1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * User interface for Resource Allocation in Resource Director Technology(RDT)
4 *
5 * Copyright (C) 2016 Intel Corporation
6 *
7 * Author: Fenghua Yu <fenghua.yu@intel.com>
8 *
9 * More information about RDT be found in the Intel (R) x86 Architecture
10 * Software Developer Manual.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cacheinfo.h>
16 #include <linux/cpu.h>
17 #include <linux/debugfs.h>
18 #include <linux/fs.h>
19 #include <linux/fs_parser.h>
20 #include <linux/sysfs.h>
21 #include <linux/kernfs.h>
22 #include <linux/seq_buf.h>
23 #include <linux/seq_file.h>
24 #include <linux/sched/signal.h>
25 #include <linux/sched/task.h>
26 #include <linux/slab.h>
27 #include <linux/task_work.h>
28 #include <linux/user_namespace.h>
29
30 #include <uapi/linux/magic.h>
31
32 #include <asm/resctrl.h>
33 #include "internal.h"
34
35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
38 static struct kernfs_root *rdt_root;
39 struct rdtgroup rdtgroup_default;
40 LIST_HEAD(rdt_all_groups);
41
42 /* list of entries for the schemata file */
43 LIST_HEAD(resctrl_schema_all);
44
45 /* Kernel fs node for "info" directory under root */
46 static struct kernfs_node *kn_info;
47
48 /* Kernel fs node for "mon_groups" directory under root */
49 static struct kernfs_node *kn_mongrp;
50
51 /* Kernel fs node for "mon_data" directory under root */
52 static struct kernfs_node *kn_mondata;
53
54 static struct seq_buf last_cmd_status;
55 static char last_cmd_status_buf[512];
56
57 struct dentry *debugfs_resctrl;
58
rdt_last_cmd_clear(void)59 void rdt_last_cmd_clear(void)
60 {
61 lockdep_assert_held(&rdtgroup_mutex);
62 seq_buf_clear(&last_cmd_status);
63 }
64
rdt_last_cmd_puts(const char * s)65 void rdt_last_cmd_puts(const char *s)
66 {
67 lockdep_assert_held(&rdtgroup_mutex);
68 seq_buf_puts(&last_cmd_status, s);
69 }
70
rdt_last_cmd_printf(const char * fmt,...)71 void rdt_last_cmd_printf(const char *fmt, ...)
72 {
73 va_list ap;
74
75 va_start(ap, fmt);
76 lockdep_assert_held(&rdtgroup_mutex);
77 seq_buf_vprintf(&last_cmd_status, fmt, ap);
78 va_end(ap);
79 }
80
81 /*
82 * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
83 * we can keep a bitmap of free CLOSIDs in a single integer.
84 *
85 * Using a global CLOSID across all resources has some advantages and
86 * some drawbacks:
87 * + We can simply set "current->closid" to assign a task to a resource
88 * group.
89 * + Context switch code can avoid extra memory references deciding which
90 * CLOSID to load into the PQR_ASSOC MSR
91 * - We give up some options in configuring resource groups across multi-socket
92 * systems.
93 * - Our choices on how to configure each resource become progressively more
94 * limited as the number of resources grows.
95 */
96 static int closid_free_map;
97 static int closid_free_map_len;
98
closids_supported(void)99 int closids_supported(void)
100 {
101 return closid_free_map_len;
102 }
103
closid_init(void)104 static void closid_init(void)
105 {
106 struct resctrl_schema *s;
107 u32 rdt_min_closid = 32;
108
109 /* Compute rdt_min_closid across all resources */
110 list_for_each_entry(s, &resctrl_schema_all, list)
111 rdt_min_closid = min(rdt_min_closid, s->num_closid);
112
113 closid_free_map = BIT_MASK(rdt_min_closid) - 1;
114
115 /* CLOSID 0 is always reserved for the default group */
116 closid_free_map &= ~1;
117 closid_free_map_len = rdt_min_closid;
118 }
119
closid_alloc(void)120 static int closid_alloc(void)
121 {
122 u32 closid = ffs(closid_free_map);
123
124 if (closid == 0)
125 return -ENOSPC;
126 closid--;
127 closid_free_map &= ~(1 << closid);
128
129 return closid;
130 }
131
closid_free(int closid)132 void closid_free(int closid)
133 {
134 closid_free_map |= 1 << closid;
135 }
136
137 /**
138 * closid_allocated - test if provided closid is in use
139 * @closid: closid to be tested
140 *
141 * Return: true if @closid is currently associated with a resource group,
142 * false if @closid is free
143 */
closid_allocated(unsigned int closid)144 static bool closid_allocated(unsigned int closid)
145 {
146 return (closid_free_map & (1 << closid)) == 0;
147 }
148
149 /**
150 * rdtgroup_mode_by_closid - Return mode of resource group with closid
151 * @closid: closid if the resource group
152 *
153 * Each resource group is associated with a @closid. Here the mode
154 * of a resource group can be queried by searching for it using its closid.
155 *
156 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
157 */
rdtgroup_mode_by_closid(int closid)158 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
159 {
160 struct rdtgroup *rdtgrp;
161
162 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
163 if (rdtgrp->closid == closid)
164 return rdtgrp->mode;
165 }
166
167 return RDT_NUM_MODES;
168 }
169
170 static const char * const rdt_mode_str[] = {
171 [RDT_MODE_SHAREABLE] = "shareable",
172 [RDT_MODE_EXCLUSIVE] = "exclusive",
173 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup",
174 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked",
175 };
176
177 /**
178 * rdtgroup_mode_str - Return the string representation of mode
179 * @mode: the resource group mode as &enum rdtgroup_mode
180 *
181 * Return: string representation of valid mode, "unknown" otherwise
182 */
rdtgroup_mode_str(enum rdtgrp_mode mode)183 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
184 {
185 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
186 return "unknown";
187
188 return rdt_mode_str[mode];
189 }
190
191 /* set uid and gid of rdtgroup dirs and files to that of the creator */
rdtgroup_kn_set_ugid(struct kernfs_node * kn)192 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
193 {
194 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
195 .ia_uid = current_fsuid(),
196 .ia_gid = current_fsgid(), };
197
198 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
199 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
200 return 0;
201
202 return kernfs_setattr(kn, &iattr);
203 }
204
rdtgroup_add_file(struct kernfs_node * parent_kn,struct rftype * rft)205 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
206 {
207 struct kernfs_node *kn;
208 int ret;
209
210 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
211 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
212 0, rft->kf_ops, rft, NULL, NULL);
213 if (IS_ERR(kn))
214 return PTR_ERR(kn);
215
216 ret = rdtgroup_kn_set_ugid(kn);
217 if (ret) {
218 kernfs_remove(kn);
219 return ret;
220 }
221
222 return 0;
223 }
224
rdtgroup_seqfile_show(struct seq_file * m,void * arg)225 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
226 {
227 struct kernfs_open_file *of = m->private;
228 struct rftype *rft = of->kn->priv;
229
230 if (rft->seq_show)
231 return rft->seq_show(of, m, arg);
232 return 0;
233 }
234
rdtgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)235 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
236 size_t nbytes, loff_t off)
237 {
238 struct rftype *rft = of->kn->priv;
239
240 if (rft->write)
241 return rft->write(of, buf, nbytes, off);
242
243 return -EINVAL;
244 }
245
246 static const struct kernfs_ops rdtgroup_kf_single_ops = {
247 .atomic_write_len = PAGE_SIZE,
248 .write = rdtgroup_file_write,
249 .seq_show = rdtgroup_seqfile_show,
250 };
251
252 static const struct kernfs_ops kf_mondata_ops = {
253 .atomic_write_len = PAGE_SIZE,
254 .seq_show = rdtgroup_mondata_show,
255 };
256
is_cpu_list(struct kernfs_open_file * of)257 static bool is_cpu_list(struct kernfs_open_file *of)
258 {
259 struct rftype *rft = of->kn->priv;
260
261 return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
262 }
263
rdtgroup_cpus_show(struct kernfs_open_file * of,struct seq_file * s,void * v)264 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
265 struct seq_file *s, void *v)
266 {
267 struct rdtgroup *rdtgrp;
268 struct cpumask *mask;
269 int ret = 0;
270
271 rdtgrp = rdtgroup_kn_lock_live(of->kn);
272
273 if (rdtgrp) {
274 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
275 if (!rdtgrp->plr->d) {
276 rdt_last_cmd_clear();
277 rdt_last_cmd_puts("Cache domain offline\n");
278 ret = -ENODEV;
279 } else {
280 mask = &rdtgrp->plr->d->cpu_mask;
281 seq_printf(s, is_cpu_list(of) ?
282 "%*pbl\n" : "%*pb\n",
283 cpumask_pr_args(mask));
284 }
285 } else {
286 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
287 cpumask_pr_args(&rdtgrp->cpu_mask));
288 }
289 } else {
290 ret = -ENOENT;
291 }
292 rdtgroup_kn_unlock(of->kn);
293
294 return ret;
295 }
296
297 /*
298 * This is safe against resctrl_sched_in() called from __switch_to()
299 * because __switch_to() is executed with interrupts disabled. A local call
300 * from update_closid_rmid() is protected against __switch_to() because
301 * preemption is disabled.
302 */
update_cpu_closid_rmid(void * info)303 static void update_cpu_closid_rmid(void *info)
304 {
305 struct rdtgroup *r = info;
306
307 if (r) {
308 this_cpu_write(pqr_state.default_closid, r->closid);
309 this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
310 }
311
312 /*
313 * We cannot unconditionally write the MSR because the current
314 * executing task might have its own closid selected. Just reuse
315 * the context switch code.
316 */
317 resctrl_sched_in(current);
318 }
319
320 /*
321 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
322 *
323 * Per task closids/rmids must have been set up before calling this function.
324 */
325 static void
update_closid_rmid(const struct cpumask * cpu_mask,struct rdtgroup * r)326 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
327 {
328 on_each_cpu_mask(cpu_mask, update_cpu_closid_rmid, r, 1);
329 }
330
cpus_mon_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask)331 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
332 cpumask_var_t tmpmask)
333 {
334 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
335 struct list_head *head;
336
337 /* Check whether cpus belong to parent ctrl group */
338 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
339 if (!cpumask_empty(tmpmask)) {
340 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
341 return -EINVAL;
342 }
343
344 /* Check whether cpus are dropped from this group */
345 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
346 if (!cpumask_empty(tmpmask)) {
347 /* Give any dropped cpus to parent rdtgroup */
348 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
349 update_closid_rmid(tmpmask, prgrp);
350 }
351
352 /*
353 * If we added cpus, remove them from previous group that owned them
354 * and update per-cpu rmid
355 */
356 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
357 if (!cpumask_empty(tmpmask)) {
358 head = &prgrp->mon.crdtgrp_list;
359 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
360 if (crgrp == rdtgrp)
361 continue;
362 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
363 tmpmask);
364 }
365 update_closid_rmid(tmpmask, rdtgrp);
366 }
367
368 /* Done pushing/pulling - update this group with new mask */
369 cpumask_copy(&rdtgrp->cpu_mask, newmask);
370
371 return 0;
372 }
373
cpumask_rdtgrp_clear(struct rdtgroup * r,struct cpumask * m)374 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
375 {
376 struct rdtgroup *crgrp;
377
378 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
379 /* update the child mon group masks as well*/
380 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
381 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
382 }
383
cpus_ctrl_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask,cpumask_var_t tmpmask1)384 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
385 cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
386 {
387 struct rdtgroup *r, *crgrp;
388 struct list_head *head;
389
390 /* Check whether cpus are dropped from this group */
391 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
392 if (!cpumask_empty(tmpmask)) {
393 /* Can't drop from default group */
394 if (rdtgrp == &rdtgroup_default) {
395 rdt_last_cmd_puts("Can't drop CPUs from default group\n");
396 return -EINVAL;
397 }
398
399 /* Give any dropped cpus to rdtgroup_default */
400 cpumask_or(&rdtgroup_default.cpu_mask,
401 &rdtgroup_default.cpu_mask, tmpmask);
402 update_closid_rmid(tmpmask, &rdtgroup_default);
403 }
404
405 /*
406 * If we added cpus, remove them from previous group and
407 * the prev group's child groups that owned them
408 * and update per-cpu closid/rmid.
409 */
410 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
411 if (!cpumask_empty(tmpmask)) {
412 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
413 if (r == rdtgrp)
414 continue;
415 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
416 if (!cpumask_empty(tmpmask1))
417 cpumask_rdtgrp_clear(r, tmpmask1);
418 }
419 update_closid_rmid(tmpmask, rdtgrp);
420 }
421
422 /* Done pushing/pulling - update this group with new mask */
423 cpumask_copy(&rdtgrp->cpu_mask, newmask);
424
425 /*
426 * Clear child mon group masks since there is a new parent mask
427 * now and update the rmid for the cpus the child lost.
428 */
429 head = &rdtgrp->mon.crdtgrp_list;
430 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
431 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
432 update_closid_rmid(tmpmask, rdtgrp);
433 cpumask_clear(&crgrp->cpu_mask);
434 }
435
436 return 0;
437 }
438
rdtgroup_cpus_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)439 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
440 char *buf, size_t nbytes, loff_t off)
441 {
442 cpumask_var_t tmpmask, newmask, tmpmask1;
443 struct rdtgroup *rdtgrp;
444 int ret;
445
446 if (!buf)
447 return -EINVAL;
448
449 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
450 return -ENOMEM;
451 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
452 free_cpumask_var(tmpmask);
453 return -ENOMEM;
454 }
455 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
456 free_cpumask_var(tmpmask);
457 free_cpumask_var(newmask);
458 return -ENOMEM;
459 }
460
461 rdtgrp = rdtgroup_kn_lock_live(of->kn);
462 if (!rdtgrp) {
463 ret = -ENOENT;
464 goto unlock;
465 }
466
467 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
468 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
469 ret = -EINVAL;
470 rdt_last_cmd_puts("Pseudo-locking in progress\n");
471 goto unlock;
472 }
473
474 if (is_cpu_list(of))
475 ret = cpulist_parse(buf, newmask);
476 else
477 ret = cpumask_parse(buf, newmask);
478
479 if (ret) {
480 rdt_last_cmd_puts("Bad CPU list/mask\n");
481 goto unlock;
482 }
483
484 /* check that user didn't specify any offline cpus */
485 cpumask_andnot(tmpmask, newmask, cpu_online_mask);
486 if (!cpumask_empty(tmpmask)) {
487 ret = -EINVAL;
488 rdt_last_cmd_puts("Can only assign online CPUs\n");
489 goto unlock;
490 }
491
492 if (rdtgrp->type == RDTCTRL_GROUP)
493 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
494 else if (rdtgrp->type == RDTMON_GROUP)
495 ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
496 else
497 ret = -EINVAL;
498
499 unlock:
500 rdtgroup_kn_unlock(of->kn);
501 free_cpumask_var(tmpmask);
502 free_cpumask_var(newmask);
503 free_cpumask_var(tmpmask1);
504
505 return ret ?: nbytes;
506 }
507
508 /**
509 * rdtgroup_remove - the helper to remove resource group safely
510 * @rdtgrp: resource group to remove
511 *
512 * On resource group creation via a mkdir, an extra kernfs_node reference is
513 * taken to ensure that the rdtgroup structure remains accessible for the
514 * rdtgroup_kn_unlock() calls where it is removed.
