1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AMD CPU Microcode Update Driver for Linux
4 *
5 * This driver allows to upgrade microcode on F10h AMD
6 * CPUs and later.
7 *
8 * Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9 * 2013-2018 Borislav Petkov <bp@alien8.de>
10 *
11 * Author: Peter Oruba <peter.oruba@amd.com>
12 *
13 * Based on work by:
14 * Tigran Aivazian <aivazian.tigran@gmail.com>
15 *
16 * early loader:
17 * Copyright (C) 2013 Advanced Micro Devices, Inc.
18 *
19 * Author: Jacob Shin <jacob.shin@amd.com>
20 * Fixes: Borislav Petkov <bp@suse.de>
21 */
22 #define pr_fmt(fmt) "microcode: " fmt
23
24 #include <linux/earlycpio.h>
25 #include <linux/firmware.h>
26 #include <linux/uaccess.h>
27 #include <linux/vmalloc.h>
28 #include <linux/initrd.h>
29 #include <linux/kernel.h>
30 #include <linux/pci.h>
31
32 #include <asm/microcode_amd.h>
33 #include <asm/microcode.h>
34 #include <asm/processor.h>
35 #include <asm/setup.h>
36 #include <asm/cpu.h>
37 #include <asm/msr.h>
38
39 static struct equiv_cpu_table {
40 unsigned int num_entries;
41 struct equiv_cpu_entry *entry;
42 } equiv_table;
43
44 /*
45 * This points to the current valid container of microcode patches which we will
46 * save from the initrd/builtin before jettisoning its contents. @mc is the
47 * microcode patch we found to match.
48 */
49 struct cont_desc {
50 struct microcode_amd *mc;
51 u32 cpuid_1_eax;
52 u32 psize;
53 u8 *data;
54 size_t size;
55 };
56
57 static u32 ucode_new_rev;
58
59 /* One blob per node. */
60 static u8 amd_ucode_patch[MAX_NUMNODES][PATCH_MAX_SIZE];
61
62 /*
63 * Microcode patch container file is prepended to the initrd in cpio
64 * format. See Documentation/x86/microcode.rst
65 */
66 static const char
67 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
68
find_equiv_id(struct equiv_cpu_table * et,u32 sig)69 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
70 {
71 unsigned int i;
72
73 if (!et || !et->num_entries)
74 return 0;
75
76 for (i = 0; i < et->num_entries; i++) {
77 struct equiv_cpu_entry *e = &et->entry[i];
78
79 if (sig == e->installed_cpu)
80 return e->equiv_cpu;
81
82 e++;
83 }
84 return 0;
85 }
86
87 /*
88 * Check whether there is a valid microcode container file at the beginning
89 * of @buf of size @buf_size. Set @early to use this function in the early path.
90 */
verify_container(const u8 * buf,size_t buf_size,bool early)91 static bool verify_container(const u8 *buf, size_t buf_size, bool early)
92 {
93 u32 cont_magic;
94
95 if (buf_size <= CONTAINER_HDR_SZ) {
96 if (!early)
97 pr_debug("Truncated microcode container header.\n");
98
99 return false;
100 }
101
102 cont_magic = *(const u32 *)buf;
103 if (cont_magic != UCODE_MAGIC) {
104 if (!early)
105 pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
106
107 return false;
108 }
109
110 return true;
111 }
112
113 /*
114 * Check whether there is a valid, non-truncated CPU equivalence table at the
115 * beginning of @buf of size @buf_size. Set @early to use this function in the
116 * early path.
117 */
verify_equivalence_table(const u8 * buf,size_t buf_size,bool early)118 static bool verify_equivalence_table(const u8 *buf, size_t buf_size, bool early)
119 {
120 const u32 *hdr = (const u32 *)buf;
121 u32 cont_type, equiv_tbl_len;
122
123 if (!verify_container(buf, buf_size, early))
124 return false;
125
126 cont_type = hdr[1];
127 if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
128 if (!early)
129 pr_debug("Wrong microcode container equivalence table type: %u.\n",
130 cont_type);
131
132 return false;
133 }
134
135 buf_size -= CONTAINER_HDR_SZ;
136
137 equiv_tbl_len = hdr[2];
138 if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
139 buf_size < equiv_tbl_len) {
140 if (!early)
141 pr_debug("Truncated equivalence table.\n");
142
143 return false;
144 }
145
146 return true;
147 }
148
149 /*
150 * Check whether there is a valid, non-truncated microcode patch section at the
151 * beginning of @buf of size @buf_size. Set @early to use this function in the
152 * early path.
