 break;
409 }
410 }
411
412 /*
413 * AMD64 NorthBridge events need special treatment because
414 * counter access needs to be synchronized across all cores
415 * of a package. Refer to BKDG section 3.12
416 *
417 * NB events are events measuring L3 cache, Hypertransport
418 * traffic. They are identified by an event code >= 0xe00.
419 * They measure events on the NorthBride which is shared
420 * by all cores on a package. NB events are counted on a
421 * shared set of counters. When a NB event is programmed
422 * in a counter, the data actually comes from a shared
423 * counter. Thus, access to those counters needs to be
424 * synchronized.
425 *
426 * We implement the synchronization such that no two cores
427 * can be measuring NB events using the same counters. Thus,
428 * we maintain a per-NB allocation table. The available slot
429 * is propagated using the event_constraint structure.
430 *
431 * We provide only one choice for each NB event based on
432 * the fact that only NB events have restrictions. Consequently,
433 * if a counter is available, there is a guarantee the NB event
434 * will be assigned to it. If no slot is available, an empty
435 * constraint is returned and scheduling will eventually fail
436 * for this event.
437 *
438 * Note that all cores attached the same NB compete for the same
439 * counters to host NB events, this is why we use atomic ops. Some
440 * multi-chip CPUs may have more than one NB.
441 *
442 * Given that resources are allocated (cmpxchg), they must be
443 * eventually freed for others to use. This is accomplished by
444 * calling __amd_put_nb_event_constraints()
445 *
446 * Non NB events are not impacted by this restriction.
447 */
448 static struct event_constraint *
__amd_get_nb_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,struct event_constraint * c)449 __amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
450 struct event_constraint *c)
451 {
452 struct hw_perf_event *hwc = &event->hw;
453 struct amd_nb *nb = cpuc->amd_nb;
454 struct perf_event *old;
455 int idx, new = -1;
456
457 if (!c)
458 c = &unconstrained;
459
460 if (cpuc->is_fake)
461 return c;
462
463 /*
464 * detect if already present, if so reuse
465 *
466 * cannot merge with actual allocation
467 * because of possible holes
468 *
469 * event can already be present yet not assigned (in hwc->idx)
470 * because of successive calls to x86_schedule_events() from
471 * hw_perf_group_sched_in() without hw_perf_enable()
472 */
473 for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) {
474 if (new == -1 || hwc->idx == idx)
475 /* assign free slot, prefer hwc->idx */
476 old = cmpxchg(nb->owners + idx, NULL, event);
477 else if (nb->owners[idx] == event)
478 /* event already present */
479 old = event;
480 else
481 continue;
482
483 if (old && old != event)
484 continue;
485
486 /* reassign to this slot */
487 if (new != -1)
488 cmpxchg(nb->owners + new, event, NULL);
489 new = idx;
490
491 /* already present, reuse */
492 if (old == event)
493 break;
494 }
495
496 if (new == -1)
497 return &emptyconstraint;
498
499 return &nb->event_constraints[new];
500 }
501
amd_alloc_nb(int cpu)502 static struct amd_nb *amd_alloc_nb(int cpu)
503 {
504 struct amd_nb *nb;
505 int i;
506
507 nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
508 if (!nb)
509 return NULL;
510
511 nb->nb_id = -1;
512
513 /*
514 * initialize all possible NB constraints
515 */
516 for (i = 0; i < x86_pmu.num_counters; i++) {
517 __set_bit(i, nb->event_constraints[i].idxmsk);
518 nb->event_constraints[i].weight = 1;
519 }
520 return nb;
521 }
522
523 typedef void (amd_pmu_branch_reset_t)(void);
524 DEFINE_STATIC_CALL_NULL(amd_pmu_branch_reset, amd_pmu_branch_reset_t);
525
amd_pmu_cpu_reset(int cpu)526 static void amd_pmu_cpu_reset(int cpu)
527 {
528 if (x86_pmu.lbr_nr)
529 static_call(amd_pmu_branch_reset)();
530
531 if (x86_pmu.version < 2)
532 return;
533
534 /* Clear enable bits i.e. PerfCntrGlobalCtl.PerfCntrEn */
535 wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 0);
536
537 /* Clear overflow bits i.e. PerfCntrGLobalStatus.PerfCntrOvfl */
538 wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, amd_pmu_global_cntr_mask);
539 }
540
amd_pmu_cpu_prepare(int cpu)541 static int amd_pmu_cpu_prepare(int cpu)
542 {
543 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
544
545 cpuc->lbr_sel = kzalloc_node(sizeof(struct er_account), GFP_KERNEL,
