1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/objtool.h>
5 #include <linux/percpu.h>
6
7 #include <asm/debugreg.h>
8 #include <asm/mmu_context.h>
9
10 #include "cpuid.h"
11 #include "hyperv.h"
12 #include "mmu.h"
13 #include "nested.h"
14 #include "pmu.h"
15 #include "sgx.h"
16 #include "trace.h"
17 #include "vmx.h"
18 #include "x86.h"
19 #include "smm.h"
20
21 static bool __read_mostly enable_shadow_vmcs = 1;
22 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
23
24 static bool __read_mostly nested_early_check = 0;
25 module_param(nested_early_check, bool, S_IRUGO);
26
27 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
28
29 /*
30 * Hyper-V requires all of these, so mark them as supported even though
31 * they are just treated the same as all-context.
32 */
33 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
34 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
35 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
36 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
37 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
38
39 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
40
41 enum {
42 VMX_VMREAD_BITMAP,
43 VMX_VMWRITE_BITMAP,
44 VMX_BITMAP_NR
45 };
46 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
47
48 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
49 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
50
51 struct shadow_vmcs_field {
52 u16 encoding;
53 u16 offset;
54 };
55 static struct shadow_vmcs_field shadow_read_only_fields[] = {
56 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
57 #include "vmcs_shadow_fields.h"
58 };
59 static int max_shadow_read_only_fields =
60 ARRAY_SIZE(shadow_read_only_fields);
61
62 static struct shadow_vmcs_field shadow_read_write_fields[] = {
63 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
64 #include "vmcs_shadow_fields.h"
65 };
66 static int max_shadow_read_write_fields =
67 ARRAY_SIZE(shadow_read_write_fields);
68
init_vmcs_shadow_fields(void)69 static void init_vmcs_shadow_fields(void)
70 {
71 int i, j;
72
73 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
74 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
75
76 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
77 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
78 u16 field = entry.encoding;
79
80 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
81 (i + 1 == max_shadow_read_only_fields ||
82 shadow_read_only_fields[i + 1].encoding != field + 1))
83 pr_err("Missing field from shadow_read_only_field %x\n",
84 field + 1);
85
86 clear_bit(field, vmx_vmread_bitmap);
87 if (field & 1)
88 #ifdef CONFIG_X86_64
89 continue;
90 #else
91 entry.offset += sizeof(u32);
92 #endif
93 shadow_read_only_fields[j++] = entry;
94 }
95 max_shadow_read_only_fields = j;
96
97 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
98 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
99 u16 field = entry.encoding;
100
101 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
102 (i + 1 == max_shadow_read_write_fields ||
103 shadow_read_write_fields[i + 1].encoding != field + 1))
104 pr_err("Missing field from shadow_read_write_field %x\n",
105 field + 1);
106
107 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
108 field <= GUEST_TR_AR_BYTES,
109 "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
110
111 /*
112 * PML and the preemption timer can be emulated, but the
113 * processor cannot vmwrite to fields that don't exist
114 * on bare metal.
115 */
116 switch (field) {
117 case GUEST_PML_INDEX:
118 if (!cpu_has_vmx_pml())
119 continue;
120 break;
121 case VMX_PREEMPTION_TIMER_VALUE:
122 if (!cpu_has_vmx_preemption_timer())
123 continue;
124 break;
125 case GUEST_INTR_STATUS:
126 if (!cpu_has_vmx_apicv())
127 continue;
128 break;
129 default:
130 break;
131 }
132
133 clear_bit(field, vmx_vmwrite_bitmap);
134 clear_bit(field, vmx_vmread_bitmap);
135 if (field & 1)
136 #ifdef CONFIG_X86_64
137 continue;
138 #else
139 entry.offset += sizeof(u32);
140 #endif
141 shadow_read_write_fields[j++] = entry;
142 }
143 max_shadow_read_write_fields = j;
144 }
145
146 /*
147 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
148 * set the success or error code of an emulated VMX instruction (as specified
149 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
150 * instruction.
151 */
nested_vmx_succeed(struct kvm_vcpu * vcpu)152 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
153 {
154 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
155 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
156 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
157 return kvm_skip_emulated_instruction(vcpu);
158 }
159
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)160 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
161 {
162 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
163 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
164 X86_EFLAGS_SF | X86_EFLAGS_OF))
165 | X86_EFLAGS_CF);
166 return kvm_skip_emulated_instruction(vcpu);
167 }
168
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)169 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
170 u32 vm_instruction_error)
171 {
172 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
173 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
174 X86_EFLAGS_SF | X86_EFLAGS_OF))
175 | X86_EFLAGS_ZF);
176 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
177 /*
178 * We don't need to force sync to shadow VMCS because
179 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
180 * fields and thus must be synced.
181 */
182 if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
183 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
184
185 return kvm_skip_emulated_instruction(vcpu);
186 }
187
nested_vmx_fail(struct kvm_vcpu * vcpu,u32 vm_instruction_error)188 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
189 {
190 struct vcpu_vmx *vmx = to_vmx(vcpu);
191
192 /*
193 * failValid writes the error number to the current VMCS, which
194 * can't be done if there isn't a current VMCS.
195 */
196 if (vmx->nested.current_vmptr == INVALID_GPA &&
197 !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
198 return nested_vmx_failInvalid(vcpu);
199
200 return nested_vmx_failValid(vcpu, vm_instruction_error);
201 }
202
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)203 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
204 {
205 /* TODO: not to reset guest simply here. */
206 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
207 pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator);
208 }
209
vmx_control_verify(u32 control,u32 low,u32 high)210 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
211 {
212 return fixed_bits_valid(control, low, high);
213 }
214
vmx_control_msr(u32 low,u32 high)215 static inline u64 vmx_control_msr(u32 low, u32 high)
216 {
217 return low | ((u64)high << 32);
218 }
219
vmx_disable_shadow_vmcs(struct vcpu_vmx * vmx)220 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
221 {
222 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
223 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
224 vmx->nested.need_vmcs12_to_shadow_sync = false;
225 }
226
nested_release_evmcs(struct kvm_vcpu * vcpu)227 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
228 {
229 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
230 struct vcpu_vmx *vmx = to_vmx(vcpu);
231
232 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
233 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
234 vmx->nested.hv_evmcs = NULL;
235 }
236
237 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
238
239 if (hv_vcpu) {
240 hv_vcpu->nested.pa_page_gpa = INVALID_GPA;
241 hv_vcpu->nested.vm_id = 0;
242 hv_vcpu->nested.vp_id = 0;
243 }
244 }
245
vmx_sync_vmcs_host_state(struct vcpu_vmx * vmx,struct loaded_vmcs * prev)246 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
247 struct loaded_vmcs *prev)
248 {
249 struct vmcs_host_state *dest, *src;
250
251 if (unlikely(!vmx->guest_state_loaded))
252 return;
253
254 src = &prev->host_state;
255 dest = &vmx->loaded_vmcs->host_state;
256
257 vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
258 dest->ldt_sel = src->ldt_sel;
259 #ifdef CONFIG_X86_64
260 dest->ds_sel = src->ds_sel;
261 dest->es_sel = src->es_sel;
262 #endif
263 }
264
vmx_switch_vmcs(struct kvm_vcpu * vcpu,struct loaded_vmcs * vmcs)265 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
266 {
267 struct vcpu_vmx *vmx = to_vmx(vcpu);
268 struct loaded_vmcs *prev;
269 int cpu;
270
271 if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
272 return;
273
274 cpu = get_cpu();
275 prev = vmx->loaded_vmcs;
276 vmx->loaded_vmcs = vmcs;
277 vmx_vcpu_load_vmcs(vcpu, cpu, prev);
278 vmx_sync_vmcs_host_state(vmx, prev);
279 put_cpu();
280
281 vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
282
283 /*
284 * All lazily updated registers will be reloaded from VMCS12 on both
285 * vmentry and vmexit.
286 */
287 vcpu->arch.regs_dirty = 0;
288 }
289
290 /*
291 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
292 * just stops using VMX.
293 */
free_nested(struct kvm_vcpu * vcpu)294 static void free_nested(struct kvm_vcpu *vcpu)
295 {
296 struct vcpu_vmx *vmx = to_vmx(vcpu);
297
298 if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
299 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
300
301 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
302 return;
303
304 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
305
306 vmx->nested.vmxon = false;
307 vmx->nested.smm.vmxon = false;
308 vmx->nested.vmxon_ptr = INVALID_GPA;
309 free_vpid(vmx->nested.vpid02);
310 vmx->nested.posted_intr_nv = -1;
311 vmx->nested.current_vmptr = INVALID_GPA;
312 if (enable_shadow_vmcs) {
313 vmx_disable_shadow_vmcs(vmx);
314 vmcs_clear(vmx->vmcs01.shadow_vmcs);
315 free_vmcs(vmx->vmcs01.shadow_vmcs);
316 vmx->vmcs01.shadow_vmcs = NULL;
317 }
318 kfree(vmx->nested.cached_vmcs12);
319 vmx->nested.cached_vmcs12 = NULL;
320 kfree(vmx->nested.cached_shadow_vmcs12);
321 vmx->nested.cached_shadow_vmcs12 = NULL;
322 /*
323 * Unpin physical memory we referred to in the vmcs02. The APIC access
324 * page's backing page (yeah, confusing) shouldn't actually be accessed,
325 * and if it is written, the contents are irrelevant.
326 */
327 kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
328 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
329 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
330 vmx->nested.pi_desc = NULL;
331
332 kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
333
334 nested_release_evmcs(vcpu);
335
336 free_loaded_vmcs(&vmx->nested.vmcs02);
337 }
338
339 /*
340 * Ensure that the current vmcs of the logical processor is the
341 * vmcs01 of the vcpu before calling free_nested().
342 */
nested_vmx_free_vcpu(struct kvm_vcpu * vcpu)343 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
344 {
345 vcpu_load(vcpu);
346 vmx_leave_nested(vcpu);
347 vcpu_put(vcpu);
348 }
349
350 #define EPTP_PA_MASK GENMASK_ULL(51, 12)
351
nested_ept_root_matches(hpa_t root_hpa,u64 root_eptp,u64 eptp)352 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
353 {
354 return VALID_PAGE(root_hpa) &&
355 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
356 }
357
nested_ept_invalidate_addr(struct kvm_vcpu * vcpu,gpa_t eptp,gpa_t addr)358 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
359 gpa_t addr)
360 {
361 uint i;
362 struct kvm_mmu_root_info *cached_root;
363
364 WARN_ON_ONCE(!mmu_is_nested(vcpu));
365
366 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
367 cached_root = &vcpu->arch.mmu->prev_roots[i];
368
369 if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
370 eptp))
371 vcpu->arch.mmu->invlpg(vcpu, addr, cached_root->hpa);
372 }
373 }
374
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)375 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
376 struct x86_exception *fault)
377 {
378 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
379 struct vcpu_vmx *vmx = to_vmx(vcpu);
380 u32 vm_exit_reason;
381 unsigned long exit_qualification = vcpu->arch.exit_qualification;
382
383 if (vmx->nested.pml_full) {
384 vm_exit_reason = EXIT_REASON_PML_FULL;
385 vmx->nested.pml_full = false;
386 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
387 } else {
388 if (fault->error_code & PFERR_RSVD_MASK)
389 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
390 else
391 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
392
393 /*
394 * Although the caller (kvm_inject_emulated_page_fault) would
395 * have already synced the faulting address in the shadow EPT
396 * tables for the current EPTP12, we also need to sync it for
397 * any other cached EPTP02s based on the same EP4TA, since the
398 * TLB associates mappings to the EP4TA rather than the full EPTP.
399 */
400 nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
401 fault->address);
402 }
403
404 nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
405 vmcs12->guest_physical_address = fault->address;
406 }
407
nested_ept_new_eptp(struct kvm_vcpu * vcpu)408 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
409 {
410 struct vcpu_vmx *vmx = to_vmx(vcpu);
411 bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
412 int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
413
414 kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
415 nested_ept_ad_enabled(vcpu),
416 nested_ept_get_eptp(vcpu));
417 }
418
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)419 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
420 {
421 WARN_ON(mmu_is_nested(vcpu));
422
423 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
424 nested_ept_new_eptp(vcpu);
425 vcpu->arch.mmu->get_guest_pgd = nested_ept_get_eptp;
426 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
427 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
428
429 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
430 }
431
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)432 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
433 {
434 vcpu->arch.mmu = &vcpu->arch.root_mmu;
435 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
436 }
437
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)438 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
439 u16 error_code)
440 {
441 bool inequality, bit;
442
443 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
444 inequality =
445 (error_code & vmcs12->page_fault_error_code_mask) !=
446 vmcs12->page_fault_error_code_match;
447 return inequality ^ bit;
448 }
449
nested_vmx_is_exception_vmexit(struct kvm_vcpu * vcpu,u8 vector,u32 error_code)450 static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
451 u32 error_code)
452 {
453 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
454
455 /*
456 * Drop bits 31:16 of the error code when performing the #PF mask+match
457 * check. All VMCS fields involved are 32 bits, but Intel CPUs never
458 * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
459 * error code. Including the to-be-dropped bits in the check might
460 * result in an "impossible" or missed exit from L1's perspective.
461 */
462 if (vector == PF_VECTOR)
463 return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code);
464
465 return (vmcs12->exception_bitmap & (1u << vector));
466 }
467
nested_vmx_check_io_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)468 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
469 struct vmcs12 *vmcs12)
470 {
471 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
472 return 0;
473
474 if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
475 CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
476 return -EINVAL;
477
478 return 0;
479 }
480
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)481 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
482 struct vmcs12 *vmcs12)
483 {
484 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
485 return 0;
486
487 if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
488 return -EINVAL;
489
490 return 0;
491 }
492
nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)493 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
494 struct vmcs12 *vmcs12)
495 {
496 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
497 return 0;
498
499 if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
500 return -EINVAL;
501
502 return 0;
503 }
504
505 /*
506 * For x2APIC MSRs, ignore the vmcs01 bitmap. L1 can enable x2APIC without L1
507 * itself utilizing x2APIC. All MSRs were previously set to be intercepted,
508 * only the "disable intercept" case needs to be handled.
509 */
nested_vmx_disable_intercept_for_x2apic_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_l0,u32 msr,int type)510 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
511 unsigned long *msr_bitmap_l0,
512 u32 msr, int type)
513 {
514 if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
515 vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
516
517 if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
518 vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
519 }
520
enable_x2apic_msr_intercepts(unsigned long * msr_bitmap)521 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
522 {
523 int msr;
524
525 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
526 unsigned word = msr / BITS_PER_LONG;
527
528 msr_bitmap[word] = ~0;
529 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
530 }
531 }
532
533 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw) \
534 static inline \
535 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx, \
536 unsigned long *msr_bitmap_l1, \
537 unsigned long *msr_bitmap_l0, u32 msr) \
538 { \
539 if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) || \
540 vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr)) \
541 vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr); \
542 else \
543 vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr); \
544 }
545 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
BUILD_NVMX_MSR_INTERCEPT_HELPER(write)546 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
547
548 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
549 unsigned long *msr_bitmap_l1,
550 unsigned long *msr_bitmap_l0,
551 u32 msr, int types)
552 {
553 if (types & MSR_TYPE_R)
554 nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
555 msr_bitmap_l0, msr);
556 if (types & MSR_TYPE_W)
557 nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
558 msr_bitmap_l0, msr);
559 }
560
561 /*
562 * Merge L0's and L1's MSR bitmap, return false to indicate that
563 * we do not use the hardware.
564 */
nested_vmx_prepare_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)565 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
566 struct vmcs12 *vmcs12)
567 {
568 struct vcpu_vmx *vmx = to_vmx(vcpu);
569 int msr;
570 unsigned long *msr_bitmap_l1;
571 unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
572 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
573 struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
574
575 /* Nothing to do if the MSR bitmap is not in use. */
576 if (!cpu_has_vmx_msr_bitmap() ||
577 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
578 return false;
579
580 /*
581 * MSR bitmap update can be skipped when:
582 * - MSR bitmap for L1 hasn't changed.
583 * - Nested hypervisor (L1) is attempting to launch the same L2 as
584 * before.
585 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
586 * and tells KVM (L0) there were no changes in MSR bitmap for L2.
587 */
588 if (!vmx->nested.force_msr_bitmap_recalc && evmcs &&
589 evmcs->hv_enlightenments_control.msr_bitmap &&
590 evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
591 return true;
592
593 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
594 return false;
595
596 msr_bitmap_l1 = (unsigned long *)map->hva;
597
598 /*
599 * To keep the control flow simple, pay eight 8-byte writes (sixteen
600 * 4-byte writes on 32-bit systems) up front to enable intercepts for
601 * the x2APIC MSR range and selectively toggle those relevant to L2.
602 */
603 enable_x2apic_msr_intercepts(msr_bitmap_l0);
604
605 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
606 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
607 /*
608 * L0 need not intercept reads for MSRs between 0x800
609 * and 0x8ff, it just lets the processor take the value
610 * from the virtual-APIC page; take those 256 bits
611 * directly from the L1 bitmap.
612 */
613 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
614 unsigned word = msr / BITS_PER_LONG;
615
616 msr_bitmap_l0[word] = msr_bitmap_l1[word];
617 }
618 }
619
620 nested_vmx_disable_intercept_for_x2apic_msr(
621 msr_bitmap_l1, msr_bitmap_l0,
622 X2APIC_MSR(APIC_TASKPRI),
623 MSR_TYPE_R | MSR_TYPE_W);
624
625 if (nested_cpu_has_vid(vmcs12)) {
626 nested_vmx_disable_intercept_for_x2apic_msr(
627 msr_bitmap_l1, msr_bitmap_l0,
628 X2APIC_MSR(APIC_EOI),
629 MSR_TYPE_W);
630 nested_vmx_disable_intercept_for_x2apic_msr(
631 msr_bitmap_l1, msr_bitmap_l0,
632 X2APIC_MSR(APIC_SELF_IPI),
633 MSR_TYPE_W);
634 }
635 }
636
637 /*
638 * Always check vmcs01's bitmap to honor userspace MSR filters and any
639 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
640 */
641 #ifdef CONFIG_X86_64
642 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
643 MSR_FS_BASE, MSR_TYPE_RW);
644
645 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
646 MSR_GS_BASE, MSR_TYPE_RW);
647
648 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
649 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
650 #endif
651 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
652 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
653
654 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
655 MSR_IA32_PRED_CMD, MSR_TYPE_W);
656
657 kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
658
659 vmx->nested.force_msr_bitmap_recalc = false;
660
661 return true;
662 }
663
nested_cache_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)664 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
665 struct vmcs12 *vmcs12)
666 {
667 struct vcpu_vmx *vmx = to_vmx(vcpu);
668 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
669
670 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
671 vmcs12->vmcs_link_pointer == INVALID_GPA)
672 return;
673
674 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
675 kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
676 vmcs12->vmcs_link_pointer, VMCS12_SIZE))
677 return;
678
679 kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
680 VMCS12_SIZE);
681 }
682
nested_flush_cached_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)683 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
684 struct vmcs12 *vmcs12)
685 {
686 struct vcpu_vmx *vmx = to_vmx(vcpu);
687 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
688
689 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
690 vmcs12->vmcs_link_pointer == INVALID_GPA)
691 return;
692
693 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
694 kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
695 vmcs12->vmcs_link_pointer, VMCS12_SIZE))
696 return;
697
698 kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
699 VMCS12_SIZE);
700 }
701
702 /*
703 * In nested virtualization, check if L1 has set
704 * VM_EXIT_ACK_INTR_ON_EXIT
705 */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)706 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
707 {
708 return get_vmcs12(vcpu)->vm_exit_controls &
709 VM_EXIT_ACK_INTR_ON_EXIT;
710 }
711
nested_vmx_check_apic_access_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)712 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
713 struct vmcs12 *vmcs12)
714 {
715 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
716 CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
717 return -EINVAL;
718 else
719 return 0;
720 }
721
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)722 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
723 struct vmcs12 *vmcs12)
724 {
725 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
726 !nested_cpu_has_apic_reg_virt(vmcs12) &&
727 !nested_cpu_has_vid(vmcs12) &&
728 !nested_cpu_has_posted_intr(vmcs12))
729 return 0;
730
731 /*
732 * If virtualize x2apic mode is enabled,
733 * virtualize apic access must be disabled.
734 */
735 if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
736 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
737 return -EINVAL;
738
739 /*
740 * If virtual interrupt delivery is enabled,
741 * we must exit on external interrupts.
742 */
743 if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
744 return -EINVAL;
745
746 /*
747 * bits 15:8 should be zero in posted_intr_nv,
748 * the descriptor address has been already checked
749 * in nested_get_vmcs12_pages.
750 *
751 * bits 5:0 of posted_intr_desc_addr should be zero.
752 */
753 if (nested_cpu_has_posted_intr(vmcs12) &&
754 (CC(!nested_cpu_has_vid(vmcs12)) ||
755 CC(!nested_exit_intr_ack_set(vcpu)) ||
756 CC((vmcs12->posted_intr_nv & 0xff00)) ||
757 CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
758 return -EINVAL;
759
760 /* tpr shadow is needed by all apicv features. */
761 if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
762 return -EINVAL;
763
764 return 0;
765 }
766
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,u32 count,u64 addr)767 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
768 u32 count, u64 addr)
769 {
770 if (count == 0)
771 return 0;
772
773 if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
774 !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
775 return -EINVAL;
776
777 return 0;
778 }
779
nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)780 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
781 struct vmcs12 *vmcs12)
782 {
783 if (CC(nested_vmx_check_msr_switch(vcpu,
784 vmcs12->vm_exit_msr_load_count,
785 vmcs12->vm_exit_msr_load_addr)) ||
786 CC(nested_vmx_check_msr_switch(vcpu,
787 vmcs12->vm_exit_msr_store_count,
788 vmcs12->vm_exit_msr_store_addr)))
789 return -EINVAL;
790
791 return 0;
792 }
793
nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)794 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
795 struct vmcs12 *vmcs12)
796 {
797 if (CC(nested_vmx_check_msr_switch(vcpu,
798 vmcs12->vm_entry_msr_load_count,
799 vmcs12->vm_entry_msr_load_addr)))
800 return -EINVAL;
801
802 return 0;
803 }
804
nested_vmx_check_pml_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)805 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
806 struct vmcs12 *vmcs12)
807 {
808 if (!nested_cpu_has_pml(vmcs12))
809 return 0;
810
811 if (CC(!nested_cpu_has_ept(vmcs12)) ||
812 CC(!page_address_valid(vcpu, vmcs12->pml_address)))
813 return -EINVAL;
814
815 return 0;
816 }
817
nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)818 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
819 struct vmcs12 *vmcs12)
820 {
821 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
822 !nested_cpu_has_ept(vmcs12)))
823 return -EINVAL;
824 return 0;
825 }
826
nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)827 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
828 struct vmcs12 *vmcs12)
829 {
830 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
831 !nested_cpu_has_ept(vmcs12)))
832 return -EINVAL;
833 return 0;
834 }
835
nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)836 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
837 struct vmcs12 *vmcs12)
838 {
839 if (!nested_cpu_has_shadow_vmcs(vmcs12))
840 return 0;
841
842 if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
843 CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
844 return -EINVAL;
845
846 return 0;
847 }
848
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)849 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
850 struct vmx_msr_entry *e)
851 {
852 /* x2APIC MSR accesses are not allowed */
853 if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
854 return -EINVAL;
855 if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
856 CC(e->index == MSR_IA32_UCODE_REV))
857 return -EINVAL;
858 if (CC(e->reserved != 0))
859 return -EINVAL;
860 return 0;
861 }
862
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)863 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
864 struct vmx_msr_entry *e)
865 {
866 if (CC(e->index == MSR_FS_BASE) ||
867 CC(e->index == MSR_GS_BASE) ||
868 CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
869 nested_vmx_msr_check_common(vcpu, e))
870 return -EINVAL;
871 return 0;
872 }
873
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)874 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
875 struct vmx_msr_entry *e)
876 {
877 if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
878 nested_vmx_msr_check_common(vcpu, e))
879 return -EINVAL;
880 return 0;
881 }
882
nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu * vcpu)883 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
884 {
885 struct vcpu_vmx *vmx = to_vmx(vcpu);
886 u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
887 vmx->nested.msrs.misc_high);
888
889 return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
890 }
891
892 /*
893 * Load guest's/host's msr at nested entry/exit.