153 *
154 * On success, @sh_psize returns the patch size according to the section header,
155 * to the caller.
156 */
157 static bool
__verify_patch_section(const u8 * buf,size_t buf_size,u32 * sh_psize,bool early)158 __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize, bool early)
159 {
160 u32 p_type, p_size;
161 const u32 *hdr;
162
163 if (buf_size < SECTION_HDR_SIZE) {
164 if (!early)
165 pr_debug("Truncated patch section.\n");
166
167 return false;
168 }
169
170 hdr = (const u32 *)buf;
171 p_type = hdr[0];
172 p_size = hdr[1];
173
174 if (p_type != UCODE_UCODE_TYPE) {
175 if (!early)
176 pr_debug("Invalid type field (0x%x) in container file section header.\n",
177 p_type);
178
179 return false;
180 }
181
182 if (p_size < sizeof(struct microcode_header_amd)) {
183 if (!early)
184 pr_debug("Patch of size %u too short.\n", p_size);
185
186 return false;
187 }
188
189 *sh_psize = p_size;
190
191 return true;
192 }
193
194 /*
195 * Check whether the passed remaining file @buf_size is large enough to contain
196 * a patch of the indicated @sh_psize (and also whether this size does not
197 * exceed the per-family maximum). @sh_psize is the size read from the section
198 * header.
199 */
__verify_patch_size(u8 family,u32 sh_psize,size_t buf_size)200 static unsigned int __verify_patch_size(u8 family, u32 sh_psize, size_t buf_size)
201 {
202 u32 max_size;
203
204 if (family >= 0x15)
205 return min_t(u32, sh_psize, buf_size);
206
207 #define F1XH_MPB_MAX_SIZE 2048
208 #define F14H_MPB_MAX_SIZE 1824
209
210 switch (family) {
211 case 0x10 ... 0x12:
212 max_size = F1XH_MPB_MAX_SIZE;
213 break;
214 case 0x14:
215 max_size = F14H_MPB_MAX_SIZE;
216 break;
217 default:
218 WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
219 return 0;
220 }
221
222 if (sh_psize > min_t(u32, buf_size, max_size))
223 return 0;
224
225 return sh_psize;
226 }
227
228 /*
229 * Verify the patch in @buf.
230 *
231 * Returns:
232 * negative: on error
233 * positive: patch is not for this family, skip it
234 * 0: success
235 */
236 static int
verify_patch(u8 family,const u8 * buf,size_t buf_size,u32 * patch_size,bool early)237 verify_patch(u8 family, const u8 *buf, size_t buf_size, u32 *patch_size, bool early)
238 {
239 struct microcode_header_amd *mc_hdr;
240 unsigned int ret;
241 u32 sh_psize;
242 u16 proc_id;
243 u8 patch_fam;
244
245 if (!__verify_patch_section(buf, buf_size, &sh_psize, early))
246 return -1;
247
248 /*
249 * The section header length is not included in this indicated size
250 * but is present in the leftover file length so we need to subtract
251 * it before passing this value to the function below.
252 */
253 buf_size -= SECTION_HDR_SIZE;
254
255 /*
256 * Check if the remaining buffer is big enough to contain a patch of
257 * size sh_psize, as the section claims.
258 */
259 if (buf_size < sh_psize) {
260 if (!early)
261 pr_debug("Patch of size %u truncated.\n", sh_psize);
262
263 return -1;
264 }
265
266 ret = __verify_patch_size(family, sh_psize, buf_size);
267 if (!ret) {
268 if (!early)
269 pr_debug("Per-family patch size mismatch.\n");
270 return -1;
271 }
272
273 *patch_size = sh_psize;
274
275 mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
276 if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
277 if (!early)
278 pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
279 return -1;
280 }
281
282 proc_id = mc_hdr->processor_rev_id;
283 patch_fam = 0xf + (proc_id >> 12);
284 if (patch_fam != family)
285 return 1;
286
287 return 0;
288 }
289
290 /*
291 * This scans the ucode blob for the proper container as we can have multiple
292 * containers glued together. Returns the equivalence ID from the equivalence
293 * table or 0 if none found.