546 cpu_to_node(cpu));
547 if (!cpuc->lbr_sel)
548 return -ENOMEM;
549
550 WARN_ON_ONCE(cpuc->amd_nb);
551
552 if (!x86_pmu.amd_nb_constraints)
553 return 0;
554
555 cpuc->amd_nb = amd_alloc_nb(cpu);
556 if (cpuc->amd_nb)
557 return 0;
558
559 kfree(cpuc->lbr_sel);
560 cpuc->lbr_sel = NULL;
561
562 return -ENOMEM;
563 }
564
amd_pmu_cpu_starting(int cpu)565 static void amd_pmu_cpu_starting(int cpu)
566 {
567 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
568 void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
569 struct amd_nb *nb;
570 int i, nb_id;
571
572 cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
573
574 if (!x86_pmu.amd_nb_constraints)
575 return;
576
577 nb_id = topology_die_id(cpu);
578 WARN_ON_ONCE(nb_id == BAD_APICID);
579
580 for_each_online_cpu(i) {
581 nb = per_cpu(cpu_hw_events, i).amd_nb;
582 if (WARN_ON_ONCE(!nb))
583 continue;
584
585 if (nb->nb_id == nb_id) {
586 *onln = cpuc->amd_nb;
587 cpuc->amd_nb = nb;
588 break;
589 }
590 }
591
592 cpuc->amd_nb->nb_id = nb_id;
593 cpuc->amd_nb->refcnt++;
594
595 amd_pmu_cpu_reset(cpu);
596 }
597
amd_pmu_cpu_dead(int cpu)598 static void amd_pmu_cpu_dead(int cpu)
599 {
600 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
601
602 kfree(cpuhw->lbr_sel);
603 cpuhw->lbr_sel = NULL;
604
605 if (!x86_pmu.amd_nb_constraints)
606 return;
607
608 if (cpuhw->amd_nb) {
609 struct amd_nb *nb = cpuhw->amd_nb;
610
611 if (nb->nb_id == -1 || --nb->refcnt == 0)
612 kfree(nb);
613
614 cpuhw->amd_nb = NULL;
615 }
616
617 amd_pmu_cpu_reset(cpu);
618 }
619
amd_pmu_set_global_ctl(u64 ctl)620 static inline void amd_pmu_set_global_ctl(u64 ctl)
621 {
622 wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, ctl);
623 }
624
amd_pmu_get_global_status(void)625 static inline u64 amd_pmu_get_global_status(void)
626 {
627 u64 status;
628
629 /* PerfCntrGlobalStatus is read-only */
630 rdmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, status);
631
632 return status;
633 }
634
amd_pmu_ack_global_status(u64 status)635 static inline void amd_pmu_ack_global_status(u64 status)
636 {
637 /*
638 * PerfCntrGlobalStatus is read-only but an overflow acknowledgment
639 * mechanism exists; writing 1 to a bit in PerfCntrGlobalStatusClr
640 * clears the same bit in PerfCntrGlobalStatus
641 */
642
643 wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, status);
644 }
645
amd_pmu_test_overflow_topbit(int idx)646 static bool amd_pmu_test_overflow_topbit(int idx)
647 {
648 u64 counter;
649
650 rdmsrl(x86_pmu_event_addr(idx), counter);
651
652 return !(counter & BIT_ULL(x86_pmu.cntval_bits - 1));
653 }
654
amd_pmu_test_overflow_status(int idx)655 static bool amd_pmu_test_overflow_status(int idx)
656 {
657 return amd_pmu_get_global_status() & BIT_ULL(idx);
658 }
659
660 DEFINE_STATIC_CALL(amd_pmu_test_overflow, amd_pmu_test_overflow_topbit);
661
662 /*
663 * When a PMC counter overflows, an NMI is used to process the event and
664 * reset the counter. NMI latency can result in the counter being updated
665 * before the NMI can run, which can result in what appear to be spurious
666 * NMIs. This function is intended to wait for the NMI to run and reset
667 * the counter to avoid possible unhandled NMI messages.
668 */
669 #define OVERFLOW_WAIT_COUNT 50
670
amd_pmu_wait_on_overflow(int idx)671 static void amd_pmu_wait_on_overflow(int idx)
672 {
673 unsigned int i;
674
675 /*
676 * Wait for the counter to be reset if it has overflowed. This loop
677 * should exit very, very quickly, but just in case, don't wait
678 * forever...
679 */
680 for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) {
681 if (!static_call(amd_pmu_test_overflow)(idx))
682 break;
683
684 /* Might be in IRQ context, so can't sleep */
685 udelay(1);
686 }
687 }
688
amd_pmu_check_overflow(void)689 static void amd_pmu_check_overflow(void)
690 {
691 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
692 int idx;
693
694 /*
695 * This shouldn't be called from NMI context, but add a safeguard here
696 * to return, since if we're in NMI context we can't wait for an NMI
697 * to reset an overflowed counter value.
698 */
699 if (in_nmi())
700 return;
701
702 /*
703 * Check each counter for overflow and wait for it to be reset by the
704 * NMI if it has overflowed. This relies on the fact that all active
705 * counters are always enabled when this function is called and
706 * ARCH_PERFMON_EVENTSEL_INT is always set.