894 * return 0 for success, entry index for failure.
895 *
896 * One of the failure modes for MSR load/store is when a list exceeds the
897 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
898 * as possible, process all valid entries before failing rather than precheck
899 * for a capacity violation.
900 */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)901 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
902 {
903 u32 i;
904 struct vmx_msr_entry e;
905 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
906
907 for (i = 0; i < count; i++) {
908 if (unlikely(i >= max_msr_list_size))
909 goto fail;
910
911 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
912 &e, sizeof(e))) {
913 pr_debug_ratelimited(
914 "%s cannot read MSR entry (%u, 0x%08llx)\n",
915 __func__, i, gpa + i * sizeof(e));
916 goto fail;
917 }
918 if (nested_vmx_load_msr_check(vcpu, &e)) {
919 pr_debug_ratelimited(
920 "%s check failed (%u, 0x%x, 0x%x)\n",
921 __func__, i, e.index, e.reserved);
922 goto fail;
923 }
924 if (kvm_set_msr(vcpu, e.index, e.value)) {
925 pr_debug_ratelimited(
926 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
927 __func__, i, e.index, e.value);
928 goto fail;
929 }
930 }
931 return 0;
932 fail:
933 /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
934 return i + 1;
935 }
936
nested_vmx_get_vmexit_msr_value(struct kvm_vcpu * vcpu,u32 msr_index,u64 * data)937 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
938 u32 msr_index,
939 u64 *data)
940 {
941 struct vcpu_vmx *vmx = to_vmx(vcpu);
942
943 /*
944 * If the L0 hypervisor stored a more accurate value for the TSC that
945 * does not include the time taken for emulation of the L2->L1
946 * VM-exit in L0, use the more accurate value.
947 */
948 if (msr_index == MSR_IA32_TSC) {
949 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
950 MSR_IA32_TSC);
951
952 if (i >= 0) {
953 u64 val = vmx->msr_autostore.guest.val[i].value;
954
955 *data = kvm_read_l1_tsc(vcpu, val);
956 return true;
957 }
958 }
959
960 if (kvm_get_msr(vcpu, msr_index, data)) {
961 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
962 msr_index);
963 return false;
964 }
965 return true;
966 }
967
read_and_check_msr_entry(struct kvm_vcpu * vcpu,u64 gpa,int i,struct vmx_msr_entry * e)968 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
969 struct vmx_msr_entry *e)
970 {
971 if (kvm_vcpu_read_guest(vcpu,
972 gpa + i * sizeof(*e),
973 e, 2 * sizeof(u32))) {
974 pr_debug_ratelimited(
975 "%s cannot read MSR entry (%u, 0x%08llx)\n",
976 __func__, i, gpa + i * sizeof(*e));
977 return false;
978 }
979 if (nested_vmx_store_msr_check(vcpu, e)) {
980 pr_debug_ratelimited(
981 "%s check failed (%u, 0x%x, 0x%x)\n",
982 __func__, i, e->index, e->reserved);
983 return false;
984 }
985 return true;
986 }
987
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)988 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
989 {
990 u64 data;
991 u32 i;
992 struct vmx_msr_entry e;
993 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
994
995 for (i = 0; i < count; i++) {
996 if (unlikely(i >= max_msr_list_size))
997 return -EINVAL;
998
999 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1000 return -EINVAL;
1001
1002 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1003 return -EINVAL;
1004
1005 if (kvm_vcpu_write_guest(vcpu,
1006 gpa + i * sizeof(e) +
1007 offsetof(struct vmx_msr_entry, value),
1008 &data, sizeof(data))) {
1009 pr_debug_ratelimited(
1010 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1011 __func__, i, e.index, data);
1012 return -EINVAL;
1013 }
1014 }
1015 return 0;
1016 }
1017
nested_msr_store_list_has_msr(struct kvm_vcpu * vcpu,u32 msr_index)1018 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1019 {
1020 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1021 u32 count = vmcs12->vm_exit_msr_store_count;
1022 u64 gpa = vmcs12->vm_exit_msr_store_addr;
1023 struct vmx_msr_entry e;
1024 u32 i;
1025
1026 for (i = 0; i < count; i++) {
1027 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1028 return false;
1029
1030 if (e.index == msr_index)
1031 return true;
1032 }
1033 return false;
1034 }
1035
prepare_vmx_msr_autostore_list(struct kvm_vcpu * vcpu,u32 msr_index)1036 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1037 u32 msr_index)
1038 {
1039 struct vcpu_vmx *vmx = to_vmx(vcpu);
1040 struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1041 bool in_vmcs12_store_list;
1042 int msr_autostore_slot;
1043 bool in_autostore_list;
1044 int last;
1045
1046 msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1047 in_autostore_list = msr_autostore_slot >= 0;
1048 in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1049
1050 if (in_vmcs12_store_list && !in_autostore_list) {
1051 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1052 /*
1053 * Emulated VMEntry does not fail here. Instead a less
1054 * accurate value will be returned by
1055 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1056 * instead of reading the value from the vmcs02 VMExit
1057 * MSR-store area.
1058 */
1059 pr_warn_ratelimited(
1060 "Not enough msr entries in msr_autostore. Can't add msr %x\n",
1061 msr_index);
1062 return;
1063 }
1064 last = autostore->nr++;
1065 autostore->val[last].index = msr_index;
1066 } else if (!in_vmcs12_store_list && in_autostore_list) {
1067 last = --autostore->nr;
1068 autostore->val[msr_autostore_slot] = autostore->val[last];
1069 }
1070 }
1071
1072 /*
1073 * Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are
1074 * emulating VM-Entry into a guest with EPT enabled. On failure, the expected
1075 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1076 * @entry_failure_code.
1077 */
nested_vmx_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_ept,bool reload_pdptrs,enum vm_entry_failure_code * entry_failure_code)1078 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1079 bool nested_ept, bool reload_pdptrs,
1080 enum vm_entry_failure_code *entry_failure_code)
1081 {
1082 if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1083 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1084 return -EINVAL;
1085 }
1086
1087 /*
1088 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1089 * must not be dereferenced.
1090 */
1091 if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1092 CC(!load_pdptrs(vcpu, cr3))) {
1093 *entry_failure_code = ENTRY_FAIL_PDPTE;
1094 return -EINVAL;
1095 }
1096
1097 vcpu->arch.cr3 = cr3;
1098 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1099
1100 /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1101 kvm_init_mmu(vcpu);
1102
1103 if (!nested_ept)
1104 kvm_mmu_new_pgd(vcpu, cr3);
1105
1106 return 0;
1107 }
1108
1109 /*
1110 * Returns if KVM is able to config CPU to tag TLB entries
1111 * populated by L2 differently than TLB entries populated
1112 * by L1.
1113 *
1114 * If L0 uses EPT, L1 and L2 run with different EPTP because
1115 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1116 * are tagged with different EPTP.
1117 *
1118 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1119 * with different VPID (L1 entries are tagged with vmx->vpid
1120 * while L2 entries are tagged with vmx->nested.vpid02).
1121 */
nested_has_guest_tlb_tag(struct kvm_vcpu * vcpu)1122 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1123 {
1124 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1125
1126 return enable_ept ||
1127 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1128 }
1129
nested_vmx_transition_tlb_flush(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool is_vmenter)1130 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1131 struct vmcs12 *vmcs12,
1132 bool is_vmenter)
1133 {
1134 struct vcpu_vmx *vmx = to_vmx(vcpu);
1135
1136 /*
1137 * KVM_REQ_HV_TLB_FLUSH flushes entries from either L1's VP_ID or
1138 * L2's VP_ID upon request from the guest. Make sure we check for
1139 * pending entries in the right FIFO upon L1/L2 transition as these
1140 * requests are put by other vCPUs asynchronously.
1141 */
1142 if (to_hv_vcpu(vcpu) && enable_ept)
1143 kvm_make_request(KVM_REQ_HV_TLB_FLUSH, vcpu);
1144
1145 /*
1146 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1147 * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1148 * full TLB flush from the guest's perspective. This is required even
1149 * if VPID is disabled in the host as KVM may need to synchronize the
1150 * MMU in response to the guest TLB flush.
1151 *
1152 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1153 * EPT is a special snowflake, as guest-physical mappings aren't
1154 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1155 * VPID disabled. As a result, KVM _never_ needs to sync nEPT
1156 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1157 * those mappings.
1158 */
1159 if (!nested_cpu_has_vpid(vmcs12)) {
1160 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1161 return;
1162 }
1163
1164 /* L2 should never have a VPID if VPID is disabled. */
1165 WARN_ON(!enable_vpid);
1166
1167 /*
1168 * VPID is enabled and in use by vmcs12. If vpid12 is changing, then
1169 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1170 * is the VPID incorporated into the MMU context. I.e. KVM must assume
1171 * that the new vpid12 has never been used and thus represents a new
1172 * guest ASID that cannot have entries in the TLB.
1173 */
1174 if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1175 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1176 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1177 return;
1178 }
1179
1180 /*
1181 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1182 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1183 * KVM was unable to allocate a VPID for L2, flush the current context
1184 * as the effective ASID is common to both L1 and L2.
1185 */
1186 if (!nested_has_guest_tlb_tag(vcpu))
1187 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1188 }
1189
is_bitwise_subset(u64 superset,u64 subset,u64 mask)1190 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1191 {
1192 superset &= mask;
1193 subset &= mask;
1194
1195 return (superset | subset) == superset;
1196 }
1197
vmx_restore_vmx_basic(struct vcpu_vmx * vmx,u64 data)1198 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1199 {
1200 const u64 feature_and_reserved =
1201 /* feature (except bit 48; see below) */
1202 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1203 /* reserved */
1204 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1205 u64 vmx_basic = vmcs_config.nested.basic;
1206
1207 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1208 return -EINVAL;
1209
1210 /*
1211 * KVM does not emulate a version of VMX that constrains physical
1212 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1213 */
1214 if (data & BIT_ULL(48))
1215 return -EINVAL;
1216
1217 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1218 vmx_basic_vmcs_revision_id(data))
1219 return -EINVAL;
1220
1221 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1222 return -EINVAL;
1223
1224 vmx->nested.msrs.basic = data;
1225 return 0;
1226 }
1227
vmx_get_control_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u32 ** low,u32 ** high)1228 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1229 u32 **low, u32 **high)
1230 {
1231 switch (msr_index) {
1232 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1233 *low = &msrs->pinbased_ctls_low;
1234 *high = &msrs->pinbased_ctls_high;
1235 break;
1236 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1237 *low = &msrs->procbased_ctls_low;
1238 *high = &msrs->procbased_ctls_high;
1239 break;
1240 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1241 *low = &msrs->exit_ctls_low;
1242 *high = &msrs->exit_ctls_high;
1243 break;
1244 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1245 *low = &msrs->entry_ctls_low;
1246 *high = &msrs->entry_ctls_high;
1247 break;
1248 case MSR_IA32_VMX_PROCBASED_CTLS2:
1249 *low = &msrs->secondary_ctls_low;
1250 *high = &msrs->secondary_ctls_high;
1251 break;
1252 default:
1253 BUG();
1254 }
1255 }
1256
1257 static int
vmx_restore_control_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1258 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1259 {
1260 u32 *lowp, *highp;
1261 u64 supported;
1262
1263 vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1264
1265 supported = vmx_control_msr(*lowp, *highp);
1266
1267 /* Check must-be-1 bits are still 1. */
1268 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1269 return -EINVAL;
1270
1271 /* Check must-be-0 bits are still 0. */
1272 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1273 return -EINVAL;
1274
1275 vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1276 *lowp = data;
1277 *highp = data >> 32;
1278 return 0;
1279 }
1280
vmx_restore_vmx_misc(struct vcpu_vmx * vmx,u64 data)1281 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1282 {
1283 const u64 feature_and_reserved_bits =
1284 /* feature */
1285 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1286 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1287 /* reserved */
1288 GENMASK_ULL(13, 9) | BIT_ULL(31);
1289 u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1290 vmcs_config.nested.misc_high);
1291
1292 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1293 return -EINVAL;
1294
1295 if ((vmx->nested.msrs.pinbased_ctls_high &
1296 PIN_BASED_VMX_PREEMPTION_TIMER) &&
1297 vmx_misc_preemption_timer_rate(data) !=
1298 vmx_misc_preemption_timer_rate(vmx_misc))
1299 return -EINVAL;
1300
1301 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1302 return -EINVAL;
1303
1304 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1305 return -EINVAL;
1306
1307 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1308 return -EINVAL;
1309
1310 vmx->nested.msrs.misc_low = data;
1311 vmx->nested.msrs.misc_high = data >> 32;
1312
1313 return 0;
1314 }
1315
vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx * vmx,u64 data)1316 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1317 {
1318 u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1319 vmcs_config.nested.vpid_caps);
1320
1321 /* Every bit is either reserved or a feature bit. */
1322 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1323 return -EINVAL;
1324
1325 vmx->nested.msrs.ept_caps = data;
1326 vmx->nested.msrs.vpid_caps = data >> 32;
1327 return 0;
1328 }
1329
vmx_get_fixed0_msr(struct nested_vmx_msrs * msrs,u32 msr_index)1330 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1331 {
1332 switch (msr_index) {
1333 case MSR_IA32_VMX_CR0_FIXED0:
1334 return &msrs->cr0_fixed0;
1335 case MSR_IA32_VMX_CR4_FIXED0:
1336 return &msrs->cr4_fixed0;
1337 default:
1338 BUG();
1339 }
1340 }
1341
vmx_restore_fixed0_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1342 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1343 {
1344 const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1345
1346 /*
1347 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1348 * must be 1 in the restored value.
1349 */
1350 if (!is_bitwise_subset(data, *msr, -1ULL))
1351 return -EINVAL;
1352
1353 *vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1354 return 0;
1355 }
1356
1357 /*
1358 * Called when userspace is restoring VMX MSRs.
1359 *
1360 * Returns 0 on success, non-0 otherwise.
1361 */
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)1362 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1363 {
1364 struct vcpu_vmx *vmx = to_vmx(vcpu);
1365
1366 /*
1367 * Don't allow changes to the VMX capability MSRs while the vCPU
1368 * is in VMX operation.
1369 */
1370 if (vmx->nested.vmxon)
1371 return -EBUSY;
1372
1373 switch (msr_index) {
1374 case MSR_IA32_VMX_BASIC:
1375 return vmx_restore_vmx_basic(vmx, data);
1376 case MSR_IA32_VMX_PINBASED_CTLS:
1377 case MSR_IA32_VMX_PROCBASED_CTLS:
1378 case MSR_IA32_VMX_EXIT_CTLS:
1379 case MSR_IA32_VMX_ENTRY_CTLS:
1380 /*
1381 * The "non-true" VMX capability MSRs are generated from the
1382 * "true" MSRs, so we do not support restoring them directly.
1383 *
1384 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1385 * should restore the "true" MSRs with the must-be-1 bits
1386 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1387 * DEFAULT SETTINGS".
1388 */
1389 return -EINVAL;
1390 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1391 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1392 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1393 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1394 case MSR_IA32_VMX_PROCBASED_CTLS2:
1395 return vmx_restore_control_msr(vmx, msr_index, data);
1396 case MSR_IA32_VMX_MISC:
1397 return vmx_restore_vmx_misc(vmx, data);
1398 case MSR_IA32_VMX_CR0_FIXED0:
1399 case MSR_IA32_VMX_CR4_FIXED0:
1400 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1401 case MSR_IA32_VMX_CR0_FIXED1:
1402 case MSR_IA32_VMX_CR4_FIXED1:
1403 /*
1404 * These MSRs are generated based on the vCPU's CPUID, so we
1405 * do not support restoring them directly.
1406 */
1407 return -EINVAL;
1408 case MSR_IA32_VMX_EPT_VPID_CAP:
1409 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1410 case MSR_IA32_VMX_VMCS_ENUM:
1411 vmx->nested.msrs.vmcs_enum = data;
1412 return 0;
1413 case MSR_IA32_VMX_VMFUNC:
1414 if (data & ~vmcs_config.nested.vmfunc_controls)
1415 return -EINVAL;
1416 vmx->nested.msrs.vmfunc_controls = data;
1417 return 0;
1418 default:
1419 /*
1420 * The rest of the VMX capability MSRs do not support restore.
1421 */
1422 return -EINVAL;
1423 }
1424 }
1425
1426 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u64 * pdata)1427 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1428 {
1429 switch (msr_index) {
1430 case MSR_IA32_VMX_BASIC:
1431 *pdata = msrs->basic;
1432 break;
1433 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1434 case MSR_IA32_VMX_PINBASED_CTLS:
1435 *pdata = vmx_control_msr(
1436 msrs->pinbased_ctls_low,
1437 msrs->pinbased_ctls_high);
1438 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1439 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1440 break;
1441 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1442 case MSR_IA32_VMX_PROCBASED_CTLS:
1443 *pdata = vmx_control_msr(
1444 msrs->procbased_ctls_low,
1445 msrs->procbased_ctls_high);
1446 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1447 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1448 break;
1449 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1450 case MSR_IA32_VMX_EXIT_CTLS:
1451 *pdata = vmx_control_msr(
1452 msrs->exit_ctls_low,
1453 msrs->exit_ctls_high);
1454 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1455 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1456 break;
1457 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1458 case MSR_IA32_VMX_ENTRY_CTLS:
1459 *pdata = vmx_control_msr(
1460 msrs->entry_ctls_low,
1461 msrs->entry_ctls_high);
1462 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1463 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1464 break;
1465 case MSR_IA32_VMX_MISC:
1466 *pdata = vmx_control_msr(
1467 msrs->misc_low,
1468 msrs->misc_high);
1469 break;
1470 case MSR_IA32_VMX_CR0_FIXED0:
1471 *pdata = msrs->cr0_fixed0;
1472 break;
1473 case MSR_IA32_VMX_CR0_FIXED1:
1474 *pdata = msrs->cr0_fixed1;
1475 break;
1476 case MSR_IA32_VMX_CR4_FIXED0:
1477 *pdata = msrs->cr4_fixed0;
1478 break;
1479 case MSR_IA32_VMX_CR4_FIXED1:
1480 *pdata = msrs->cr4_fixed1;
1481 break;
1482 case MSR_IA32_VMX_VMCS_ENUM:
1483 *pdata = msrs->vmcs_enum;
1484 break;
1485 case MSR_IA32_VMX_PROCBASED_CTLS2:
1486 *pdata = vmx_control_msr(
1487 msrs->secondary_ctls_low,
1488 msrs->secondary_ctls_high);
1489 break;
1490 case MSR_IA32_VMX_EPT_VPID_CAP:
1491 *pdata = msrs->ept_caps |
1492 ((u64)msrs->vpid_caps << 32);
1493 break;
1494 case MSR_IA32_VMX_VMFUNC:
1495 *pdata = msrs->vmfunc_controls;
1496 break;
1497 default:
1498 return 1;
1499 }
1500
1501 return 0;
1502 }
1503
1504 /*
1505 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1506 * been modified by the L1 guest. Note, "writable" in this context means
1507 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1508 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1509 * VM-exit information fields (which are actually writable if the vCPU is
1510 * configured to support "VMWRITE to any supported field in the VMCS").