294 * Returns the amount of bytes consumed while scanning. @desc contains all the
295 * data we're going to use in later stages of the application.
296 */
parse_container(u8 * ucode,size_t size,struct cont_desc * desc)297 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
298 {
299 struct equiv_cpu_table table;
300 size_t orig_size = size;
301 u32 *hdr = (u32 *)ucode;
302 u16 eq_id;
303 u8 *buf;
304
305 if (!verify_equivalence_table(ucode, size, true))
306 return 0;
307
308 buf = ucode;
309
310 table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
311 table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
312
313 /*
314 * Find the equivalence ID of our CPU in this table. Even if this table
315 * doesn't contain a patch for the CPU, scan through the whole container
316 * so that it can be skipped in case there are other containers appended.
317 */
318 eq_id = find_equiv_id(&table, desc->cpuid_1_eax);
319
320 buf += hdr[2] + CONTAINER_HDR_SZ;
321 size -= hdr[2] + CONTAINER_HDR_SZ;
322
323 /*
324 * Scan through the rest of the container to find where it ends. We do
325 * some basic sanity-checking too.
326 */
327 while (size > 0) {
328 struct microcode_amd *mc;
329 u32 patch_size;
330 int ret;
331
332 ret = verify_patch(x86_family(desc->cpuid_1_eax), buf, size, &patch_size, true);
333 if (ret < 0) {
334 /*
335 * Patch verification failed, skip to the next container, if
336 * there is one. Before exit, check whether that container has
337 * found a patch already. If so, use it.
338 */
339 goto out;
340 } else if (ret > 0) {
341 goto skip;
342 }
343
344 mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
345 if (eq_id == mc->hdr.processor_rev_id) {
346 desc->psize = patch_size;
347 desc->mc = mc;
348 }
349
350 skip:
351 /* Skip patch section header too: */
352 buf += patch_size + SECTION_HDR_SIZE;
353 size -= patch_size + SECTION_HDR_SIZE;
354 }
355
356 out:
357 /*
358 * If we have found a patch (desc->mc), it means we're looking at the
359 * container which has a patch for this CPU so return 0 to mean, @ucode
360 * already points to the proper container. Otherwise, we return the size
361 * we scanned so that we can advance to the next container in the
362 * buffer.
363 */
364 if (desc->mc) {
365 desc->data = ucode;
366 desc->size = orig_size - size;
367
368 return 0;
369 }
370
371 return orig_size - size;
372 }
373
374 /*
375 * Scan the ucode blob for the proper container as we can have multiple
376 * containers glued together.
377 */
scan_containers(u8 * ucode,size_t size,struct cont_desc * desc)378 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
379 {
380 while (size) {
381 size_t s = parse_container(ucode, size, desc);
382 if (!s)
383 return;
384
385 /* catch wraparound */
386 if (size >= s) {
387 ucode += s;
388 size -= s;
389 } else {
390 return;
391 }
392 }
393 }
394
__apply_microcode_amd(struct microcode_amd * mc)395 static int __apply_microcode_amd(struct microcode_amd *mc)
396 {
397 u32 rev, dummy;
398
399 native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code);
400
401 /* verify patch application was successful */
402 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
403 if (rev != mc->hdr.patch_id)
404 return -1;
405
406 return 0;
407 }
408
409 /*
410 * Early load occurs before we can vmalloc(). So we look for the microcode
411 * patch container file in initrd, traverse equivalent cpu table, look for a
412 * matching microcode patch, and update, all in initrd memory in place.
413 * When vmalloc() is available for use later -- on 64-bit during first AP load,
414 * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
415 * load_microcode_amd() to save equivalent cpu table and microcode patches in
416 * kernel heap memory.
417 *
418 * Returns true if container found (sets @desc), false otherwise.