515 *
516 * Drop the extra reference here, then free the rdtgroup structure.
517 *
518 * Return: void
519 */
rdtgroup_remove(struct rdtgroup * rdtgrp)520 static void rdtgroup_remove(struct rdtgroup *rdtgrp)
521 {
522 kernfs_put(rdtgrp->kn);
523 kfree(rdtgrp);
524 }
525
_update_task_closid_rmid(void * task)526 static void _update_task_closid_rmid(void *task)
527 {
528 /*
529 * If the task is still current on this CPU, update PQR_ASSOC MSR.
530 * Otherwise, the MSR is updated when the task is scheduled in.
531 */
532 if (task == current)
533 resctrl_sched_in(task);
534 }
535
update_task_closid_rmid(struct task_struct * t)536 static void update_task_closid_rmid(struct task_struct *t)
537 {
538 if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
539 smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
540 else
541 _update_task_closid_rmid(t);
542 }
543
__rdtgroup_move_task(struct task_struct * tsk,struct rdtgroup * rdtgrp)544 static int __rdtgroup_move_task(struct task_struct *tsk,
545 struct rdtgroup *rdtgrp)
546 {
547 /* If the task is already in rdtgrp, no need to move the task. */
548 if ((rdtgrp->type == RDTCTRL_GROUP && tsk->closid == rdtgrp->closid &&
549 tsk->rmid == rdtgrp->mon.rmid) ||
550 (rdtgrp->type == RDTMON_GROUP && tsk->rmid == rdtgrp->mon.rmid &&
551 tsk->closid == rdtgrp->mon.parent->closid))
552 return 0;
553
554 /*
555 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
556 * updated by them.
557 *
558 * For ctrl_mon groups, move both closid and rmid.
559 * For monitor groups, can move the tasks only from
560 * their parent CTRL group.
561 */
562
563 if (rdtgrp->type == RDTCTRL_GROUP) {
564 WRITE_ONCE(tsk->closid, rdtgrp->closid);
565 WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
566 } else if (rdtgrp->type == RDTMON_GROUP) {
567 if (rdtgrp->mon.parent->closid == tsk->closid) {
568 WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
569 } else {
570 rdt_last_cmd_puts("Can't move task to different control group\n");
571 return -EINVAL;
572 }
573 }
574
575 /*
576 * Ensure the task's closid and rmid are written before determining if
577 * the task is current that will decide if it will be interrupted.
578 * This pairs with the full barrier between the rq->curr update and
579 * resctrl_sched_in() during context switch.
580 */
581 smp_mb();
582
583 /*
584 * By now, the task's closid and rmid are set. If the task is current
585 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
586 * group go into effect. If the task is not current, the MSR will be
587 * updated when the task is scheduled in.
588 */
589 update_task_closid_rmid(tsk);
590
591 return 0;
592 }
593
is_closid_match(struct task_struct * t,struct rdtgroup * r)594 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
595 {
596 return (rdt_alloc_capable &&
597 (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
598 }
599
is_rmid_match(struct task_struct * t,struct rdtgroup * r)600 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
601 {
602 return (rdt_mon_capable &&
603 (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
604 }
605
606 /**
607 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
608 * @r: Resource group
609 *
610 * Return: 1 if tasks have been assigned to @r, 0 otherwise
611 */
rdtgroup_tasks_assigned(struct rdtgroup * r)612 int rdtgroup_tasks_assigned(struct rdtgroup *r)
613 {
614 struct task_struct *p, *t;
615 int ret = 0;
616
617 lockdep_assert_held(&rdtgroup_mutex);
618
619 rcu_read_lock();
620 for_each_process_thread(p, t) {
621 if (is_closid_match(t, r) || is_rmid_match(t, r)) {
622 ret = 1;
623 break;
624 }
625 }
626 rcu_read_unlock();
627
628 return ret;
629 }
630
rdtgroup_task_write_permission(struct task_struct * task,struct kernfs_open_file * of)631 static int rdtgroup_task_write_permission(struct task_struct *task,
632 struct kernfs_open_file *of)
633 {
634 const struct cred *tcred = get_task_cred(task);
635 const struct cred *cred = current_cred();
636 int ret = 0;
637
638 /*
639 * Even if we're attaching all tasks in the thread group, we only
640 * need to check permissions on one of them.
641 */
642 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
643 !uid_eq(cred->euid, tcred->uid) &&
644 !uid_eq(cred->euid, tcred->suid)) {
645 rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
646 ret = -EPERM;
647 }
648
649 put_cred(tcred);
650 return ret;
651 }
652
rdtgroup_move_task(pid_t pid,struct rdtgroup * rdtgrp,struct kernfs_open_file * of)653 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
654 struct kernfs_open_file *of)
655 {
656 struct task_struct *tsk;
657 int ret;
658
659 rcu_read_lock();
660 if (pid) {
661 tsk = find_task_by_vpid(pid);
662 if (!tsk) {
663 rcu_read_unlock();
664 rdt_last_cmd_printf("No task %d\n", pid);
665 return -ESRCH;
666 }
667 } else {
668 tsk = current;
669 }
670
671 get_task_struct(tsk);
672 rcu_read_unlock();
673
674 ret = rdtgroup_task_write_permission(tsk, of);
675 if (!ret)
676 ret = __rdtgroup_move_task(tsk, rdtgrp);
677
678 put_task_struct(tsk);
679 return ret;
680 }
681
rdtgroup_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)682 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
683 char *buf, size_t nbytes, loff_t off)
684 {
685 struct rdtgroup *rdtgrp;
686 int ret = 0;
687 pid_t pid;
688
689 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
690 return -EINVAL;
691 rdtgrp = rdtgroup_kn_lock_live(of->kn);
692 if (!rdtgrp) {
693 rdtgroup_kn_unlock(of->kn);
694 return -ENOENT;
695 }
696 rdt_last_cmd_clear();
697
698 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
699 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
700 ret = -EINVAL;
701 rdt_last_cmd_puts("Pseudo-locking in progress\n");
702 goto unlock;
703 }
704
705 ret = rdtgroup_move_task(pid, rdtgrp, of);
706
707 unlock:
708 rdtgroup_kn_unlock(of->kn);
709
710 return ret ?: nbytes;
711 }
712
show_rdt_tasks(struct rdtgroup * r,struct seq_file * s)713 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
714 {
715 struct task_struct *p, *t;
716
717 rcu_read_lock();
718 for_each_process_thread(p, t) {
719 if (is_closid_match(t, r) || is_rmid_match(t, r))
720 seq_printf(s, "%d\n", t->pid);
721 }
722 rcu_read_unlock();
723 }
724
rdtgroup_tasks_show(struct kernfs_open_file * of,struct seq_file * s,void * v)725 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
726 struct seq_file *s, void *v)
727 {
728 struct rdtgroup *rdtgrp;
729 int ret = 0;
730
731 rdtgrp = rdtgroup_kn_lock_live(of->kn);
732 if (rdtgrp)
733 show_rdt_tasks(rdtgrp, s);
734 else
735 ret = -ENOENT;
736 rdtgroup_kn_unlock(of->kn);
737
738 return ret;
739 }
740
741 #ifdef CONFIG_PROC_CPU_RESCTRL
742
743 /*
744 * A task can only be part of one resctrl control group and of one monitor
745 * group which is associated to that control group.
746 *
747 * 1) res:
748 * mon:
749 *
750 * resctrl is not available.
751 *
752 * 2) res:/
753 * mon:
754 *
755 * Task is part of the root resctrl control group, and it is not associated
756 * to any monitor group.
757 *
758 * 3) res:/
759 * mon:mon0
760 *
761 * Task is part of the root resctrl control group and monitor group mon0.
762 *
763 * 4) res:group0
764 * mon:
765 *
766 * Task is part of resctrl control group group0, and it is not associated
767 * to any monitor group.
768 *
769 * 5) res:group0
770 * mon:mon1
771 *
772 * Task is part of resctrl control group group0 and monitor group mon1.
773 */
proc_resctrl_show(struct seq_file * s,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)774 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
775 struct pid *pid, struct task_struct *tsk)
776 {
777 struct rdtgroup *rdtg;
778 int ret = 0;
779
780 mutex_lock(&rdtgroup_mutex);
781
782 /* Return empty if resctrl has not been mounted. */
783 if (!static_branch_unlikely(&rdt_enable_key)) {
784 seq_puts(s, "res:\nmon:\n");
785 goto unlock;
786 }
787
788 list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
789 struct rdtgroup *crg;
790
791 /*
792 * Task information is only relevant for shareable
793 * and exclusive groups.
794 */
795 if (rdtg->mode != RDT_MODE_SHAREABLE &&
796 rdtg->mode != RDT_MODE_EXCLUSIVE)
797 continue;
798
799 if (rdtg->closid != tsk->closid)
800 continue;
801
802 seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
803 rdtg->kn->name);
804 seq_puts(s, "mon:");
805 list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
806 mon.crdtgrp_list) {
807 if (tsk->rmid != crg->mon.rmid)
808 continue;
809 seq_printf(s, "%s", crg->kn->name);
810 break;
811 }
812 seq_putc(s, '\n');
813 goto unlock;
814 }
815 /*
816 * The above search should succeed. Otherwise return
817 * with an error.
818 */
819 ret = -ENOENT;
820 unlock:
821 mutex_unlock(&rdtgroup_mutex);
822
823 return ret;
824 }
825 #endif
826
rdt_last_cmd_status_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)827 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
828 struct seq_file *seq, void *v)
829 {
830 int len;
831
832 mutex_lock(&rdtgroup_mutex);
833 len = seq_buf_used(&last_cmd_status);
834 if (len)
835 seq_printf(seq, "%.*s", len, last_cmd_status_buf);
836 else
837 seq_puts(seq, "ok\n");
838 mutex_unlock(&rdtgroup_mutex);
839 return 0;
840 }
841
rdt_num_closids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)842 static int rdt_num_closids_show(struct kernfs_open_file *of,
843 struct seq_file *seq, void *v)
844 {
845 struct resctrl_schema *s = of->kn->parent->priv;
846
847 seq_printf(seq, "%u\n", s->num_closid);
848 return 0;
849 }
850
rdt_default_ctrl_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)851 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
852 struct seq_file *seq, void *v)
853 {
854 struct resctrl_schema *s = of->kn->parent->priv;
855 struct rdt_resource *r = s->res;
856
857 seq_printf(seq, "%x\n", r->default_ctrl);
858 return 0;
859 }
860
rdt_min_cbm_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)861 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
862 struct seq_file *seq, void *v)
863 {
864 struct resctrl_schema *s = of->kn->parent->priv;
865 struct rdt_resource *r = s->res;
866
867 seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
868 return 0;
869 }
870
rdt_shareable_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)871 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
872 struct seq_file *seq, void *v)
873 {
874 struct resctrl_schema *s = of->kn->parent->priv;
875 struct rdt_resource *r = s->res;
876
877 seq_printf(seq, "%x\n", r->cache.shareable_bits);
878 return 0;
879 }
880
881 /**
882 * rdt_bit_usage_show - Display current usage of resources
883 *
884 * A domain is a shared resource that can now be allocated differently. Here
885 * we display the current regions of the domain as an annotated bitmask.
886 * For each domain of this resource its allocation bitmask
887 * is annotated as below to indicate the current usage of the corresponding bit:
888 * 0 - currently unused
889 * X - currently available for sharing and used by software and hardware
890 * H - currently used by hardware only but available for software use
891 * S - currently used and shareable by software only
892 * E - currently used exclusively by one resource group
893 * P - currently pseudo-locked by one resource group
894 */
rdt_bit_usage_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)895 static int rdt_bit_usage_show(struct kernfs_open_file *of,
896 struct seq_file *seq, void *v)
897 {
898 struct resctrl_schema *s = of->kn->parent->priv;
899 /*
900 * Use unsigned long even though only 32 bits are used to ensure
901 * test_bit() is used safely.
902 */
903 unsigned long sw_shareable = 0, hw_shareable = 0;
904 unsigned long exclusive = 0, pseudo_locked = 0;
905 struct rdt_resource *r = s->res;
906 struct rdt_domain *dom;
907 int i, hwb, swb, excl, psl;
908 enum rdtgrp_mode mode;
909 bool sep = false;
910 u32 ctrl_val;
911
912 mutex_lock(&rdtgroup_mutex);
913 hw_shareable = r->cache.shareable_bits;
914 list_for_each_entry(dom, &r->domains, list) {
915 if (sep)
916 seq_putc(seq, ';');
917 sw_shareable = 0;
918 exclusive = 0;
919 seq_printf(seq, "%d=", dom->id);
920 for (i = 0; i < closids_supported(); i++) {
921 if (!closid_allocated(i))
922 continue;
923 ctrl_val = resctrl_arch_get_config(r, dom, i,
924 s->conf_type);
925 mode = rdtgroup_mode_by_closid(i);
926 switch (mode) {
927 case RDT_MODE_SHAREABLE:
928 sw_shareable |= ctrl_val;
929 break;
930 case RDT_MODE_EXCLUSIVE:
931 exclusive |= ctrl_val;
932 break;
933 case RDT_MODE_PSEUDO_LOCKSETUP:
934 /*
935 * RDT_MODE_PSEUDO_LOCKSETUP is possible
936 * here but not included since the CBM
937 * associated with this CLOSID in this mode
938 * is not initialized and no task or cpu can be
939 * assigned this CLOSID.