707 */
708 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
709 if (!test_bit(idx, cpuc->active_mask))
710 continue;
711
712 amd_pmu_wait_on_overflow(idx);
713 }
714 }
715
amd_pmu_enable_event(struct perf_event * event)716 static void amd_pmu_enable_event(struct perf_event *event)
717 {
718 x86_pmu_enable_event(event);
719 }
720
amd_pmu_enable_all(int added)721 static void amd_pmu_enable_all(int added)
722 {
723 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
724 int idx;
725
726 amd_brs_enable_all();
727
728 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
729 /* only activate events which are marked as active */
730 if (!test_bit(idx, cpuc->active_mask))
731 continue;
732
733 amd_pmu_enable_event(cpuc->events[idx]);
734 }
735 }
736
amd_pmu_v2_enable_event(struct perf_event * event)737 static void amd_pmu_v2_enable_event(struct perf_event *event)
738 {
739 struct hw_perf_event *hwc = &event->hw;
740
741 /*
742 * Testing cpu_hw_events.enabled should be skipped in this case unlike
743 * in x86_pmu_enable_event().
744 *
745 * Since cpu_hw_events.enabled is set only after returning from
746 * x86_pmu_start(), the PMCs must be programmed and kept ready.
747 * Counting starts only after x86_pmu_enable_all() is called.
748 */
749 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
750 }
751
amd_pmu_core_enable_all(void)752 static __always_inline void amd_pmu_core_enable_all(void)
753 {
754 amd_pmu_set_global_ctl(amd_pmu_global_cntr_mask);
755 }
756
amd_pmu_v2_enable_all(int added)757 static void amd_pmu_v2_enable_all(int added)
758 {
759 amd_pmu_lbr_enable_all();
760 amd_pmu_core_enable_all();
761 }
762
amd_pmu_disable_event(struct perf_event * event)763 static void amd_pmu_disable_event(struct perf_event *event)
764 {
765 x86_pmu_disable_event(event);
766
767 /*
768 * This can be called from NMI context (via x86_pmu_stop). The counter
769 * may have overflowed, but either way, we'll never see it get reset
770 * by the NMI if we're already in the NMI. And the NMI latency support
771 * below will take care of any pending NMI that might have been
772 * generated by the overflow.
773 */
774 if (in_nmi())
775 return;
776
777 amd_pmu_wait_on_overflow(event->hw.idx);
778 }
779
amd_pmu_disable_all(void)780 static void amd_pmu_disable_all(void)
781 {
782 amd_brs_disable_all();
783 x86_pmu_disable_all();
784 amd_pmu_check_overflow();
785 }
786
amd_pmu_core_disable_all(void)787 static __always_inline void amd_pmu_core_disable_all(void)
788 {
789 amd_pmu_set_global_ctl(0);
790 }
791
amd_pmu_v2_disable_all(void)792 static void amd_pmu_v2_disable_all(void)
793 {
794 amd_pmu_core_disable_all();
795 amd_pmu_lbr_disable_all();
796 amd_pmu_check_overflow();
797 }
798
799 DEFINE_STATIC_CALL_NULL(amd_pmu_branch_add, *x86_pmu.add);
800
amd_pmu_add_event(struct perf_event * event)801 static void amd_pmu_add_event(struct perf_event *event)
802 {
803 if (needs_branch_stack(event))
804 static_call(amd_pmu_branch_add)(event);
805 }
806
807 DEFINE_STATIC_CALL_NULL(amd_pmu_branch_del, *x86_pmu.del);
808
amd_pmu_del_event(struct perf_event * event)809 static void amd_pmu_del_event(struct perf_event *event)
810 {
811 if (needs_branch_stack(event))
812 static_call(amd_pmu_branch_del)(event);
813 }
814
815 /*
816 * Because of NMI latency, if multiple PMC counters are active or other sources
817 * of NMIs are received, the perf NMI handler can handle one or more overflowed
818 * PMC counters outside of the NMI associated with the PMC overflow. If the NMI
819 * doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel
820 * back-to-back NMI support won't be active. This PMC handler needs to take into
821 * account that this can occur, otherwise this could result in unknown NMI
822 * messages being issued. Examples of this is PMC overflow while in the NMI
823 * handler when multiple PMCs are active or PMC overflow while handling some
824 * other source of an NMI.
825 *
826 * Attempt to mitigate this by creating an NMI window in which un-handled NMIs
827 * received during this window will be claimed. This prevents extending the
828 * window past when it is possible that latent NMIs should be received. The
829 * per-CPU perf_nmi_tstamp will be set to the window end time whenever perf has
830 * handled a counter. When an un-handled NMI is received, it will be claimed
831 * only if arriving within that window.
832 */
amd_pmu_adjust_nmi_window(int handled)833 static inline int amd_pmu_adjust_nmi_window(int handled)
834 {
835 /*
836 * If a counter was handled, record a timestamp such that un-handled
837 * NMIs will be claimed if arriving within that window.
838 */
839 if (handled) {
840 this_cpu_write(perf_nmi_tstamp, jiffies + perf_nmi_window);
841
842 return handled;
843 }
844
845 if (time_after(jiffies, this_cpu_read(perf_nmi_tstamp)))
846 return NMI_DONE;
847
848 return NMI_HANDLED;
849 }
850
amd_pmu_handle_irq(struct pt_regs * regs)851 static int amd_pmu_handle_irq(struct pt_regs *regs)
852 {
853 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
854 int handled;
855 int pmu_enabled;
856
857 /*
858 * Save the PMU state.
859 * It needs to be restored when leaving the handler.