419 */
early_apply_microcode(u32 cpuid_1_eax,void * ucode,size_t size,bool save_patch)420 static bool early_apply_microcode(u32 cpuid_1_eax, void *ucode, size_t size, bool save_patch)
421 {
422 struct cont_desc desc = { 0 };
423 u8 (*patch)[PATCH_MAX_SIZE];
424 struct microcode_amd *mc;
425 u32 rev, dummy, *new_rev;
426 bool ret = false;
427
428 #ifdef CONFIG_X86_32
429 new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
430 patch = (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
431 #else
432 new_rev = &ucode_new_rev;
433 patch = &amd_ucode_patch[0];
434 #endif
435
436 desc.cpuid_1_eax = cpuid_1_eax;
437
438 scan_containers(ucode, size, &desc);
439
440 mc = desc.mc;
441 if (!mc)
442 return ret;
443
444 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
445
446 /*
447 * Allow application of the same revision to pick up SMT-specific
448 * changes even if the revision of the other SMT thread is already
449 * up-to-date.
450 */
451 if (rev > mc->hdr.patch_id)
452 return ret;
453
454 if (!__apply_microcode_amd(mc)) {
455 *new_rev = mc->hdr.patch_id;
456 ret = true;
457
458 if (save_patch)
459 memcpy(patch, mc, min_t(u32, desc.psize, PATCH_MAX_SIZE));
460 }
461
462 return ret;
463 }
464
get_builtin_microcode(struct cpio_data * cp,unsigned int family)465 static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
466 {
467 char fw_name[36] = "amd-ucode/microcode_amd.bin";
468 struct firmware fw;
469
470 if (IS_ENABLED(CONFIG_X86_32))
471 return false;
472
473 if (family >= 0x15)
474 snprintf(fw_name, sizeof(fw_name),
475 "amd-ucode/microcode_amd_fam%.2xh.bin", family);
476
477 if (firmware_request_builtin(&fw, fw_name)) {
478 cp->size = fw.size;
479 cp->data = (void *)fw.data;
480 return true;
481 }
482
483 return false;
484 }
485
find_blobs_in_containers(unsigned int cpuid_1_eax,struct cpio_data * ret)486 static void find_blobs_in_containers(unsigned int cpuid_1_eax, struct cpio_data *ret)
487 {
488 struct ucode_cpu_info *uci;
489 struct cpio_data cp;
490 const char *path;
491 bool use_pa;
492
493 if (IS_ENABLED(CONFIG_X86_32)) {
494 uci = (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info);
495 path = (const char *)__pa_nodebug(ucode_path);
496 use_pa = true;
497 } else {
498 uci = ucode_cpu_info;
499 path = ucode_path;
500 use_pa = false;
501 }
502
503 if (!get_builtin_microcode(&cp, x86_family(cpuid_1_eax)))
504 cp = find_microcode_in_initrd(path, use_pa);
505
506 /* Needed in load_microcode_amd() */
507 uci->cpu_sig.sig = cpuid_1_eax;
508
509 *ret = cp;
510 }
511
load_ucode_amd_bsp(unsigned int cpuid_1_eax)512 void __init load_ucode_amd_bsp(unsigned int cpuid_1_eax)
513 {
514 struct cpio_data cp = { };
515
516 find_blobs_in_containers(cpuid_1_eax, &cp);
517 if (!(cp.data && cp.size))
518 return;
519
520 early_apply_microcode(cpuid_1_eax, cp.data, cp.size, true);
521 }
522
load_ucode_amd_ap(unsigned int cpuid_1_eax)523 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
524 {
525 struct microcode_amd *mc;
526 struct cpio_data cp;
527 u32 *new_rev, rev, dummy;
528
529 if (IS_ENABLED(CONFIG_X86_32)) {
530 mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
531 new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
532 } else {
533 mc = (struct microcode_amd *)amd_ucode_patch;
534 new_rev = &ucode_new_rev;
535 }
536
537 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
538
539 /*
540 * Check whether a new patch has been saved already. Also, allow application of
541 * the same revision in order to pick up SMT-thread-specific configuration even
542 * if the sibling SMT thread already has an up-to-date revision.