940 */
941 break;
942 case RDT_MODE_PSEUDO_LOCKED:
943 case RDT_NUM_MODES:
944 WARN(1,
945 "invalid mode for closid %d\n", i);
946 break;
947 }
948 }
949 for (i = r->cache.cbm_len - 1; i >= 0; i--) {
950 pseudo_locked = dom->plr ? dom->plr->cbm : 0;
951 hwb = test_bit(i, &hw_shareable);
952 swb = test_bit(i, &sw_shareable);
953 excl = test_bit(i, &exclusive);
954 psl = test_bit(i, &pseudo_locked);
955 if (hwb && swb)
956 seq_putc(seq, 'X');
957 else if (hwb && !swb)
958 seq_putc(seq, 'H');
959 else if (!hwb && swb)
960 seq_putc(seq, 'S');
961 else if (excl)
962 seq_putc(seq, 'E');
963 else if (psl)
964 seq_putc(seq, 'P');
965 else /* Unused bits remain */
966 seq_putc(seq, '0');
967 }
968 sep = true;
969 }
970 seq_putc(seq, '\n');
971 mutex_unlock(&rdtgroup_mutex);
972 return 0;
973 }
974
rdt_min_bw_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)975 static int rdt_min_bw_show(struct kernfs_open_file *of,
976 struct seq_file *seq, void *v)
977 {
978 struct resctrl_schema *s = of->kn->parent->priv;
979 struct rdt_resource *r = s->res;
980
981 seq_printf(seq, "%u\n", r->membw.min_bw);
982 return 0;
983 }
984
rdt_num_rmids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)985 static int rdt_num_rmids_show(struct kernfs_open_file *of,
986 struct seq_file *seq, void *v)
987 {
988 struct rdt_resource *r = of->kn->parent->priv;
989
990 seq_printf(seq, "%d\n", r->num_rmid);
991
992 return 0;
993 }
994
rdt_mon_features_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)995 static int rdt_mon_features_show(struct kernfs_open_file *of,
996 struct seq_file *seq, void *v)
997 {
998 struct rdt_resource *r = of->kn->parent->priv;
999 struct mon_evt *mevt;
1000
1001 list_for_each_entry(mevt, &r->evt_list, list) {
1002 seq_printf(seq, "%s\n", mevt->name);
1003 if (mevt->configurable)
1004 seq_printf(seq, "%s_config\n", mevt->name);
1005 }
1006
1007 return 0;
1008 }
1009
rdt_bw_gran_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1010 static int rdt_bw_gran_show(struct kernfs_open_file *of,
1011 struct seq_file *seq, void *v)
1012 {
1013 struct resctrl_schema *s = of->kn->parent->priv;
1014 struct rdt_resource *r = s->res;
1015
1016 seq_printf(seq, "%u\n", r->membw.bw_gran);
1017 return 0;
1018 }
1019
rdt_delay_linear_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1020 static int rdt_delay_linear_show(struct kernfs_open_file *of,
1021 struct seq_file *seq, void *v)
1022 {
1023 struct resctrl_schema *s = of->kn->parent->priv;
1024 struct rdt_resource *r = s->res;
1025
1026 seq_printf(seq, "%u\n", r->membw.delay_linear);
1027 return 0;
1028 }
1029
max_threshold_occ_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1030 static int max_threshold_occ_show(struct kernfs_open_file *of,
1031 struct seq_file *seq, void *v)
1032 {
1033 seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold);
1034
1035 return 0;
1036 }
1037
rdt_thread_throttle_mode_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1038 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of,
1039 struct seq_file *seq, void *v)
1040 {
1041 struct resctrl_schema *s = of->kn->parent->priv;
1042 struct rdt_resource *r = s->res;
1043
1044 if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD)
1045 seq_puts(seq, "per-thread\n");
1046 else
1047 seq_puts(seq, "max\n");
1048
1049 return 0;
1050 }
1051
max_threshold_occ_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1052 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1053 char *buf, size_t nbytes, loff_t off)
1054 {
1055 unsigned int bytes;
1056 int ret;
1057
1058 ret = kstrtouint(buf, 0, &bytes);
1059 if (ret)
1060 return ret;
1061
1062 if (bytes > resctrl_rmid_realloc_limit)
1063 return -EINVAL;
1064
1065 resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes);
1066
1067 return nbytes;
1068 }
1069
1070 /*
1071 * rdtgroup_mode_show - Display mode of this resource group
1072 */
rdtgroup_mode_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1073 static int rdtgroup_mode_show(struct kernfs_open_file *of,
1074 struct seq_file *s, void *v)
1075 {
1076 struct rdtgroup *rdtgrp;
1077
1078 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1079 if (!rdtgrp) {
1080 rdtgroup_kn_unlock(of->kn);
1081 return -ENOENT;
1082 }
1083
1084 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1085
1086 rdtgroup_kn_unlock(of->kn);
1087 return 0;
1088 }
1089
resctrl_peer_type(enum resctrl_conf_type my_type)1090 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type)
1091 {
1092 switch (my_type) {
1093 case CDP_CODE:
1094 return CDP_DATA;
1095 case CDP_DATA:
1096 return CDP_CODE;
1097 default:
1098 case CDP_NONE:
1099 return CDP_NONE;
1100 }
1101 }
1102
1103 /**
1104 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1105 * @r: Resource to which domain instance @d belongs.
1106 * @d: The domain instance for which @closid is being tested.
1107 * @cbm: Capacity bitmask being tested.
1108 * @closid: Intended closid for @cbm.
1109 * @exclusive: Only check if overlaps with exclusive resource groups
1110 *
1111 * Checks if provided @cbm intended to be used for @closid on domain
1112 * @d overlaps with any other closids or other hardware usage associated
1113 * with this domain. If @exclusive is true then only overlaps with
1114 * resource groups in exclusive mode will be considered. If @exclusive
1115 * is false then overlaps with any resource group or hardware entities
1116 * will be considered.
1117 *
1118 * @cbm is unsigned long, even if only 32 bits are used, to make the
1119 * bitmap functions work correctly.
1120 *
1121 * Return: false if CBM does not overlap, true if it does.
1122 */
__rdtgroup_cbm_overlaps(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm,int closid,enum resctrl_conf_type type,bool exclusive)1123 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1124 unsigned long cbm, int closid,
1125 enum resctrl_conf_type type, bool exclusive)
1126 {
1127 enum rdtgrp_mode mode;
1128 unsigned long ctrl_b;
1129 int i;
1130
1131 /* Check for any overlap with regions used by hardware directly */
1132 if (!exclusive) {
1133 ctrl_b = r->cache.shareable_bits;
1134 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1135 return true;
1136 }
1137
1138 /* Check for overlap with other resource groups */
1139 for (i = 0; i < closids_supported(); i++) {
1140 ctrl_b = resctrl_arch_get_config(r, d, i, type);
1141 mode = rdtgroup_mode_by_closid(i);
1142 if (closid_allocated(i) && i != closid &&
1143 mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1144 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1145 if (exclusive) {
1146 if (mode == RDT_MODE_EXCLUSIVE)
1147 return true;
1148 continue;
1149 }
1150 return true;
1151 }
1152 }
1153 }
1154
1155 return false;
1156 }
1157
1158 /**
1159 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1160 * @s: Schema for the resource to which domain instance @d belongs.
1161 * @d: The domain instance for which @closid is being tested.
1162 * @cbm: Capacity bitmask being tested.
1163 * @closid: Intended closid for @cbm.
1164 * @exclusive: Only check if overlaps with exclusive resource groups
1165 *
1166 * Resources that can be allocated using a CBM can use the CBM to control
1167 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1168 * for overlap. Overlap test is not limited to the specific resource for
1169 * which the CBM is intended though - when dealing with CDP resources that
1170 * share the underlying hardware the overlap check should be performed on
1171 * the CDP resource sharing the hardware also.
1172 *
1173 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1174 * overlap test.
1175 *
1176 * Return: true if CBM overlap detected, false if there is no overlap
1177 */
rdtgroup_cbm_overlaps(struct resctrl_schema * s,struct rdt_domain * d,unsigned long cbm,int closid,bool exclusive)1178 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_domain *d,
1179 unsigned long cbm, int closid, bool exclusive)
1180 {
1181 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
1182 struct rdt_resource *r = s->res;
1183
1184 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type,
1185 exclusive))
1186 return true;
1187
1188 if (!resctrl_arch_get_cdp_enabled(r->rid))
1189 return false;
1190 return __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive);
1191 }
1192
1193 /**
1194 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1195 *
1196 * An exclusive resource group implies that there should be no sharing of
1197 * its allocated resources. At the time this group is considered to be
1198 * exclusive this test can determine if its current schemata supports this
1199 * setting by testing for overlap with all other resource groups.
1200 *
1201 * Return: true if resource group can be exclusive, false if there is overlap
1202 * with allocations of other resource groups and thus this resource group
1203 * cannot be exclusive.
1204 */
rdtgroup_mode_test_exclusive(struct rdtgroup * rdtgrp)1205 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1206 {
1207 int closid = rdtgrp->closid;
1208 struct resctrl_schema *s;
1209 struct rdt_resource *r;
1210 bool has_cache = false;
1211 struct rdt_domain *d;
1212 u32 ctrl;
1213
1214 list_for_each_entry(s, &resctrl_schema_all, list) {
1215 r = s->res;
1216 if (r->rid == RDT_RESOURCE_MBA || r->rid == RDT_RESOURCE_SMBA)
1217 continue;
1218 has_cache = true;
1219 list_for_each_entry(d, &r->domains, list) {
1220 ctrl = resctrl_arch_get_config(r, d, closid,
1221 s->conf_type);
1222 if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) {
1223 rdt_last_cmd_puts("Schemata overlaps\n");
1224 return false;
1225 }
1226 }
1227 }
1228
1229 if (!has_cache) {
1230 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1231 return false;
1232 }
1233
1234 return true;
1235 }
1236
1237 /**
1238 * rdtgroup_mode_write - Modify the resource group's mode
1239 *
1240 */
rdtgroup_mode_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1241 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1242 char *buf, size_t nbytes, loff_t off)
1243 {
1244 struct rdtgroup *rdtgrp;
1245 enum rdtgrp_mode mode;
1246 int ret = 0;
1247
1248 /* Valid input requires a trailing newline */
1249 if (nbytes == 0 || buf[nbytes - 1] != '\n')
1250 return -EINVAL;
1251 buf[nbytes - 1] = '\0';
1252
1253 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1254 if (!rdtgrp) {
1255 rdtgroup_kn_unlock(of->kn);
1256 return -ENOENT;
1257 }
1258
1259 rdt_last_cmd_clear();
1260
1261 mode = rdtgrp->mode;
1262
1263 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1264 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1265 (!strcmp(buf, "pseudo-locksetup") &&
1266 mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1267 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1268 goto out;
1269
1270 if (mode == RDT_MODE_PSEUDO_LOCKED) {
1271 rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1272 ret = -EINVAL;
1273 goto out;
1274 }
1275
1276 if (!strcmp(buf, "shareable")) {
1277 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1278 ret = rdtgroup_locksetup_exit(rdtgrp);
1279 if (ret)
1280 goto out;
1281 }
1282 rdtgrp->mode = RDT_MODE_SHAREABLE;
1283 } else if (!strcmp(buf, "exclusive")) {
1284 if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1285 ret = -EINVAL;
1286 goto out;
1287 }
1288 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1289 ret = rdtgroup_locksetup_exit(rdtgrp);
1290 if (ret)
1291 goto out;
1292 }
1293 rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1294 } else if (!strcmp(buf, "pseudo-locksetup")) {
1295 ret = rdtgroup_locksetup_enter(rdtgrp);
1296 if (ret)
1297 goto out;
1298 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1299 } else {
1300 rdt_last_cmd_puts("Unknown or unsupported mode\n");
1301 ret = -EINVAL;
1302 }
1303
1304 out:
1305 rdtgroup_kn_unlock(of->kn);
1306 return ret ?: nbytes;
1307 }
1308
1309 /**
1310 * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1311 * @r: RDT resource to which @d belongs.
1312 * @d: RDT domain instance.
1313 * @cbm: bitmask for which the size should be computed.
1314 *
1315 * The bitmask provided associated with the RDT domain instance @d will be
1316 * translated into how many bytes it represents. The size in bytes is
1317 * computed by first dividing the total cache size by the CBM length to
1318 * determine how many bytes each bit in the bitmask represents. The result
1319 * is multiplied with the number of bits set in the bitmask.
1320 *
1321 * @cbm is unsigned long, even if only 32 bits are used to make the
1322 * bitmap functions work correctly.
1323 */
rdtgroup_cbm_to_size(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm)1324 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1325 struct rdt_domain *d, unsigned long cbm)
1326 {
1327 struct cpu_cacheinfo *ci;
1328 unsigned int size = 0;
1329 int num_b, i;
1330
1331 num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1332 ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1333 for (i = 0; i < ci->num_leaves; i++) {
1334 if (ci->info_list[i].level == r->cache_level) {
1335 size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1336 break;
1337 }
1338 }
1339
1340 return size;
1341 }
1342
1343 /**
1344 * rdtgroup_size_show - Display size in bytes of allocated regions
1345 *
1346 * The "size" file mirrors the layout of the "schemata" file, printing the
1347 * size in bytes of each region instead of the capacity bitmask.
1348 *
1349 */
rdtgroup_size_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1350 static int rdtgroup_size_show(struct kernfs_open_file *of,
1351 struct seq_file *s, void *v)
1352 {
1353 struct resctrl_schema *schema;
1354 enum resctrl_conf_type type;
1355 struct rdtgroup *rdtgrp;
1356 struct rdt_resource *r;
1357 struct rdt_domain *d;
1358 unsigned int size;
1359 int ret = 0;
1360 u32 closid;
1361 bool sep;
1362 u32 ctrl;
1363
1364 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1365 if (!rdtgrp) {
1366 rdtgroup_kn_unlock(of->kn);
1367 return -ENOENT;
1368 }
1369
1370 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1371 if (!rdtgrp->plr->d) {
1372 rdt_last_cmd_clear();
1373 rdt_last_cmd_puts("Cache domain offline\n");
1374 ret = -ENODEV;
1375 } else {
1376 seq_printf(s, "%*s:", max_name_width,
1377 rdtgrp->plr->s->name);
1378 size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res,
1379 rdtgrp->plr->d,
1380 rdtgrp->plr->cbm);
1381 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1382 }
1383 goto out;
1384 }
1385
1386 closid = rdtgrp->closid;
1387
1388 list_for_each_entry(schema, &resctrl_schema_all, list) {
1389 r = schema->res;
1390 type = schema->conf_type;
1391 sep = false;
1392 seq_printf(s, "%*s:", max_name_width, schema->name);
1393 list_for_each_entry(d, &r->domains, list) {
1394 if (sep)
1395 seq_putc(s, ';');
1396 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1397 size = 0;
1398 } else {
1399 if (is_mba_sc(r))
1400 ctrl = d->mbps_val[closid];
1401 else
1402 ctrl = resctrl_arch_get_config(r, d,
1403 closid,
1404 type);
1405 if (r->rid == RDT_RESOURCE_MBA ||
1406 r->rid == RDT_RESOURCE_SMBA)
1407 size = ctrl;
1408 else
1409 size = rdtgroup_cbm_to_size(r, d, ctrl);
1410 }
1411 seq_printf(s, "%d=%u", d->id, size);
1412 sep = true;
1413 }
1414 seq_putc(s, '\n');
1415 }
1416
1417 out:
1418 rdtgroup_kn_unlock(of->kn);
1419
1420 return ret;
1421 }
1422
1423 struct mon_config_info {
1424 u32 evtid;
1425 u32 mon_config;
1426 };
1427
1428 #define INVALID_CONFIG_INDEX UINT_MAX
1429
1430 /**
1431 * mon_event_config_index_get - get the hardware index for the
1432 * configurable event
1433 * @evtid: event id.