860 */
861 pmu_enabled = cpuc->enabled;
862 cpuc->enabled = 0;
863
864 amd_brs_disable_all();
865
866 /* Drain BRS is in use (could be inactive) */
867 if (cpuc->lbr_users)
868 amd_brs_drain();
869
870 /* Process any counter overflows */
871 handled = x86_pmu_handle_irq(regs);
872
873 cpuc->enabled = pmu_enabled;
874 if (pmu_enabled)
875 amd_brs_enable_all();
876
877 return amd_pmu_adjust_nmi_window(handled);
878 }
879
amd_pmu_v2_handle_irq(struct pt_regs * regs)880 static int amd_pmu_v2_handle_irq(struct pt_regs *regs)
881 {
882 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
883 struct perf_sample_data data;
884 struct hw_perf_event *hwc;
885 struct perf_event *event;
886 int handled = 0, idx;
887 u64 status, mask;
888 bool pmu_enabled;
889
890 /*
891 * Save the PMU state as it needs to be restored when leaving the
892 * handler
893 */
894 pmu_enabled = cpuc->enabled;
895 cpuc->enabled = 0;
896
897 /* Stop counting but do not disable LBR */
898 amd_pmu_core_disable_all();
899
900 status = amd_pmu_get_global_status();
901
902 /* Check if any overflows are pending */
903 if (!status)
904 goto done;
905
906 /* Read branch records before unfreezing */
907 if (status & GLOBAL_STATUS_LBRS_FROZEN) {
908 amd_pmu_lbr_read();
909 status &= ~GLOBAL_STATUS_LBRS_FROZEN;
910 }
911
912 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
913 if (!test_bit(idx, cpuc->active_mask))
914 continue;
915
916 event = cpuc->events[idx];
917 hwc = &event->hw;
918 x86_perf_event_update(event);
919 mask = BIT_ULL(idx);
920
921 if (!(status & mask))
922 continue;
923
924 /* Event overflow */
925 handled++;
926 perf_sample_data_init(&data, 0, hwc->last_period);
927
928 if (!x86_perf_event_set_period(event))
929 continue;
930
931 if (has_branch_stack(event))
932 perf_sample_save_brstack(&data, event, &cpuc->lbr_stack);
933
934 if (perf_event_overflow(event, &data, regs))
935 x86_pmu_stop(event, 0);
936
937 status &= ~mask;
938 }
939
940 /*
941 * It should never be the case that some overflows are not handled as
942 * the corresponding PMCs are expected to be inactive according to the
943 * active_mask
944 */
945 WARN_ON(status > 0);
946
947 /* Clear overflow and freeze bits */
948 amd_pmu_ack_global_status(~status);
949
950 /*
951 * Unmasking the LVTPC is not required as the Mask (M) bit of the LVT
952 * PMI entry is not set by the local APIC when a PMC overflow occurs
953 */
954 inc_irq_stat(apic_perf_irqs);
955
956 done:
957 cpuc->enabled = pmu_enabled;
958
959 /* Resume counting only if PMU is active */
960 if (pmu_enabled)
961 amd_pmu_core_enable_all();
962
963 return amd_pmu_adjust_nmi_window(handled);
964 }
965
966 static struct event_constraint *
amd_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)967 amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
968 struct perf_event *event)
969 {
970 /*
971 * if not NB event or no NB, then no constraints
972 */
973 if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
974 return &unconstrained;
975
976 return __amd_get_nb_event_constraints(cpuc, event, NULL);
977 }
978
amd_put_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)979 static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
980 struct perf_event *event)
981 {
982 if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
983 __amd_put_nb_event_constraints(cpuc, event);
984 }
985
986 PMU_FORMAT_ATTR(event, "config:0-7,32-35");
987 PMU_FORMAT_ATTR(umask, "config:8-15" );
988 PMU_FORMAT_ATTR(edge, "config:18" );
989 PMU_FORMAT_ATTR(inv, "config:23" );
990 PMU_FORMAT_ATTR(cmask, "config:24-31" );
991
992 static struct attribute *amd_format_attr[] = {
993 &format_attr_event.attr,
994 &format_attr_umask.attr,
995 &format_attr_edge.attr,
996 &format_attr_inv.attr,
997 &format_attr_cmask.attr,
998 NULL,
999 };
1000
1001 /* AMD Family 15h */
1002
1003 #define AMD_EVENT_TYPE_MASK 0x000000F0ULL
1004
1005 #define AMD_EVENT_FP 0x00000000ULL ... 0x00000010ULL
1006 #define AMD_EVENT_LS 0x00000020ULL ... 0x00000030ULL