543 */
544 if (*new_rev && rev <= mc->hdr.patch_id) {
545 if (!__apply_microcode_amd(mc)) {
546 *new_rev = mc->hdr.patch_id;
547 return;
548 }
549 }
550
551 find_blobs_in_containers(cpuid_1_eax, &cp);
552 if (!(cp.data && cp.size))
553 return;
554
555 early_apply_microcode(cpuid_1_eax, cp.data, cp.size, false);
556 }
557
558 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size);
559
save_microcode_in_initrd_amd(unsigned int cpuid_1_eax)560 int __init save_microcode_in_initrd_amd(unsigned int cpuid_1_eax)
561 {
562 struct cont_desc desc = { 0 };
563 enum ucode_state ret;
564 struct cpio_data cp;
565
566 cp = find_microcode_in_initrd(ucode_path, false);
567 if (!(cp.data && cp.size))
568 return -EINVAL;
569
570 desc.cpuid_1_eax = cpuid_1_eax;
571
572 scan_containers(cp.data, cp.size, &desc);
573 if (!desc.mc)
574 return -EINVAL;
575
576 ret = load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
577 if (ret > UCODE_UPDATED)
578 return -EINVAL;
579
580 return 0;
581 }
582
reload_ucode_amd(unsigned int cpu)583 void reload_ucode_amd(unsigned int cpu)
584 {
585 u32 rev, dummy __always_unused;
586 struct microcode_amd *mc;
587
588 mc = (struct microcode_amd *)amd_ucode_patch[cpu_to_node(cpu)];
589
590 rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
591
592 if (rev < mc->hdr.patch_id) {
593 if (!__apply_microcode_amd(mc)) {
594 ucode_new_rev = mc->hdr.patch_id;
595 pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
596 }
597 }
598 }
__find_equiv_id(unsigned int cpu)599 static u16 __find_equiv_id(unsigned int cpu)
600 {
601 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
602 return find_equiv_id(&equiv_table, uci->cpu_sig.sig);
603 }
604
605 /*
606 * a small, trivial cache of per-family ucode patches
607 */
cache_find_patch(u16 equiv_cpu)608 static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
609 {
610 struct ucode_patch *p;
611
612 list_for_each_entry(p, µcode_cache, plist)
613 if (p->equiv_cpu == equiv_cpu)
614 return p;
615 return NULL;
616 }
617
update_cache(struct ucode_patch * new_patch)618 static void update_cache(struct ucode_patch *new_patch)
619 {
620 struct ucode_patch *p;
621
622 list_for_each_entry(p, µcode_cache, plist) {
623 if (p->equiv_cpu == new_patch->equiv_cpu) {
624 if (p->patch_id >= new_patch->patch_id) {
625 /* we already have the latest patch */
626 kfree(new_patch->data);
627 kfree(new_patch);
628 return;
629 }
630
631 list_replace(&p->plist, &new_patch->plist);
632 kfree(p->data);
633 kfree(p);
634 return;
635 }
636 }
637 /* no patch found, add it */
638 list_add_tail(&new_patch->plist, µcode_cache);
639 }
640
free_cache(void)641 static void free_cache(void)
642 {
643 struct ucode_patch *p, *tmp;
644
645 list_for_each_entry_safe(p, tmp, µcode_cache, plist) {
646 __list_del(p->plist.prev, p->plist.next);
647 kfree(p->data);
648 kfree(p);
649 }
650 }
651
find_patch(unsigned int cpu)652 static struct ucode_patch *find_patch(unsigned int cpu)
653 {
654 u16 equiv_id;
655
656 equiv_id = __find_equiv_id(cpu);
657 if (!equiv_id)
658 return NULL;
659
660 return cache_find_patch(equiv_id);
661 }
662
collect_cpu_info_amd(int cpu,struct cpu_signature * csig)663 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
664 {
665 struct cpuinfo_x86 *c = &cpu_data(cpu);
666 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
667 struct ucode_patch *p;
668
669 csig->sig = cpuid_eax(0x00000001);
670 csig->rev = c->microcode;
671
672 /*
673 * a patch could have been loaded early, set uci->mc so that
674 * mc_bp_resume() can call apply_microcode()
675 */
676 p = find_patch(cpu);
677 if (p && (p->patch_id == csig->rev))
678 uci->mc = p->data;
679
680 pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);
681
682 return 0;
683 }
684