1434 *
1435 * Return: 0 for evtid == QOS_L3_MBM_TOTAL_EVENT_ID
1436 * 1 for evtid == QOS_L3_MBM_LOCAL_EVENT_ID
1437 * INVALID_CONFIG_INDEX for invalid evtid
1438 */
mon_event_config_index_get(u32 evtid)1439 static inline unsigned int mon_event_config_index_get(u32 evtid)
1440 {
1441 switch (evtid) {
1442 case QOS_L3_MBM_TOTAL_EVENT_ID:
1443 return 0;
1444 case QOS_L3_MBM_LOCAL_EVENT_ID:
1445 return 1;
1446 default:
1447 /* Should never reach here */
1448 return INVALID_CONFIG_INDEX;
1449 }
1450 }
1451
mon_event_config_read(void * info)1452 static void mon_event_config_read(void *info)
1453 {
1454 struct mon_config_info *mon_info = info;
1455 unsigned int index;
1456 u64 msrval;
1457
1458 index = mon_event_config_index_get(mon_info->evtid);
1459 if (index == INVALID_CONFIG_INDEX) {
1460 pr_warn_once("Invalid event id %d\n", mon_info->evtid);
1461 return;
1462 }
1463 rdmsrl(MSR_IA32_EVT_CFG_BASE + index, msrval);
1464
1465 /* Report only the valid event configuration bits */
1466 mon_info->mon_config = msrval & MAX_EVT_CONFIG_BITS;
1467 }
1468
mondata_config_read(struct rdt_domain * d,struct mon_config_info * mon_info)1469 static void mondata_config_read(struct rdt_domain *d, struct mon_config_info *mon_info)
1470 {
1471 smp_call_function_any(&d->cpu_mask, mon_event_config_read, mon_info, 1);
1472 }
1473
mbm_config_show(struct seq_file * s,struct rdt_resource * r,u32 evtid)1474 static int mbm_config_show(struct seq_file *s, struct rdt_resource *r, u32 evtid)
1475 {
1476 struct mon_config_info mon_info = {0};
1477 struct rdt_domain *dom;
1478 bool sep = false;
1479
1480 mutex_lock(&rdtgroup_mutex);
1481
1482 list_for_each_entry(dom, &r->domains, list) {
1483 if (sep)
1484 seq_puts(s, ";");
1485
1486 memset(&mon_info, 0, sizeof(struct mon_config_info));
1487 mon_info.evtid = evtid;
1488 mondata_config_read(dom, &mon_info);
1489
1490 seq_printf(s, "%d=0x%02x", dom->id, mon_info.mon_config);
1491 sep = true;
1492 }
1493 seq_puts(s, "\n");
1494
1495 mutex_unlock(&rdtgroup_mutex);
1496
1497 return 0;
1498 }
1499
mbm_total_bytes_config_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1500 static int mbm_total_bytes_config_show(struct kernfs_open_file *of,
1501 struct seq_file *seq, void *v)
1502 {
1503 struct rdt_resource *r = of->kn->parent->priv;
1504
1505 mbm_config_show(seq, r, QOS_L3_MBM_TOTAL_EVENT_ID);
1506
1507 return 0;
1508 }
1509
mbm_local_bytes_config_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1510 static int mbm_local_bytes_config_show(struct kernfs_open_file *of,
1511 struct seq_file *seq, void *v)
1512 {
1513 struct rdt_resource *r = of->kn->parent->priv;
1514
1515 mbm_config_show(seq, r, QOS_L3_MBM_LOCAL_EVENT_ID);
1516
1517 return 0;
1518 }
1519
mon_event_config_write(void * info)1520 static void mon_event_config_write(void *info)
1521 {
1522 struct mon_config_info *mon_info = info;
1523 unsigned int index;
1524
1525 index = mon_event_config_index_get(mon_info->evtid);
1526 if (index == INVALID_CONFIG_INDEX) {
1527 pr_warn_once("Invalid event id %d\n", mon_info->evtid);
1528 return;
1529 }
1530 wrmsr(MSR_IA32_EVT_CFG_BASE + index, mon_info->mon_config, 0);
1531 }
1532
mbm_config_write_domain(struct rdt_resource * r,struct rdt_domain * d,u32 evtid,u32 val)1533 static int mbm_config_write_domain(struct rdt_resource *r,
1534 struct rdt_domain *d, u32 evtid, u32 val)
1535 {
1536 struct mon_config_info mon_info = {0};
1537 int ret = 0;
1538
1539 /* mon_config cannot be more than the supported set of events */
1540 if (val > MAX_EVT_CONFIG_BITS) {
1541 rdt_last_cmd_puts("Invalid event configuration\n");
1542 return -EINVAL;
1543 }
1544
1545 /*
1546 * Read the current config value first. If both are the same then
1547 * no need to write it again.
1548 */
1549 mon_info.evtid = evtid;
1550 mondata_config_read(d, &mon_info);
1551 if (mon_info.mon_config == val)
1552 goto out;
1553
1554 mon_info.mon_config = val;
1555
1556 /*
1557 * Update MSR_IA32_EVT_CFG_BASE MSR on one of the CPUs in the
1558 * domain. The MSRs offset from MSR MSR_IA32_EVT_CFG_BASE
1559 * are scoped at the domain level. Writing any of these MSRs
1560 * on one CPU is observed by all the CPUs in the domain.
1561 */
1562 smp_call_function_any(&d->cpu_mask, mon_event_config_write,
1563 &mon_info, 1);
1564
1565 /*
1566 * When an Event Configuration is changed, the bandwidth counters
1567 * for all RMIDs and Events will be cleared by the hardware. The
1568 * hardware also sets MSR_IA32_QM_CTR.Unavailable (bit 62) for
1569 * every RMID on the next read to any event for every RMID.
1570 * Subsequent reads will have MSR_IA32_QM_CTR.Unavailable (bit 62)
1571 * cleared while it is tracked by the hardware. Clear the
1572 * mbm_local and mbm_total counts for all the RMIDs.
1573 */
1574 resctrl_arch_reset_rmid_all(r, d);
1575
1576 out:
1577 return ret;
1578 }
1579
mon_config_write(struct rdt_resource * r,char * tok,u32 evtid)1580 static int mon_config_write(struct rdt_resource *r, char *tok, u32 evtid)
1581 {
1582 char *dom_str = NULL, *id_str;
1583 unsigned long dom_id, val;
1584 struct rdt_domain *d;
1585 int ret = 0;
1586
1587 next:
1588 if (!tok || tok[0] == '\0')
1589 return 0;
1590
1591 /* Start processing the strings for each domain */
1592 dom_str = strim(strsep(&tok, ";"));
1593 id_str = strsep(&dom_str, "=");
1594
1595 if (!id_str || kstrtoul(id_str, 10, &dom_id)) {
1596 rdt_last_cmd_puts("Missing '=' or non-numeric domain id\n");
1597 return -EINVAL;
1598 }
1599
1600 if (!dom_str || kstrtoul(dom_str, 16, &val)) {
1601 rdt_last_cmd_puts("Non-numeric event configuration value\n");
1602 return -EINVAL;
1603 }
1604
1605 list_for_each_entry(d, &r->domains, list) {
1606 if (d->id == dom_id) {
1607 ret = mbm_config_write_domain(r, d, evtid, val);
1608 if (ret)
1609 return -EINVAL;
1610 goto next;
1611 }
1612 }
1613
1614 return -EINVAL;
1615 }
1616
mbm_total_bytes_config_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1617 static ssize_t mbm_total_bytes_config_write(struct kernfs_open_file *of,
1618 char *buf, size_t nbytes,
1619 loff_t off)
1620 {
1621 struct rdt_resource *r = of->kn->parent->priv;
1622 int ret;
1623
1624 /* Valid input requires a trailing newline */
1625 if (nbytes == 0 || buf[nbytes - 1] != '\n')
1626 return -EINVAL;
1627
1628 mutex_lock(&rdtgroup_mutex);
1629
1630 rdt_last_cmd_clear();
1631
1632 buf[nbytes - 1] = '\0';
1633
1634 ret = mon_config_write(r, buf, QOS_L3_MBM_TOTAL_EVENT_ID);
1635
1636 mutex_unlock(&rdtgroup_mutex);
1637
1638 return ret ?: nbytes;
1639 }
1640
mbm_local_bytes_config_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1641 static ssize_t mbm_local_bytes_config_write(struct kernfs_open_file *of,
1642 char *buf, size_t nbytes,
1643 loff_t off)
1644 {
1645 struct rdt_resource *r = of->kn->parent->priv;
1646 int ret;
1647
1648 /* Valid input requires a trailing newline */
1649 if (nbytes == 0 || buf[nbytes - 1] != '\n')
1650 return -EINVAL;
1651
1652 mutex_lock(&rdtgroup_mutex);
1653
1654 rdt_last_cmd_clear();
1655
1656 buf[nbytes - 1] = '\0';
1657
1658 ret = mon_config_write(r, buf, QOS_L3_MBM_LOCAL_EVENT_ID);
1659
1660 mutex_unlock(&rdtgroup_mutex);
1661
1662 return ret ?: nbytes;
1663 }
1664
1665 /* rdtgroup information files for one cache resource. */
1666 static struct rftype res_common_files[] = {
1667 {
1668 .name = "last_cmd_status",
1669 .mode = 0444,
1670 .kf_ops = &rdtgroup_kf_single_ops,
1671 .seq_show = rdt_last_cmd_status_show,
1672 .fflags = RF_TOP_INFO,
1673 },
1674 {
1675 .name = "num_closids",
1676 .mode = 0444,
1677 .kf_ops = &rdtgroup_kf_single_ops,
1678 .seq_show = rdt_num_closids_show,
1679 .fflags = RF_CTRL_INFO,
1680 },
1681 {
1682 .name = "mon_features",
1683 .mode = 0444,
1684 .kf_ops = &rdtgroup_kf_single_ops,
1685 .seq_show = rdt_mon_features_show,
1686 .fflags = RF_MON_INFO,
1687 },
1688 {
1689 .name = "num_rmids",
1690 .mode = 0444,
1691 .kf_ops = &rdtgroup_kf_single_ops,
1692 .seq_show = rdt_num_rmids_show,
1693 .fflags = RF_MON_INFO,
1694 },
1695 {
1696 .name = "cbm_mask",
1697 .mode = 0444,
1698 .kf_ops = &rdtgroup_kf_single_ops,
1699 .seq_show = rdt_default_ctrl_show,
1700 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1701 },
1702 {
1703 .name = "min_cbm_bits",
1704 .mode = 0444,
1705 .kf_ops = &rdtgroup_kf_single_ops,
1706 .seq_show = rdt_min_cbm_bits_show,
1707 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1708 },
1709 {
1710 .name = "shareable_bits",
1711 .mode = 0444,
1712 .kf_ops = &rdtgroup_kf_single_ops,
1713 .seq_show = rdt_shareable_bits_show,
1714 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1715 },
1716 {
1717 .name = "bit_usage",
1718 .mode = 0444,
1719 .kf_ops = &rdtgroup_kf_single_ops,
1720 .seq_show = rdt_bit_usage_show,
1721 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1722 },
1723 {
1724 .name = "min_bandwidth",
1725 .mode = 0444,
1726 .kf_ops = &rdtgroup_kf_single_ops,
1727 .seq_show = rdt_min_bw_show,
1728 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1729 },
1730 {
1731 .name = "bandwidth_gran",
1732 .mode = 0444,
1733 .kf_ops = &rdtgroup_kf_single_ops,
1734 .seq_show = rdt_bw_gran_show,
1735 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1736 },
1737 {
1738 .name = "delay_linear",
1739 .mode = 0444,
1740 .kf_ops = &rdtgroup_kf_single_ops,
1741 .seq_show = rdt_delay_linear_show,
1742 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1743 },
1744 /*
1745 * Platform specific which (if any) capabilities are provided by
1746 * thread_throttle_mode. Defer "fflags" initialization to platform
1747 * discovery.
1748 */
1749 {
1750 .name = "thread_throttle_mode",
1751 .mode = 0444,
1752 .kf_ops = &rdtgroup_kf_single_ops,
1753 .seq_show = rdt_thread_throttle_mode_show,
1754 },
1755 {
1756 .name = "max_threshold_occupancy",
1757 .mode = 0644,
1758 .kf_ops = &rdtgroup_kf_single_ops,
1759 .write = max_threshold_occ_write,
1760 .seq_show = max_threshold_occ_show,
1761 .fflags = RF_MON_INFO | RFTYPE_RES_CACHE,
1762 },
1763 {
1764 .name = "mbm_total_bytes_config",
1765 .mode = 0644,
1766 .kf_ops = &rdtgroup_kf_single_ops,
1767 .seq_show = mbm_total_bytes_config_show,
1768 .write = mbm_total_bytes_config_write,
1769 },
1770 {
1771 .name = "mbm_local_bytes_config",
1772 .mode = 0644,
1773 .kf_ops = &rdtgroup_kf_single_ops,
1774 .seq_show = mbm_local_bytes_config_show,
1775 .write = mbm_local_bytes_config_write,
1776 },
1777 {
1778 .name = "cpus",
1779 .mode = 0644,
1780 .kf_ops = &rdtgroup_kf_single_ops,
1781 .write = rdtgroup_cpus_write,
1782 .seq_show = rdtgroup_cpus_show,
1783 .fflags = RFTYPE_BASE,
1784 },
1785 {
1786 .name = "cpus_list",
1787 .mode = 0644,
1788 .kf_ops = &rdtgroup_kf_single_ops,
1789 .write = rdtgroup_cpus_write,
1790 .seq_show = rdtgroup_cpus_show,
1791 .flags = RFTYPE_FLAGS_CPUS_LIST,
1792 .fflags = RFTYPE_BASE,
1793 },
1794 {
1795 .name = "tasks",
1796 .mode = 0644,
1797 .kf_ops = &rdtgroup_kf_single_ops,
1798 .write = rdtgroup_tasks_write,
1799 .seq_show = rdtgroup_tasks_show,
1800 .fflags = RFTYPE_BASE,
1801 },
1802 {
1803 .name = "schemata",
1804 .mode = 0644,
1805 .kf_ops = &rdtgroup_kf_single_ops,
1806 .write = rdtgroup_schemata_write,
1807 .seq_show = rdtgroup_schemata_show,
1808 .fflags = RF_CTRL_BASE,
1809 },
1810 {
1811 .name = "mode",
1812 .mode = 0644,
1813 .kf_ops = &rdtgroup_kf_single_ops,
1814 .write = rdtgroup_mode_write,
1815 .seq_show = rdtgroup_mode_show,
1816 .fflags = RF_CTRL_BASE,
1817 },
1818 {
1819 .name = "size",
1820 .mode = 0444,
1821 .kf_ops = &rdtgroup_kf_single_ops,
1822 .seq_show = rdtgroup_size_show,
1823 .fflags = RF_CTRL_BASE,
1824 },
1825
1826 };
1827
rdtgroup_add_files(struct kernfs_node * kn,unsigned long fflags)1828 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1829 {
1830 struct rftype *rfts, *rft;
1831 int ret, len;
1832
1833 rfts = res_common_files;
1834 len = ARRAY_SIZE(res_common_files);
1835
1836 lockdep_assert_held(&rdtgroup_mutex);
1837
1838 for (rft = rfts; rft < rfts + len; rft++) {
1839 if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) {
1840 ret = rdtgroup_add_file(kn, rft);
1841 if (ret)
1842 goto error;
1843 }
1844 }
1845
1846 return 0;
1847 error:
1848 pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1849 while (--rft >= rfts) {
1850 if ((fflags & rft->fflags) == rft->fflags)
1851 kernfs_remove_by_name(kn, rft->name);
1852 }
1853 return ret;
1854 }
1855
rdtgroup_get_rftype_by_name(const char * name)1856 static struct rftype *rdtgroup_get_rftype_by_name(const char *name)
1857 {
1858 struct rftype *rfts, *rft;
1859 int len;
1860
1861 rfts = res_common_files;
1862 len = ARRAY_SIZE(res_common_files);
1863
1864 for (rft = rfts; rft < rfts + len; rft++) {
1865 if (!strcmp(rft->name, name))
1866 return rft;
1867 }
1868
1869 return NULL;
1870 }
1871
thread_throttle_mode_init(void)1872 void __init thread_throttle_mode_init(void)
1873 {
1874 struct rftype *rft;
1875
1876 rft = rdtgroup_get_rftype_by_name("thread_throttle_mode");
1877 if (!rft)
1878 return;
1879
1880 rft->fflags = RF_CTRL_INFO | RFTYPE_RES_MB;
1881 }
1882
mbm_config_rftype_init(const char * config)1883 void __init mbm_config_rftype_init(const char *config)
1884 {
1885 struct rftype *rft;
1886
1887 rft = rdtgroup_get_rftype_by_name(config);
1888 if (rft)
1889 rft->fflags = RF_MON_INFO | RFTYPE_RES_CACHE;
1890 }
1891
1892 /**
1893 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1894 * @r: The resource group with which the file is associated.