1007 #define AMD_EVENT_DC 0x00000040ULL ... 0x00000050ULL
1008 #define AMD_EVENT_CU 0x00000060ULL ... 0x00000070ULL
1009 #define AMD_EVENT_IC_DE 0x00000080ULL ... 0x00000090ULL
1010 #define AMD_EVENT_EX_LS 0x000000C0ULL
1011 #define AMD_EVENT_DE 0x000000D0ULL
1012 #define AMD_EVENT_NB 0x000000E0ULL ... 0x000000F0ULL
1013
1014 /*
1015 * AMD family 15h event code/PMC mappings:
1016 *
1017 * type = event_code & 0x0F0:
1018 *
1019 * 0x000 FP PERF_CTL[5:3]
1020 * 0x010 FP PERF_CTL[5:3]
1021 * 0x020 LS PERF_CTL[5:0]
1022 * 0x030 LS PERF_CTL[5:0]
1023 * 0x040 DC PERF_CTL[5:0]
1024 * 0x050 DC PERF_CTL[5:0]
1025 * 0x060 CU PERF_CTL[2:0]
1026 * 0x070 CU PERF_CTL[2:0]
1027 * 0x080 IC/DE PERF_CTL[2:0]
1028 * 0x090 IC/DE PERF_CTL[2:0]
1029 * 0x0A0 ---
1030 * 0x0B0 ---
1031 * 0x0C0 EX/LS PERF_CTL[5:0]
1032 * 0x0D0 DE PERF_CTL[2:0]
1033 * 0x0E0 NB NB_PERF_CTL[3:0]
1034 * 0x0F0 NB NB_PERF_CTL[3:0]
1035 *
1036 * Exceptions:
1037 *
1038 * 0x000 FP PERF_CTL[3], PERF_CTL[5:3] (*)
1039 * 0x003 FP PERF_CTL[3]
1040 * 0x004 FP PERF_CTL[3], PERF_CTL[5:3] (*)
1041 * 0x00B FP PERF_CTL[3]
1042 * 0x00D FP PERF_CTL[3]
1043 * 0x023 DE PERF_CTL[2:0]
1044 * 0x02D LS PERF_CTL[3]
1045 * 0x02E LS PERF_CTL[3,0]
1046 * 0x031 LS PERF_CTL[2:0] (**)
1047 * 0x043 CU PERF_CTL[2:0]
1048 * 0x045 CU PERF_CTL[2:0]
1049 * 0x046 CU PERF_CTL[2:0]
1050 * 0x054 CU PERF_CTL[2:0]
1051 * 0x055 CU PERF_CTL[2:0]
1052 * 0x08F IC PERF_CTL[0]
1053 * 0x187 DE PERF_CTL[0]
1054 * 0x188 DE PERF_CTL[0]
1055 * 0x0DB EX PERF_CTL[5:0]
1056 * 0x0DC LS PERF_CTL[5:0]
1057 * 0x0DD LS PERF_CTL[5:0]
1058 * 0x0DE LS PERF_CTL[5:0]
1059 * 0x0DF LS PERF_CTL[5:0]
1060 * 0x1C0 EX PERF_CTL[5:3]
1061 * 0x1D6 EX PERF_CTL[5:0]
1062 * 0x1D8 EX PERF_CTL[5:0]
1063 *
1064 * (*) depending on the umask all FPU counters may be used
1065 * (**) only one unitmask enabled at a time
1066 */
1067
1068 static struct event_constraint amd_f15_PMC0 = EVENT_CONSTRAINT(0, 0x01, 0);
1069 static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
1070 static struct event_constraint amd_f15_PMC3 = EVENT_CONSTRAINT(0, 0x08, 0);
1071 static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
1072 static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
1073 static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
1074
1075 static struct event_constraint *
amd_get_event_constraints_f15h(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)1076 amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
1077 struct perf_event *event)
1078 {
1079 struct hw_perf_event *hwc = &event->hw;
1080 unsigned int event_code = amd_get_event_code(hwc);
1081
1082 switch (event_code & AMD_EVENT_TYPE_MASK) {
1083 case AMD_EVENT_FP:
1084 switch (event_code) {
1085 case 0x000:
1086 if (!(hwc->config & 0x0000F000ULL))
1087 break;
1088 if (!(hwc->config & 0x00000F00ULL))
1089 break;
1090 return &amd_f15_PMC3;
1091 case 0x004:
1092 if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
1093 break;
1094 return &amd_f15_PMC3;
1095 case 0x003:
1096 case 0x00B:
1097 case 0x00D:
1098 return &amd_f15_PMC3;
1099 }
1100 return &amd_f15_PMC53;
1101 case AMD_EVENT_LS:
1102 case AMD_EVENT_DC:
1103 case AMD_EVENT_EX_LS:
1104 switch (event_code) {
1105 case 0x023:
1106 case 0x043:
1107 case 0x045:
1108 case 0x046:
1109 case 0x054:
1110 case 0x055:
1111 return &amd_f15_PMC20;
1112 case 0x02D:
1113 return &amd_f15_PMC3;
1114 case 0x02E:
1115 return &amd_f15_PMC30;
1116 case 0x031:
1117 if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
1118 return &amd_f15_PMC20;
1119 return &emptyconstraint;
1120 case 0x1C0:
1121 return &amd_f15_PMC53;
1122 default:
1123 return &amd_f15_PMC50;
1124 }
1125 case AMD_EVENT_CU:
1126 case AMD_EVENT_IC_DE:
1127 case AMD_EVENT_DE:
1128 switch (event_code) {
1129 case 0x08F:
1130 case 0x187:
1131 case 0x188:
1132 return &amd_f15_PMC0;
1133 case 0x0DB ... 0x0DF:
1134 case 0x1D6:
1135 case 0x1D8:
1136 return &amd_f15_PMC50;
1137 default:
1138 return &amd_f15_PMC20;
1139 }
1140 case AMD_EVENT_NB:
1141 /* moved to uncore.c */
1142 return &emptyconstraint;
1143 default:
1144 return &emptyconstraint;
1145 }
1146 }
1147
1148 static struct event_constraint pair_constraint;
1149
1150 static struct event_constraint *
amd_get_event_constraints_f17h(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)1151 amd_get_event_constraints_f17h(struct cpu_hw_events *cpuc, int idx,
1152 struct perf_event *event)
1153 {
1154 struct hw_perf_event *hwc = &event->hw;
1155
1156 if (amd_is_pair_event_code(hwc))
1157 return &pair_constraint;
1158
1159 return &unconstrained;
1160 }
1161
amd_put_event_constraints_f17h(struct cpu_hw_events * cpuc,struct perf_event * event)1162 static void amd_put_event_constraints_f17h(struct cpu_hw_events *cpuc,
1163 struct perf_event *event)
1164 {
1165 struct hw_perf_event *hwc = &event->hw;
1166
1167 if (is_counter_pair(hwc))
1168 --cpuc->n_pair;
1169 }
1170
1171 /*
1172 * Because of the way BRS operates with an inactive and active phases, and
1173 * the link to one counter, it is not possible to have two events using BRS
1174 * scheduled at the same time. There would be an issue with enforcing the
1175 * period of each one and given that the BRS saturates, it would not be possible
1176 * to guarantee correlated content for all events. Therefore, in situations
1177 * where multiple events want to use BRS, the kernel enforces mutual exclusion.
1178 * Exclusion is enforced by chosing only one counter for events using BRS.
1179 * The event scheduling logic will then automatically multiplex the
1180 * events and ensure that at most one event is actively using BRS.
1181 *
1182 * The BRS counter could be any counter, but there is no constraint on Fam19h,
1183 * therefore all counters are equal and thus we pick the first one: PMC0
1184 */
1185 static struct event_constraint amd_fam19h_brs_cntr0_constraint =
1186 EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK);
1187
1188 static struct event_constraint amd_fam19h_brs_pair_cntr0_constraint =
1189 __EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK, 1, 0, PERF_X86_EVENT_PAIR);
1190
1191 static struct event_constraint *
amd_get_event_constraints_f19h(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)1192 amd_get_event_constraints_f19h(struct cpu_hw_events *cpuc, int idx,
1193 struct perf_event *event)
1194 {
1195 struct hw_perf_event *hwc = &event->hw;
1196 bool has_brs = has_amd_brs(hwc);
1197
1198 /*
1199 * In case BRS is used with an event requiring a counter pair,
1200 * the kernel allows it but only on counter 0 & 1 to enforce
1201 * multiplexing requiring to protect BRS in case of multiple
1202 * BRS users
1203 */
1204 if (amd_is_pair_event_code(hwc)) {
1205 return has_brs ? &amd_fam19h_brs_pair_cntr0_constraint
1206 : &pair_constraint;
1207 }
1208
1209 if (has_brs)
1210 return &amd_fam19h_brs_cntr0_constraint;
1211
1212 return &unconstrained;
1213 }
1214
1215
amd_event_sysfs_show(char * page,u64 config)1216 static ssize_t amd_event_sysfs_show(char *page, u64 config)
1217 {
1218 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
1219 (config & AMD64_EVENTSEL_EVENT) >> 24;
1220
1221 return x86_event_sysfs_show(page, config, event);
1222 }
1223
amd_pmu_limit_period(struct perf_event * event,s64 * left)1224 static void amd_pmu_limit_period(struct perf_event *event, s64 *left)
1225 {
1226 /*
1227 * Decrease period by the depth of the BRS feature to get the last N
1228 * taken branches and approximate the desired period
1229 */
1230 if (has_branch_stack(event) && *left > x86_pmu.lbr_nr)
1231 *left -= x86_pmu.lbr_nr;
1232 }
1233
1234 static __initconst const struct x86_pmu amd_pmu = {
1235 .name = "AMD",
1236 .handle_irq = amd_pmu_handle_irq,
1237 .disable_all = amd_pmu_disable_all,
1238 .enable_all = amd_pmu_enable_all,
1239 .enable = amd_pmu_enable_event,
1240 .disable = amd_pmu_disable_event,
1241 .hw_config = amd_pmu_hw_config,
1242 .schedule_events = x86_schedule_events,
1243 .eventsel = MSR_K7_EVNTSEL0,
1244 .perfctr = MSR_K7_PERFCTR0,
1245 .addr_offset = amd_pmu_addr_offset,
1246 .event_map = amd_pmu_event_map,