apply_microcode_amd(int cpu)685 static enum ucode_state apply_microcode_amd(int cpu)
686 {
687 struct cpuinfo_x86 *c = &cpu_data(cpu);
688 struct microcode_amd *mc_amd;
689 struct ucode_cpu_info *uci;
690 struct ucode_patch *p;
691 enum ucode_state ret;
692 u32 rev, dummy __always_unused;
693
694 BUG_ON(raw_smp_processor_id() != cpu);
695
696 uci = ucode_cpu_info + cpu;
697
698 p = find_patch(cpu);
699 if (!p)
700 return UCODE_NFOUND;
701
702 mc_amd = p->data;
703 uci->mc = p->data;
704
705 rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
706
707 /* need to apply patch? */
708 if (rev >= mc_amd->hdr.patch_id) {
709 ret = UCODE_OK;
710 goto out;
711 }
712
713 if (__apply_microcode_amd(mc_amd)) {
714 pr_err("CPU%d: update failed for patch_level=0x%08x\n",
715 cpu, mc_amd->hdr.patch_id);
716 return UCODE_ERROR;
717 }
718
719 rev = mc_amd->hdr.patch_id;
720 ret = UCODE_UPDATED;
721
722 pr_info("CPU%d: new patch_level=0x%08x\n", cpu, rev);
723
724 out:
725 uci->cpu_sig.rev = rev;
726 c->microcode = rev;
727
728 /* Update boot_cpu_data's revision too, if we're on the BSP: */
729 if (c->cpu_index == boot_cpu_data.cpu_index)
730 boot_cpu_data.microcode = rev;
731
732 return ret;
733 }
734
install_equiv_cpu_table(const u8 * buf,size_t buf_size)735 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
736 {
737 u32 equiv_tbl_len;
738 const u32 *hdr;
739
740 if (!verify_equivalence_table(buf, buf_size, false))
741 return 0;
742
743 hdr = (const u32 *)buf;
744 equiv_tbl_len = hdr[2];
745
746 equiv_table.entry = vmalloc(equiv_tbl_len);
747 if (!equiv_table.entry) {
748 pr_err("failed to allocate equivalent CPU table\n");
749 return 0;
750 }
751
752 memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
753 equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
754
755 /* add header length */
756 return equiv_tbl_len + CONTAINER_HDR_SZ;
757 }
758
free_equiv_cpu_table(void)759 static void free_equiv_cpu_table(void)
760 {
761 vfree(equiv_table.entry);
762 memset(&equiv_table, 0, sizeof(equiv_table));
763 }
764
cleanup(void)765 static void cleanup(void)
766 {
767 free_equiv_cpu_table();
768 free_cache();
769 }
770
771 /*
772 * Return a non-negative value even if some of the checks failed so that
773 * we can skip over the next patch. If we return a negative value, we
774 * signal a grave error like a memory allocation has failed and the
775 * driver cannot continue functioning normally. In such cases, we tear
776 * down everything we've used up so far and exit.
777 */
verify_and_add_patch(u8 family,u8 * fw,unsigned int leftover,unsigned int * patch_size)778 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
779 unsigned int *patch_size)
780 {
781 struct microcode_header_amd *mc_hdr;
782 struct ucode_patch *patch;
783 u16 proc_id;
784 int ret;
785
786 ret = verify_patch(family, fw, leftover, patch_size, false);
787 if (ret)
788 return ret;
789
790 patch = kzalloc(sizeof(*patch), GFP_KERNEL);
791 if (!patch) {
792 pr_err("Patch allocation failure.\n");
793 return -EINVAL;
794 }
795
796 patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
797 if (!patch->data) {
798 pr_err("Patch data allocation failure.\n");
799 kfree(patch);
800 return -EINVAL;
801 }
802 patch->size = *patch_size;
803
804 mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
805 proc_id = mc_hdr->processor_rev_id;
806
807 INIT_LIST_HEAD(&patch->plist);
808 patch->patch_id = mc_hdr->patch_id;
809 patch->equiv_cpu = proc_id;
810
811 pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
812 __func__, patch->patch_id, proc_id);
813
814 /* ... and add to cache. */
815 update_cache(patch);
816
817 return 0;
818 }
819
820 /* Scan the blob in @data and add microcode patches to the cache. */