1895 * @name: Name of the file
1896 *
1897 * The permissions of named resctrl file, directory, or link are modified
1898 * to not allow read, write, or execute by any user.
1899 *
1900 * WARNING: This function is intended to communicate to the user that the
1901 * resctrl file has been locked down - that it is not relevant to the
1902 * particular state the system finds itself in. It should not be relied
1903 * on to protect from user access because after the file's permissions
1904 * are restricted the user can still change the permissions using chmod
1905 * from the command line.
1906 *
1907 * Return: 0 on success, <0 on failure.
1908 */
rdtgroup_kn_mode_restrict(struct rdtgroup * r,const char * name)1909 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1910 {
1911 struct iattr iattr = {.ia_valid = ATTR_MODE,};
1912 struct kernfs_node *kn;
1913 int ret = 0;
1914
1915 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1916 if (!kn)
1917 return -ENOENT;
1918
1919 switch (kernfs_type(kn)) {
1920 case KERNFS_DIR:
1921 iattr.ia_mode = S_IFDIR;
1922 break;
1923 case KERNFS_FILE:
1924 iattr.ia_mode = S_IFREG;
1925 break;
1926 case KERNFS_LINK:
1927 iattr.ia_mode = S_IFLNK;
1928 break;
1929 }
1930
1931 ret = kernfs_setattr(kn, &iattr);
1932 kernfs_put(kn);
1933 return ret;
1934 }
1935
1936 /**
1937 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1938 * @r: The resource group with which the file is associated.
1939 * @name: Name of the file
1940 * @mask: Mask of permissions that should be restored
1941 *
1942 * Restore the permissions of the named file. If @name is a directory the
1943 * permissions of its parent will be used.
1944 *
1945 * Return: 0 on success, <0 on failure.
1946 */
rdtgroup_kn_mode_restore(struct rdtgroup * r,const char * name,umode_t mask)1947 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1948 umode_t mask)
1949 {
1950 struct iattr iattr = {.ia_valid = ATTR_MODE,};
1951 struct kernfs_node *kn, *parent;
1952 struct rftype *rfts, *rft;
1953 int ret, len;
1954
1955 rfts = res_common_files;
1956 len = ARRAY_SIZE(res_common_files);
1957
1958 for (rft = rfts; rft < rfts + len; rft++) {
1959 if (!strcmp(rft->name, name))
1960 iattr.ia_mode = rft->mode & mask;
1961 }
1962
1963 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1964 if (!kn)
1965 return -ENOENT;
1966
1967 switch (kernfs_type(kn)) {
1968 case KERNFS_DIR:
1969 parent = kernfs_get_parent(kn);
1970 if (parent) {
1971 iattr.ia_mode |= parent->mode;
1972 kernfs_put(parent);
1973 }
1974 iattr.ia_mode |= S_IFDIR;
1975 break;
1976 case KERNFS_FILE:
1977 iattr.ia_mode |= S_IFREG;
1978 break;
1979 case KERNFS_LINK:
1980 iattr.ia_mode |= S_IFLNK;
1981 break;
1982 }
1983
1984 ret = kernfs_setattr(kn, &iattr);
1985 kernfs_put(kn);
1986 return ret;
1987 }
1988
rdtgroup_mkdir_info_resdir(void * priv,char * name,unsigned long fflags)1989 static int rdtgroup_mkdir_info_resdir(void *priv, char *name,
1990 unsigned long fflags)
1991 {
1992 struct kernfs_node *kn_subdir;
1993 int ret;
1994
1995 kn_subdir = kernfs_create_dir(kn_info, name,
1996 kn_info->mode, priv);
1997 if (IS_ERR(kn_subdir))
1998 return PTR_ERR(kn_subdir);
1999
2000 ret = rdtgroup_kn_set_ugid(kn_subdir);
2001 if (ret)
2002 return ret;
2003
2004 ret = rdtgroup_add_files(kn_subdir, fflags);
2005 if (!ret)
2006 kernfs_activate(kn_subdir);
2007
2008 return ret;
2009 }
2010
rdtgroup_create_info_dir(struct kernfs_node * parent_kn)2011 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
2012 {
2013 struct resctrl_schema *s;
2014 struct rdt_resource *r;
2015 unsigned long fflags;
2016 char name[32];
2017 int ret;
2018
2019 /* create the directory */
2020 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
2021 if (IS_ERR(kn_info))
2022 return PTR_ERR(kn_info);
2023
2024 ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
2025 if (ret)
2026 goto out_destroy;
2027
2028 /* loop over enabled controls, these are all alloc_capable */
2029 list_for_each_entry(s, &resctrl_schema_all, list) {
2030 r = s->res;
2031 fflags = r->fflags | RF_CTRL_INFO;
2032 ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags);
2033 if (ret)
2034 goto out_destroy;
2035 }
2036
2037 for_each_mon_capable_rdt_resource(r) {
2038 fflags = r->fflags | RF_MON_INFO;
2039 sprintf(name, "%s_MON", r->name);
2040 ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
2041 if (ret)
2042 goto out_destroy;
2043 }
2044
2045 ret = rdtgroup_kn_set_ugid(kn_info);
2046 if (ret)
2047 goto out_destroy;
2048
2049 kernfs_activate(kn_info);
2050
2051 return 0;
2052
2053 out_destroy:
2054 kernfs_remove(kn_info);
2055 return ret;
2056 }
2057
2058 static int
mongroup_create_dir(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,char * name,struct kernfs_node ** dest_kn)2059 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
2060 char *name, struct kernfs_node **dest_kn)
2061 {
2062 struct kernfs_node *kn;
2063 int ret;
2064
2065 /* create the directory */
2066 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2067 if (IS_ERR(kn))
2068 return PTR_ERR(kn);
2069
2070 if (dest_kn)
2071 *dest_kn = kn;
2072
2073 ret = rdtgroup_kn_set_ugid(kn);
2074 if (ret)
2075 goto out_destroy;
2076
2077 kernfs_activate(kn);
2078
2079 return 0;
2080
2081 out_destroy:
2082 kernfs_remove(kn);
2083 return ret;
2084 }
2085
l3_qos_cfg_update(void * arg)2086 static void l3_qos_cfg_update(void *arg)
2087 {
2088 bool *enable = arg;
2089
2090 wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
2091 }
2092
l2_qos_cfg_update(void * arg)2093 static void l2_qos_cfg_update(void *arg)
2094 {
2095 bool *enable = arg;
2096
2097 wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
2098 }
2099
is_mba_linear(void)2100 static inline bool is_mba_linear(void)
2101 {
2102 return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.delay_linear;
2103 }
2104
set_cache_qos_cfg(int level,bool enable)2105 static int set_cache_qos_cfg(int level, bool enable)
2106 {
2107 void (*update)(void *arg);
2108 struct rdt_resource *r_l;
2109 cpumask_var_t cpu_mask;
2110 struct rdt_domain *d;
2111 int cpu;
2112
2113 if (level == RDT_RESOURCE_L3)
2114 update = l3_qos_cfg_update;
2115 else if (level == RDT_RESOURCE_L2)
2116 update = l2_qos_cfg_update;
2117 else
2118 return -EINVAL;
2119
2120 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2121 return -ENOMEM;
2122
2123 r_l = &rdt_resources_all[level].r_resctrl;
2124 list_for_each_entry(d, &r_l->domains, list) {
2125 if (r_l->cache.arch_has_per_cpu_cfg)
2126 /* Pick all the CPUs in the domain instance */
2127 for_each_cpu(cpu, &d->cpu_mask)
2128 cpumask_set_cpu(cpu, cpu_mask);
2129 else
2130 /* Pick one CPU from each domain instance to update MSR */
2131 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2132 }
2133
2134 /* Update QOS_CFG MSR on all the CPUs in cpu_mask */
2135 on_each_cpu_mask(cpu_mask, update, &enable, 1);
2136
2137 free_cpumask_var(cpu_mask);
2138
2139 return 0;
2140 }
2141
2142 /* Restore the qos cfg state when a domain comes online */
rdt_domain_reconfigure_cdp(struct rdt_resource * r)2143 void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
2144 {
2145 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2146
2147 if (!r->cdp_capable)
2148 return;
2149
2150 if (r->rid == RDT_RESOURCE_L2)
2151 l2_qos_cfg_update(&hw_res->cdp_enabled);
2152
2153 if (r->rid == RDT_RESOURCE_L3)
2154 l3_qos_cfg_update(&hw_res->cdp_enabled);
2155 }
2156
mba_sc_domain_allocate(struct rdt_resource * r,struct rdt_domain * d)2157 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_domain *d)
2158 {
2159 u32 num_closid = resctrl_arch_get_num_closid(r);
2160 int cpu = cpumask_any(&d->cpu_mask);
2161 int i;
2162
2163 d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val),
2164 GFP_KERNEL, cpu_to_node(cpu));
2165 if (!d->mbps_val)
2166 return -ENOMEM;
2167
2168 for (i = 0; i < num_closid; i++)
2169 d->mbps_val[i] = MBA_MAX_MBPS;
2170
2171 return 0;
2172 }
2173
mba_sc_domain_destroy(struct rdt_resource * r,struct rdt_domain * d)2174 static void mba_sc_domain_destroy(struct rdt_resource *r,
2175 struct rdt_domain *d)
2176 {
2177 kfree(d->mbps_val);
2178 d->mbps_val = NULL;
2179 }
2180
2181 /*
2182 * MBA software controller is supported only if
2183 * MBM is supported and MBA is in linear scale.
2184 */
supports_mba_mbps(void)2185 static bool supports_mba_mbps(void)
2186 {
2187 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
2188
2189 return (is_mbm_local_enabled() &&
2190 r->alloc_capable && is_mba_linear());
2191 }
2192
2193 /*
2194 * Enable or disable the MBA software controller
2195 * which helps user specify bandwidth in MBps.
2196 */
set_mba_sc(bool mba_sc)2197 static int set_mba_sc(bool mba_sc)
2198 {
2199 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
2200 u32 num_closid = resctrl_arch_get_num_closid(r);
2201 struct rdt_domain *d;
2202 int i;
2203
2204 if (!supports_mba_mbps() || mba_sc == is_mba_sc(r))
2205 return -EINVAL;
2206
2207 r->membw.mba_sc = mba_sc;
2208
2209 list_for_each_entry(d, &r->domains, list) {
2210 for (i = 0; i < num_closid; i++)
2211 d->mbps_val[i] = MBA_MAX_MBPS;
2212 }
2213
2214 return 0;
2215 }
2216
cdp_enable(int level)2217 static int cdp_enable(int level)
2218 {
2219 struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl;
2220 int ret;
2221
2222 if (!r_l->alloc_capable)
2223 return -EINVAL;
2224
2225 ret = set_cache_qos_cfg(level, true);
2226 if (!ret)
2227 rdt_resources_all[level].cdp_enabled = true;
2228
2229 return ret;
2230 }
2231
cdp_disable(int level)2232 static void cdp_disable(int level)
2233 {
2234 struct rdt_hw_resource *r_hw = &rdt_resources_all[level];
2235
2236 if (r_hw->cdp_enabled) {
2237 set_cache_qos_cfg(level, false);
2238 r_hw->cdp_enabled = false;
2239 }
2240 }
2241
resctrl_arch_set_cdp_enabled(enum resctrl_res_level l,bool enable)2242 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable)
2243 {
2244 struct rdt_hw_resource *hw_res = &rdt_resources_all[l];
2245
2246 if (!hw_res->r_resctrl.cdp_capable)
2247 return -EINVAL;
2248
2249 if (enable)
2250 return cdp_enable(l);
2251
2252 cdp_disable(l);
2253
2254 return 0;
2255 }
2256
cdp_disable_all(void)2257 static void cdp_disable_all(void)
2258 {
2259 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
2260 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2261 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
2262 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2263 }
2264
2265 /*
2266 * We don't allow rdtgroup directories to be created anywhere
2267 * except the root directory. Thus when looking for the rdtgroup
2268 * structure for a kernfs node we are either looking at a directory,
2269 * in which case the rdtgroup structure is pointed at by the "priv"
2270 * field, otherwise we have a file, and need only look to the parent
2271 * to find the rdtgroup.
2272 */
kernfs_to_rdtgroup(struct kernfs_node * kn)2273 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
2274 {
2275 if (kernfs_type(kn) == KERNFS_DIR) {
2276 /*
2277 * All the resource directories use "kn->priv"
2278 * to point to the "struct rdtgroup" for the
2279 * resource. "info" and its subdirectories don't
2280 * have rdtgroup structures, so return NULL here.