1247 .max_events = ARRAY_SIZE(amd_perfmon_event_map),
1248 .num_counters = AMD64_NUM_COUNTERS,
1249 .add = amd_pmu_add_event,
1250 .del = amd_pmu_del_event,
1251 .cntval_bits = 48,
1252 .cntval_mask = (1ULL << 48) - 1,
1253 .apic = 1,
1254 /* use highest bit to detect overflow */
1255 .max_period = (1ULL << 47) - 1,
1256 .get_event_constraints = amd_get_event_constraints,
1257 .put_event_constraints = amd_put_event_constraints,
1258
1259 .format_attrs = amd_format_attr,
1260 .events_sysfs_show = amd_event_sysfs_show,
1261
1262 .cpu_prepare = amd_pmu_cpu_prepare,
1263 .cpu_starting = amd_pmu_cpu_starting,
1264 .cpu_dead = amd_pmu_cpu_dead,
1265
1266 .amd_nb_constraints = 1,
1267 };
1268
branches_show(struct device * cdev,struct device_attribute * attr,char * buf)1269 static ssize_t branches_show(struct device *cdev,
1270 struct device_attribute *attr,
1271 char *buf)
1272 {
1273 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
1274 }
1275
1276 static DEVICE_ATTR_RO(branches);
1277
1278 static struct attribute *amd_pmu_branches_attrs[] = {
1279 &dev_attr_branches.attr,
1280 NULL,
1281 };
1282
1283 static umode_t
amd_branches_is_visible(struct kobject * kobj,struct attribute * attr,int i)1284 amd_branches_is_visible(struct kobject *kobj, struct attribute *attr, int i)
1285 {
1286 return x86_pmu.lbr_nr ? attr->mode : 0;
1287 }
1288
1289 static struct attribute_group group_caps_amd_branches = {
1290 .name = "caps",
1291 .attrs = amd_pmu_branches_attrs,
1292 .is_visible = amd_branches_is_visible,
1293 };
1294
1295 #ifdef CONFIG_PERF_EVENTS_AMD_BRS
1296
1297 EVENT_ATTR_STR(branch-brs, amd_branch_brs,
1298 "event=" __stringify(AMD_FAM19H_BRS_EVENT)"\n");
1299
1300 static struct attribute *amd_brs_events_attrs[] = {
1301 EVENT_PTR(amd_branch_brs),
1302 NULL,
1303 };
1304
1305 static umode_t
amd_brs_is_visible(struct kobject * kobj,struct attribute * attr,int i)1306 amd_brs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
1307 {
1308 return static_cpu_has(X86_FEATURE_BRS) && x86_pmu.lbr_nr ?
1309 attr->mode : 0;
1310 }
1311
1312 static struct attribute_group group_events_amd_brs = {
1313 .name = "events",
1314 .attrs = amd_brs_events_attrs,
1315 .is_visible = amd_brs_is_visible,
1316 };
1317
1318 #endif /* CONFIG_PERF_EVENTS_AMD_BRS */
1319
1320 static const struct attribute_group *amd_attr_update[] = {
1321 &group_caps_amd_branches,
1322 #ifdef CONFIG_PERF_EVENTS_AMD_BRS
1323 &group_events_amd_brs,
1324 #endif
1325 NULL,
1326 };
1327
amd_core_pmu_init(void)1328 static int __init amd_core_pmu_init(void)
1329 {
1330 union cpuid_0x80000022_ebx ebx;
1331 u64 even_ctr_mask = 0ULL;
1332 int i;
1333
1334 if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
1335 return 0;
1336
1337 /* Avoid calculating the value each time in the NMI handler */
1338 perf_nmi_window = msecs_to_jiffies(100);
1339
1340 /*
1341 * If core performance counter extensions exists, we must use
1342 * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
1343 * amd_pmu_addr_offset().
1344 */
1345 x86_pmu.eventsel = MSR_F15H_PERF_CTL;
1346 x86_pmu.perfctr = MSR_F15H_PERF_CTR;
1347 x86_pmu.num_counters = AMD64_NUM_COUNTERS_CORE;
1348
1349 /* Check for Performance Monitoring v2 support */
1350 if (boot_cpu_has(X86_FEATURE_PERFMON_V2)) {
1351 ebx.full = cpuid_ebx(EXT_PERFMON_DEBUG_FEATURES);
1352
1353 /* Update PMU version for later usage */
1354 x86_pmu.version = 2;
1355
1356 /* Find the number of available Core PMCs */
1357 x86_pmu.num_counters = ebx.split.num_core_pmc;
1358
1359 amd_pmu_global_cntr_mask = (1ULL << x86_pmu.num_counters) - 1;
1360
1361 /* Update PMC handling functions */
1362 x86_pmu.enable_all = amd_pmu_v2_enable_all;
1363 x86_pmu.disable_all = amd_pmu_v2_disable_all;
1364 x86_pmu.enable = amd_pmu_v2_enable_event;
1365 x86_pmu.handle_irq = amd_pmu_v2_handle_irq;
1366 static_call_update(amd_pmu_test_overflow, amd_pmu_test_overflow_status);
1367 }
1368
1369 /*
1370 * AMD Core perfctr has separate MSRs for the NB events, see
1371 * the amd/uncore.c driver.