__load_microcode_amd(u8 family,const u8 * data,size_t size)821 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
822 size_t size)
823 {
824 u8 *fw = (u8 *)data;
825 size_t offset;
826
827 offset = install_equiv_cpu_table(data, size);
828 if (!offset)
829 return UCODE_ERROR;
830
831 fw += offset;
832 size -= offset;
833
834 if (*(u32 *)fw != UCODE_UCODE_TYPE) {
835 pr_err("invalid type field in container file section header\n");
836 free_equiv_cpu_table();
837 return UCODE_ERROR;
838 }
839
840 while (size > 0) {
841 unsigned int crnt_size = 0;
842 int ret;
843
844 ret = verify_and_add_patch(family, fw, size, &crnt_size);
845 if (ret < 0)
846 return UCODE_ERROR;
847
848 fw += crnt_size + SECTION_HDR_SIZE;
849 size -= (crnt_size + SECTION_HDR_SIZE);
850 }
851
852 return UCODE_OK;
853 }
854
load_microcode_amd(u8 family,const u8 * data,size_t size)855 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
856 {
857 struct cpuinfo_x86 *c;
858 unsigned int nid, cpu;
859 struct ucode_patch *p;
860 enum ucode_state ret;
861
862 /* free old equiv table */
863 free_equiv_cpu_table();
864
865 ret = __load_microcode_amd(family, data, size);
866 if (ret != UCODE_OK) {
867 cleanup();
868 return ret;
869 }
870
871 for_each_node(nid) {
872 cpu = cpumask_first(cpumask_of_node(nid));
873 c = &cpu_data(cpu);
874
875 p = find_patch(cpu);
876 if (!p)
877 continue;
878
879 if (c->microcode >= p->patch_id)
880 continue;
881
882 ret = UCODE_NEW;
883
884 memset(&amd_ucode_patch[nid], 0, PATCH_MAX_SIZE);
885 memcpy(&amd_ucode_patch[nid], p->data, min_t(u32, p->size, PATCH_MAX_SIZE));
886 }
887
888 return ret;
889 }
890
891 /*
892 * AMD microcode firmware naming convention, up to family 15h they are in
893 * the legacy file:
894 *
895 * amd-ucode/microcode_amd.bin
896 *
897 * This legacy file is always smaller than 2K in size.
898 *
899 * Beginning with family 15h, they are in family-specific firmware files:
900 *
901 * amd-ucode/microcode_amd_fam15h.bin
902 * amd-ucode/microcode_amd_fam16h.bin
903 * ...
904 *
905 * These might be larger than 2K.
906 */
request_microcode_amd(int cpu,struct device * device)907 static enum ucode_state request_microcode_amd(int cpu, struct device *device)
908 {
909 char fw_name[36] = "amd-ucode/microcode_amd.bin";
910 struct cpuinfo_x86 *c = &cpu_data(cpu);
911 enum ucode_state ret = UCODE_NFOUND;
912 const struct firmware *fw;
913
914 if (c->x86 >= 0x15)
915 snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
916
917 if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
918 pr_debug("failed to load file %s\n", fw_name);
919 goto out;
920 }
921
922 ret = UCODE_ERROR;
923 if (!verify_container(fw->data, fw->size, false))
924 goto fw_release;
925
926 ret = load_microcode_amd(c->x86, fw->data, fw->size);
927
928 fw_release:
929 release_firmware(fw);
930
931 out:
932 return ret;
933 }
934
microcode_fini_cpu_amd(int cpu)935 static void microcode_fini_cpu_amd(int cpu)
936 {
937 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
938
939 uci->mc = NULL;
940 }
941
942 static struct microcode_ops microcode_amd_ops = {
943 .request_microcode_fw = request_microcode_amd,
944 .collect_cpu_info = collect_cpu_info_amd,
945 .apply_microcode = apply_microcode_amd,
946 .microcode_fini_cpu = microcode_fini_cpu_amd,
947 };
948
init_amd_microcode(void)949 struct microcode_ops * __init init_amd_microcode(void)
950 {
951 struct cpuinfo_x86 *c = &boot_cpu_data;
952
953 if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
954 pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
955 return NULL;
956 }
957
958 if (ucode_new_rev)
959 pr_info_once("microcode updated early to new patch_level=0x%08x\n",
960 ucode_new_rev);
961
962 return µcode_amd_ops;
963 }
964
exit_amd_microcode(void)965 void __exit exit_amd_microcode(void)
966 {
967 cleanup();
968 }
969