2281 */
2282 if (kn == kn_info || kn->parent == kn_info)
2283 return NULL;
2284 else
2285 return kn->priv;
2286 } else {
2287 return kn->parent->priv;
2288 }
2289 }
2290
rdtgroup_kn_lock_live(struct kernfs_node * kn)2291 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
2292 {
2293 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2294
2295 if (!rdtgrp)
2296 return NULL;
2297
2298 atomic_inc(&rdtgrp->waitcount);
2299 kernfs_break_active_protection(kn);
2300
2301 mutex_lock(&rdtgroup_mutex);
2302
2303 /* Was this group deleted while we waited? */
2304 if (rdtgrp->flags & RDT_DELETED)
2305 return NULL;
2306
2307 return rdtgrp;
2308 }
2309
rdtgroup_kn_unlock(struct kernfs_node * kn)2310 void rdtgroup_kn_unlock(struct kernfs_node *kn)
2311 {
2312 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2313
2314 if (!rdtgrp)
2315 return;
2316
2317 mutex_unlock(&rdtgroup_mutex);
2318
2319 if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2320 (rdtgrp->flags & RDT_DELETED)) {
2321 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2322 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2323 rdtgroup_pseudo_lock_remove(rdtgrp);
2324 kernfs_unbreak_active_protection(kn);
2325 rdtgroup_remove(rdtgrp);
2326 } else {
2327 kernfs_unbreak_active_protection(kn);
2328 }
2329 }
2330
2331 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2332 struct rdtgroup *prgrp,
2333 struct kernfs_node **mon_data_kn);
2334
rdt_enable_ctx(struct rdt_fs_context * ctx)2335 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2336 {
2337 int ret = 0;
2338
2339 if (ctx->enable_cdpl2)
2340 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true);
2341
2342 if (!ret && ctx->enable_cdpl3)
2343 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true);
2344
2345 if (!ret && ctx->enable_mba_mbps)
2346 ret = set_mba_sc(true);
2347
2348 return ret;
2349 }
2350
schemata_list_add(struct rdt_resource * r,enum resctrl_conf_type type)2351 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type)
2352 {
2353 struct resctrl_schema *s;
2354 const char *suffix = "";
2355 int ret, cl;
2356
2357 s = kzalloc(sizeof(*s), GFP_KERNEL);
2358 if (!s)
2359 return -ENOMEM;
2360
2361 s->res = r;
2362 s->num_closid = resctrl_arch_get_num_closid(r);
2363 if (resctrl_arch_get_cdp_enabled(r->rid))
2364 s->num_closid /= 2;
2365
2366 s->conf_type = type;
2367 switch (type) {
2368 case CDP_CODE:
2369 suffix = "CODE";
2370 break;
2371 case CDP_DATA:
2372 suffix = "DATA";
2373 break;
2374 case CDP_NONE:
2375 suffix = "";
2376 break;
2377 }
2378
2379 ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix);
2380 if (ret >= sizeof(s->name)) {
2381 kfree(s);
2382 return -EINVAL;
2383 }
2384
2385 cl = strlen(s->name);
2386
2387 /*
2388 * If CDP is supported by this resource, but not enabled,
2389 * include the suffix. This ensures the tabular format of the
2390 * schemata file does not change between mounts of the filesystem.
2391 */
2392 if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid))
2393 cl += 4;
2394
2395 if (cl > max_name_width)
2396 max_name_width = cl;
2397
2398 INIT_LIST_HEAD(&s->list);
2399 list_add(&s->list, &resctrl_schema_all);
2400
2401 return 0;
2402 }
2403
schemata_list_create(void)2404 static int schemata_list_create(void)
2405 {
2406 struct rdt_resource *r;
2407 int ret = 0;
2408
2409 for_each_alloc_capable_rdt_resource(r) {
2410 if (resctrl_arch_get_cdp_enabled(r->rid)) {
2411 ret = schemata_list_add(r, CDP_CODE);
2412 if (ret)
2413 break;
2414
2415 ret = schemata_list_add(r, CDP_DATA);
2416 } else {
2417 ret = schemata_list_add(r, CDP_NONE);
2418 }
2419
2420 if (ret)
2421 break;
2422 }
2423
2424 return ret;
2425 }
2426
schemata_list_destroy(void)2427 static void schemata_list_destroy(void)
2428 {
2429 struct resctrl_schema *s, *tmp;
2430
2431 list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) {
2432 list_del(&s->list);
2433 kfree(s);
2434 }
2435 }
2436
rdt_get_tree(struct fs_context * fc)2437 static int rdt_get_tree(struct fs_context *fc)
2438 {
2439 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2440 struct rdt_domain *dom;
2441 struct rdt_resource *r;
2442 int ret;
2443
2444 cpus_read_lock();
2445 mutex_lock(&rdtgroup_mutex);
2446 /*
2447 * resctrl file system can only be mounted once.
2448 */
2449 if (static_branch_unlikely(&rdt_enable_key)) {
2450 ret = -EBUSY;
2451 goto out;
2452 }
2453
2454 ret = rdt_enable_ctx(ctx);
2455 if (ret < 0)
2456 goto out_cdp;
2457
2458 ret = schemata_list_create();
2459 if (ret) {
2460 schemata_list_destroy();
2461 goto out_mba;
2462 }
2463
2464 closid_init();
2465
2466 ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2467 if (ret < 0)
2468 goto out_schemata_free;
2469
2470 if (rdt_mon_capable) {
2471 ret = mongroup_create_dir(rdtgroup_default.kn,
2472 &rdtgroup_default, "mon_groups",
2473 &kn_mongrp);
2474 if (ret < 0)
2475 goto out_info;
2476
2477 ret = mkdir_mondata_all(rdtgroup_default.kn,
2478 &rdtgroup_default, &kn_mondata);
2479 if (ret < 0)
2480 goto out_mongrp;
2481 rdtgroup_default.mon.mon_data_kn = kn_mondata;
2482 }
2483
2484 ret = rdt_pseudo_lock_init();
2485 if (ret)
2486 goto out_mondata;
2487
2488 ret = kernfs_get_tree(fc);
2489 if (ret < 0)
2490 goto out_psl;
2491
2492 if (rdt_alloc_capable)
2493 static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
2494 if (rdt_mon_capable)
2495 static_branch_enable_cpuslocked(&rdt_mon_enable_key);
2496
2497 if (rdt_alloc_capable || rdt_mon_capable)
2498 static_branch_enable_cpuslocked(&rdt_enable_key);
2499
2500 if (is_mbm_enabled()) {
2501 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
2502 list_for_each_entry(dom, &r->domains, list)
2503 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2504 }
2505
2506 goto out;
2507
2508 out_psl:
2509 rdt_pseudo_lock_release();
2510 out_mondata:
2511 if (rdt_mon_capable)
2512 kernfs_remove(kn_mondata);
2513 out_mongrp:
2514 if (rdt_mon_capable)
2515 kernfs_remove(kn_mongrp);
2516 out_info:
2517 kernfs_remove(kn_info);
2518 out_schemata_free:
2519 schemata_list_destroy();
2520 out_mba:
2521 if (ctx->enable_mba_mbps)
2522 set_mba_sc(false);
2523 out_cdp:
2524 cdp_disable_all();
2525 out:
2526 rdt_last_cmd_clear();
2527 mutex_unlock(&rdtgroup_mutex);
2528 cpus_read_unlock();
2529 return ret;
2530 }
2531
2532 enum rdt_param {
2533 Opt_cdp,
2534 Opt_cdpl2,
2535 Opt_mba_mbps,
2536 nr__rdt_params
2537 };
2538
2539 static const struct fs_parameter_spec rdt_fs_parameters[] = {
2540 fsparam_flag("cdp", Opt_cdp),
2541 fsparam_flag("cdpl2", Opt_cdpl2),
2542 fsparam_flag("mba_MBps", Opt_mba_mbps),
2543 {}
2544 };
2545
rdt_parse_param(struct fs_context * fc,struct fs_parameter * param)2546 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2547 {
2548 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2549 struct fs_parse_result result;
2550 int opt;
2551
2552 opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2553 if (opt < 0)
2554 return opt;
2555
2556 switch (opt) {
2557 case Opt_cdp:
2558 ctx->enable_cdpl3 = true;
2559 return 0;
2560 case Opt_cdpl2:
2561 ctx->enable_cdpl2 = true;
2562 return 0;
2563 case Opt_mba_mbps:
2564 if (!supports_mba_mbps())
2565 return -EINVAL;
2566 ctx->enable_mba_mbps = true;
2567 return 0;
2568 }
2569
2570 return -EINVAL;
2571 }
2572
rdt_fs_context_free(struct fs_context * fc)2573 static void rdt_fs_context_free(struct fs_context *fc)
2574 {
2575 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2576
2577 kernfs_free_fs_context(fc);
2578 kfree(ctx);
2579 }
2580
2581 static const struct fs_context_operations rdt_fs_context_ops = {
2582 .free = rdt_fs_context_free,
2583 .parse_param = rdt_parse_param,
2584 .get_tree = rdt_get_tree,
2585 };
2586
rdt_init_fs_context(struct fs_context * fc)2587 static int rdt_init_fs_context(struct fs_context *fc)
2588 {
2589 struct rdt_fs_context *ctx;
2590
2591 ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2592 if (!ctx)
2593 return -ENOMEM;
2594
2595 ctx->kfc.root = rdt_root;
2596 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2597 fc->fs_private = &ctx->kfc;
2598 fc->ops = &rdt_fs_context_ops;
2599 put_user_ns(fc->user_ns);
2600 fc->user_ns = get_user_ns(&init_user_ns);
2601 fc->global = true;
2602 return 0;
2603 }
2604
reset_all_ctrls(struct rdt_resource * r)2605 static int reset_all_ctrls(struct rdt_resource *r)
2606 {
2607 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2608 struct rdt_hw_domain *hw_dom;
2609 struct msr_param msr_param;
2610 cpumask_var_t cpu_mask;
2611 struct rdt_domain *d;
2612 int i;
2613
2614 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2615 return -ENOMEM;
2616
2617 msr_param.res = r;
2618 msr_param.low = 0;
2619 msr_param.high = hw_res->num_closid;
2620
2621 /*
2622 * Disable resource control for this resource by setting all
2623 * CBMs in all domains to the maximum mask value. Pick one CPU
2624 * from each domain to update the MSRs below.
2625 */
2626 list_for_each_entry(d, &r->domains, list) {
2627 hw_dom = resctrl_to_arch_dom(d);
2628 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2629
2630 for (i = 0; i < hw_res->num_closid; i++)
2631 hw_dom->ctrl_val[i] = r->default_ctrl;
2632 }
2633
2634 /* Update CBM on all the CPUs in cpu_mask */
2635 on_each_cpu_mask(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2636
2637 free_cpumask_var(cpu_mask);
2638
2639 return 0;
2640 }
2641
2642 /*
2643 * Move tasks from one to the other group. If @from is NULL, then all tasks
2644 * in the systems are moved unconditionally (used for teardown).
2645 *
2646 * If @mask is not NULL the cpus on which moved tasks are running are set
2647 * in that mask so the update smp function call is restricted to affected
2648 * cpus.
2649 */
rdt_move_group_tasks(struct rdtgroup * from,struct rdtgroup * to,struct cpumask * mask)2650 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2651 struct cpumask *mask)
2652 {
2653 struct task_struct *p, *t;
2654
2655 read_lock(&tasklist_lock);
2656 for_each_process_thread(p, t) {
2657 if (!from || is_closid_match(t, from) ||
2658 is_rmid_match(t, from)) {
2659 WRITE_ONCE(t->closid, to->closid);
2660 WRITE_ONCE(t->rmid, to->mon.rmid);
2661
2662 /*
2663 * Order the closid/rmid stores above before the loads
2664 * in task_curr(). This pairs with the full barrier
2665 * between the rq->curr update and resctrl_sched_in()
2666 * during context switch.
2667 */
2668 smp_mb();
2669
2670 /*
2671 * If the task is on a CPU, set the CPU in the mask.
2672 * The detection is inaccurate as tasks might move or
2673 * schedule before the smp function call takes place.
2674 * In such a case the function call is pointless, but
2675 * there is no other side effect.
2676 */
2677 if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t))
2678 cpumask_set_cpu(task_cpu(t), mask);
2679 }
2680 }
2681 read_unlock(&tasklist_lock);
2682 }
2683
free_all_child_rdtgrp(struct rdtgroup * rdtgrp)2684 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2685 {
2686 struct rdtgroup *sentry, *stmp;
2687 struct list_head *head;
2688
2689 head = &rdtgrp->mon.crdtgrp_list;
2690 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2691 free_rmid(sentry->mon.rmid);
2692 list_del(&sentry->mon.crdtgrp_list);
2693
2694 if (atomic_read(&sentry->waitcount) != 0)
2695 sentry->flags = RDT_DELETED;
2696 else
2697 rdtgroup_remove(sentry);
2698 }
2699 }
2700
2701 /*
2702 * Forcibly remove all of subdirectories under root.
2703 */
rmdir_all_sub(void)2704 static void rmdir_all_sub(void)
2705 {
2706 struct rdtgroup *rdtgrp, *tmp;
2707
2708 /* Move all tasks to the default resource group */
2709 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2710
2711 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2712 /* Free any child rmids */
2713 free_all_child_rdtgrp(rdtgrp);
2714
2715 /* Remove each rdtgroup other than root */
2716 if (rdtgrp == &rdtgroup_default)
2717 continue;
2718
2719 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2720 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2721 rdtgroup_pseudo_lock_remove(rdtgrp);
2722
2723 /*
2724 * Give any CPUs back to the default group. We cannot copy
2725 * cpu_online_mask because a CPU might have executed the
2726 * offline callback already, but is still marked online.
2727 */
2728 cpumask_or(&rdtgroup_default.cpu_mask,
2729 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2730
2731 free_rmid(rdtgrp->mon.rmid);
2732
2733 kernfs_remove(rdtgrp->kn);
2734 list_del(&rdtgrp->rdtgroup_list);
2735
2736 if (atomic_read(&rdtgrp->waitcount) != 0)
2737 rdtgrp->flags = RDT_DELETED;
2738 else
2739 rdtgroup_remove(rdtgrp);
2740 }
2741 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2742 update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2743
2744 kernfs_remove(kn_info);
2745 kernfs_remove(kn_mongrp);
2746 kernfs_remove(kn_mondata);
2747 }
2748
rdt_kill_sb(struct super_block * sb)2749 static void rdt_kill_sb(struct super_block *sb)
2750 {
2751 struct rdt_resource *r;
2752
2753 cpus_read_lock();
2754 mutex_lock(&rdtgroup_mutex);
2755
2756 set_mba_sc(false);
2757
2758 /*Put everything back to default values. */
2759 for_each_alloc_capable_rdt_resource(r)
2760 reset_all_ctrls(r);
2761 cdp_disable_all();
2762 rmdir_all_sub();
2763 rdt_pseudo_lock_release();
2764 rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2765 schemata_list_destroy();
2766 static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2767 static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2768 static_branch_disable_cpuslocked(&rdt_enable_key);
2769 kernfs_kill_sb(sb);
2770 mutex_unlock(&rdtgroup_mutex);
2771 cpus_read_unlock();
2772 }
2773
2774 static struct file_system_type rdt_fs_type = {
2775 .name = "resctrl",
2776 .init_fs_context = rdt_init_fs_context,
2777 .parameters = rdt_fs_parameters,
2778 .kill_sb = rdt_kill_sb,
2779 };
2780
mon_addfile(struct kernfs_node * parent_kn,const char * name,void * priv)2781 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2782 void *priv)
2783 {
2784 struct kernfs_node *kn;
2785 int ret = 0;
2786
2787 kn = __kernfs_create_file(parent_kn, name, 0444,
2788 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2789 &kf_mondata_ops, priv, NULL, NULL);
2790 if (IS_ERR(kn))
2791 return PTR_ERR(kn);
2792
2793 ret = rdtgroup_kn_set_ugid(kn);
2794 if (ret) {
2795 kernfs_remove(kn);
2796 return ret;
2797 }
2798
2799 return ret;
2800 }
2801
2802 /*
2803 * Remove all subdirectories of mon_data of ctrl_mon groups
2804 * and monitor groups with given domain id.