1511 */
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)1512 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1513 {
1514 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1515 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1516 struct shadow_vmcs_field field;
1517 unsigned long val;
1518 int i;
1519
1520 if (WARN_ON(!shadow_vmcs))
1521 return;
1522
1523 preempt_disable();
1524
1525 vmcs_load(shadow_vmcs);
1526
1527 for (i = 0; i < max_shadow_read_write_fields; i++) {
1528 field = shadow_read_write_fields[i];
1529 val = __vmcs_readl(field.encoding);
1530 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1531 }
1532
1533 vmcs_clear(shadow_vmcs);
1534 vmcs_load(vmx->loaded_vmcs->vmcs);
1535
1536 preempt_enable();
1537 }
1538
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)1539 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1540 {
1541 const struct shadow_vmcs_field *fields[] = {
1542 shadow_read_write_fields,
1543 shadow_read_only_fields
1544 };
1545 const int max_fields[] = {
1546 max_shadow_read_write_fields,
1547 max_shadow_read_only_fields
1548 };
1549 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1550 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1551 struct shadow_vmcs_field field;
1552 unsigned long val;
1553 int i, q;
1554
1555 if (WARN_ON(!shadow_vmcs))
1556 return;
1557
1558 vmcs_load(shadow_vmcs);
1559
1560 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1561 for (i = 0; i < max_fields[q]; i++) {
1562 field = fields[q][i];
1563 val = vmcs12_read_any(vmcs12, field.encoding,
1564 field.offset);
1565 __vmcs_writel(field.encoding, val);
1566 }
1567 }
1568
1569 vmcs_clear(shadow_vmcs);
1570 vmcs_load(vmx->loaded_vmcs->vmcs);
1571 }
1572
copy_enlightened_to_vmcs12(struct vcpu_vmx * vmx,u32 hv_clean_fields)1573 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1574 {
1575 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1576 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1577 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu);
1578
1579 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1580 vmcs12->tpr_threshold = evmcs->tpr_threshold;
1581 vmcs12->guest_rip = evmcs->guest_rip;
1582
1583 if (unlikely(!(hv_clean_fields &
1584 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) {
1585 hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page;
1586 hv_vcpu->nested.vm_id = evmcs->hv_vm_id;
1587 hv_vcpu->nested.vp_id = evmcs->hv_vp_id;
1588 }
1589
1590 if (unlikely(!(hv_clean_fields &
1591 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1592 vmcs12->guest_rsp = evmcs->guest_rsp;
1593 vmcs12->guest_rflags = evmcs->guest_rflags;
1594 vmcs12->guest_interruptibility_info =
1595 evmcs->guest_interruptibility_info;
1596 /*
1597 * Not present in struct vmcs12:
1598 * vmcs12->guest_ssp = evmcs->guest_ssp;
1599 */
1600 }
1601
1602 if (unlikely(!(hv_clean_fields &
1603 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1604 vmcs12->cpu_based_vm_exec_control =
1605 evmcs->cpu_based_vm_exec_control;
1606 }
1607
1608 if (unlikely(!(hv_clean_fields &
1609 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1610 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1611 }
1612
1613 if (unlikely(!(hv_clean_fields &
1614 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1615 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1616 }
1617
1618 if (unlikely(!(hv_clean_fields &
1619 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1620 vmcs12->vm_entry_intr_info_field =
1621 evmcs->vm_entry_intr_info_field;
1622 vmcs12->vm_entry_exception_error_code =
1623 evmcs->vm_entry_exception_error_code;
1624 vmcs12->vm_entry_instruction_len =
1625 evmcs->vm_entry_instruction_len;
1626 }
1627
1628 if (unlikely(!(hv_clean_fields &
1629 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1630 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1631 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1632 vmcs12->host_cr0 = evmcs->host_cr0;
1633 vmcs12->host_cr3 = evmcs->host_cr3;
1634 vmcs12->host_cr4 = evmcs->host_cr4;
1635 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1636 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1637 vmcs12->host_rip = evmcs->host_rip;
1638 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1639 vmcs12->host_es_selector = evmcs->host_es_selector;
1640 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1641 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1642 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1643 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1644 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1645 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1646 vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl;
1647 /*
1648 * Not present in struct vmcs12:
1649 * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
1650 * vmcs12->host_ssp = evmcs->host_ssp;
1651 * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
1652 */
1653 }
1654
1655 if (unlikely(!(hv_clean_fields &
1656 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1657 vmcs12->pin_based_vm_exec_control =
1658 evmcs->pin_based_vm_exec_control;
1659 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1660 vmcs12->secondary_vm_exec_control =
1661 evmcs->secondary_vm_exec_control;
1662 }
1663
1664 if (unlikely(!(hv_clean_fields &
1665 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1666 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1667 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1668 }
1669
1670 if (unlikely(!(hv_clean_fields &
1671 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1672 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1673 }
1674
1675 if (unlikely(!(hv_clean_fields &
1676 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1677 vmcs12->guest_es_base = evmcs->guest_es_base;
1678 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1679 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1680 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1681 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1682 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1683 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1684 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1685 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1686 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1687 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1688 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1689 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1690 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1691 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1692 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1693 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1694 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1695 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1696 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1697 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1698 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1699 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1700 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1701 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1702 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1703 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1704 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1705 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1706 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1707 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1708 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1709 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1710 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1711 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1712 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1713 }
1714
1715 if (unlikely(!(hv_clean_fields &
1716 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1717 vmcs12->tsc_offset = evmcs->tsc_offset;
1718 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1719 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1720 vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap;
1721 vmcs12->tsc_multiplier = evmcs->tsc_multiplier;
1722 }
1723
1724 if (unlikely(!(hv_clean_fields &
1725 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1726 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1727 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1728 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1729 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1730 vmcs12->guest_cr0 = evmcs->guest_cr0;
1731 vmcs12->guest_cr3 = evmcs->guest_cr3;
1732 vmcs12->guest_cr4 = evmcs->guest_cr4;
1733 vmcs12->guest_dr7 = evmcs->guest_dr7;
1734 }
1735
1736 if (unlikely(!(hv_clean_fields &
1737 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1738 vmcs12->host_fs_base = evmcs->host_fs_base;
1739 vmcs12->host_gs_base = evmcs->host_gs_base;
1740 vmcs12->host_tr_base = evmcs->host_tr_base;
1741 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1742 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1743 vmcs12->host_rsp = evmcs->host_rsp;
1744 }
1745
1746 if (unlikely(!(hv_clean_fields &
1747 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1748 vmcs12->ept_pointer = evmcs->ept_pointer;
1749 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1750 }
1751
1752 if (unlikely(!(hv_clean_fields &
1753 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1754 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1755 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1756 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1757 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1758 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1759 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1760 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1761 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1762 vmcs12->guest_pending_dbg_exceptions =
1763 evmcs->guest_pending_dbg_exceptions;
1764 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1765 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1766 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1767 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1768 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1769 vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl;
1770 /*
1771 * Not present in struct vmcs12:
1772 * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
1773 * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
1774 * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
1775 */
1776 }
1777
1778 /*
1779 * Not used?
1780 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1781 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1782 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1783 * vmcs12->page_fault_error_code_mask =
1784 * evmcs->page_fault_error_code_mask;
1785 * vmcs12->page_fault_error_code_match =
1786 * evmcs->page_fault_error_code_match;
1787 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1788 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1789 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1790 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1791 */
1792
1793 /*
1794 * Read only fields:
1795 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1796 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1797 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1798 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1799 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1800 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1801 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1802 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1803 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1804 * vmcs12->exit_qualification = evmcs->exit_qualification;
1805 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1806 *
1807 * Not present in struct vmcs12:
1808 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1809 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1810 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1811 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1812 */
1813
1814 return;
1815 }
1816
copy_vmcs12_to_enlightened(struct vcpu_vmx * vmx)1817 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1818 {
1819 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1820 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1821
1822 /*
1823 * Should not be changed by KVM:
1824 *
1825 * evmcs->host_es_selector = vmcs12->host_es_selector;
1826 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1827 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1828 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1829 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1830 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1831 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1832 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1833 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1834 * evmcs->host_cr0 = vmcs12->host_cr0;
1835 * evmcs->host_cr3 = vmcs12->host_cr3;
1836 * evmcs->host_cr4 = vmcs12->host_cr4;
1837 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1838 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1839 * evmcs->host_rip = vmcs12->host_rip;
1840 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1841 * evmcs->host_fs_base = vmcs12->host_fs_base;
1842 * evmcs->host_gs_base = vmcs12->host_gs_base;
1843 * evmcs->host_tr_base = vmcs12->host_tr_base;
1844 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1845 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1846 * evmcs->host_rsp = vmcs12->host_rsp;
1847 * sync_vmcs02_to_vmcs12() doesn't read these:
1848 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1849 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1850 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1851 * evmcs->ept_pointer = vmcs12->ept_pointer;
1852 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1853 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1854 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1855 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1856 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1857 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1858 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1859 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1860 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1861 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1862 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1863 * evmcs->page_fault_error_code_mask =
1864 * vmcs12->page_fault_error_code_mask;
1865 * evmcs->page_fault_error_code_match =
1866 * vmcs12->page_fault_error_code_match;
1867 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1868 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1869 * evmcs->tsc_offset = vmcs12->tsc_offset;
1870 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1871 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1872 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1873 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1874 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1875 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1876 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1877 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1878 * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
1879 * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
1880 * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
1881 * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
1882 *
1883 * Not present in struct vmcs12:
1884 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1885 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1886 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1887 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1888 * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
1889 * evmcs->host_ssp = vmcs12->host_ssp;
1890 * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
1891 * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
1892 * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
1893 * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
1894 * evmcs->guest_ssp = vmcs12->guest_ssp;
1895 */
1896
1897 evmcs->guest_es_selector = vmcs12->guest_es_selector;
1898 evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1899 evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1900 evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1901 evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1902 evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1903 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1904 evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1905
1906 evmcs->guest_es_limit = vmcs12->guest_es_limit;
1907 evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1908 evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1909 evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1910 evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1911 evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1912 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1913 evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1914 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1915 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1916
1917 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1918 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1919 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1920 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1921 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1922 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1923 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1924 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1925
1926 evmcs->guest_es_base = vmcs12->guest_es_base;
1927 evmcs->guest_cs_base = vmcs12->guest_cs_base;
1928 evmcs->guest_ss_base = vmcs12->guest_ss_base;
1929 evmcs->guest_ds_base = vmcs12->guest_ds_base;
1930 evmcs->guest_fs_base = vmcs12->guest_fs_base;
1931 evmcs->guest_gs_base = vmcs12->guest_gs_base;
1932 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1933 evmcs->guest_tr_base = vmcs12->guest_tr_base;
1934 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1935 evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1936
1937 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1938 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1939
1940 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1941 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1942 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1943 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1944
1945 evmcs->guest_pending_dbg_exceptions =
1946 vmcs12->guest_pending_dbg_exceptions;
1947 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1948 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1949
1950 evmcs->guest_activity_state = vmcs12->guest_activity_state;
1951 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1952
1953 evmcs->guest_cr0 = vmcs12->guest_cr0;
1954 evmcs->guest_cr3 = vmcs12->guest_cr3;
1955 evmcs->guest_cr4 = vmcs12->guest_cr4;
1956 evmcs->guest_dr7 = vmcs12->guest_dr7;
1957
1958 evmcs->guest_physical_address = vmcs12->guest_physical_address;
1959
1960 evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1961 evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1962 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1963 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1964 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1965 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1966 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1967 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1968
1969 evmcs->exit_qualification = vmcs12->exit_qualification;
1970
1971 evmcs->guest_linear_address = vmcs12->guest_linear_address;
1972 evmcs->guest_rsp = vmcs12->guest_rsp;
1973 evmcs->guest_rflags = vmcs12->guest_rflags;
1974
1975 evmcs->guest_interruptibility_info =
1976 vmcs12->guest_interruptibility_info;
1977 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1978 evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1979 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1980 evmcs->vm_entry_exception_error_code =
1981 vmcs12->vm_entry_exception_error_code;
1982 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1983
1984 evmcs->guest_rip = vmcs12->guest_rip;
1985
1986 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1987
1988 return;
1989 }
1990
1991 /*
1992 * This is an equivalent of the nested hypervisor executing the vmptrld
1993 * instruction.
1994 */
nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu * vcpu,bool from_launch)1995 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1996 struct kvm_vcpu *vcpu, bool from_launch)
1997 {
1998 struct vcpu_vmx *vmx = to_vmx(vcpu);
1999 bool evmcs_gpa_changed = false;
2000 u64 evmcs_gpa;
2001
2002 if (likely(!guest_cpuid_has_evmcs(vcpu)))
2003 return EVMPTRLD_DISABLED;
2004
2005 evmcs_gpa = nested_get_evmptr(vcpu);
2006 if (!evmptr_is_valid(evmcs_gpa)) {
2007 nested_release_evmcs(vcpu);
2008 return EVMPTRLD_DISABLED;
2009 }
2010
2011 if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2012 vmx->nested.current_vmptr = INVALID_GPA;
2013
2014 nested_release_evmcs(vcpu);
2015
2016 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2017 &vmx->nested.hv_evmcs_map))
2018 return EVMPTRLD_ERROR;
2019
2020 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2021
2022 /*
2023 * Currently, KVM only supports eVMCS version 1
2024 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2025 * value to first u32 field of eVMCS which should specify eVMCS
2026 * VersionNumber.
2027 *
2028 * Guest should be aware of supported eVMCS versions by host by
2029 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2030 * expected to set this CPUID leaf according to the value
2031 * returned in vmcs_version from nested_enable_evmcs().
2032 *
2033 * However, it turns out that Microsoft Hyper-V fails to comply
2034 * to their own invented interface: When Hyper-V use eVMCS, it
2035 * just sets first u32 field of eVMCS to revision_id specified
2036 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2037 * which is one of the supported versions specified in
2038 * CPUID.0x4000000A.EAX[0:15].
2039 *
2040 * To overcome Hyper-V bug, we accept here either a supported
2041 * eVMCS version or VMCS12 revision_id as valid values for first
2042 * u32 field of eVMCS.
2043 */
2044 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2045 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2046 nested_release_evmcs(vcpu);
2047 return EVMPTRLD_VMFAIL;
2048 }
2049
2050 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2051
2052 evmcs_gpa_changed = true;
2053 /*
2054 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2055 * reloaded from guest's memory (read only fields, fields not
2056 * present in struct hv_enlightened_vmcs, ...). Make sure there
2057 * are no leftovers.
2058 */
2059 if (from_launch) {
2060 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2061 memset(vmcs12, 0, sizeof(*vmcs12));
2062 vmcs12->hdr.revision_id = VMCS12_REVISION;
2063 }
2064
2065 }
2066
2067 /*
2068 * Clean fields data can't be used on VMLAUNCH and when we switch
2069 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2070 */
2071 if (from_launch || evmcs_gpa_changed) {
2072 vmx->nested.hv_evmcs->hv_clean_fields &=
2073 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2074
2075 vmx->nested.force_msr_bitmap_recalc = true;
2076 }
2077
2078 return EVMPTRLD_SUCCEEDED;
2079 }
2080
nested_sync_vmcs12_to_shadow(struct kvm_vcpu * vcpu)2081 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2082 {
2083 struct vcpu_vmx *vmx = to_vmx(vcpu);
2084
2085 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2086 copy_vmcs12_to_enlightened(vmx);
2087 else
2088 copy_vmcs12_to_shadow(vmx);
2089
2090 vmx->nested.need_vmcs12_to_shadow_sync = false;
2091 }
2092
vmx_preemption_timer_fn(struct hrtimer * timer)2093 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2094 {
2095 struct vcpu_vmx *vmx =
2096 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2097
2098 vmx->nested.preemption_timer_expired = true;
2099 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2100 kvm_vcpu_kick(&vmx->vcpu);
2101
2102 return HRTIMER_NORESTART;
2103 }
2104
vmx_calc_preemption_timer_value(struct kvm_vcpu * vcpu)2105 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2106 {
2107 struct vcpu_vmx *vmx = to_vmx(vcpu);
2108 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2109
2110 u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2111 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2112
2113 if (!vmx->nested.has_preemption_timer_deadline) {
2114 vmx->nested.preemption_timer_deadline =
2115 vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2116 vmx->nested.has_preemption_timer_deadline = true;
2117 }
2118 return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2119 }
2120
vmx_start_preemption_timer(struct kvm_vcpu * vcpu,u64 preemption_timeout)2121 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2122 u64 preemption_timeout)
2123 {
2124 struct vcpu_vmx *vmx = to_vmx(vcpu);
2125
2126 /*
2127 * A timer value of zero is architecturally guaranteed to cause
2128 * a VMExit prior to executing any instructions in the guest.
2129 */
2130 if (preemption_timeout == 0) {
2131 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2132 return;
2133 }
2134
2135 if (vcpu->arch.virtual_tsc_khz == 0)
2136 return;
2137
2138 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2139 preemption_timeout *= 1000000;
2140 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2141 hrtimer_start(&vmx->nested.preemption_timer,
2142 ktime_add_ns(ktime_get(), preemption_timeout),
2143 HRTIMER_MODE_ABS_PINNED);
2144 }
2145
nested_vmx_calc_efer(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2146 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2147 {
2148 if (vmx->nested.nested_run_pending &&
2149 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2150 return vmcs12->guest_ia32_efer;
2151 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2152 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2153 else
2154 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2155 }
2156
prepare_vmcs02_constant_state(struct vcpu_vmx * vmx)2157 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2158 {
2159 struct kvm *kvm = vmx->vcpu.kvm;
2160
2161 /*
2162 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2163 * according to L0's settings (vmcs12 is irrelevant here). Host
2164 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2165 * will be set as needed prior to VMLAUNCH/VMRESUME.
2166 */
2167 if (vmx->nested.vmcs02_initialized)
2168 return;
2169 vmx->nested.vmcs02_initialized = true;
2170
2171 /*
2172 * We don't care what the EPTP value is we just need to guarantee
2173 * it's valid so we don't get a false positive when doing early
2174 * consistency checks.
2175 */
2176 if (enable_ept && nested_early_check)
2177 vmcs_write64(EPT_POINTER,
2178 construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2179
2180 /* All VMFUNCs are currently emulated through L0 vmexits. */
2181 if (cpu_has_vmx_vmfunc())
2182 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2183
2184 if (cpu_has_vmx_posted_intr())
2185 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2186
2187 if (cpu_has_vmx_msr_bitmap())
2188 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2189
2190 /*
2191 * PML is emulated for L2, but never enabled in hardware as the MMU
2192 * handles A/D emulation. Disabling PML for L2 also avoids having to
2193 * deal with filtering out L2 GPAs from the buffer.
2194 */
2195 if (enable_pml) {
2196 vmcs_write64(PML_ADDRESS, 0);
2197 vmcs_write16(GUEST_PML_INDEX, -1);
2198 }
2199
2200 if (cpu_has_vmx_encls_vmexit())
2201 vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2202
2203 if (kvm_notify_vmexit_enabled(kvm))
2204 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
2205
2206 /*
2207 * Set the MSR load/store lists to match L0's settings. Only the
2208 * addresses are constant (for vmcs02), the counts can change based
2209 * on L2's behavior, e.g. switching to/from long mode.
2210 */
2211 vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2212 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2213 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2214
2215 vmx_set_constant_host_state(vmx);
2216 }
2217
prepare_vmcs02_early_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2218 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2219 struct vmcs12 *vmcs12)
2220 {
2221 prepare_vmcs02_constant_state(vmx);
2222
2223 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2224
2225 if (enable_vpid) {
2226 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2227 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2228 else
2229 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2230 }
2231 }
2232
prepare_vmcs02_early(struct vcpu_vmx * vmx,struct loaded_vmcs * vmcs01,struct vmcs12 * vmcs12)2233 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2234 struct vmcs12 *vmcs12)
2235 {
2236 u32 exec_control;
2237 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2238
2239 if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2240 prepare_vmcs02_early_rare(vmx, vmcs12);
2241
2242 /*
2243 * PIN CONTROLS
2244 */
2245 exec_control = __pin_controls_get(vmcs01);
2246 exec_control |= (vmcs12->pin_based_vm_exec_control &
2247 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2248
2249 /* Posted interrupts setting is only taken from vmcs12. */
2250 vmx->nested.pi_pending = false;
2251 if (nested_cpu_has_posted_intr(vmcs12))
2252 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2253 else
2254 exec_control &= ~PIN_BASED_POSTED_INTR;
2255 pin_controls_set(vmx, exec_control);
2256
2257 /*
2258 * EXEC CONTROLS
2259 */
2260 exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2261 exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2262 exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2263 exec_control &= ~CPU_BASED_TPR_SHADOW;
2264 exec_control |= vmcs12->cpu_based_vm_exec_control;
2265
2266 vmx->nested.l1_tpr_threshold = -1;
2267 if (exec_control & CPU_BASED_TPR_SHADOW)
2268 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2269 #ifdef CONFIG_X86_64
2270 else
2271 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2272 CPU_BASED_CR8_STORE_EXITING;
2273 #endif
2274
2275 /*
2276 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2277 * for I/O port accesses.
2278 */
2279 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2280 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2281
2282 /*
2283 * This bit will be computed in nested_get_vmcs12_pages, because
2284 * we do not have access to L1's MSR bitmap yet. For now, keep
2285 * the same bit as before, hoping to avoid multiple VMWRITEs that
2286 * only set/clear this bit.
2287 */
2288 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2289 exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2290
2291 exec_controls_set(vmx, exec_control);
2292
2293 /*
2294 * SECONDARY EXEC CONTROLS
2295 */
2296 if (cpu_has_secondary_exec_ctrls()) {
2297 exec_control = __secondary_exec_controls_get(vmcs01);
2298
2299 /* Take the following fields only from vmcs12 */
2300 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2301 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2302 SECONDARY_EXEC_ENABLE_INVPCID |
2303 SECONDARY_EXEC_ENABLE_RDTSCP |
2304 SECONDARY_EXEC_XSAVES |
2305 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2306 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2307 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2308 SECONDARY_EXEC_ENABLE_VMFUNC |
2309 SECONDARY_EXEC_DESC);
2310
2311 if (nested_cpu_has(vmcs12,
2312 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2313 exec_control |= vmcs12->secondary_vm_exec_control;
2314
2315 /* PML is emulated and never enabled in hardware for L2. */
2316 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2317
2318 /* VMCS shadowing for L2 is emulated for now */
2319 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2320
2321 /*
2322 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2323 * will not have to rewrite the controls just for this bit.
2324 */
2325 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2326 (vmcs12->guest_cr4 & X86_CR4_UMIP))
2327 exec_control |= SECONDARY_EXEC_DESC;
2328
2329 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2330 vmcs_write16(GUEST_INTR_STATUS,
2331 vmcs12->guest_intr_status);
2332
2333 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2334 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2335
2336 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2337 vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2338
2339 secondary_exec_controls_set(vmx, exec_control);
2340 }
2341
2342 /*
2343 * ENTRY CONTROLS
2344 *
2345 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2346 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2347 * on the related bits (if supported by the CPU) in the hope that
2348 * we can avoid VMWrites during vmx_set_efer().
2349 *
2350 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2351 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2352 * do the same for L2.
2353 */
2354 exec_control = __vm_entry_controls_get(vmcs01);
2355 exec_control |= (vmcs12->vm_entry_controls &
2356 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2357 exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2358 if (cpu_has_load_ia32_efer()) {
2359 if (guest_efer & EFER_LMA)
2360 exec_control |= VM_ENTRY_IA32E_MODE;
2361 if (guest_efer != host_efer)
2362 exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2363 }
2364 vm_entry_controls_set(vmx, exec_control);
2365
2366 /*
2367 * EXIT CONTROLS
2368 *
2369 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2370 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2371 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2372 */
2373 exec_control = __vm_exit_controls_get(vmcs01);
2374 if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2375 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2376 else
2377 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2378 vm_exit_controls_set(vmx, exec_control);
2379
2380 /*
2381 * Interrupt/Exception Fields
2382 */
2383 if (vmx->nested.nested_run_pending) {
2384 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2385 vmcs12->vm_entry_intr_info_field);
2386 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2387 vmcs12->vm_entry_exception_error_code);
2388 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2389 vmcs12->vm_entry_instruction_len);
2390 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2391 vmcs12->guest_interruptibility_info);
2392 vmx->loaded_vmcs->nmi_known_unmasked =
2393 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2394 } else {
2395 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2396 }
2397 }
2398
prepare_vmcs02_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2399 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2400 {
2401 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2402
2403 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2404 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2405 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2406 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2407 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2408 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2409 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2410 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2411 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2412 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2413 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2414 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2415 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2416 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2417 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2418 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2419 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2420 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2421 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2422 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2423 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2424 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2425 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2426 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2427 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2428 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2429 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2430 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2431 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2432 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2433 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2434 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2435 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2436 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2437 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2438 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2439 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2440 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2441
2442 vmx->segment_cache.bitmask = 0;
2443 }
2444
2445 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2446 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2447 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2448 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2449 vmcs12->guest_pending_dbg_exceptions);
2450 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2451 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2452
2453 /*
2454 * L1 may access the L2's PDPTR, so save them to construct
2455 * vmcs12
2456 */
2457 if (enable_ept) {
2458 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2459 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2460 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2461 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2462 }
2463
2464 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2465 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2466 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2467 }
2468
2469 if (nested_cpu_has_xsaves(vmcs12))
2470 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2471
2472 /*
2473 * Whether page-faults are trapped is determined by a combination of
2474 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. If L0
2475 * doesn't care about page faults then we should set all of these to
2476 * L1's desires. However, if L0 does care about (some) page faults, it
2477 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2478 * simply ask to exit on each and every L2 page fault. This is done by
2479 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2480 * Note that below we don't need special code to set EB.PF beyond the
2481 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2482 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2483 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2484 */
2485 if (vmx_need_pf_intercept(&vmx->vcpu)) {
2486 /*
2487 * TODO: if both L0 and L1 need the same MASK and MATCH,
2488 * go ahead and use it?
2489 */
2490 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2491 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2492 } else {
2493 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2494 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2495 }
2496
2497 if (cpu_has_vmx_apicv()) {
2498 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2499 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2500 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2501 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2502 }
2503
2504 /*
2505 * Make sure the msr_autostore list is up to date before we set the
2506 * count in the vmcs02.
2507 */
2508 prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2509
2510 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2511 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2512 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2513
2514 set_cr4_guest_host_mask(vmx);
2515 }
2516
2517 /*
2518 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2519 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2520 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2521 * guest in a way that will both be appropriate to L1's requests, and our
2522 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2523 * function also has additional necessary side-effects, like setting various
2524 * vcpu->arch fields.
2525 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2526 * is assigned to entry_failure_code on failure.