1372 */
1373 x86_pmu.amd_nb_constraints = 0;
1374
1375 if (boot_cpu_data.x86 == 0x15) {
1376 pr_cont("Fam15h ");
1377 x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
1378 }
1379 if (boot_cpu_data.x86 >= 0x17) {
1380 pr_cont("Fam17h+ ");
1381 /*
1382 * Family 17h and compatibles have constraints for Large
1383 * Increment per Cycle events: they may only be assigned an
1384 * even numbered counter that has a consecutive adjacent odd
1385 * numbered counter following it.
1386 */
1387 for (i = 0; i < x86_pmu.num_counters - 1; i += 2)
1388 even_ctr_mask |= BIT_ULL(i);
1389
1390 pair_constraint = (struct event_constraint)
1391 __EVENT_CONSTRAINT(0, even_ctr_mask, 0,
1392 x86_pmu.num_counters / 2, 0,
1393 PERF_X86_EVENT_PAIR);
1394
1395 x86_pmu.get_event_constraints = amd_get_event_constraints_f17h;
1396 x86_pmu.put_event_constraints = amd_put_event_constraints_f17h;
1397 x86_pmu.perf_ctr_pair_en = AMD_MERGE_EVENT_ENABLE;
1398 x86_pmu.flags |= PMU_FL_PAIR;
1399 }
1400
1401 /* LBR and BRS are mutually exclusive features */
1402 if (!amd_pmu_lbr_init()) {
1403 /* LBR requires flushing on context switch */
1404 x86_pmu.sched_task = amd_pmu_lbr_sched_task;
1405 static_call_update(amd_pmu_branch_hw_config, amd_pmu_lbr_hw_config);
1406 static_call_update(amd_pmu_branch_reset, amd_pmu_lbr_reset);
1407 static_call_update(amd_pmu_branch_add, amd_pmu_lbr_add);
1408 static_call_update(amd_pmu_branch_del, amd_pmu_lbr_del);
1409 } else if (!amd_brs_init()) {
1410 /*
1411 * BRS requires special event constraints and flushing on ctxsw.
1412 */
1413 x86_pmu.get_event_constraints = amd_get_event_constraints_f19h;
1414 x86_pmu.sched_task = amd_pmu_brs_sched_task;
1415 x86_pmu.limit_period = amd_pmu_limit_period;
1416
1417 static_call_update(amd_pmu_branch_hw_config, amd_brs_hw_config);
1418 static_call_update(amd_pmu_branch_reset, amd_brs_reset);
1419 static_call_update(amd_pmu_branch_add, amd_pmu_brs_add);
1420 static_call_update(amd_pmu_branch_del, amd_pmu_brs_del);
1421
1422 /*
1423 * put_event_constraints callback same as Fam17h, set above
1424 */
1425
1426 /* branch sampling must be stopped when entering low power */
1427 amd_brs_lopwr_init();
1428 }
1429
1430 x86_pmu.attr_update = amd_attr_update;
1431
1432 pr_cont("core perfctr, ");
1433 return 0;
1434 }
1435
amd_pmu_init(void)1436 __init int amd_pmu_init(void)
1437 {
1438 int ret;
1439
1440 /* Performance-monitoring supported from K7 and later: */
1441 if (boot_cpu_data.x86 < 6)
1442 return -ENODEV;
1443
1444 x86_pmu = amd_pmu;
1445
1446 ret = amd_core_pmu_init();
1447 if (ret)
1448 return ret;
1449
1450 if (num_possible_cpus() == 1) {
1451 /*
1452 * No point in allocating data structures to serialize
1453 * against other CPUs, when there is only the one CPU.
1454 */
1455 x86_pmu.amd_nb_constraints = 0;
1456 }
1457
1458 if (boot_cpu_data.x86 >= 0x17)
1459 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids_f17h, sizeof(hw_cache_event_ids));
1460 else
1461 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids));
1462
1463 return 0;
1464 }
1465
amd_pmu_reload_virt(void)1466 static inline void amd_pmu_reload_virt(void)
1467 {
1468 if (x86_pmu.version >= 2) {
1469 /*
1470 * Clear global enable bits, reprogram the PERF_CTL
1471 * registers with updated perf_ctr_virt_mask and then
1472 * set global enable bits once again
1473 */
1474 amd_pmu_v2_disable_all();
1475 amd_pmu_enable_all(0);
1476 amd_pmu_v2_enable_all(0);
1477 return;
1478 }
1479
1480 amd_pmu_disable_all();
1481 amd_pmu_enable_all(0);
1482 }
1483
amd_pmu_enable_virt(void)1484 void amd_pmu_enable_virt(void)
1485 {
1486 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1487
1488 cpuc->perf_ctr_virt_mask = 0;
1489
1490 /* Reload all events */
1491 amd_pmu_reload_virt();
1492 }
1493 EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
1494
amd_pmu_disable_virt(void)1495 void amd_pmu_disable_virt(void)
1496 {
1497 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1498
1499 /*
1500 * We only mask out the Host-only bit so that host-only counting works
1501 * when SVM is disabled. If someone sets up a guest-only counter when
1502 * SVM is disabled the Guest-only bits still gets set and the counter
1503 * will not count anything.
1504 */
1505 cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
1506
1507 /* Reload all events */
1508 amd_pmu_reload_virt();
1509 }
1510 EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);
1511