2805 */
rmdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,unsigned int dom_id)2806 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2807 unsigned int dom_id)
2808 {
2809 struct rdtgroup *prgrp, *crgrp;
2810 char name[32];
2811
2812 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2813 sprintf(name, "mon_%s_%02d", r->name, dom_id);
2814 kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2815
2816 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2817 kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2818 }
2819 }
2820
mkdir_mondata_subdir(struct kernfs_node * parent_kn,struct rdt_domain * d,struct rdt_resource * r,struct rdtgroup * prgrp)2821 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2822 struct rdt_domain *d,
2823 struct rdt_resource *r, struct rdtgroup *prgrp)
2824 {
2825 union mon_data_bits priv;
2826 struct kernfs_node *kn;
2827 struct mon_evt *mevt;
2828 struct rmid_read rr;
2829 char name[32];
2830 int ret;
2831
2832 sprintf(name, "mon_%s_%02d", r->name, d->id);
2833 /* create the directory */
2834 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2835 if (IS_ERR(kn))
2836 return PTR_ERR(kn);
2837
2838 ret = rdtgroup_kn_set_ugid(kn);
2839 if (ret)
2840 goto out_destroy;
2841
2842 if (WARN_ON(list_empty(&r->evt_list))) {
2843 ret = -EPERM;
2844 goto out_destroy;
2845 }
2846
2847 priv.u.rid = r->rid;
2848 priv.u.domid = d->id;
2849 list_for_each_entry(mevt, &r->evt_list, list) {
2850 priv.u.evtid = mevt->evtid;
2851 ret = mon_addfile(kn, mevt->name, priv.priv);
2852 if (ret)
2853 goto out_destroy;
2854
2855 if (is_mbm_event(mevt->evtid))
2856 mon_event_read(&rr, r, d, prgrp, mevt->evtid, true);
2857 }
2858 kernfs_activate(kn);
2859 return 0;
2860
2861 out_destroy:
2862 kernfs_remove(kn);
2863 return ret;
2864 }
2865
2866 /*
2867 * Add all subdirectories of mon_data for "ctrl_mon" groups
2868 * and "monitor" groups with given domain id.
2869 */
mkdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,struct rdt_domain * d)2870 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2871 struct rdt_domain *d)
2872 {
2873 struct kernfs_node *parent_kn;
2874 struct rdtgroup *prgrp, *crgrp;
2875 struct list_head *head;
2876
2877 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2878 parent_kn = prgrp->mon.mon_data_kn;
2879 mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2880
2881 head = &prgrp->mon.crdtgrp_list;
2882 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2883 parent_kn = crgrp->mon.mon_data_kn;
2884 mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2885 }
2886 }
2887 }
2888
mkdir_mondata_subdir_alldom(struct kernfs_node * parent_kn,struct rdt_resource * r,struct rdtgroup * prgrp)2889 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2890 struct rdt_resource *r,
2891 struct rdtgroup *prgrp)
2892 {
2893 struct rdt_domain *dom;
2894 int ret;
2895
2896 list_for_each_entry(dom, &r->domains, list) {
2897 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2898 if (ret)
2899 return ret;
2900 }
2901
2902 return 0;
2903 }
2904
2905 /*
2906 * This creates a directory mon_data which contains the monitored data.
2907 *
2908 * mon_data has one directory for each domain which are named
2909 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2910 * with L3 domain looks as below:
2911 * ./mon_data:
2912 * mon_L3_00
2913 * mon_L3_01
2914 * mon_L3_02
2915 * ...
2916 *
2917 * Each domain directory has one file per event:
2918 * ./mon_L3_00/:
2919 * llc_occupancy
2920 *
2921 */
mkdir_mondata_all(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,struct kernfs_node ** dest_kn)2922 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2923 struct rdtgroup *prgrp,
2924 struct kernfs_node **dest_kn)
2925 {
2926 struct rdt_resource *r;
2927 struct kernfs_node *kn;
2928 int ret;
2929
2930 /*
2931 * Create the mon_data directory first.
2932 */
2933 ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
2934 if (ret)
2935 return ret;
2936
2937 if (dest_kn)
2938 *dest_kn = kn;
2939
2940 /*
2941 * Create the subdirectories for each domain. Note that all events
2942 * in a domain like L3 are grouped into a resource whose domain is L3
2943 */
2944 for_each_mon_capable_rdt_resource(r) {
2945 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2946 if (ret)
2947 goto out_destroy;
2948 }
2949
2950 return 0;
2951
2952 out_destroy:
2953 kernfs_remove(kn);
2954 return ret;
2955 }
2956
2957 /**
2958 * cbm_ensure_valid - Enforce validity on provided CBM
2959 * @_val: Candidate CBM
2960 * @r: RDT resource to which the CBM belongs
2961 *
2962 * The provided CBM represents all cache portions available for use. This
2963 * may be represented by a bitmap that does not consist of contiguous ones
2964 * and thus be an invalid CBM.
2965 * Here the provided CBM is forced to be a valid CBM by only considering
2966 * the first set of contiguous bits as valid and clearing all bits.
2967 * The intention here is to provide a valid default CBM with which a new
2968 * resource group is initialized. The user can follow this with a
2969 * modification to the CBM if the default does not satisfy the
2970 * requirements.
2971 */
cbm_ensure_valid(u32 _val,struct rdt_resource * r)2972 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
2973 {
2974 unsigned int cbm_len = r->cache.cbm_len;
2975 unsigned long first_bit, zero_bit;
2976 unsigned long val = _val;
2977
2978 if (!val)
2979 return 0;
2980
2981 first_bit = find_first_bit(&val, cbm_len);
2982 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
2983
2984 /* Clear any remaining bits to ensure contiguous region */
2985 bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
2986 return (u32)val;
2987 }
2988
2989 /*
2990 * Initialize cache resources per RDT domain
2991 *
2992 * Set the RDT domain up to start off with all usable allocations. That is,
2993 * all shareable and unused bits. All-zero CBM is invalid.
2994 */
__init_one_rdt_domain(struct rdt_domain * d,struct resctrl_schema * s,u32 closid)2995 static int __init_one_rdt_domain(struct rdt_domain *d, struct resctrl_schema *s,
2996 u32 closid)
2997 {
2998 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
2999 enum resctrl_conf_type t = s->conf_type;
3000 struct resctrl_staged_config *cfg;
3001 struct rdt_resource *r = s->res;
3002 u32 used_b = 0, unused_b = 0;
3003 unsigned long tmp_cbm;
3004 enum rdtgrp_mode mode;
3005 u32 peer_ctl, ctrl_val;
3006 int i;
3007
3008 cfg = &d->staged_config[t];
3009 cfg->have_new_ctrl = false;
3010 cfg->new_ctrl = r->cache.shareable_bits;
3011 used_b = r->cache.shareable_bits;
3012 for (i = 0; i < closids_supported(); i++) {
3013 if (closid_allocated(i) && i != closid) {
3014 mode = rdtgroup_mode_by_closid(i);
3015 if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
3016 /*
3017 * ctrl values for locksetup aren't relevant
3018 * until the schemata is written, and the mode
3019 * becomes RDT_MODE_PSEUDO_LOCKED.
3020 */
3021 continue;
3022 /*
3023 * If CDP is active include peer domain's
3024 * usage to ensure there is no overlap
3025 * with an exclusive group.
3026 */
3027 if (resctrl_arch_get_cdp_enabled(r->rid))
3028 peer_ctl = resctrl_arch_get_config(r, d, i,
3029 peer_type);
3030 else
3031 peer_ctl = 0;
3032 ctrl_val = resctrl_arch_get_config(r, d, i,
3033 s->conf_type);
3034 used_b |= ctrl_val | peer_ctl;
3035 if (mode == RDT_MODE_SHAREABLE)
3036 cfg->new_ctrl |= ctrl_val | peer_ctl;
3037 }
3038 }
3039 if (d->plr && d->plr->cbm > 0)
3040 used_b |= d->plr->cbm;
3041 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
3042 unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
3043 cfg->new_ctrl |= unused_b;
3044 /*
3045 * Force the initial CBM to be valid, user can
3046 * modify the CBM based on system availability.
3047 */
3048 cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r);
3049 /*
3050 * Assign the u32 CBM to an unsigned long to ensure that
3051 * bitmap_weight() does not access out-of-bound memory.
3052 */
3053 tmp_cbm = cfg->new_ctrl;
3054 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
3055 rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->id);
3056 return -ENOSPC;
3057 }
3058 cfg->have_new_ctrl = true;
3059
3060 return 0;
3061 }
3062
3063 /*
3064 * Initialize cache resources with default values.
3065 *
3066 * A new RDT group is being created on an allocation capable (CAT)
3067 * supporting system. Set this group up to start off with all usable
3068 * allocations.
3069 *
3070 * If there are no more shareable bits available on any domain then
3071 * the entire allocation will fail.
3072 */
rdtgroup_init_cat(struct resctrl_schema * s,u32 closid)3073 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid)
3074 {
3075 struct rdt_domain *d;
3076 int ret;
3077
3078 list_for_each_entry(d, &s->res->domains, list) {
3079 ret = __init_one_rdt_domain(d, s, closid);
3080 if (ret < 0)
3081 return ret;
3082 }
3083
3084 return 0;
3085 }
3086
3087 /* Initialize MBA resource with default values. */
rdtgroup_init_mba(struct rdt_resource * r,u32 closid)3088 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid)
3089 {
3090 struct resctrl_staged_config *cfg;
3091 struct rdt_domain *d;
3092
3093 list_for_each_entry(d, &r->domains, list) {
3094 if (is_mba_sc(r)) {
3095 d->mbps_val[closid] = MBA_MAX_MBPS;
3096 continue;
3097 }
3098
3099 cfg = &d->staged_config[CDP_NONE];
3100 cfg->new_ctrl = r->default_ctrl;
3101 cfg->have_new_ctrl = true;
3102 }
3103 }
3104
3105 /* Initialize the RDT group's allocations. */
rdtgroup_init_alloc(struct rdtgroup * rdtgrp)3106 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
3107 {
3108 struct resctrl_schema *s;
3109 struct rdt_resource *r;
3110 int ret;
3111
3112 list_for_each_entry(s, &resctrl_schema_all, list) {
3113 r = s->res;
3114 if (r->rid == RDT_RESOURCE_MBA ||
3115 r->rid == RDT_RESOURCE_SMBA) {
3116 rdtgroup_init_mba(r, rdtgrp->closid);
3117 if (is_mba_sc(r))
3118 continue;
3119 } else {
3120 ret = rdtgroup_init_cat(s, rdtgrp->closid);
3121 if (ret < 0)
3122 return ret;
3123 }
3124
3125 ret = resctrl_arch_update_domains(r, rdtgrp->closid);
3126 if (ret < 0) {
3127 rdt_last_cmd_puts("Failed to initialize allocations\n");
3128 return ret;
3129 }
3130
3131 }
3132
3133 rdtgrp->mode = RDT_MODE_SHAREABLE;
3134
3135 return 0;
3136 }
3137
mkdir_rdt_prepare(struct kernfs_node * parent_kn,const char * name,umode_t mode,enum rdt_group_type rtype,struct rdtgroup ** r)3138 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
3139 const char *name, umode_t mode,
3140 enum rdt_group_type rtype, struct rdtgroup **r)
3141 {
3142 struct rdtgroup *prdtgrp, *rdtgrp;
3143 struct kernfs_node *kn;
3144 uint files = 0;
3145 int ret;
3146
3147 prdtgrp = rdtgroup_kn_lock_live(parent_kn);
3148 if (!prdtgrp) {
3149 ret = -ENODEV;
3150 goto out_unlock;
3151 }
3152
3153 if (rtype == RDTMON_GROUP &&
3154 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3155 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
3156 ret = -EINVAL;
3157 rdt_last_cmd_puts("Pseudo-locking in progress\n");
3158 goto out_unlock;
3159 }
3160
3161 /* allocate the rdtgroup. */
3162 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
3163 if (!rdtgrp) {
3164 ret = -ENOSPC;
3165 rdt_last_cmd_puts("Kernel out of memory\n");
3166 goto out_unlock;
3167 }
3168 *r = rdtgrp;
3169 rdtgrp->mon.parent = prdtgrp;
3170 rdtgrp->type = rtype;
3171 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
3172
3173 /* kernfs creates the directory for rdtgrp */
3174 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
3175 if (IS_ERR(kn)) {
3176 ret = PTR_ERR(kn);
3177 rdt_last_cmd_puts("kernfs create error\n");
3178 goto out_free_rgrp;
3179 }
3180 rdtgrp->kn = kn;
3181
3182 /*
3183 * kernfs_remove() will drop the reference count on "kn" which
3184 * will free it. But we still need it to stick around for the
3185 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
3186 * which will be dropped by kernfs_put() in rdtgroup_remove().
3187 */
3188 kernfs_get(kn);
3189
3190 ret = rdtgroup_kn_set_ugid(kn);
3191 if (ret) {
3192 rdt_last_cmd_puts("kernfs perm error\n");
3193 goto out_destroy;
3194 }
3195
3196 files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
3197 ret = rdtgroup_add_files(kn, files);
3198 if (ret) {
3199 rdt_last_cmd_puts("kernfs fill error\n");
3200 goto out_destroy;
3201 }
3202
3203 if (rdt_mon_capable) {
3204 ret = alloc_rmid();
3205 if (ret < 0) {
3206 rdt_last_cmd_puts("Out of RMIDs\n");
3207 goto out_destroy;
3208 }
3209 rdtgrp->mon.rmid = ret;
3210
3211 ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
3212 if (ret) {
3213 rdt_last_cmd_puts("kernfs subdir error\n");
3214 goto out_idfree;
3215 }
3216 }
3217 kernfs_activate(kn);
3218
3219 /*
3220 * The caller unlocks the parent_kn upon success.
3221 */
3222 return 0;
3223
3224 out_idfree:
3225 free_rmid(rdtgrp->mon.rmid);
3226 out_destroy:
3227 kernfs_put(rdtgrp->kn);
3228 kernfs_remove(rdtgrp->kn);
3229 out_free_rgrp:
3230 kfree(rdtgrp);
3231 out_unlock:
3232 rdtgroup_kn_unlock(parent_kn);
3233 return ret;
3234 }
3235
mkdir_rdt_prepare_clean(struct rdtgroup * rgrp)3236 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
3237 {
3238 kernfs_remove(rgrp->kn);
3239 free_rmid(rgrp->mon.rmid);
3240 rdtgroup_remove(rgrp);
3241 }
3242
3243 /*
3244 * Create a monitor group under "mon_groups" directory of a control
3245 * and monitor group(ctrl_mon). This is a resource group
3246 * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
3247 */
rdtgroup_mkdir_mon(struct kernfs_node * parent_kn,const char * name,umode_t mode)3248 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
3249 const char *name, umode_t mode)
3250 {
3251 struct rdtgroup *rdtgrp, *prgrp;
3252 int ret;
3253
3254 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
3255 if (ret)
3256 return ret;
3257
3258 prgrp = rdtgrp->mon.parent;
3259 rdtgrp->closid = prgrp->closid;
3260
3261 /*
3262 * Add the rdtgrp to the list of rdtgrps the parent
3263 * ctrl_mon group has to track.