2527 */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool from_vmentry,enum vm_entry_failure_code * entry_failure_code)2528 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2529 bool from_vmentry,
2530 enum vm_entry_failure_code *entry_failure_code)
2531 {
2532 struct vcpu_vmx *vmx = to_vmx(vcpu);
2533 bool load_guest_pdptrs_vmcs12 = false;
2534
2535 if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2536 prepare_vmcs02_rare(vmx, vmcs12);
2537 vmx->nested.dirty_vmcs12 = false;
2538
2539 load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
2540 !(vmx->nested.hv_evmcs->hv_clean_fields &
2541 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2542 }
2543
2544 if (vmx->nested.nested_run_pending &&
2545 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2546 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2547 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2548 } else {
2549 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2550 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.pre_vmenter_debugctl);
2551 }
2552 if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2553 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2554 vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs);
2555 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2556
2557 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2558 * bitwise-or of what L1 wants to trap for L2, and what we want to
2559 * trap. Note that CR0.TS also needs updating - we do this later.
2560 */
2561 vmx_update_exception_bitmap(vcpu);
2562 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2563 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2564
2565 if (vmx->nested.nested_run_pending &&
2566 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2567 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2568 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2569 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2570 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2571 }
2572
2573 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2574 vcpu->arch.l1_tsc_offset,
2575 vmx_get_l2_tsc_offset(vcpu),
2576 vmx_get_l2_tsc_multiplier(vcpu));
2577
2578 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2579 vcpu->arch.l1_tsc_scaling_ratio,
2580 vmx_get_l2_tsc_multiplier(vcpu));
2581
2582 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2583 if (kvm_caps.has_tsc_control)
2584 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2585
2586 nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2587
2588 if (nested_cpu_has_ept(vmcs12))
2589 nested_ept_init_mmu_context(vcpu);
2590
2591 /*
2592 * Override the CR0/CR4 read shadows after setting the effective guest
2593 * CR0/CR4. The common helpers also set the shadows, but they don't
2594 * account for vmcs12's cr0/4_guest_host_mask.
2595 */
2596 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2597 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2598
2599 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2600 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2601
2602 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2603 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2604 vmx_set_efer(vcpu, vcpu->arch.efer);
2605
2606 /*
2607 * Guest state is invalid and unrestricted guest is disabled,
2608 * which means L1 attempted VMEntry to L2 with invalid state.
2609 * Fail the VMEntry.
2610 *
2611 * However when force loading the guest state (SMM exit or
2612 * loading nested state after migration, it is possible to
2613 * have invalid guest state now, which will be later fixed by
2614 * restoring L2 register state
2615 */
2616 if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2617 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2618 return -EINVAL;
2619 }
2620
2621 /* Shadow page tables on either EPT or shadow page tables. */
2622 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2623 from_vmentry, entry_failure_code))
2624 return -EINVAL;
2625
2626 /*
2627 * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12
2628 * on nested VM-Exit, which can occur without actually running L2 and
2629 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2630 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2631 * transition to HLT instead of running L2.
2632 */
2633 if (enable_ept)
2634 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2635
2636 /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2637 if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2638 is_pae_paging(vcpu)) {
2639 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2640 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2641 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2642 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2643 }
2644
2645 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2646 intel_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2647 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2648 vmcs12->guest_ia32_perf_global_ctrl))) {
2649 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2650 return -EINVAL;
2651 }
2652
2653 kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2654 kvm_rip_write(vcpu, vmcs12->guest_rip);
2655
2656 /*
2657 * It was observed that genuine Hyper-V running in L1 doesn't reset
2658 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2659 * bits when it changes a field in eVMCS. Mark all fields as clean
2660 * here.
2661 */
2662 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2663 vmx->nested.hv_evmcs->hv_clean_fields |=
2664 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2665
2666 return 0;
2667 }
2668
nested_vmx_check_nmi_controls(struct vmcs12 * vmcs12)2669 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2670 {
2671 if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2672 nested_cpu_has_virtual_nmis(vmcs12)))
2673 return -EINVAL;
2674
2675 if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2676 nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2677 return -EINVAL;
2678
2679 return 0;
2680 }
2681
nested_vmx_check_eptp(struct kvm_vcpu * vcpu,u64 new_eptp)2682 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2683 {
2684 struct vcpu_vmx *vmx = to_vmx(vcpu);
2685
2686 /* Check for memory type validity */
2687 switch (new_eptp & VMX_EPTP_MT_MASK) {
2688 case VMX_EPTP_MT_UC:
2689 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2690 return false;
2691 break;
2692 case VMX_EPTP_MT_WB:
2693 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2694 return false;
2695 break;
2696 default:
2697 return false;
2698 }
2699
2700 /* Page-walk levels validity. */
2701 switch (new_eptp & VMX_EPTP_PWL_MASK) {
2702 case VMX_EPTP_PWL_5:
2703 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2704 return false;
2705 break;
2706 case VMX_EPTP_PWL_4:
2707 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2708 return false;
2709 break;
2710 default:
2711 return false;
2712 }
2713
2714 /* Reserved bits should not be set */
2715 if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2716 return false;
2717
2718 /* AD, if set, should be supported */
2719 if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2720 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2721 return false;
2722 }
2723
2724 return true;
2725 }
2726
2727 /*
2728 * Checks related to VM-Execution Control Fields
2729 */
nested_check_vm_execution_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2730 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2731 struct vmcs12 *vmcs12)
2732 {
2733 struct vcpu_vmx *vmx = to_vmx(vcpu);
2734
2735 if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2736 vmx->nested.msrs.pinbased_ctls_low,
2737 vmx->nested.msrs.pinbased_ctls_high)) ||
2738 CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2739 vmx->nested.msrs.procbased_ctls_low,
2740 vmx->nested.msrs.procbased_ctls_high)))
2741 return -EINVAL;
2742
2743 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2744 CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2745 vmx->nested.msrs.secondary_ctls_low,
2746 vmx->nested.msrs.secondary_ctls_high)))
2747 return -EINVAL;
2748
2749 if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2750 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2751 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2752 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2753 nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2754 nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2755 nested_vmx_check_nmi_controls(vmcs12) ||
2756 nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2757 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2758 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2759 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2760 CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2761 return -EINVAL;
2762
2763 if (!nested_cpu_has_preemption_timer(vmcs12) &&
2764 nested_cpu_has_save_preemption_timer(vmcs12))
2765 return -EINVAL;
2766
2767 if (nested_cpu_has_ept(vmcs12) &&
2768 CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2769 return -EINVAL;
2770
2771 if (nested_cpu_has_vmfunc(vmcs12)) {
2772 if (CC(vmcs12->vm_function_control &
2773 ~vmx->nested.msrs.vmfunc_controls))
2774 return -EINVAL;
2775
2776 if (nested_cpu_has_eptp_switching(vmcs12)) {
2777 if (CC(!nested_cpu_has_ept(vmcs12)) ||
2778 CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2779 return -EINVAL;
2780 }
2781 }
2782
2783 return 0;
2784 }
2785
2786 /*
2787 * Checks related to VM-Exit Control Fields
2788 */
nested_check_vm_exit_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2789 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2790 struct vmcs12 *vmcs12)
2791 {
2792 struct vcpu_vmx *vmx = to_vmx(vcpu);
2793
2794 if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2795 vmx->nested.msrs.exit_ctls_low,
2796 vmx->nested.msrs.exit_ctls_high)) ||
2797 CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2798 return -EINVAL;
2799
2800 return 0;
2801 }
2802
2803 /*
2804 * Checks related to VM-Entry Control Fields
2805 */
nested_check_vm_entry_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2806 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2807 struct vmcs12 *vmcs12)
2808 {
2809 struct vcpu_vmx *vmx = to_vmx(vcpu);
2810
2811 if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2812 vmx->nested.msrs.entry_ctls_low,
2813 vmx->nested.msrs.entry_ctls_high)))
2814 return -EINVAL;
2815
2816 /*
2817 * From the Intel SDM, volume 3:
2818 * Fields relevant to VM-entry event injection must be set properly.
2819 * These fields are the VM-entry interruption-information field, the
2820 * VM-entry exception error code, and the VM-entry instruction length.
2821 */
2822 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2823 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2824 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2825 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2826 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2827 bool should_have_error_code;
2828 bool urg = nested_cpu_has2(vmcs12,
2829 SECONDARY_EXEC_UNRESTRICTED_GUEST);
2830 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2831
2832 /* VM-entry interruption-info field: interruption type */
2833 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2834 CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2835 !nested_cpu_supports_monitor_trap_flag(vcpu)))
2836 return -EINVAL;
2837
2838 /* VM-entry interruption-info field: vector */
2839 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2840 CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2841 CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2842 return -EINVAL;
2843
2844 /* VM-entry interruption-info field: deliver error code */
2845 should_have_error_code =
2846 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2847 x86_exception_has_error_code(vector);
2848 if (CC(has_error_code != should_have_error_code))
2849 return -EINVAL;
2850
2851 /* VM-entry exception error code */
2852 if (CC(has_error_code &&
2853 vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2854 return -EINVAL;
2855
2856 /* VM-entry interruption-info field: reserved bits */
2857 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2858 return -EINVAL;
2859
2860 /* VM-entry instruction length */
2861 switch (intr_type) {
2862 case INTR_TYPE_SOFT_EXCEPTION:
2863 case INTR_TYPE_SOFT_INTR:
2864 case INTR_TYPE_PRIV_SW_EXCEPTION:
2865 if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2866 CC(vmcs12->vm_entry_instruction_len == 0 &&
2867 CC(!nested_cpu_has_zero_length_injection(vcpu))))
2868 return -EINVAL;
2869 }
2870 }
2871
2872 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2873 return -EINVAL;
2874
2875 return 0;
2876 }
2877
nested_vmx_check_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2878 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2879 struct vmcs12 *vmcs12)
2880 {
2881 if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2882 nested_check_vm_exit_controls(vcpu, vmcs12) ||
2883 nested_check_vm_entry_controls(vcpu, vmcs12))
2884 return -EINVAL;
2885
2886 if (guest_cpuid_has_evmcs(vcpu))
2887 return nested_evmcs_check_controls(vmcs12);
2888
2889 return 0;
2890 }
2891
nested_vmx_check_address_space_size(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2892 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2893 struct vmcs12 *vmcs12)
2894 {
2895 #ifdef CONFIG_X86_64
2896 if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2897 !!(vcpu->arch.efer & EFER_LMA)))
2898 return -EINVAL;
2899 #endif
2900 return 0;
2901 }
2902
nested_vmx_check_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2903 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2904 struct vmcs12 *vmcs12)
2905 {
2906 bool ia32e;
2907
2908 if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2909 CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2910 CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2911 return -EINVAL;
2912
2913 if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2914 CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2915 return -EINVAL;
2916
2917 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2918 CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2919 return -EINVAL;
2920
2921 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2922 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2923 vmcs12->host_ia32_perf_global_ctrl)))
2924 return -EINVAL;
2925
2926 #ifdef CONFIG_X86_64
2927 ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2928 #else
2929 ia32e = false;
2930 #endif
2931
2932 if (ia32e) {
2933 if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2934 return -EINVAL;
2935 } else {
2936 if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2937 CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2938 CC((vmcs12->host_rip) >> 32))
2939 return -EINVAL;
2940 }
2941
2942 if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2943 CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2944 CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2945 CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2946 CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2947 CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2948 CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2949 CC(vmcs12->host_cs_selector == 0) ||
2950 CC(vmcs12->host_tr_selector == 0) ||
2951 CC(vmcs12->host_ss_selector == 0 && !ia32e))
2952 return -EINVAL;
2953
2954 if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2955 CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2956 CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2957 CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2958 CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2959 CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2960 return -EINVAL;
2961
2962 /*
2963 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2964 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2965 * the values of the LMA and LME bits in the field must each be that of
2966 * the host address-space size VM-exit control.
2967 */
2968 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2969 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2970 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2971 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2972 return -EINVAL;
2973 }
2974
2975 return 0;
2976 }
2977
nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2978 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2979 struct vmcs12 *vmcs12)
2980 {
2981 struct vcpu_vmx *vmx = to_vmx(vcpu);
2982 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
2983 struct vmcs_hdr hdr;
2984
2985 if (vmcs12->vmcs_link_pointer == INVALID_GPA)
2986 return 0;
2987
2988 if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2989 return -EINVAL;
2990
2991 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
2992 CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
2993 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
2994 return -EINVAL;
2995
2996 if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
2997 offsetof(struct vmcs12, hdr),
2998 sizeof(hdr))))
2999 return -EINVAL;
3000
3001 if (CC(hdr.revision_id != VMCS12_REVISION) ||
3002 CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
3003 return -EINVAL;
3004
3005 return 0;
3006 }
3007
3008 /*
3009 * Checks related to Guest Non-register State
3010 */
nested_check_guest_non_reg_state(struct vmcs12 * vmcs12)3011 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
3012 {
3013 if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
3014 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
3015 vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
3016 return -EINVAL;
3017
3018 return 0;
3019 }
3020
nested_vmx_check_guest_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,enum vm_entry_failure_code * entry_failure_code)3021 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
3022 struct vmcs12 *vmcs12,
3023 enum vm_entry_failure_code *entry_failure_code)
3024 {
3025 bool ia32e;
3026
3027 *entry_failure_code = ENTRY_FAIL_DEFAULT;
3028
3029 if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3030 CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3031 return -EINVAL;
3032
3033 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3034 CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3035 return -EINVAL;
3036
3037 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3038 CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3039 return -EINVAL;
3040
3041 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3042 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3043 return -EINVAL;
3044 }
3045
3046 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3047 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3048 vmcs12->guest_ia32_perf_global_ctrl)))
3049 return -EINVAL;
3050
3051 /*
3052 * If the load IA32_EFER VM-entry control is 1, the following checks
3053 * are performed on the field for the IA32_EFER MSR:
3054 * - Bits reserved in the IA32_EFER MSR must be 0.
3055 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3056 * the IA-32e mode guest VM-exit control. It must also be identical
3057 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3058 * CR0.PG) is 1.
3059 */
3060 if (to_vmx(vcpu)->nested.nested_run_pending &&
3061 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3062 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3063 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3064 CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3065 CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3066 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3067 return -EINVAL;
3068 }
3069
3070 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3071 (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3072 CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3073 return -EINVAL;
3074
3075 if (nested_check_guest_non_reg_state(vmcs12))
3076 return -EINVAL;
3077
3078 return 0;
3079 }
3080
nested_vmx_check_vmentry_hw(struct kvm_vcpu * vcpu)3081 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3082 {
3083 struct vcpu_vmx *vmx = to_vmx(vcpu);
3084 unsigned long cr3, cr4;
3085 bool vm_fail;
3086
3087 if (!nested_early_check)
3088 return 0;
3089
3090 if (vmx->msr_autoload.host.nr)
3091 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3092 if (vmx->msr_autoload.guest.nr)
3093 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3094
3095 preempt_disable();
3096
3097 vmx_prepare_switch_to_guest(vcpu);
3098
3099 /*
3100 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3101 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
3102 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3103 * there is no need to preserve other bits or save/restore the field.
3104 */
3105 vmcs_writel(GUEST_RFLAGS, 0);
3106
3107 cr3 = __get_current_cr3_fast();
3108 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3109 vmcs_writel(HOST_CR3, cr3);
3110 vmx->loaded_vmcs->host_state.cr3 = cr3;
3111 }
3112
3113 cr4 = cr4_read_shadow();
3114 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3115 vmcs_writel(HOST_CR4, cr4);
3116 vmx->loaded_vmcs->host_state.cr4 = cr4;
3117 }
3118
3119 vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3120 __vmx_vcpu_run_flags(vmx));
3121
3122 if (vmx->msr_autoload.host.nr)
3123 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3124 if (vmx->msr_autoload.guest.nr)
3125 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3126
3127 if (vm_fail) {
3128 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3129
3130 preempt_enable();
3131
3132 trace_kvm_nested_vmenter_failed(
3133 "early hardware check VM-instruction error: ", error);
3134 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3135 return 1;
3136 }
3137
3138 /*
3139 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3140 */
3141 if (hw_breakpoint_active())
3142 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3143 local_irq_enable();
3144 preempt_enable();
3145
3146 /*
3147 * A non-failing VMEntry means we somehow entered guest mode with
3148 * an illegal RIP, and that's just the tip of the iceberg. There
3149 * is no telling what memory has been modified or what state has
3150 * been exposed to unknown code. Hitting this all but guarantees
3151 * a (very critical) hardware issue.
3152 */
3153 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3154 VMX_EXIT_REASONS_FAILED_VMENTRY));
3155
3156 return 0;
3157 }
3158
nested_get_evmcs_page(struct kvm_vcpu * vcpu)3159 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3160 {
3161 struct vcpu_vmx *vmx = to_vmx(vcpu);
3162
3163 /*
3164 * hv_evmcs may end up being not mapped after migration (when
3165 * L2 was running), map it here to make sure vmcs12 changes are
3166 * properly reflected.
3167 */
3168 if (guest_cpuid_has_evmcs(vcpu) &&
3169 vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3170 enum nested_evmptrld_status evmptrld_status =
3171 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3172
3173 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3174 evmptrld_status == EVMPTRLD_ERROR)
3175 return false;
3176
3177 /*
3178 * Post migration VMCS12 always provides the most actual
3179 * information, copy it to eVMCS upon entry.
3180 */
3181 vmx->nested.need_vmcs12_to_shadow_sync = true;
3182 }
3183
3184 return true;
3185 }
3186
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu)3187 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3188 {
3189 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3190 struct vcpu_vmx *vmx = to_vmx(vcpu);
3191 struct kvm_host_map *map;
3192
3193 if (!vcpu->arch.pdptrs_from_userspace &&
3194 !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3195 /*
3196 * Reload the guest's PDPTRs since after a migration
3197 * the guest CR3 might be restored prior to setting the nested
3198 * state which can lead to a load of wrong PDPTRs.
3199 */
3200 if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3201 return false;
3202 }
3203
3204
3205 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3206 map = &vmx->nested.apic_access_page_map;
3207
3208 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) {
3209 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn));
3210 } else {
3211 pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
3212 __func__);
3213 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3214 vcpu->run->internal.suberror =
3215 KVM_INTERNAL_ERROR_EMULATION;
3216 vcpu->run->internal.ndata = 0;
3217 return false;
3218 }
3219 }
3220
3221 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3222 map = &vmx->nested.virtual_apic_map;
3223
3224 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3225 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3226 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3227 nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3228 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3229 /*
3230 * The processor will never use the TPR shadow, simply
3231 * clear the bit from the execution control. Such a
3232 * configuration is useless, but it happens in tests.
3233 * For any other configuration, failing the vm entry is
3234 * _not_ what the processor does but it's basically the
3235 * only possibility we have.
3236 */
3237 exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3238 } else {
3239 /*
3240 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3241 * force VM-Entry to fail.
3242 */
3243 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3244 }
3245 }
3246
3247 if (nested_cpu_has_posted_intr(vmcs12)) {
3248 map = &vmx->nested.pi_desc_map;
3249
3250 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3251 vmx->nested.pi_desc =
3252 (struct pi_desc *)(((void *)map->hva) +
3253 offset_in_page(vmcs12->posted_intr_desc_addr));
3254 vmcs_write64(POSTED_INTR_DESC_ADDR,
3255 pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3256 } else {
3257 /*
3258 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3259 * access the contents of the VMCS12 posted interrupt
3260 * descriptor. (Note that KVM may do this when it
3261 * should not, per the architectural specification.)
3262 */
3263 vmx->nested.pi_desc = NULL;
3264 pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3265 }
3266 }
3267 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3268 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3269 else
3270 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3271
3272 return true;
3273 }
3274
vmx_get_nested_state_pages(struct kvm_vcpu * vcpu)3275 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3276 {
3277 /*
3278 * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy
3279 * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory
3280 * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post
3281 * migration.
3282 */
3283 if (!nested_get_evmcs_page(vcpu)) {
3284 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3285 __func__);
3286 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3287 vcpu->run->internal.suberror =
3288 KVM_INTERNAL_ERROR_EMULATION;
3289 vcpu->run->internal.ndata = 0;
3290
3291 return false;
3292 }
3293
3294 if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3295 return false;
3296
3297 return true;
3298 }
3299
nested_vmx_write_pml_buffer(struct kvm_vcpu * vcpu,gpa_t gpa)3300 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3301 {
3302 struct vmcs12 *vmcs12;
3303 struct vcpu_vmx *vmx = to_vmx(vcpu);
3304 gpa_t dst;
3305
3306 if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3307 return 0;
3308
3309 if (WARN_ON_ONCE(vmx->nested.pml_full))
3310 return 1;
3311
3312 /*
3313 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3314 * set is already checked as part of A/D emulation.
3315 */
3316 vmcs12 = get_vmcs12(vcpu);
3317 if (!nested_cpu_has_pml(vmcs12))
3318 return 0;
3319
3320 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3321 vmx->nested.pml_full = true;
3322 return 1;
3323 }
3324
3325 gpa &= ~0xFFFull;
3326 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3327
3328 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3329 offset_in_page(dst), sizeof(gpa)))
3330 return 0;
3331
3332 vmcs12->guest_pml_index--;
3333
3334 return 0;
3335 }
3336
3337 /*
3338 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3339 * for running VMX instructions (except VMXON, whose prerequisites are
3340 * slightly different). It also specifies what exception to inject otherwise.
3341 * Note that many of these exceptions have priority over VM exits, so they
3342 * don't have to be checked again here.
3343 */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)3344 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3345 {
3346 if (!to_vmx(vcpu)->nested.vmxon) {
3347 kvm_queue_exception(vcpu, UD_VECTOR);
3348 return 0;
3349 }
3350
3351 if (vmx_get_cpl(vcpu)) {
3352 kvm_inject_gp(vcpu, 0);
3353 return 0;
3354 }
3355
3356 return 1;
3357 }
3358
vmx_has_apicv_interrupt(struct kvm_vcpu * vcpu)3359 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3360 {
3361 u8 rvi = vmx_get_rvi();
3362 u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3363
3364 return ((rvi & 0xf0) > (vppr & 0xf0));
3365 }
3366
3367 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3368 struct vmcs12 *vmcs12);
3369
3370 /*
3371 * If from_vmentry is false, this is being called from state restore (either RSM
3372 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
3373 *
3374 * Returns:
3375 * NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3376 * NVMX_VMENTRY_VMFAIL: Consistency check VMFail
3377 * NVMX_VMENTRY_VMEXIT: Consistency check VMExit
3378 * NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3379 */
nested_vmx_enter_non_root_mode(struct kvm_vcpu * vcpu,bool from_vmentry)3380 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3381 bool from_vmentry)
3382 {
3383 struct vcpu_vmx *vmx = to_vmx(vcpu);
3384 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3385 enum vm_entry_failure_code entry_failure_code;
3386 bool evaluate_pending_interrupts;
3387 union vmx_exit_reason exit_reason = {
3388 .basic = EXIT_REASON_INVALID_STATE,
3389 .failed_vmentry = 1,
3390 };
3391 u32 failed_index;
3392
3393 trace_kvm_nested_vmenter(kvm_rip_read(vcpu),
3394 vmx->nested.current_vmptr,
3395 vmcs12->guest_rip,
3396 vmcs12->guest_intr_status,
3397 vmcs12->vm_entry_intr_info_field,
3398 vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT,
3399 vmcs12->ept_pointer,
3400 vmcs12->guest_cr3,
3401 KVM_ISA_VMX);
3402
3403 kvm_service_local_tlb_flush_requests(vcpu);
3404
3405 evaluate_pending_interrupts = exec_controls_get(vmx) &
3406 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3407 if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3408 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3409 if (!evaluate_pending_interrupts)
3410 evaluate_pending_interrupts |= kvm_apic_has_pending_init_or_sipi(vcpu);
3411
3412 if (!vmx->nested.nested_run_pending ||
3413 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3414 vmx->nested.pre_vmenter_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3415 if (kvm_mpx_supported() &&
3416 (!vmx->nested.nested_run_pending ||
3417 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3418 vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3419
3420 /*
3421 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3422 * nested early checks are disabled. In the event of a "late" VM-Fail,
3423 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3424 * software model to the pre-VMEntry host state. When EPT is disabled,
3425 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3426 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
3427 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3428 * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
3429 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3430 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3431 * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3432 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3433 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3434 * path would need to manually save/restore vmcs01.GUEST_CR3.
3435 */
3436 if (!enable_ept && !nested_early_check)
3437 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3438
3439 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3440
3441 prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3442
3443 if (from_vmentry) {
3444 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3445 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3446 return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3447 }
3448
3449 if (nested_vmx_check_vmentry_hw(vcpu)) {
3450 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3451 return NVMX_VMENTRY_VMFAIL;
3452 }
3453
3454 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3455 &entry_failure_code)) {
3456 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3457 vmcs12->exit_qualification = entry_failure_code;
3458 goto vmentry_fail_vmexit;
3459 }
3460 }
3461
3462 enter_guest_mode(vcpu);
3463
3464 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3465 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3466 vmcs12->exit_qualification = entry_failure_code;
3467 goto vmentry_fail_vmexit_guest_mode;
3468 }
3469
3470 if (from_vmentry) {
3471 failed_index = nested_vmx_load_msr(vcpu,
3472 vmcs12->vm_entry_msr_load_addr,
3473 vmcs12->vm_entry_msr_load_count);
3474 if (failed_index) {
3475 exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3476 vmcs12->exit_qualification = failed_index;
3477 goto vmentry_fail_vmexit_guest_mode;
3478 }
3479 } else {
3480 /*
3481 * The MMU is not initialized to point at the right entities yet and
3482 * "get pages" would need to read data from the guest (i.e. we will
3483 * need to perform gpa to hpa translation). Request a call
3484 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3485 * have already been set at vmentry time and should not be reset.
3486 */
3487 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3488 }
3489
3490 /*
3491 * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
3492 * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
3493 * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
3494 * unconditionally.
3495 */
3496 if (unlikely(evaluate_pending_interrupts))
3497 kvm_make_request(KVM_REQ_EVENT, vcpu);
3498
3499 /*
3500 * Do not start the preemption timer hrtimer until after we know
3501 * we are successful, so that only nested_vmx_vmexit needs to cancel
3502 * the timer.
3503 */
3504 vmx->nested.preemption_timer_expired = false;
3505 if (nested_cpu_has_preemption_timer(vmcs12)) {
3506 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3507 vmx_start_preemption_timer(vcpu, timer_value);
3508 }
3509
3510 /*
3511 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3512 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3513 * returned as far as L1 is concerned. It will only return (and set
3514 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3515 */
3516 return NVMX_VMENTRY_SUCCESS;
3517
3518 /*
3519 * A failed consistency check that leads to a VMExit during L1's
3520 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3521 * 26.7 "VM-entry failures during or after loading guest state".
3522 */
3523 vmentry_fail_vmexit_guest_mode:
3524 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3525 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3526 leave_guest_mode(vcpu);
3527
3528 vmentry_fail_vmexit:
3529 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3530
3531 if (!from_vmentry)
3532 return NVMX_VMENTRY_VMEXIT;
3533
3534 load_vmcs12_host_state(vcpu, vmcs12);
3535 vmcs12->vm_exit_reason = exit_reason.full;
3536 if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3537 vmx->nested.need_vmcs12_to_shadow_sync = true;
3538 return NVMX_VMENTRY_VMEXIT;
3539 }
3540
3541 /*
3542 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3543 * for running an L2 nested guest.
3544 */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)3545 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3546 {
3547 struct vmcs12 *vmcs12;
3548 enum nvmx_vmentry_status status;
3549 struct vcpu_vmx *vmx = to_vmx(vcpu);
3550 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3551 enum nested_evmptrld_status evmptrld_status;
3552
3553 if (!nested_vmx_check_permission(vcpu))
3554 return 1;
3555
3556 evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3557 if (evmptrld_status == EVMPTRLD_ERROR) {
3558 kvm_queue_exception(vcpu, UD_VECTOR);
3559 return 1;
3560 }
3561
3562 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
3563
3564 if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3565 return nested_vmx_failInvalid(vcpu);
3566
3567 if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3568 vmx->nested.current_vmptr == INVALID_GPA))
3569 return nested_vmx_failInvalid(vcpu);
3570
3571 vmcs12 = get_vmcs12(vcpu);
3572
3573 /*
3574 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3575 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3576 * rather than RFLAGS.ZF, and no error number is stored to the
3577 * VM-instruction error field.
3578 */
3579 if (CC(vmcs12->hdr.shadow_vmcs))
3580 return nested_vmx_failInvalid(vcpu);
3581
3582 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3583 copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3584 /* Enlightened VMCS doesn't have launch state */
3585 vmcs12->launch_state = !launch;
3586 } else if (enable_shadow_vmcs) {
3587 copy_shadow_to_vmcs12(vmx);
3588 }
3589
3590 /*
3591 * The nested entry process starts with enforcing various prerequisites
3592 * on vmcs12 as required by the Intel SDM, and act appropriately when
3593 * they fail: As the SDM explains, some conditions should cause the
3594 * instruction to fail, while others will cause the instruction to seem
3595 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3596 * To speed up the normal (success) code path, we should avoid checking
3597 * for misconfigurations which will anyway be caught by the processor
3598 * when using the merged vmcs02.
3599 */
3600 if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3601 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3602
3603 if (CC(vmcs12->launch_state == launch))
3604 return nested_vmx_fail(vcpu,
3605 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3606 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3607
3608 if (nested_vmx_check_controls(vcpu, vmcs12))
3609 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3610
3611 if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3612 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3613
3614 if (nested_vmx_check_host_state(vcpu, vmcs12))
3615 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3616
3617 /*
3618 * We're finally done with prerequisite checking, and can start with
3619 * the nested entry.
3620 */
3621 vmx->nested.nested_run_pending = 1;
3622 vmx->nested.has_preemption_timer_deadline = false;
3623 status = nested_vmx_enter_non_root_mode(vcpu, true);
3624 if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3625 goto vmentry_failed;
3626
3627 /* Emulate processing of posted interrupts on VM-Enter. */
3628 if (nested_cpu_has_posted_intr(vmcs12) &&
3629 kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3630 vmx->nested.pi_pending = true;
3631 kvm_make_request(KVM_REQ_EVENT, vcpu);
3632 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3633 }
3634
3635 /* Hide L1D cache contents from the nested guest. */
3636 vmx->vcpu.arch.l1tf_flush_l1d = true;
3637
3638 /*
3639 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3640 * also be used as part of restoring nVMX state for
3641 * snapshot restore (migration).
3642 *
3643 * In this flow, it is assumed that vmcs12 cache was
3644 * transferred as part of captured nVMX state and should
3645 * therefore not be read from guest memory (which may not
3646 * exist on destination host yet).
3647 */
3648 nested_cache_shadow_vmcs12(vcpu, vmcs12);
3649
3650 switch (vmcs12->guest_activity_state) {
3651 case GUEST_ACTIVITY_HLT:
3652 /*
3653 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3654 * awakened by event injection or by an NMI-window VM-exit or
3655 * by an interrupt-window VM-exit, halt the vcpu.
3656 */
3657 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3658 !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3659 !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3660 (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3661 vmx->nested.nested_run_pending = 0;
3662 return kvm_emulate_halt_noskip(vcpu);
3663 }
3664 break;
3665 case GUEST_ACTIVITY_WAIT_SIPI:
3666 vmx->nested.nested_run_pending = 0;
3667 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3668 break;
3669 default:
3670 break;
3671 }
3672
3673 return 1;
3674
3675 vmentry_failed:
3676 vmx->nested.nested_run_pending = 0;
3677 if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3678 return 0;
3679 if (status == NVMX_VMENTRY_VMEXIT)
3680 return 1;
3681 WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3682 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3683 }
3684
3685 /*
3686 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3687 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3688 * This function returns the new value we should put in vmcs12.guest_cr0.
3689 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3690 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3691 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3692 * didn't trap the bit, because if L1 did, so would L0).
3693 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3694 * been modified by L2, and L1 knows it. So just leave the old value of
3695 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3696 * isn't relevant, because if L0 traps this bit it can set it to anything.
3697 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3698 * changed these bits, and therefore they need to be updated, but L0
3699 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3700 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3701 */
3702 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3703 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3704 {
3705 return
3706 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3707 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3708 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3709 vcpu->arch.cr0_guest_owned_bits));
3710 }
3711
3712 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3713 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3714 {
3715 return
3716 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3717 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3718 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3719 vcpu->arch.cr4_guest_owned_bits));
3720 }
3721
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info)3722 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3723 struct vmcs12 *vmcs12,
3724 u32 vm_exit_reason, u32 exit_intr_info)
3725 {
3726 u32 idt_vectoring;
3727 unsigned int nr;
3728
3729 /*
3730 * Per the SDM, VM-Exits due to double and triple faults are never
3731 * considered to occur during event delivery, even if the double/triple
3732 * fault is the result of an escalating vectoring issue.
3733 *
3734 * Note, the SDM qualifies the double fault behavior with "The original
3735 * event results in a double-fault exception". It's unclear why the
3736 * qualification exists since exits due to double fault can occur only
3737 * while vectoring a different exception (injected events are never
3738 * subject to interception), i.e. there's _always_ an original event.
3739 *
3740 * The SDM also uses NMI as a confusing example for the "original event
3741 * causes the VM exit directly" clause. NMI isn't special in any way,
3742 * the same rule applies to all events that cause an exit directly.
3743 * NMI is an odd choice for the example because NMIs can only occur on
3744 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3745 */
3746 if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3747 ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3748 is_double_fault(exit_intr_info))) {
3749 vmcs12->idt_vectoring_info_field = 0;
3750 } else if (vcpu->arch.exception.injected) {
3751 nr = vcpu->arch.exception.vector;
3752 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3753
3754 if (kvm_exception_is_soft(nr)) {
3755 vmcs12->vm_exit_instruction_len =
3756 vcpu->arch.event_exit_inst_len;
3757 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3758 } else
3759 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3760
3761 if (vcpu->arch.exception.has_error_code) {
3762 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3763 vmcs12->idt_vectoring_error_code =
3764 vcpu->arch.exception.error_code;
3765 }
3766
3767 vmcs12->idt_vectoring_info_field = idt_vectoring;
3768 } else if (vcpu->arch.nmi_injected) {
3769 vmcs12->idt_vectoring_info_field =
3770 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3771 } else if (vcpu->arch.interrupt.injected) {
3772 nr = vcpu->arch.interrupt.nr;
3773 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3774
3775 if (vcpu->arch.interrupt.soft) {
3776 idt_vectoring |= INTR_TYPE_SOFT_INTR;
3777 vmcs12->vm_entry_instruction_len =
3778 vcpu->arch.event_exit_inst_len;
3779 } else
3780 idt_vectoring |= INTR_TYPE_EXT_INTR;
3781
3782 vmcs12->idt_vectoring_info_field = idt_vectoring;
3783 } else {
3784 vmcs12->idt_vectoring_info_field = 0;
3785 }
3786 }
3787
3788
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)3789 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3790 {
3791 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3792 gfn_t gfn;
3793
3794 /*
3795 * Don't need to mark the APIC access page dirty; it is never
3796 * written to by the CPU during APIC virtualization.
3797 */
3798
3799 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3800 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3801 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3802 }
3803
3804 if (nested_cpu_has_posted_intr(vmcs12)) {
3805 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3806 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3807 }
3808 }
3809
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)3810 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3811 {
3812 struct vcpu_vmx *vmx = to_vmx(vcpu);
3813 int max_irr;
3814 void *vapic_page;
3815 u16 status;
3816
3817 if (!vmx->nested.pi_pending)
3818 return 0;
3819
3820 if (!vmx->nested.pi_desc)
3821 goto mmio_needed;
3822
3823 vmx->nested.pi_pending = false;
3824
3825 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3826 return 0;
3827
3828 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3829 if (max_irr != 256) {
3830 vapic_page = vmx->nested.virtual_apic_map.hva;
3831 if (!vapic_page)
3832 goto mmio_needed;
3833
3834 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3835 vapic_page, &max_irr);
3836 status = vmcs_read16(GUEST_INTR_STATUS);
3837 if ((u8)max_irr > ((u8)status & 0xff)) {
3838 status &= ~0xff;
3839 status |= (u8)max_irr;
3840 vmcs_write16(GUEST_INTR_STATUS, status);
3841 }
3842 }
3843
3844 nested_mark_vmcs12_pages_dirty(vcpu);
3845 return 0;
3846
3847 mmio_needed:
3848 kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3849 return -ENXIO;
3850 }
3851
nested_vmx_inject_exception_vmexit(struct kvm_vcpu * vcpu)3852 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu)
3853 {
3854 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
3855 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
3856 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3857 unsigned long exit_qual;
3858
3859 if (ex->has_payload) {
3860 exit_qual = ex->payload;
3861 } else if (ex->vector == PF_VECTOR) {
3862 exit_qual = vcpu->arch.cr2;
3863 } else if (ex->vector == DB_VECTOR) {
3864 exit_qual = vcpu->arch.dr6;
3865 exit_qual &= ~DR6_BT;
3866 exit_qual ^= DR6_ACTIVE_LOW;
3867 } else {
3868 exit_qual = 0;
3869 }
3870
3871 if (ex->has_error_code) {
3872 /*
3873 * Intel CPUs do not generate error codes with bits 31:16 set,
3874 * and more importantly VMX disallows setting bits 31:16 in the
3875 * injected error code for VM-Entry. Drop the bits to mimic
3876 * hardware and avoid inducing failure on nested VM-Entry if L1
3877 * chooses to inject the exception back to L2. AMD CPUs _do_
3878 * generate "full" 32-bit error codes, so KVM allows userspace
3879 * to inject exception error codes with bits 31:16 set.
3880 */
3881 vmcs12->vm_exit_intr_error_code = (u16)ex->error_code;
3882 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3883 }
3884
3885 if (kvm_exception_is_soft(ex->vector))
3886 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3887 else
3888 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3889
3890 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3891 vmx_get_nmi_mask(vcpu))
3892 intr_info |= INTR_INFO_UNBLOCK_NMI;
3893
3894 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3895 }
3896
3897 /*
3898 * Returns true if a debug trap is (likely) pending delivery. Infer the class
3899 * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
3900 * Using the payload is flawed because code breakpoints (fault-like) and data
3901 * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
3902 * this will return false positives if a to-be-injected code breakpoint #DB is
3903 * pending (from KVM's perspective, but not "pending" across an instruction
3904 * boundary). ICEBP, a.k.a. INT1, is also not reflected here even though it
3905 * too is trap-like.
3906 *
3907 * KVM "works" despite these flaws as ICEBP isn't currently supported by the
3908 * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
3909 * #DB has already happened), and MTF isn't marked pending on code breakpoints
3910 * from the emulator (because such #DBs are fault-like and thus don't trigger
3911 * actions that fire on instruction retire).
3912 */
vmx_get_pending_dbg_trap(struct kvm_queued_exception * ex)3913 static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex)
3914 {
3915 if (!ex->pending || ex->vector != DB_VECTOR)
3916 return 0;
3917
3918 /* General Detect #DBs are always fault-like. */
3919 return ex->payload & ~DR6_BD;
3920 }
3921
3922 /*
3923 * Returns true if there's a pending #DB exception that is lower priority than
3924 * a pending Monitor Trap Flag VM-Exit. TSS T-flag #DBs are not emulated by
3925 * KVM, but could theoretically be injected by userspace. Note, this code is
3926 * imperfect, see above.
3927 */
vmx_is_low_priority_db_trap(struct kvm_queued_exception * ex)3928 static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex)
3929 {
3930 return vmx_get_pending_dbg_trap(ex) & ~DR6_BT;
3931 }
3932
3933 /*
3934 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3935 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3936 * represents these debug traps with a payload that is said to be compatible
3937 * with the 'pending debug exceptions' field, write the payload to the VMCS
3938 * field if a VM-exit is delivered before the debug trap.
3939 */
nested_vmx_update_pending_dbg(struct kvm_vcpu * vcpu)3940 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3941 {
3942 unsigned long pending_dbg;
3943
3944 pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception);
3945 if (pending_dbg)
3946 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg);
3947 }
3948
nested_vmx_preemption_timer_pending(struct kvm_vcpu * vcpu)3949 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3950 {
3951 return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3952 to_vmx(vcpu)->nested.preemption_timer_expired;
3953 }
3954
vmx_has_nested_events(struct kvm_vcpu * vcpu)3955 static bool vmx_has_nested_events(struct kvm_vcpu *vcpu)
3956 {
3957 return nested_vmx_preemption_timer_pending(vcpu) ||
3958 to_vmx(vcpu)->nested.mtf_pending;
3959 }
3960
3961 /*
3962 * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
3963 * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
3964 * and less minor edits to splice in the priority of VMX Non-Root specific
3965 * events, e.g. MTF and NMI/INTR-window exiting.
3966 *
3967 * 1 Hardware Reset and Machine Checks
3968 * - RESET
3969 * - Machine Check
3970 *
3971 * 2 Trap on Task Switch
3972 * - T flag in TSS is set (on task switch)
3973 *
3974 * 3 External Hardware Interventions
3975 * - FLUSH
3976 * - STOPCLK
3977 * - SMI
3978 * - INIT
3979 *
3980 * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
3981 *
3982 * 4 Traps on Previous Instruction
3983 * - Breakpoints
3984 * - Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
3985 * breakpoint, or #DB due to a split-lock access)
3986 *
3987 * 4.3 VMX-preemption timer expired VM-exit
3988 *
3989 * 4.6 NMI-window exiting VM-exit[2]
3990 *
3991 * 5 Nonmaskable Interrupts (NMI)
3992 *
3993 * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
3994 *
3995 * 6 Maskable Hardware Interrupts
3996 *
3997 * 7 Code Breakpoint Fault
3998 *
3999 * 8 Faults from Fetching Next Instruction
4000 * - Code-Segment Limit Violation
4001 * - Code Page Fault
4002 * - Control protection exception (missing ENDBRANCH at target of indirect
4003 * call or jump)
4004 *
4005 * 9 Faults from Decoding Next Instruction
4006 * - Instruction length > 15 bytes
4007 * - Invalid Opcode
4008 * - Coprocessor Not Available
4009 *
4010 *10 Faults on Executing Instruction
4011 * - Overflow
4012 * - Bound error
4013 * - Invalid TSS
4014 * - Segment Not Present
4015 * - Stack fault
4016 * - General Protection
4017 * - Data Page Fault
4018 * - Alignment Check
4019 * - x86 FPU Floating-point exception
4020 * - SIMD floating-point exception
4021 * - Virtualization exception
4022 * - Control protection exception
4023 *
4024 * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
4025 * INIT signals, and higher priority events take priority over MTF VM exits.
4026 * MTF VM exits take priority over debug-trap exceptions and lower priority
4027 * events.
4028 *
4029 * [2] Debug-trap exceptions and higher priority events take priority over VM exits
4030 * caused by the VMX-preemption timer. VM exits caused by the VMX-preemption
4031 * timer take priority over VM exits caused by the "NMI-window exiting"
4032 * VM-execution control and lower priority events.
4033 *
4034 * [3] Debug-trap exceptions and higher priority events take priority over VM exits
4035 * caused by "NMI-window exiting". VM exits caused by this control take
4036 * priority over non-maskable interrupts (NMIs) and lower priority events.
4037 *
4038 * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
4039 * the 1-setting of the "interrupt-window exiting" VM-execution control. Thus,
4040 * non-maskable interrupts (NMIs) and higher priority events take priority over
4041 * delivery of a virtual interrupt; delivery of a virtual interrupt takes
4042 * priority over external interrupts and lower priority events.
4043 */
vmx_check_nested_events(struct kvm_vcpu * vcpu)4044 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
4045 {
4046 struct kvm_lapic *apic = vcpu->arch.apic;
4047 struct vcpu_vmx *vmx = to_vmx(vcpu);
4048 /*
4049 * Only a pending nested run blocks a pending exception. If there is a
4050 * previously injected event, the pending exception occurred while said
4051 * event was being delivered and thus needs to be handled.
4052 */
4053 bool block_nested_exceptions = vmx->nested.nested_run_pending;
4054 /*
4055 * New events (not exceptions) are only recognized at instruction
4056 * boundaries. If an event needs reinjection, then KVM is handling a
4057 * VM-Exit that occurred _during_ instruction execution; new events are
4058 * blocked until the instruction completes.
4059 */
4060 bool block_nested_events = block_nested_exceptions ||
4061 kvm_event_needs_reinjection(vcpu);
4062
4063 if (lapic_in_kernel(vcpu) &&
4064 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
4065 if (block_nested_events)
4066 return -EBUSY;
4067 nested_vmx_update_pending_dbg(vcpu);
4068 clear_bit(KVM_APIC_INIT, &apic->pending_events);
4069 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
4070 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
4071
4072 /* MTF is discarded if the vCPU is in WFS. */
4073 vmx->nested.mtf_pending = false;
4074 return 0;
4075 }
4076
4077 if (lapic_in_kernel(vcpu) &&
4078 test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
4079 if (block_nested_events)
4080 return -EBUSY;
4081
4082 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
4083 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
4084 nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
4085 apic->sipi_vector & 0xFFUL);
4086 return 0;
4087 }
4088 /* Fallthrough, the SIPI is completely ignored. */
4089 }
4090
4091 /*
4092 * Process exceptions that are higher priority than Monitor Trap Flag:
4093 * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
4094 * could theoretically come in from userspace), and ICEBP (INT1).
4095 *
4096 * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
4097 * for TSS T flag #DBs). KVM also doesn't save/restore pending MTF
4098 * across SMI/RSM as it should; that needs to be addressed in order to
4099 * prioritize SMI over MTF and trap-like #DBs.
4100 */
4101 if (vcpu->arch.exception_vmexit.pending &&
4102 !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) {
4103 if (block_nested_exceptions)
4104 return -EBUSY;
4105
4106 nested_vmx_inject_exception_vmexit(vcpu);
4107 return 0;
4108 }
4109
4110 if (vcpu->arch.exception.pending &&
4111 !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) {
4112 if (block_nested_exceptions)
4113 return -EBUSY;
4114 goto no_vmexit;
4115 }
4116
4117 if (vmx->nested.mtf_pending) {
4118 if (block_nested_events)
4119 return -EBUSY;
4120 nested_vmx_update_pending_dbg(vcpu);
4121 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
4122 return 0;
4123 }
4124
4125 if (vcpu->arch.exception_vmexit.pending) {
4126 if (block_nested_exceptions)
4127 return -EBUSY;
4128
4129 nested_vmx_inject_exception_vmexit(vcpu);
4130 return 0;
4131 }
4132
4133 if (vcpu->arch.exception.pending) {
4134 if (block_nested_exceptions)
4135 return -EBUSY;
4136 goto no_vmexit;
4137 }
4138
4139 if (nested_vmx_preemption_timer_pending(vcpu)) {
4140 if (block_nested_events)
4141 return -EBUSY;
4142 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
4143 return 0;
4144 }
4145
4146 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
4147 if (block_nested_events)
4148 return -EBUSY;
4149 goto no_vmexit;
4150 }
4151
4152 if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
4153 if (block_nested_events)
4154 return -EBUSY;
4155 if (!nested_exit_on_nmi(vcpu))
4156 goto no_vmexit;
4157
4158 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4159 NMI_VECTOR | INTR_TYPE_NMI_INTR |
4160 INTR_INFO_VALID_MASK, 0);
4161 /*
4162 * The NMI-triggered VM exit counts as injection:
4163 * clear this one and block further NMIs.