3264 */
3265 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
3266
3267 rdtgroup_kn_unlock(parent_kn);
3268 return ret;
3269 }
3270
3271 /*
3272 * These are rdtgroups created under the root directory. Can be used
3273 * to allocate and monitor resources.
3274 */
rdtgroup_mkdir_ctrl_mon(struct kernfs_node * parent_kn,const char * name,umode_t mode)3275 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
3276 const char *name, umode_t mode)
3277 {
3278 struct rdtgroup *rdtgrp;
3279 struct kernfs_node *kn;
3280 u32 closid;
3281 int ret;
3282
3283 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
3284 if (ret)
3285 return ret;
3286
3287 kn = rdtgrp->kn;
3288 ret = closid_alloc();
3289 if (ret < 0) {
3290 rdt_last_cmd_puts("Out of CLOSIDs\n");
3291 goto out_common_fail;
3292 }
3293 closid = ret;
3294 ret = 0;
3295
3296 rdtgrp->closid = closid;
3297 ret = rdtgroup_init_alloc(rdtgrp);
3298 if (ret < 0)
3299 goto out_id_free;
3300
3301 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
3302
3303 if (rdt_mon_capable) {
3304 /*
3305 * Create an empty mon_groups directory to hold the subset
3306 * of tasks and cpus to monitor.
3307 */
3308 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
3309 if (ret) {
3310 rdt_last_cmd_puts("kernfs subdir error\n");
3311 goto out_del_list;
3312 }
3313 }
3314
3315 goto out_unlock;
3316
3317 out_del_list:
3318 list_del(&rdtgrp->rdtgroup_list);
3319 out_id_free:
3320 closid_free(closid);
3321 out_common_fail:
3322 mkdir_rdt_prepare_clean(rdtgrp);
3323 out_unlock:
3324 rdtgroup_kn_unlock(parent_kn);
3325 return ret;
3326 }
3327
3328 /*
3329 * We allow creating mon groups only with in a directory called "mon_groups"
3330 * which is present in every ctrl_mon group. Check if this is a valid
3331 * "mon_groups" directory.
3332 *
3333 * 1. The directory should be named "mon_groups".
3334 * 2. The mon group itself should "not" be named "mon_groups".
3335 * This makes sure "mon_groups" directory always has a ctrl_mon group
3336 * as parent.
3337 */
is_mon_groups(struct kernfs_node * kn,const char * name)3338 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
3339 {
3340 return (!strcmp(kn->name, "mon_groups") &&
3341 strcmp(name, "mon_groups"));
3342 }
3343
rdtgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)3344 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3345 umode_t mode)
3346 {
3347 /* Do not accept '\n' to avoid unparsable situation. */
3348 if (strchr(name, '\n'))
3349 return -EINVAL;
3350
3351 /*
3352 * If the parent directory is the root directory and RDT
3353 * allocation is supported, add a control and monitoring
3354 * subdirectory
3355 */
3356 if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
3357 return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
3358
3359 /*
3360 * If RDT monitoring is supported and the parent directory is a valid
3361 * "mon_groups" directory, add a monitoring subdirectory.
3362 */
3363 if (rdt_mon_capable && is_mon_groups(parent_kn, name))
3364 return rdtgroup_mkdir_mon(parent_kn, name, mode);
3365
3366 return -EPERM;
3367 }
3368
rdtgroup_rmdir_mon(struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)3369 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3370 {
3371 struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3372 int cpu;
3373
3374 /* Give any tasks back to the parent group */
3375 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
3376
3377 /* Update per cpu rmid of the moved CPUs first */
3378 for_each_cpu(cpu, &rdtgrp->cpu_mask)
3379 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
3380 /*
3381 * Update the MSR on moved CPUs and CPUs which have moved
3382 * task running on them.
3383 */
3384 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3385 update_closid_rmid(tmpmask, NULL);
3386
3387 rdtgrp->flags = RDT_DELETED;
3388 free_rmid(rdtgrp->mon.rmid);
3389
3390 /*
3391 * Remove the rdtgrp from the parent ctrl_mon group's list
3392 */
3393 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3394 list_del(&rdtgrp->mon.crdtgrp_list);
3395
3396 kernfs_remove(rdtgrp->kn);
3397
3398 return 0;
3399 }
3400
rdtgroup_ctrl_remove(struct rdtgroup * rdtgrp)3401 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp)
3402 {
3403 rdtgrp->flags = RDT_DELETED;
3404 list_del(&rdtgrp->rdtgroup_list);
3405
3406 kernfs_remove(rdtgrp->kn);
3407 return 0;
3408 }
3409
rdtgroup_rmdir_ctrl(struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)3410 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3411 {
3412 int cpu;
3413
3414 /* Give any tasks back to the default group */
3415 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3416
3417 /* Give any CPUs back to the default group */
3418 cpumask_or(&rdtgroup_default.cpu_mask,
3419 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3420
3421 /* Update per cpu closid and rmid of the moved CPUs first */
3422 for_each_cpu(cpu, &rdtgrp->cpu_mask) {
3423 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
3424 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
3425 }
3426
3427 /*
3428 * Update the MSR on moved CPUs and CPUs which have moved
3429 * task running on them.
3430 */
3431 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3432 update_closid_rmid(tmpmask, NULL);
3433
3434 closid_free(rdtgrp->closid);
3435 free_rmid(rdtgrp->mon.rmid);
3436
3437 rdtgroup_ctrl_remove(rdtgrp);
3438
3439 /*
3440 * Free all the child monitor group rmids.
3441 */
3442 free_all_child_rdtgrp(rdtgrp);
3443
3444 return 0;
3445 }
3446
rdtgroup_rmdir(struct kernfs_node * kn)3447 static int rdtgroup_rmdir(struct kernfs_node *kn)
3448 {
3449 struct kernfs_node *parent_kn = kn->parent;
3450 struct rdtgroup *rdtgrp;
3451 cpumask_var_t tmpmask;
3452 int ret = 0;
3453
3454 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3455 return -ENOMEM;
3456
3457 rdtgrp = rdtgroup_kn_lock_live(kn);
3458 if (!rdtgrp) {
3459 ret = -EPERM;
3460 goto out;
3461 }
3462
3463 /*
3464 * If the rdtgroup is a ctrl_mon group and parent directory
3465 * is the root directory, remove the ctrl_mon group.
3466 *
3467 * If the rdtgroup is a mon group and parent directory
3468 * is a valid "mon_groups" directory, remove the mon group.
3469 */
3470 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3471 rdtgrp != &rdtgroup_default) {
3472 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3473 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3474 ret = rdtgroup_ctrl_remove(rdtgrp);
3475 } else {
3476 ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask);
3477 }
3478 } else if (rdtgrp->type == RDTMON_GROUP &&
3479 is_mon_groups(parent_kn, kn->name)) {
3480 ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask);
3481 } else {
3482 ret = -EPERM;
3483 }
3484
3485 out:
3486 rdtgroup_kn_unlock(kn);
3487 free_cpumask_var(tmpmask);
3488 return ret;
3489 }
3490
rdtgroup_show_options(struct seq_file * seq,struct kernfs_root * kf)3491 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3492 {
3493 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
3494 seq_puts(seq, ",cdp");
3495
3496 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
3497 seq_puts(seq, ",cdpl2");
3498
3499 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl))
3500 seq_puts(seq, ",mba_MBps");
3501
3502 return 0;
3503 }
3504
3505 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3506 .mkdir = rdtgroup_mkdir,
3507 .rmdir = rdtgroup_rmdir,
3508 .show_options = rdtgroup_show_options,
3509 };
3510
rdtgroup_setup_root(void)3511 static int __init rdtgroup_setup_root(void)
3512 {
3513 int ret;
3514
3515 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3516 KERNFS_ROOT_CREATE_DEACTIVATED |
3517 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3518 &rdtgroup_default);
3519 if (IS_ERR(rdt_root))
3520 return PTR_ERR(rdt_root);
3521
3522 mutex_lock(&rdtgroup_mutex);
3523
3524 rdtgroup_default.closid = 0;
3525 rdtgroup_default.mon.rmid = 0;
3526 rdtgroup_default.type = RDTCTRL_GROUP;
3527 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3528
3529 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3530
3531 ret = rdtgroup_add_files(kernfs_root_to_node(rdt_root), RF_CTRL_BASE);
3532 if (ret) {
3533 kernfs_destroy_root(rdt_root);
3534 goto out;
3535 }
3536
3537 rdtgroup_default.kn = kernfs_root_to_node(rdt_root);
3538 kernfs_activate(rdtgroup_default.kn);
3539
3540 out:
3541 mutex_unlock(&rdtgroup_mutex);
3542
3543 return ret;
3544 }
3545
domain_destroy_mon_state(struct rdt_domain * d)3546 static void domain_destroy_mon_state(struct rdt_domain *d)
3547 {
3548 bitmap_free(d->rmid_busy_llc);
3549 kfree(d->mbm_total);
3550 kfree(d->mbm_local);
3551 }
3552
resctrl_offline_domain(struct rdt_resource * r,struct rdt_domain * d)3553 void resctrl_offline_domain(struct rdt_resource *r, struct rdt_domain *d)
3554 {
3555 lockdep_assert_held(&rdtgroup_mutex);
3556
3557 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
3558 mba_sc_domain_destroy(r, d);
3559
3560 if (!r->mon_capable)
3561 return;
3562
3563 /*
3564 * If resctrl is mounted, remove all the
3565 * per domain monitor data directories.
3566 */
3567 if (static_branch_unlikely(&rdt_mon_enable_key))
3568 rmdir_mondata_subdir_allrdtgrp(r, d->id);
3569
3570 if (is_mbm_enabled())
3571 cancel_delayed_work(&d->mbm_over);
3572 if (is_llc_occupancy_enabled() && has_busy_rmid(r, d)) {
3573 /*
3574 * When a package is going down, forcefully
3575 * decrement rmid->ebusy. There is no way to know
3576 * that the L3 was flushed and hence may lead to
3577 * incorrect counts in rare scenarios, but leaving
3578 * the RMID as busy creates RMID leaks if the
3579 * package never comes back.
3580 */
3581 __check_limbo(d, true);
3582 cancel_delayed_work(&d->cqm_limbo);
3583 }
3584
3585 domain_destroy_mon_state(d);
3586 }
3587
domain_setup_mon_state(struct rdt_resource * r,struct rdt_domain * d)3588 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_domain *d)
3589 {
3590 size_t tsize;
3591
3592 if (is_llc_occupancy_enabled()) {
3593 d->rmid_busy_llc = bitmap_zalloc(r->num_rmid, GFP_KERNEL);
3594 if (!d->rmid_busy_llc)
3595 return -ENOMEM;
3596 }
3597 if (is_mbm_total_enabled()) {
3598 tsize = sizeof(*d->mbm_total);
3599 d->mbm_total = kcalloc(r->num_rmid, tsize, GFP_KERNEL);
3600 if (!d->mbm_total) {
3601 bitmap_free(d->rmid_busy_llc);
3602 return -ENOMEM;
3603 }
3604 }
3605 if (is_mbm_local_enabled()) {
3606 tsize = sizeof(*d->mbm_local);
3607 d->mbm_local = kcalloc(r->num_rmid, tsize, GFP_KERNEL);
3608 if (!d->mbm_local) {
3609 bitmap_free(d->rmid_busy_llc);
3610 kfree(d->mbm_total);
3611 return -ENOMEM;
3612 }
3613 }
3614
3615 return 0;
3616 }
3617
resctrl_online_domain(struct rdt_resource * r,struct rdt_domain * d)3618 int resctrl_online_domain(struct rdt_resource *r, struct rdt_domain *d)
3619 {
3620 int err;
3621
3622 lockdep_assert_held(&rdtgroup_mutex);
3623
3624 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
3625 /* RDT_RESOURCE_MBA is never mon_capable */
3626 return mba_sc_domain_allocate(r, d);
3627
3628 if (!r->mon_capable)
3629 return 0;
3630
3631 err = domain_setup_mon_state(r, d);
3632 if (err)
3633 return err;
3634
3635 if (is_mbm_enabled()) {
3636 INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow);
3637 mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL);
3638 }
3639
3640 if (is_llc_occupancy_enabled())
3641 INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo);
3642
3643 /* If resctrl is mounted, add per domain monitor data directories. */
3644 if (static_branch_unlikely(&rdt_mon_enable_key))
3645 mkdir_mondata_subdir_allrdtgrp(r, d);
3646
3647 return 0;
3648 }
3649
3650 /*
3651 * rdtgroup_init - rdtgroup initialization
3652 *
3653 * Setup resctrl file system including set up root, create mount point,
3654 * register rdtgroup filesystem, and initialize files under root directory.
3655 *
3656 * Return: 0 on success or -errno
3657 */
rdtgroup_init(void)3658 int __init rdtgroup_init(void)
3659 {
3660 int ret = 0;
3661
3662 seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3663 sizeof(last_cmd_status_buf));
3664
3665 ret = rdtgroup_setup_root();
3666 if (ret)
3667 return ret;
3668
3669 ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3670 if (ret)
3671 goto cleanup_root;
3672
3673 ret = register_filesystem(&rdt_fs_type);
3674 if (ret)
3675 goto cleanup_mountpoint;
3676
3677 /*
3678 * Adding the resctrl debugfs directory here may not be ideal since
3679 * it would let the resctrl debugfs directory appear on the debugfs
3680 * filesystem before the resctrl filesystem is mounted.
3681 * It may also be ok since that would enable debugging of RDT before
3682 * resctrl is mounted.
3683 * The reason why the debugfs directory is created here and not in
3684 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
3685 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3686 * (the lockdep class of inode->i_rwsem). Other filesystem
3687 * interactions (eg. SyS_getdents) have the lock ordering:
3688 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
3689 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
3690 * is taken, thus creating dependency:
3691 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
3692 * issues considering the other two lock dependencies.
3693 * By creating the debugfs directory here we avoid a dependency
3694 * that may cause deadlock (even though file operations cannot
3695 * occur until the filesystem is mounted, but I do not know how to
3696 * tell lockdep that).
3697 */
3698 debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3699
3700 return 0;
3701
3702 cleanup_mountpoint:
3703 sysfs_remove_mount_point(fs_kobj, "resctrl");
3704 cleanup_root:
3705 kernfs_destroy_root(rdt_root);
3706
3707 return ret;
3708 }
3709
rdtgroup_exit(void)3710 void __exit rdtgroup_exit(void)
3711 {
3712 debugfs_remove_recursive(debugfs_resctrl);
3713 unregister_filesystem(&rdt_fs_type);
3714 sysfs_remove_mount_point(fs_kobj, "resctrl");
3715 kernfs_destroy_root(rdt_root);
3716 }
3717