4164 */
4165 vcpu->arch.nmi_pending = 0;
4166 vmx_set_nmi_mask(vcpu, true);
4167 return 0;
4168 }
4169
4170 if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
4171 if (block_nested_events)
4172 return -EBUSY;
4173 if (!nested_exit_on_intr(vcpu))
4174 goto no_vmexit;
4175 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
4176 return 0;
4177 }
4178
4179 no_vmexit:
4180 return vmx_complete_nested_posted_interrupt(vcpu);
4181 }
4182
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)4183 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4184 {
4185 ktime_t remaining =
4186 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4187 u64 value;
4188
4189 if (ktime_to_ns(remaining) <= 0)
4190 return 0;
4191
4192 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4193 do_div(value, 1000000);
4194 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4195 }
4196
is_vmcs12_ext_field(unsigned long field)4197 static bool is_vmcs12_ext_field(unsigned long field)
4198 {
4199 switch (field) {
4200 case GUEST_ES_SELECTOR:
4201 case GUEST_CS_SELECTOR:
4202 case GUEST_SS_SELECTOR:
4203 case GUEST_DS_SELECTOR:
4204 case GUEST_FS_SELECTOR:
4205 case GUEST_GS_SELECTOR:
4206 case GUEST_LDTR_SELECTOR:
4207 case GUEST_TR_SELECTOR:
4208 case GUEST_ES_LIMIT:
4209 case GUEST_CS_LIMIT:
4210 case GUEST_SS_LIMIT:
4211 case GUEST_DS_LIMIT:
4212 case GUEST_FS_LIMIT:
4213 case GUEST_GS_LIMIT:
4214 case GUEST_LDTR_LIMIT:
4215 case GUEST_TR_LIMIT:
4216 case GUEST_GDTR_LIMIT:
4217 case GUEST_IDTR_LIMIT:
4218 case GUEST_ES_AR_BYTES:
4219 case GUEST_DS_AR_BYTES:
4220 case GUEST_FS_AR_BYTES:
4221 case GUEST_GS_AR_BYTES:
4222 case GUEST_LDTR_AR_BYTES:
4223 case GUEST_TR_AR_BYTES:
4224 case GUEST_ES_BASE:
4225 case GUEST_CS_BASE:
4226 case GUEST_SS_BASE:
4227 case GUEST_DS_BASE:
4228 case GUEST_FS_BASE:
4229 case GUEST_GS_BASE:
4230 case GUEST_LDTR_BASE:
4231 case GUEST_TR_BASE:
4232 case GUEST_GDTR_BASE:
4233 case GUEST_IDTR_BASE:
4234 case GUEST_PENDING_DBG_EXCEPTIONS:
4235 case GUEST_BNDCFGS:
4236 return true;
4237 default:
4238 break;
4239 }
4240
4241 return false;
4242 }
4243
sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4244 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4245 struct vmcs12 *vmcs12)
4246 {
4247 struct vcpu_vmx *vmx = to_vmx(vcpu);
4248
4249 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4250 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4251 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4252 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4253 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4254 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4255 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4256 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4257 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4258 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4259 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4260 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4261 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4262 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4263 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4264 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4265 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4266 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4267 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4268 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4269 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4270 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4271 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4272 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4273 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4274 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4275 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4276 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4277 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4278 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4279 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4280 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4281 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4282 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4283 vmcs12->guest_pending_dbg_exceptions =
4284 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4285
4286 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4287 }
4288
copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4289 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4290 struct vmcs12 *vmcs12)
4291 {
4292 struct vcpu_vmx *vmx = to_vmx(vcpu);
4293 int cpu;
4294
4295 if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4296 return;
4297
4298
4299 WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4300
4301 cpu = get_cpu();
4302 vmx->loaded_vmcs = &vmx->nested.vmcs02;
4303 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4304
4305 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4306
4307 vmx->loaded_vmcs = &vmx->vmcs01;
4308 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4309 put_cpu();
4310 }
4311
4312 /*
4313 * Update the guest state fields of vmcs12 to reflect changes that
4314 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4315 * VM-entry controls is also updated, since this is really a guest
4316 * state bit.)
4317 */
sync_vmcs02_to_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4318 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4319 {
4320 struct vcpu_vmx *vmx = to_vmx(vcpu);
4321
4322 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4323 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4324
4325 vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4326 !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4327
4328 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4329 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4330
4331 vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4332 vmcs12->guest_rip = kvm_rip_read(vcpu);
4333 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4334
4335 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4336 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4337
4338 vmcs12->guest_interruptibility_info =
4339 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4340
4341 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4342 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4343 else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4344 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4345 else
4346 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4347
4348 if (nested_cpu_has_preemption_timer(vmcs12) &&
4349 vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4350 !vmx->nested.nested_run_pending)
4351 vmcs12->vmx_preemption_timer_value =
4352 vmx_get_preemption_timer_value(vcpu);
4353
4354 /*
4355 * In some cases (usually, nested EPT), L2 is allowed to change its
4356 * own CR3 without exiting. If it has changed it, we must keep it.
4357 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4358 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4359 *
4360 * Additionally, restore L2's PDPTR to vmcs12.
4361 */
4362 if (enable_ept) {
4363 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4364 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4365 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4366 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4367 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4368 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4369 }
4370 }
4371
4372 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4373
4374 if (nested_cpu_has_vid(vmcs12))
4375 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4376
4377 vmcs12->vm_entry_controls =
4378 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4379 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4380
4381 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4382 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4383
4384 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4385 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4386 }
4387
4388 /*
4389 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4390 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4391 * and this function updates it to reflect the changes to the guest state while
4392 * L2 was running (and perhaps made some exits which were handled directly by L0
4393 * without going back to L1), and to reflect the exit reason.
4394 * Note that we do not have to copy here all VMCS fields, just those that
4395 * could have changed by the L2 guest or the exit - i.e., the guest-state and
4396 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4397 * which already writes to vmcs12 directly.
4398 */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4399 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4400 u32 vm_exit_reason, u32 exit_intr_info,
4401 unsigned long exit_qualification)
4402 {
4403 /* update exit information fields: */
4404 vmcs12->vm_exit_reason = vm_exit_reason;
4405 if (to_vmx(vcpu)->exit_reason.enclave_mode)
4406 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4407 vmcs12->exit_qualification = exit_qualification;
4408
4409 /*
4410 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4411 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4412 * exit info fields are unmodified.
4413 */
4414 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4415 vmcs12->launch_state = 1;
4416
4417 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4418 * instead of reading the real value. */
4419 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4420
4421 /*
4422 * Transfer the event that L0 or L1 may wanted to inject into
4423 * L2 to IDT_VECTORING_INFO_FIELD.
4424 */
4425 vmcs12_save_pending_event(vcpu, vmcs12,
4426 vm_exit_reason, exit_intr_info);
4427
4428 vmcs12->vm_exit_intr_info = exit_intr_info;
4429 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4430 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4431
4432 /*
4433 * According to spec, there's no need to store the guest's
4434 * MSRs if the exit is due to a VM-entry failure that occurs
4435 * during or after loading the guest state. Since this exit
4436 * does not fall in that category, we need to save the MSRs.
4437 */
4438 if (nested_vmx_store_msr(vcpu,
4439 vmcs12->vm_exit_msr_store_addr,
4440 vmcs12->vm_exit_msr_store_count))
4441 nested_vmx_abort(vcpu,
4442 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4443 }
4444 }
4445
4446 /*
4447 * A part of what we need to when the nested L2 guest exits and we want to
4448 * run its L1 parent, is to reset L1's guest state to the host state specified
4449 * in vmcs12.
4450 * This function is to be called not only on normal nested exit, but also on
4451 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4452 * Failures During or After Loading Guest State").
4453 * This function should be called when the active VMCS is L1's (vmcs01).
4454 */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4455 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4456 struct vmcs12 *vmcs12)
4457 {
4458 enum vm_entry_failure_code ignored;
4459 struct kvm_segment seg;
4460
4461 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4462 vcpu->arch.efer = vmcs12->host_ia32_efer;
4463 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4464 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4465 else
4466 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4467 vmx_set_efer(vcpu, vcpu->arch.efer);
4468
4469 kvm_rsp_write(vcpu, vmcs12->host_rsp);
4470 kvm_rip_write(vcpu, vmcs12->host_rip);
4471 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4472 vmx_set_interrupt_shadow(vcpu, 0);
4473
4474 /*
4475 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4476 * actually changed, because vmx_set_cr0 refers to efer set above.
4477 *
4478 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4479 * (KVM doesn't change it);
4480 */
4481 vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4482 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4483
4484 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4485 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4486 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4487
4488 nested_ept_uninit_mmu_context(vcpu);
4489
4490 /*
4491 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4492 * couldn't have changed.
4493 */
4494 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4495 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4496
4497 nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4498
4499 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4500 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4501 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4502 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4503 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4504 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4505 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4506
4507 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
4508 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4509 vmcs_write64(GUEST_BNDCFGS, 0);
4510
4511 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4512 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4513 vcpu->arch.pat = vmcs12->host_ia32_pat;
4514 }
4515 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4516 intel_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4517 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4518 vmcs12->host_ia32_perf_global_ctrl));
4519
4520 /* Set L1 segment info according to Intel SDM
4521 27.5.2 Loading Host Segment and Descriptor-Table Registers */
4522 seg = (struct kvm_segment) {
4523 .base = 0,
4524 .limit = 0xFFFFFFFF,
4525 .selector = vmcs12->host_cs_selector,
4526 .type = 11,
4527 .present = 1,
4528 .s = 1,
4529 .g = 1
4530 };
4531 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4532 seg.l = 1;
4533 else
4534 seg.db = 1;
4535 __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4536 seg = (struct kvm_segment) {
4537 .base = 0,
4538 .limit = 0xFFFFFFFF,
4539 .type = 3,
4540 .present = 1,
4541 .s = 1,
4542 .db = 1,
4543 .g = 1
4544 };
4545 seg.selector = vmcs12->host_ds_selector;
4546 __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4547 seg.selector = vmcs12->host_es_selector;
4548 __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4549 seg.selector = vmcs12->host_ss_selector;
4550 __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4551 seg.selector = vmcs12->host_fs_selector;
4552 seg.base = vmcs12->host_fs_base;
4553 __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4554 seg.selector = vmcs12->host_gs_selector;
4555 seg.base = vmcs12->host_gs_base;
4556 __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4557 seg = (struct kvm_segment) {
4558 .base = vmcs12->host_tr_base,
4559 .limit = 0x67,
4560 .selector = vmcs12->host_tr_selector,
4561 .type = 11,
4562 .present = 1
4563 };
4564 __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4565
4566 memset(&seg, 0, sizeof(seg));
4567 seg.unusable = 1;
4568 __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4569
4570 kvm_set_dr(vcpu, 7, 0x400);
4571 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4572
4573 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4574 vmcs12->vm_exit_msr_load_count))
4575 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4576
4577 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4578 }
4579
nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx * vmx)4580 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4581 {
4582 struct vmx_uret_msr *efer_msr;
4583 unsigned int i;
4584
4585 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4586 return vmcs_read64(GUEST_IA32_EFER);
4587
4588 if (cpu_has_load_ia32_efer())
4589 return host_efer;
4590
4591 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4592 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4593 return vmx->msr_autoload.guest.val[i].value;
4594 }
4595
4596 efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4597 if (efer_msr)
4598 return efer_msr->data;
4599
4600 return host_efer;
4601 }
4602
nested_vmx_restore_host_state(struct kvm_vcpu * vcpu)4603 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4604 {
4605 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4606 struct vcpu_vmx *vmx = to_vmx(vcpu);
4607 struct vmx_msr_entry g, h;
4608 gpa_t gpa;
4609 u32 i, j;
4610
4611 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4612
4613 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4614 /*
4615 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4616 * as vmcs01.GUEST_DR7 contains a userspace defined value
4617 * and vcpu->arch.dr7 is not squirreled away before the
4618 * nested VMENTER (not worth adding a variable in nested_vmx).
4619 */
4620 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4621 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4622 else
4623 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4624 }
4625
4626 /*
4627 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4628 * handle a variety of side effects to KVM's software model.
4629 */
4630 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4631
4632 vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4633 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4634
4635 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4636 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4637
4638 nested_ept_uninit_mmu_context(vcpu);
4639 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4640 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4641
4642 /*
4643 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4644 * from vmcs01 (if necessary). The PDPTRs are not loaded on
4645 * VMFail, like everything else we just need to ensure our
4646 * software model is up-to-date.
4647 */
4648 if (enable_ept && is_pae_paging(vcpu))
4649 ept_save_pdptrs(vcpu);
4650
4651 kvm_mmu_reset_context(vcpu);
4652
4653 /*
4654 * This nasty bit of open coding is a compromise between blindly
4655 * loading L1's MSRs using the exit load lists (incorrect emulation
4656 * of VMFail), leaving the nested VM's MSRs in the software model
4657 * (incorrect behavior) and snapshotting the modified MSRs (too
4658 * expensive since the lists are unbound by hardware). For each
4659 * MSR that was (prematurely) loaded from the nested VMEntry load
4660 * list, reload it from the exit load list if it exists and differs
4661 * from the guest value. The intent is to stuff host state as
4662 * silently as possible, not to fully process the exit load list.
4663 */
4664 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4665 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4666 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4667 pr_debug_ratelimited(
4668 "%s read MSR index failed (%u, 0x%08llx)\n",
4669 __func__, i, gpa);
4670 goto vmabort;
4671 }
4672
4673 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4674 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4675 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4676 pr_debug_ratelimited(
4677 "%s read MSR failed (%u, 0x%08llx)\n",
4678 __func__, j, gpa);
4679 goto vmabort;
4680 }
4681 if (h.index != g.index)
4682 continue;
4683 if (h.value == g.value)
4684 break;
4685
4686 if (nested_vmx_load_msr_check(vcpu, &h)) {
4687 pr_debug_ratelimited(
4688 "%s check failed (%u, 0x%x, 0x%x)\n",
4689 __func__, j, h.index, h.reserved);
4690 goto vmabort;
4691 }
4692
4693 if (kvm_set_msr(vcpu, h.index, h.value)) {
4694 pr_debug_ratelimited(
4695 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4696 __func__, j, h.index, h.value);
4697 goto vmabort;
4698 }
4699 }
4700 }
4701
4702 return;
4703
4704 vmabort:
4705 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4706 }
4707
4708 /*
4709 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4710 * and modify vmcs12 to make it see what it would expect to see there if
4711 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4712 */
nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4713 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4714 u32 exit_intr_info, unsigned long exit_qualification)
4715 {
4716 struct vcpu_vmx *vmx = to_vmx(vcpu);
4717 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4718
4719 /* Pending MTF traps are discarded on VM-Exit. */
4720 vmx->nested.mtf_pending = false;
4721
4722 /* trying to cancel vmlaunch/vmresume is a bug */
4723 WARN_ON_ONCE(vmx->nested.nested_run_pending);
4724
4725 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4726 /*
4727 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4728 * Enlightened VMCS after migration and we still need to
4729 * do that when something is forcing L2->L1 exit prior to
4730 * the first L2 run.
4731 */
4732 (void)nested_get_evmcs_page(vcpu);
4733 }
4734
4735 /* Service pending TLB flush requests for L2 before switching to L1. */
4736 kvm_service_local_tlb_flush_requests(vcpu);
4737
4738 /*
4739 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4740 * now and the new vmentry. Ensure that the VMCS02 PDPTR fields are
4741 * up-to-date before switching to L1.
4742 */
4743 if (enable_ept && is_pae_paging(vcpu))
4744 vmx_ept_load_pdptrs(vcpu);
4745
4746 leave_guest_mode(vcpu);
4747
4748 if (nested_cpu_has_preemption_timer(vmcs12))
4749 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4750
4751 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4752 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4753 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4754 vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4755 }
4756
4757 if (likely(!vmx->fail)) {
4758 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4759
4760 if (vm_exit_reason != -1)
4761 prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4762 exit_intr_info, exit_qualification);
4763
4764 /*
4765 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4766 * also be used to capture vmcs12 cache as part of
4767 * capturing nVMX state for snapshot (migration).
4768 *
4769 * Otherwise, this flush will dirty guest memory at a
4770 * point it is already assumed by user-space to be
4771 * immutable.
4772 */
4773 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4774 } else {
4775 /*
4776 * The only expected VM-instruction error is "VM entry with
4777 * invalid control field(s)." Anything else indicates a
4778 * problem with L0. And we should never get here with a
4779 * VMFail of any type if early consistency checks are enabled.
4780 */
4781 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4782 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4783 WARN_ON_ONCE(nested_early_check);
4784 }
4785
4786 /*
4787 * Drop events/exceptions that were queued for re-injection to L2
4788 * (picked up via vmx_complete_interrupts()), as well as exceptions
4789 * that were pending for L2. Note, this must NOT be hoisted above
4790 * prepare_vmcs12(), events/exceptions queued for re-injection need to
4791 * be captured in vmcs12 (see vmcs12_save_pending_event()).
4792 */
4793 vcpu->arch.nmi_injected = false;
4794 kvm_clear_exception_queue(vcpu);
4795 kvm_clear_interrupt_queue(vcpu);
4796
4797 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4798
4799 /*
4800 * If IBRS is advertised to the vCPU, KVM must flush the indirect
4801 * branch predictors when transitioning from L2 to L1, as L1 expects
4802 * hardware (KVM in this case) to provide separate predictor modes.
4803 * Bare metal isolates VMX root (host) from VMX non-root (guest), but
4804 * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
4805 * separate modes for L2 vs L1.
4806 */
4807 if (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4808 indirect_branch_prediction_barrier();
4809
4810 /* Update any VMCS fields that might have changed while L2 ran */
4811 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4812 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4813 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4814 if (kvm_caps.has_tsc_control)
4815 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4816
4817 if (vmx->nested.l1_tpr_threshold != -1)
4818 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4819
4820 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4821 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4822 vmx_set_virtual_apic_mode(vcpu);
4823 }
4824
4825 if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4826 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4827 vmx_update_cpu_dirty_logging(vcpu);
4828 }
4829
4830 /* Unpin physical memory we referred to in vmcs02 */
4831 kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
4832 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4833 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4834 vmx->nested.pi_desc = NULL;
4835
4836 if (vmx->nested.reload_vmcs01_apic_access_page) {
4837 vmx->nested.reload_vmcs01_apic_access_page = false;
4838 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4839 }
4840
4841 if (vmx->nested.update_vmcs01_apicv_status) {
4842 vmx->nested.update_vmcs01_apicv_status = false;
4843 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
4844 }
4845
4846 if ((vm_exit_reason != -1) &&
4847 (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4848 vmx->nested.need_vmcs12_to_shadow_sync = true;
4849
4850 /* in case we halted in L2 */
4851 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4852
4853 if (likely(!vmx->fail)) {
4854 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4855 nested_exit_intr_ack_set(vcpu)) {
4856 int irq = kvm_cpu_get_interrupt(vcpu);
4857 WARN_ON(irq < 0);
4858 vmcs12->vm_exit_intr_info = irq |
4859 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4860 }
4861
4862 if (vm_exit_reason != -1)
4863 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4864 vmcs12->exit_qualification,
4865 vmcs12->idt_vectoring_info_field,
4866 vmcs12->vm_exit_intr_info,
4867 vmcs12->vm_exit_intr_error_code,
4868 KVM_ISA_VMX);
4869
4870 load_vmcs12_host_state(vcpu, vmcs12);
4871
4872 return;
4873 }
4874
4875 /*
4876 * After an early L2 VM-entry failure, we're now back
4877 * in L1 which thinks it just finished a VMLAUNCH or
4878 * VMRESUME instruction, so we need to set the failure
4879 * flag and the VM-instruction error field of the VMCS
4880 * accordingly, and skip the emulated instruction.
4881 */
4882 (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4883
4884 /*
4885 * Restore L1's host state to KVM's software model. We're here
4886 * because a consistency check was caught by hardware, which
4887 * means some amount of guest state has been propagated to KVM's
4888 * model and needs to be unwound to the host's state.
4889 */
4890 nested_vmx_restore_host_state(vcpu);
4891
4892 vmx->fail = 0;
4893 }
4894
nested_vmx_triple_fault(struct kvm_vcpu * vcpu)4895 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4896 {
4897 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4898 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4899 }
4900
4901 /*
4902 * Decode the memory-address operand of a vmx instruction, as recorded on an
4903 * exit caused by such an instruction (run by a guest hypervisor).
4904 * On success, returns 0. When the operand is invalid, returns 1 and throws
4905 * #UD, #GP, or #SS.
4906 */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,int len,gva_t * ret)4907 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4908 u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4909 {
4910 gva_t off;
4911 bool exn;
4912 struct kvm_segment s;
4913
4914 /*
4915 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4916 * Execution", on an exit, vmx_instruction_info holds most of the
4917 * addressing components of the operand. Only the displacement part
4918 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4919 * For how an actual address is calculated from all these components,
4920 * refer to Vol. 1, "Operand Addressing".
4921 */
4922 int scaling = vmx_instruction_info & 3;
4923 int addr_size = (vmx_instruction_info >> 7) & 7;
4924 bool is_reg = vmx_instruction_info & (1u << 10);
4925 int seg_reg = (vmx_instruction_info >> 15) & 7;
4926 int index_reg = (vmx_instruction_info >> 18) & 0xf;
4927 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4928 int base_reg = (vmx_instruction_info >> 23) & 0xf;
4929 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
4930
4931 if (is_reg) {
4932 kvm_queue_exception(vcpu, UD_VECTOR);
4933 return 1;
4934 }
4935
4936 /* Addr = segment_base + offset */
4937 /* offset = base + [index * scale] + displacement */
4938 off = exit_qualification; /* holds the displacement */
4939 if (addr_size == 1)
4940 off = (gva_t)sign_extend64(off, 31);
4941 else if (addr_size == 0)
4942 off = (gva_t)sign_extend64(off, 15);
4943 if (base_is_valid)
4944 off += kvm_register_read(vcpu, base_reg);
4945 if (index_is_valid)
4946 off += kvm_register_read(vcpu, index_reg) << scaling;
4947 vmx_get_segment(vcpu, &s, seg_reg);
4948
4949 /*
4950 * The effective address, i.e. @off, of a memory operand is truncated
4951 * based on the address size of the instruction. Note that this is
4952 * the *effective address*, i.e. the address prior to accounting for
4953 * the segment's base.
4954 */
4955 if (addr_size == 1) /* 32 bit */
4956 off &= 0xffffffff;
4957 else if (addr_size == 0) /* 16 bit */
4958 off &= 0xffff;
4959
4960 /* Checks for #GP/#SS exceptions. */
4961 exn = false;
4962 if (is_long_mode(vcpu)) {
4963 /*
4964 * The virtual/linear address is never truncated in 64-bit
4965 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4966 * address when using FS/GS with a non-zero base.
4967 */
4968 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4969 *ret = s.base + off;
4970 else
4971 *ret = off;
4972
4973 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4974 * non-canonical form. This is the only check on the memory
4975 * destination for long mode!
4976 */
4977 exn = is_noncanonical_address(*ret, vcpu);
4978 } else {
4979 /*
4980 * When not in long mode, the virtual/linear address is
4981 * unconditionally truncated to 32 bits regardless of the
4982 * address size.
4983 */
4984 *ret = (s.base + off) & 0xffffffff;
4985
4986 /* Protected mode: apply checks for segment validity in the
4987 * following order:
4988 * - segment type check (#GP(0) may be thrown)
4989 * - usability check (#GP(0)/#SS(0))
4990 * - limit check (#GP(0)/#SS(0))
4991 */
4992 if (wr)
4993 /* #GP(0) if the destination operand is located in a
4994 * read-only data segment or any code segment.
4995 */
4996 exn = ((s.type & 0xa) == 0 || (s.type & 8));
4997 else
4998 /* #GP(0) if the source operand is located in an
4999 * execute-only code segment
5000 */
5001 exn = ((s.type & 0xa) == 8);
5002 if (exn) {
5003 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5004 return 1;
5005 }
5006 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
5007 */
5008 exn = (s.unusable != 0);
5009
5010 /*
5011 * Protected mode: #GP(0)/#SS(0) if the memory operand is
5012 * outside the segment limit. All CPUs that support VMX ignore
5013 * limit checks for flat segments, i.e. segments with base==0,
5014 * limit==0xffffffff and of type expand-up data or code.
5015 */
5016 if (!(s.base == 0 && s.limit == 0xffffffff &&
5017 ((s.type & 8) || !(s.type & 4))))
5018 exn = exn || ((u64)off + len - 1 > s.limit);
5019 }
5020 if (exn) {
5021 kvm_queue_exception_e(vcpu,
5022 seg_reg == VCPU_SREG_SS ?
5023 SS_VECTOR : GP_VECTOR,
5024 0);
5025 return 1;
5026 }
5027
5028 return 0;
5029 }
5030
nested_vmx_get_vmptr(struct kvm_vcpu * vcpu,gpa_t * vmpointer,int * ret)5031 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
5032 int *ret)
5033 {
5034 gva_t gva;
5035 struct x86_exception e;
5036 int r;
5037
5038 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5039 vmcs_read32(VMX_INSTRUCTION_INFO), false,
5040 sizeof(*vmpointer), &gva)) {
5041 *ret = 1;
5042 return -EINVAL;
5043 }
5044
5045 r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
5046 if (r != X86EMUL_CONTINUE) {
5047 *ret = kvm_handle_memory_failure(vcpu, r, &e);
5048 return -EINVAL;
5049 }
5050
5051 return 0;
5052 }
5053
5054 /*
5055 * Allocate a shadow VMCS and associate it with the currently loaded
5056 * VMCS, unless such a shadow VMCS already exists. The newly allocated
5057 * VMCS is also VMCLEARed, so that it is ready for use.
5058 */
alloc_shadow_vmcs(struct kvm_vcpu * vcpu)5059 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
5060 {
5061 struct vcpu_vmx *vmx = to_vmx(vcpu);
5062 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
5063
5064 /*
5065 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
5066 * when L1 executes VMXOFF or the vCPU is forced out of nested
5067 * operation. VMXON faults if the CPU is already post-VMXON, so it
5068 * should be impossible to already have an allocated shadow VMCS. KVM
5069 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
5070 * always be the loaded VMCS.
5071 */
5072 if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
5073 return loaded_vmcs->shadow_vmcs;
5074
5075 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
5076 if (loaded_vmcs->shadow_vmcs)
5077 vmcs_clear(loaded_vmcs->shadow_vmcs);
5078
5079 return loaded_vmcs->shadow_vmcs;
5080 }
5081
enter_vmx_operation(struct kvm_vcpu * vcpu)5082 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
5083 {
5084 struct vcpu_vmx *vmx = to_vmx(vcpu);
5085 int r;
5086
5087 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
5088 if (r < 0)
5089 goto out_vmcs02;
5090
5091 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5092 if (!vmx->nested.cached_vmcs12)
5093 goto out_cached_vmcs12;
5094
5095 vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
5096 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5097 if (!vmx->nested.cached_shadow_vmcs12)
5098 goto out_cached_shadow_vmcs12;
5099
5100 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
5101 goto out_shadow_vmcs;
5102
5103 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
5104 HRTIMER_MODE_ABS_PINNED);
5105 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
5106
5107 vmx->nested.vpid02 = allocate_vpid();
5108
5109 vmx->nested.vmcs02_initialized = false;
5110 vmx->nested.vmxon = true;
5111
5112 if (vmx_pt_mode_is_host_guest()) {
5113 vmx->pt_desc.guest.ctl = 0;
5114 pt_update_intercept_for_msr(vcpu);
5115 }
5116
5117 return 0;
5118
5119 out_shadow_vmcs:
5120 kfree(vmx->nested.cached_shadow_vmcs12);
5121
5122 out_cached_shadow_vmcs12:
5123 kfree(vmx->nested.cached_vmcs12);
5124
5125 out_cached_vmcs12:
5126 free_loaded_vmcs(&vmx->nested.vmcs02);
5127
5128 out_vmcs02:
5129 return -ENOMEM;
5130 }
5131
5132 /* Emulate the VMXON instruction. */
handle_vmxon(struct kvm_vcpu * vcpu)5133 static int handle_vmxon(struct kvm_vcpu *vcpu)
5134 {
5135 int ret;
5136 gpa_t vmptr;
5137 uint32_t revision;
5138 struct vcpu_vmx *vmx = to_vmx(vcpu);
5139 const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
5140 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
5141
5142 /*
5143 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
5144 * the guest and so cannot rely on hardware to perform the check,
5145 * which has higher priority than VM-Exit (see Intel SDM's pseudocode
5146 * for VMXON).
5147 *
5148 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
5149 * and !COMPATIBILITY modes. For an unrestricted guest, KVM doesn't
5150 * force any of the relevant guest state. For a restricted guest, KVM
5151 * does force CR0.PE=1, but only to also force VM86 in order to emulate
5152 * Real Mode, and so there's no need to check CR0.PE manually.
5153 */
5154 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
5155 kvm_queue_exception(vcpu, UD_VECTOR);
5156 return 1;
5157 }
5158
5159 /*
5160 * The CPL is checked for "not in VMX operation" and for "in VMX root",
5161 * and has higher priority than the VM-Fail due to being post-VMXON,
5162 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0. In VMX non-root,
5163 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
5164 * from L2 to L1, i.e. there's no need to check for the vCPU being in
5165 * VMX non-root.
5166 *
5167 * Forwarding the VM-Exit unconditionally, i.e. without performing the
5168 * #UD checks (see above), is functionally ok because KVM doesn't allow
5169 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
5170 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
5171 * missed by hardware due to shadowing CR0 and/or CR4.
5172 */
5173 if (vmx_get_cpl(vcpu)) {
5174 kvm_inject_gp(vcpu, 0);
5175 return 1;
5176 }
5177
5178 if (vmx->nested.vmxon)
5179 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5180
5181 /*
5182 * Invalid CR0/CR4 generates #GP. These checks are performed if and
5183 * only if the vCPU isn't already in VMX operation, i.e. effectively
5184 * have lower priority than the VM-Fail above.
5185 */
5186 if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
5187 !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
5188 kvm_inject_gp(vcpu, 0);
5189 return 1;
5190 }
5191
5192 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5193 != VMXON_NEEDED_FEATURES) {
5194 kvm_inject_gp(vcpu, 0);
5195 return 1;
5196 }
5197
5198 if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
5199 return ret;
5200
5201 /*
5202 * SDM 3: 24.11.5
5203 * The first 4 bytes of VMXON region contain the supported
5204 * VMCS revision identifier
5205 *
5206 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5207 * which replaces physical address width with 32
5208 */
5209 if (!page_address_valid(vcpu, vmptr))
5210 return nested_vmx_failInvalid(vcpu);
5211
5212 if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5213 revision != VMCS12_REVISION)
5214 return nested_vmx_failInvalid(vcpu);
5215
5216 vmx->nested.vmxon_ptr = vmptr;
5217 ret = enter_vmx_operation(vcpu);
5218 if (ret)
5219 return ret;
5220
5221 return nested_vmx_succeed(vcpu);
5222 }
5223
nested_release_vmcs12(struct kvm_vcpu * vcpu)5224 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5225 {
5226 struct vcpu_vmx *vmx = to_vmx(vcpu);
5227
5228 if (vmx->nested.current_vmptr == INVALID_GPA)
5229 return;
5230
5231 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5232
5233 if (enable_shadow_vmcs) {
5234 /* copy to memory all shadowed fields in case
5235 they were modified */
5236 copy_shadow_to_vmcs12(vmx);
5237 vmx_disable_shadow_vmcs(vmx);
5238 }
5239 vmx->nested.posted_intr_nv = -1;
5240
5241 /* Flush VMCS12 to guest memory */
5242 kvm_vcpu_write_guest_page(vcpu,
5243 vmx->nested.current_vmptr >> PAGE_SHIFT,
5244 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5245
5246 kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5247
5248 vmx->nested.current_vmptr = INVALID_GPA;
5249 }
5250
5251 /* Emulate the VMXOFF instruction */
handle_vmxoff(struct kvm_vcpu * vcpu)5252 static int handle_vmxoff(struct kvm_vcpu *vcpu)
5253 {
5254 if (!nested_vmx_check_permission(vcpu))
5255 return 1;
5256
5257 free_nested(vcpu);
5258
5259 if (kvm_apic_has_pending_init_or_sipi(vcpu))
5260 kvm_make_request(KVM_REQ_EVENT, vcpu);
5261
5262 return nested_vmx_succeed(vcpu);
5263 }
5264
5265 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)5266 static int handle_vmclear(struct kvm_vcpu *vcpu)
5267 {
5268 struct vcpu_vmx *vmx = to_vmx(vcpu);
5269 u32 zero = 0;
5270 gpa_t vmptr;
5271 int r;
5272
5273 if (!nested_vmx_check_permission(vcpu))
5274 return 1;
5275
5276 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5277 return r;
5278
5279 if (!page_address_valid(vcpu, vmptr))
5280 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5281
5282 if (vmptr == vmx->nested.vmxon_ptr)
5283 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5284
5285 /*
5286 * When Enlightened VMEntry is enabled on the calling CPU we treat
5287 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5288 * way to distinguish it from VMCS12) and we must not corrupt it by
5289 * writing to the non-existent 'launch_state' field. The area doesn't
5290 * have to be the currently active EVMCS on the calling CPU and there's
5291 * nothing KVM has to do to transition it from 'active' to 'non-active'
5292 * state. It is possible that the area will stay mapped as
5293 * vmx->nested.hv_evmcs but this shouldn't be a problem.
5294 */
5295 if (likely(!guest_cpuid_has_evmcs(vcpu) ||
5296 !evmptr_is_valid(nested_get_evmptr(vcpu)))) {
5297 if (vmptr == vmx->nested.current_vmptr)
5298 nested_release_vmcs12(vcpu);
5299
5300 /*
5301 * Silently ignore memory errors on VMCLEAR, Intel's pseudocode
5302 * for VMCLEAR includes a "ensure that data for VMCS referenced
5303 * by the operand is in memory" clause that guards writes to
5304 * memory, i.e. doing nothing for I/O is architecturally valid.
5305 *
5306 * FIXME: Suppress failures if and only if no memslot is found,
5307 * i.e. exit to userspace if __copy_to_user() fails.
5308 */
5309 (void)kvm_vcpu_write_guest(vcpu,
5310 vmptr + offsetof(struct vmcs12,
5311 launch_state),
5312 &zero, sizeof(zero));
5313 } else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
5314 nested_release_evmcs(vcpu);
5315 }
5316
5317 return nested_vmx_succeed(vcpu);
5318 }
5319
5320 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)5321 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5322 {
5323 return nested_vmx_run(vcpu, true);
5324 }
5325
5326 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)5327 static int handle_vmresume(struct kvm_vcpu *vcpu)
5328 {
5329
5330 return nested_vmx_run(vcpu, false);
5331 }
5332
handle_vmread(struct kvm_vcpu * vcpu)5333 static int handle_vmread(struct kvm_vcpu *vcpu)
5334 {
5335 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5336 : get_vmcs12(vcpu);
5337 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5338 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5339 struct vcpu_vmx *vmx = to_vmx(vcpu);
5340 struct x86_exception e;
5341 unsigned long field;
5342 u64 value;
5343 gva_t gva = 0;
5344 short offset;
5345 int len, r;
5346
5347 if (!nested_vmx_check_permission(vcpu))
5348 return 1;
5349
5350 /* Decode instruction info and find the field to read */
5351 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5352
5353 if (!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
5354 /*
5355 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5356 * any VMREAD sets the ALU flags for VMfailInvalid.
5357 */
5358 if (vmx->nested.current_vmptr == INVALID_GPA ||
5359 (is_guest_mode(vcpu) &&
5360 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5361 return nested_vmx_failInvalid(vcpu);
5362
5363 offset = get_vmcs12_field_offset(field);
5364 if (offset < 0)
5365 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5366
5367 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5368 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5369
5370 /* Read the field, zero-extended to a u64 value */
5371 value = vmcs12_read_any(vmcs12, field, offset);
5372 } else {
5373 /*
5374 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5375 * enlightened VMCS is active VMREAD/VMWRITE instructions are
5376 * unsupported. Unfortunately, certain versions of Windows 11
5377 * don't comply with this requirement which is not enforced in
5378 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5379 * workaround, as misbehaving guests will panic on VM-Fail.
5380 * Note, enlightened VMCS is incompatible with shadow VMCS so
5381 * all VMREADs from L2 should go to L1.
5382 */
5383 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5384 return nested_vmx_failInvalid(vcpu);
5385
5386 offset = evmcs_field_offset(field, NULL);
5387 if (offset < 0)
5388 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5389
5390 /* Read the field, zero-extended to a u64 value */
5391 value = evmcs_read_any(vmx->nested.hv_evmcs, field, offset);
5392 }
5393
5394 /*
5395 * Now copy part of this value to register or memory, as requested.
5396 * Note that the number of bits actually copied is 32 or 64 depending
5397 * on the guest's mode (32 or 64 bit), not on the given field's length.
5398 */
5399 if (instr_info & BIT(10)) {
5400 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5401 } else {
5402 len = is_64_bit_mode(vcpu) ? 8 : 4;
5403 if (get_vmx_mem_address(vcpu, exit_qualification,
5404 instr_info, true, len, &gva))
5405 return 1;
5406 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5407 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5408 if (r != X86EMUL_CONTINUE)
5409 return kvm_handle_memory_failure(vcpu, r, &e);
5410 }
5411
5412 return nested_vmx_succeed(vcpu);
5413 }
5414
is_shadow_field_rw(unsigned long field)5415 static bool is_shadow_field_rw(unsigned long field)
5416 {
5417 switch (field) {
5418 #define SHADOW_FIELD_RW(x, y) case x:
5419 #include "vmcs_shadow_fields.h"
5420 return true;
5421 default:
5422 break;
5423 }
5424 return false;
5425 }
5426
is_shadow_field_ro(unsigned long field)5427 static bool is_shadow_field_ro(unsigned long field)
5428 {
5429 switch (field) {
5430 #define SHADOW_FIELD_RO(x, y) case x:
5431 #include "vmcs_shadow_fields.h"
5432 return true;
5433 default:
5434 break;
5435 }
5436 return false;
5437 }
5438
handle_vmwrite(struct kvm_vcpu * vcpu)5439 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5440 {
5441 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5442 : get_vmcs12(vcpu);
5443 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5444 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5445 struct vcpu_vmx *vmx = to_vmx(vcpu);
5446 struct x86_exception e;
5447 unsigned long field;
5448 short offset;
5449 gva_t gva;
5450 int len, r;
5451
5452 /*
5453 * The value to write might be 32 or 64 bits, depending on L1's long
5454 * mode, and eventually we need to write that into a field of several
5455 * possible lengths. The code below first zero-extends the value to 64
5456 * bit (value), and then copies only the appropriate number of
5457 * bits into the vmcs12 field.
5458 */
5459 u64 value = 0;
5460
5461 if (!nested_vmx_check_permission(vcpu))
5462 return 1;
5463
5464 /*
5465 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5466 * any VMWRITE sets the ALU flags for VMfailInvalid.
5467 */
5468 if (vmx->nested.current_vmptr == INVALID_GPA ||
5469 (is_guest_mode(vcpu) &&
5470 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5471 return nested_vmx_failInvalid(vcpu);
5472
5473 if (instr_info & BIT(10))
5474 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5475 else {
5476 len = is_64_bit_mode(vcpu) ? 8 : 4;
5477 if (get_vmx_mem_address(vcpu, exit_qualification,
5478 instr_info, false, len, &gva))
5479 return 1;
5480 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5481 if (r != X86EMUL_CONTINUE)
5482 return kvm_handle_memory_failure(vcpu, r, &e);
5483 }
5484
5485 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5486
5487 offset = get_vmcs12_field_offset(field);
5488 if (offset < 0)
5489 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5490
5491 /*
5492 * If the vCPU supports "VMWRITE to any supported field in the
5493 * VMCS," then the "read-only" fields are actually read/write.
5494 */
5495 if (vmcs_field_readonly(field) &&
5496 !nested_cpu_has_vmwrite_any_field(vcpu))
5497 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5498
5499 /*
5500 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5501 * vmcs12, else we may crush a field or consume a stale value.
5502 */
5503 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5504 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5505
5506 /*
5507 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5508 * fields on VMWRITE. Emulate this behavior to ensure consistent KVM
5509 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5510 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5511 * from L1 will return a different value than VMREAD from L2 (L1 sees
5512 * the stripped down value, L2 sees the full value as stored by KVM).
5513 */
5514 if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5515 value &= 0x1f0ff;
5516
5517 vmcs12_write_any(vmcs12, field, offset, value);
5518
5519 /*
5520 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5521 * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
5522 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5523 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5524 */
5525 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5526 /*
5527 * L1 can read these fields without exiting, ensure the
5528 * shadow VMCS is up-to-date.
5529 */
5530 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5531 preempt_disable();
5532 vmcs_load(vmx->vmcs01.shadow_vmcs);
5533
5534 __vmcs_writel(field, value);
5535
5536 vmcs_clear(vmx->vmcs01.shadow_vmcs);
5537 vmcs_load(vmx->loaded_vmcs->vmcs);
5538 preempt_enable();
5539 }
5540 vmx->nested.dirty_vmcs12 = true;
5541 }
5542
5543 return nested_vmx_succeed(vcpu);
5544 }
5545
set_current_vmptr(struct vcpu_vmx * vmx,gpa_t vmptr)5546 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5547 {
5548 vmx->nested.current_vmptr = vmptr;
5549 if (enable_shadow_vmcs) {
5550 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5551 vmcs_write64(VMCS_LINK_POINTER,
5552 __pa(vmx->vmcs01.shadow_vmcs));
5553 vmx->nested.need_vmcs12_to_shadow_sync = true;
5554 }
5555 vmx->nested.dirty_vmcs12 = true;
5556 vmx->nested.force_msr_bitmap_recalc = true;
5557 }
5558
5559 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)5560 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5561 {
5562 struct vcpu_vmx *vmx = to_vmx(vcpu);
5563 gpa_t vmptr;
5564 int r;
5565
5566 if (!nested_vmx_check_permission(vcpu))
5567 return 1;
5568
5569 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5570 return r;
5571
5572 if (!page_address_valid(vcpu, vmptr))
5573 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5574
5575 if (vmptr == vmx->nested.vmxon_ptr)
5576 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5577
5578 /* Forbid normal VMPTRLD if Enlightened version was used */
5579 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5580 return 1;
5581
5582 if (vmx->nested.current_vmptr != vmptr) {
5583 struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5584 struct vmcs_hdr hdr;
5585
5586 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5587 /*
5588 * Reads from an unbacked page return all 1s,
5589 * which means that the 32 bits located at the
5590 * given physical address won't match the required
5591 * VMCS12_REVISION identifier.
5592 */
5593 return nested_vmx_fail(vcpu,
5594 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5595 }
5596
5597 if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5598 offsetof(struct vmcs12, hdr),
5599 sizeof(hdr))) {
5600 return nested_vmx_fail(vcpu,
5601 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5602 }
5603
5604 if (hdr.revision_id != VMCS12_REVISION ||
5605 (hdr.shadow_vmcs &&
5606 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5607 return nested_vmx_fail(vcpu,
5608 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5609 }
5610
5611 nested_release_vmcs12(vcpu);
5612
5613 /*
5614 * Load VMCS12 from guest memory since it is not already
5615 * cached.
5616 */
5617 if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5618 VMCS12_SIZE)) {
5619 return nested_vmx_fail(vcpu,
5620 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5621 }
5622
5623 set_current_vmptr(vmx, vmptr);
5624 }
5625
5626 return nested_vmx_succeed(vcpu);
5627 }
5628
5629 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)5630 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5631 {
5632 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5633 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5634 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5635 struct x86_exception e;
5636 gva_t gva;
5637 int r;
5638
5639 if (!nested_vmx_check_permission(vcpu))
5640 return 1;
5641
5642 if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5643 return 1;
5644
5645 if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5646 true, sizeof(gpa_t), &gva))
5647 return 1;
5648 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5649 r = kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr,
5650 sizeof(gpa_t), &e);
5651 if (r != X86EMUL_CONTINUE)
5652 return kvm_handle_memory_failure(vcpu, r, &e);
5653
5654 return nested_vmx_succeed(vcpu);
5655 }
5656
5657 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)5658 static int handle_invept(struct kvm_vcpu *vcpu)
5659 {
5660 struct vcpu_vmx *vmx = to_vmx(vcpu);
5661 u32 vmx_instruction_info, types;
5662 unsigned long type, roots_to_free;
5663 struct kvm_mmu *mmu;
5664 gva_t gva;
5665 struct x86_exception e;
5666 struct {
5667 u64 eptp, gpa;
5668 } operand;
5669 int i, r, gpr_index;
5670
5671 if (!(vmx->nested.msrs.secondary_ctls_high &
5672 SECONDARY_EXEC_ENABLE_EPT) ||
5673 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5674 kvm_queue_exception(vcpu, UD_VECTOR);
5675 return 1;
5676 }
5677
5678 if (!nested_vmx_check_permission(vcpu))
5679 return 1;
5680
5681 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5682 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5683 type = kvm_register_read(vcpu, gpr_index);
5684
5685 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5686
5687 if (type >= 32 || !(types & (1 << type)))
5688 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5689
5690 /* According to the Intel VMX instruction reference, the memory
5691 * operand is read even if it isn't needed (e.g., for type==global)
5692 */
5693 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5694 vmx_instruction_info, false, sizeof(operand), &gva))
5695 return 1;
5696 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5697 if (r != X86EMUL_CONTINUE)
5698 return kvm_handle_memory_failure(vcpu, r, &e);
5699
5700 /*
5701 * Nested EPT roots are always held through guest_mmu,
5702 * not root_mmu.
5703 */
5704 mmu = &vcpu->arch.guest_mmu;
5705
5706 switch (type) {
5707 case VMX_EPT_EXTENT_CONTEXT:
5708 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5709 return nested_vmx_fail(vcpu,
5710 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5711
5712 roots_to_free = 0;
5713 if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
5714 operand.eptp))
5715 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5716
5717 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5718 if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5719 mmu->prev_roots[i].pgd,
5720 operand.eptp))
5721 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5722 }
5723 break;
5724 case VMX_EPT_EXTENT_GLOBAL:
5725 roots_to_free = KVM_MMU_ROOTS_ALL;
5726 break;
5727 default:
5728 BUG();
5729 break;
5730 }
5731
5732 if (roots_to_free)
5733 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
5734
5735 return nested_vmx_succeed(vcpu);
5736 }
5737
handle_invvpid(struct kvm_vcpu * vcpu)5738 static int handle_invvpid(struct kvm_vcpu *vcpu)
5739 {
5740 struct vcpu_vmx *vmx = to_vmx(vcpu);
5741 u32 vmx_instruction_info;
5742 unsigned long type, types;
5743 gva_t gva;
5744 struct x86_exception e;
5745 struct {
5746 u64 vpid;
5747 u64 gla;
5748 } operand;
5749 u16 vpid02;
5750 int r, gpr_index;
5751
5752 if (!(vmx->nested.msrs.secondary_ctls_high &
5753 SECONDARY_EXEC_ENABLE_VPID) ||
5754 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5755 kvm_queue_exception(vcpu, UD_VECTOR);
5756 return 1;
5757 }
5758
5759 if (!nested_vmx_check_permission(vcpu))
5760 return 1;
5761
5762 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5763 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5764 type = kvm_register_read(vcpu, gpr_index);
5765
5766 types = (vmx->nested.msrs.vpid_caps &
5767 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5768
5769 if (type >= 32 || !(types & (1 << type)))
5770 return nested_vmx_fail(vcpu,
5771 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5772
5773 /* according to the intel vmx instruction reference, the memory
5774 * operand is read even if it isn't needed (e.g., for type==global)
5775 */
5776 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5777 vmx_instruction_info, false, sizeof(operand), &gva))
5778 return 1;
5779 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5780 if (r != X86EMUL_CONTINUE)
5781 return kvm_handle_memory_failure(vcpu, r, &e);
5782
5783 if (operand.vpid >> 16)
5784 return nested_vmx_fail(vcpu,
5785 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5786
5787 vpid02 = nested_get_vpid02(vcpu);
5788 switch (type) {
5789 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5790 if (!operand.vpid ||
5791 is_noncanonical_address(operand.gla, vcpu))
5792 return nested_vmx_fail(vcpu,
5793 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5794 vpid_sync_vcpu_addr(vpid02, operand.gla);
5795 break;
5796 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5797 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5798 if (!operand.vpid)
5799 return nested_vmx_fail(vcpu,
5800 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5801 vpid_sync_context(vpid02);
5802 break;
5803 case VMX_VPID_EXTENT_ALL_CONTEXT:
5804 vpid_sync_context(vpid02);
5805 break;
5806 default:
5807 WARN_ON_ONCE(1);
5808 return kvm_skip_emulated_instruction(vcpu);
5809 }
5810
5811 /*
5812 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5813 * linear mappings for L2 (tagged with L2's VPID). Free all guest
5814 * roots as VPIDs are not tracked in the MMU role.
5815 *
5816 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5817 * an MMU when EPT is disabled.
5818 *
5819 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5820 */
5821 if (!enable_ept)
5822 kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5823
5824 return nested_vmx_succeed(vcpu);
5825 }
5826
nested_vmx_eptp_switching(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5827 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5828 struct vmcs12 *vmcs12)
5829 {
5830 u32 index = kvm_rcx_read(vcpu);
5831 u64 new_eptp;
5832
5833 if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5834 return 1;
5835 if (index >= VMFUNC_EPTP_ENTRIES)
5836 return 1;
5837
5838 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5839 &new_eptp, index * 8, 8))
5840 return 1;
5841
5842 /*
5843 * If the (L2) guest does a vmfunc to the currently
5844 * active ept pointer, we don't have to do anything else
5845 */
5846 if (vmcs12->ept_pointer != new_eptp) {
5847 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5848 return 1;
5849
5850 vmcs12->ept_pointer = new_eptp;
5851 nested_ept_new_eptp(vcpu);
5852
5853 if (!nested_cpu_has_vpid(vmcs12))
5854 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5855 }
5856
5857 return 0;
5858 }
5859
handle_vmfunc(struct kvm_vcpu * vcpu)5860 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5861 {
5862 struct vcpu_vmx *vmx = to_vmx(vcpu);
5863 struct vmcs12 *vmcs12;
5864 u32 function = kvm_rax_read(vcpu);
5865
5866 /*
5867 * VMFUNC should never execute cleanly while L1 is active; KVM supports
5868 * VMFUNC for nested VMs, but not for L1.
5869 */
5870 if (WARN_ON_ONCE(!is_guest_mode(vcpu))) {
5871 kvm_queue_exception(vcpu, UD_VECTOR);
5872 return 1;
5873 }
5874
5875 vmcs12 = get_vmcs12(vcpu);
5876
5877 /*
5878 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5879 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5880 */
5881 if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5882 kvm_queue_exception(vcpu, UD_VECTOR);
5883 return 1;
5884 }
5885
5886 if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5887 goto fail;
5888
5889 switch (function) {
5890 case 0:
5891 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5892 goto fail;
5893 break;
5894 default:
5895 goto fail;
5896 }
5897 return kvm_skip_emulated_instruction(vcpu);
5898
5899 fail:
5900 /*
5901 * This is effectively a reflected VM-Exit, as opposed to a synthesized
5902 * nested VM-Exit. Pass the original exit reason, i.e. don't hardcode
5903 * EXIT_REASON_VMFUNC as the exit reason.
5904 */
5905 nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5906 vmx_get_intr_info(vcpu),
5907 vmx_get_exit_qual(vcpu));
5908 return 1;
5909 }
5910
5911 /*
5912 * Return true if an IO instruction with the specified port and size should cause
5913 * a VM-exit into L1.
5914 */
nested_vmx_check_io_bitmaps(struct kvm_vcpu * vcpu,unsigned int port,int size)5915 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5916 int size)
5917 {
5918 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5919 gpa_t bitmap, last_bitmap;
5920 u8 b;
5921
5922 last_bitmap = INVALID_GPA;
5923 b = -1;
5924
5925 while (size > 0) {
5926 if (port < 0x8000)
5927 bitmap = vmcs12->io_bitmap_a;
5928 else if (port < 0x10000)
5929 bitmap = vmcs12->io_bitmap_b;
5930 else
5931 return true;
5932 bitmap += (port & 0x7fff) / 8;
5933
5934 if (last_bitmap != bitmap)
5935 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5936 return true;
5937 if (b & (1 << (port & 7)))
5938 return true;
5939
5940 port++;
5941 size--;
5942 last_bitmap = bitmap;
5943 }
5944
5945 return false;
5946 }
5947
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5948 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5949 struct vmcs12 *vmcs12)
5950 {
5951 unsigned long exit_qualification;
5952 unsigned short port;
5953 int size;
5954
5955 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5956 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5957
5958 exit_qualification = vmx_get_exit_qual(vcpu);
5959
5960 port = exit_qualification >> 16;
5961 size = (exit_qualification & 7) + 1;
5962
5963 return nested_vmx_check_io_bitmaps(vcpu, port, size);
5964 }
5965
5966 /*
5967 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5968 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5969 * disinterest in the current event (read or write a specific MSR) by using an
5970 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5971 */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,union vmx_exit_reason exit_reason)5972 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5973 struct vmcs12 *vmcs12,
5974 union vmx_exit_reason exit_reason)
5975 {
5976 u32 msr_index = kvm_rcx_read(vcpu);
5977 gpa_t bitmap;
5978
5979 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5980 return true;
5981
5982 /*
5983 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5984 * for the four combinations of read/write and low/high MSR numbers.
5985 * First we need to figure out which of the four to use:
5986 */
5987 bitmap = vmcs12->msr_bitmap;
5988 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5989 bitmap += 2048;
5990 if (msr_index >= 0xc0000000) {
5991 msr_index -= 0xc0000000;
5992 bitmap += 1024;
5993 }
5994
5995 /* Then read the msr_index'th bit from this bitmap: */
5996 if (msr_index < 1024*8) {
5997 unsigned char b;
5998 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5999 return true;
6000 return 1 & (b >> (msr_index & 7));
6001 } else
6002 return true; /* let L1 handle the wrong parameter */
6003 }
6004
6005 /*
6006 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6007 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6008 * intercept (via guest_host_mask etc.) the current event.
6009 */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6010 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6011 struct vmcs12 *vmcs12)
6012 {
6013 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
6014 int cr = exit_qualification & 15;
6015 int reg;
6016 unsigned long val;
6017
6018 switch ((exit_qualification >> 4) & 3) {
6019 case 0: /* mov to cr */
6020 reg = (exit_qualification >> 8) & 15;
6021 val = kvm_register_read(vcpu, reg);
6022 switch (cr) {
6023 case 0:
6024 if (vmcs12->cr0_guest_host_mask &
6025 (val ^ vmcs12->cr0_read_shadow))
6026 return true;
6027 break;
6028 case 3:
6029 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6030 return true;
6031 break;
6032 case 4:
6033 if (vmcs12->cr4_guest_host_mask &
6034 (vmcs12->cr4_read_shadow ^ val))
6035 return true;
6036 break;
6037 case 8:
6038 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6039 return true;
6040 break;
6041 }
6042 break;
6043 case 2: /* clts */
6044 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6045 (vmcs12->cr0_read_shadow & X86_CR0_TS))
6046 return true;
6047 break;
6048 case 1: /* mov from cr */
6049 switch (cr) {
6050 case 3:
6051 if (vmcs12->cpu_based_vm_exec_control &
6052 CPU_BASED_CR3_STORE_EXITING)
6053 return true;
6054 break;
6055 case 8:
6056 if (vmcs12->cpu_based_vm_exec_control &
6057 CPU_BASED_CR8_STORE_EXITING)
6058 return true;
6059 break;
6060 }
6061 break;
6062 case 3: /* lmsw */
6063 /*
6064 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6065 * cr0. Other attempted changes are ignored, with no exit.
6066 */
6067 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6068 if (vmcs12->cr0_guest_host_mask & 0xe &
6069 (val ^ vmcs12->cr0_read_shadow))
6070 return true;
6071 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6072 !(vmcs12->cr0_read_shadow & 0x1) &&
6073 (val & 0x1))
6074 return true;
6075 break;
6076 }
6077 return false;
6078 }
6079
nested_vmx_exit_handled_encls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6080 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
6081 struct vmcs12 *vmcs12)
6082 {
6083 u32 encls_leaf;
6084
6085 if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
6086 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
6087 return false;
6088
6089 encls_leaf = kvm_rax_read(vcpu);
6090 if (encls_leaf > 62)
6091 encls_leaf = 63;
6092 return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
6093 }
6094
nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,gpa_t bitmap)6095 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
6096 struct vmcs12 *vmcs12, gpa_t bitmap)
6097 {
6098 u32 vmx_instruction_info;
6099 unsigned long field;
6100 u8 b;
6101
6102 if (!nested_cpu_has_shadow_vmcs(vmcs12))
6103 return true;
6104
6105 /* Decode instruction info and find the field to access */
6106 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6107 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6108
6109 /* Out-of-range fields always cause a VM exit from L2 to L1 */
6110 if (field >> 15)
6111 return true;
6112
6113 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
6114 return true;
6115
6116 return 1 & (b >> (field & 7));
6117 }
6118
nested_vmx_exit_handled_mtf(struct vmcs12 * vmcs12)6119 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
6120 {
6121 u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
6122
6123 if (nested_cpu_has_mtf(vmcs12))
6124 return true;
6125
6126 /*
6127 * An MTF VM-exit may be injected into the guest by setting the
6128 * interruption-type to 7 (other event) and the vector field to 0. Such
6129 * is the case regardless of the 'monitor trap flag' VM-execution
6130 * control.
6131 */
6132 return entry_intr_info == (INTR_INFO_VALID_MASK
6133 | INTR_TYPE_OTHER_EVENT);
6134 }
6135
6136 /*
6137 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
6138 * L1 wants the exit. Only call this when in is_guest_mode (L2).
6139 */
nested_vmx_l0_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6140 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
6141 union vmx_exit_reason exit_reason)
6142 {
6143 u32 intr_info;
6144
6145 switch ((u16)exit_reason.basic) {
6146 case EXIT_REASON_EXCEPTION_NMI:
6147 intr_info = vmx_get_intr_info(vcpu);
6148 if (is_nmi(intr_info))
6149 return true;
6150 else if (is_page_fault(intr_info))
6151 return vcpu->arch.apf.host_apf_flags ||
6152 vmx_need_pf_intercept(vcpu);
6153 else if (is_debug(intr_info) &&
6154 vcpu->guest_debug &
6155 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6156 return true;
6157 else if (is_breakpoint(intr_info) &&
6158 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6159 return true;
6160 else if (is_alignment_check(intr_info) &&
6161 !vmx_guest_inject_ac(vcpu))
6162 return true;
6163 return false;
6164 case EXIT_REASON_EXTERNAL_INTERRUPT:
6165 return true;
6166 case EXIT_REASON_MCE_DURING_VMENTRY:
6167 return true;
6168 case EXIT_REASON_EPT_VIOLATION:
6169 /*
6170 * L0 always deals with the EPT violation. If nested EPT is
6171 * used, and the nested mmu code discovers that the address is
6172 * missing in the guest EPT table (EPT12), the EPT violation
6173 * will be injected with nested_ept_inject_page_fault()
6174 */
6175 return true;
6176 case EXIT_REASON_EPT_MISCONFIG:
6177 /*
6178 * L2 never uses directly L1's EPT, but rather L0's own EPT
6179 * table (shadow on EPT) or a merged EPT table that L0 built
6180 * (EPT on EPT). So any problems with the structure of the
6181 * table is L0's fault.
6182 */
6183 return true;
6184 case EXIT_REASON_PREEMPTION_TIMER:
6185 return true;
6186 case EXIT_REASON_PML_FULL:
6187 /*
6188 * PML is emulated for an L1 VMM and should never be enabled in
6189 * vmcs02, always "handle" PML_FULL by exiting to userspace.
6190 */
6191 return true;
6192 case EXIT_REASON_VMFUNC:
6193 /* VM functions are emulated through L2->L0 vmexits. */
6194 return true;
6195 case EXIT_REASON_BUS_LOCK:
6196 /*
6197 * At present, bus lock VM exit is never exposed to L1.
6198 * Handle L2's bus locks in L0 directly.
6199 */
6200 return true;
6201 case EXIT_REASON_VMCALL:
6202 /* Hyper-V L2 TLB flush hypercall is handled by L0 */
6203 return guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
6204 nested_evmcs_l2_tlb_flush_enabled(vcpu) &&
6205 kvm_hv_is_tlb_flush_hcall(vcpu);
6206 default:
6207 break;
6208 }
6209 return false;
6210 }
6211
6212 /*
6213 * Return 1 if L1 wants to intercept an exit from L2. Only call this when in
6214 * is_guest_mode (L2).
6215 */
nested_vmx_l1_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6216 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6217 union vmx_exit_reason exit_reason)
6218 {
6219 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6220 u32 intr_info;
6221
6222 switch ((u16)exit_reason.basic) {
6223 case EXIT_REASON_EXCEPTION_NMI:
6224 intr_info = vmx_get_intr_info(vcpu);
6225 if (is_nmi(intr_info))
6226 return true;
6227 else if (is_page_fault(intr_info))
6228 return true;
6229 return vmcs12->exception_bitmap &
6230 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6231 case EXIT_REASON_EXTERNAL_INTERRUPT:
6232 return nested_exit_on_intr(vcpu);
6233 case EXIT_REASON_TRIPLE_FAULT:
6234 return true;
6235 case EXIT_REASON_INTERRUPT_WINDOW:
6236 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6237 case EXIT_REASON_NMI_WINDOW:
6238 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6239 case EXIT_REASON_TASK_SWITCH:
6240 return true;
6241 case EXIT_REASON_CPUID:
6242 return true;
6243 case EXIT_REASON_HLT:
6244 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6245 case EXIT_REASON_INVD:
6246 return true;
6247 case EXIT_REASON_INVLPG:
6248 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6249 case EXIT_REASON_RDPMC:
6250 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6251 case EXIT_REASON_RDRAND:
6252 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6253 case EXIT_REASON_RDSEED:
6254 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6255 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6256 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6257 case EXIT_REASON_VMREAD:
6258 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6259 vmcs12->vmread_bitmap);
6260 case EXIT_REASON_VMWRITE:
6261 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6262 vmcs12->vmwrite_bitmap);
6263 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6264 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6265 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6266 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6267 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6268 /*
6269 * VMX instructions trap unconditionally. This allows L1 to
6270 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6271 */
6272 return true;
6273 case EXIT_REASON_CR_ACCESS:
6274 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6275 case EXIT_REASON_DR_ACCESS:
6276 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6277 case EXIT_REASON_IO_INSTRUCTION:
6278 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6279 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6280 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6281 case EXIT_REASON_MSR_READ:
6282 case EXIT_REASON_MSR_WRITE:
6283 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6284 case EXIT_REASON_INVALID_STATE:
6285 return true;
6286 case EXIT_REASON_MWAIT_INSTRUCTION:
6287 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6288 case EXIT_REASON_MONITOR_TRAP_FLAG:
6289 return nested_vmx_exit_handled_mtf(vmcs12);
6290 case EXIT_REASON_MONITOR_INSTRUCTION:
6291 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6292 case EXIT_REASON_PAUSE_INSTRUCTION:
6293 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6294 nested_cpu_has2(vmcs12,
6295 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6296 case EXIT_REASON_MCE_DURING_VMENTRY:
6297 return true;
6298 case EXIT_REASON_TPR_BELOW_THRESHOLD:
6299 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6300 case EXIT_REASON_APIC_ACCESS:
6301 case EXIT_REASON_APIC_WRITE:
6302 case EXIT_REASON_EOI_INDUCED:
6303 /*
6304 * The controls for "virtualize APIC accesses," "APIC-
6305 * register virtualization," and "virtual-interrupt
6306 * delivery" only come from vmcs12.
6307 */
6308 return true;
6309 case EXIT_REASON_INVPCID:
6310 return
6311 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6312 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6313 case EXIT_REASON_WBINVD:
6314 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6315 case EXIT_REASON_XSETBV:
6316 return true;
6317 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6318 /*
6319 * This should never happen, since it is not possible to
6320 * set XSS to a non-zero value---neither in L1 nor in L2.
6321 * If if it were, XSS would have to be checked against
6322 * the XSS exit bitmap in vmcs12.
6323 */
6324 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
6325 case EXIT_REASON_UMWAIT:
6326 case EXIT_REASON_TPAUSE:
6327 return nested_cpu_has2(vmcs12,
6328 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6329 case EXIT_REASON_ENCLS:
6330 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6331 case EXIT_REASON_NOTIFY:
6332 /* Notify VM exit is not exposed to L1 */
6333 return false;
6334 default:
6335 return true;
6336 }
6337 }
6338
6339 /*
6340 * Conditionally reflect a VM-Exit into L1. Returns %true if the VM-Exit was
6341 * reflected into L1.
6342 */
nested_vmx_reflect_vmexit(struct kvm_vcpu * vcpu)6343 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6344 {
6345 struct vcpu_vmx *vmx = to_vmx(vcpu);
6346 union vmx_exit_reason exit_reason = vmx->exit_reason;
6347 unsigned long exit_qual;
6348 u32 exit_intr_info;
6349
6350 WARN_ON_ONCE(vmx->nested.nested_run_pending);
6351
6352 /*
6353 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6354 * has already loaded L2's state.
6355 */
6356 if (unlikely(vmx->fail)) {
6357 trace_kvm_nested_vmenter_failed(
6358 "hardware VM-instruction error: ",
6359 vmcs_read32(VM_INSTRUCTION_ERROR));
6360 exit_intr_info = 0;
6361 exit_qual = 0;
6362 goto reflect_vmexit;
6363 }
6364
6365 trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6366
6367 /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6368 if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6369 return false;
6370
6371 /* If L1 doesn't want the exit, handle it in L0. */
6372 if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6373 return false;
6374
6375 /*
6376 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits. For
6377 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6378 * need to be synthesized by querying the in-kernel LAPIC, but external
6379 * interrupts are never reflected to L1 so it's a non-issue.
6380 */
6381 exit_intr_info = vmx_get_intr_info(vcpu);
6382 if (is_exception_with_error_code(exit_intr_info)) {
6383 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6384
6385 vmcs12->vm_exit_intr_error_code =
6386 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6387 }
6388 exit_qual = vmx_get_exit_qual(vcpu);
6389
6390 reflect_vmexit:
6391 nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6392 return true;
6393 }
6394
vmx_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)6395 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6396 struct kvm_nested_state __user *user_kvm_nested_state,
6397 u32 user_data_size)
6398 {
6399 struct vcpu_vmx *vmx;
6400 struct vmcs12 *vmcs12;
6401 struct kvm_nested_state kvm_state = {
6402 .flags = 0,
6403 .format = KVM_STATE_NESTED_FORMAT_VMX,
6404 .size = sizeof(kvm_state),
6405 .hdr.vmx.flags = 0,
6406 .hdr.vmx.vmxon_pa = INVALID_GPA,
6407 .hdr.vmx.vmcs12_pa = INVALID_GPA,
6408 .hdr.vmx.preemption_timer_deadline = 0,
6409 };
6410 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6411 &user_kvm_nested_state->data.vmx[0];
6412
6413 if (!vcpu)
6414 return kvm_state.size + sizeof(*user_vmx_nested_state);
6415
6416 vmx = to_vmx(vcpu);
6417 vmcs12 = get_vmcs12(vcpu);
6418
6419 if (nested_vmx_allowed(vcpu) &&
6420 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6421 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6422 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6423
6424 if (vmx_has_valid_vmcs12(vcpu)) {
6425 kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6426
6427 /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6428 if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6429 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6430
6431 if (is_guest_mode(vcpu) &&
6432 nested_cpu_has_shadow_vmcs(vmcs12) &&
6433 vmcs12->vmcs_link_pointer != INVALID_GPA)
6434 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6435 }
6436
6437 if (vmx->nested.smm.vmxon)
6438 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6439
6440 if (vmx->nested.smm.guest_mode)
6441 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6442
6443 if (is_guest_mode(vcpu)) {
6444 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6445
6446 if (vmx->nested.nested_run_pending)
6447 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6448
6449 if (vmx->nested.mtf_pending)
6450 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6451
6452 if (nested_cpu_has_preemption_timer(vmcs12) &&
6453 vmx->nested.has_preemption_timer_deadline) {
6454 kvm_state.hdr.vmx.flags |=
6455 KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6456 kvm_state.hdr.vmx.preemption_timer_deadline =
6457 vmx->nested.preemption_timer_deadline;
6458 }
6459 }
6460 }
6461
6462 if (user_data_size < kvm_state.size)
6463 goto out;
6464
6465 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6466 return -EFAULT;
6467
6468 if (!vmx_has_valid_vmcs12(vcpu))
6469 goto out;
6470
6471 /*
6472 * When running L2, the authoritative vmcs12 state is in the
6473 * vmcs02. When running L1, the authoritative vmcs12 state is
6474 * in the shadow or enlightened vmcs linked to vmcs01, unless
6475 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6476 * vmcs12 state is in the vmcs12 already.
6477 */
6478 if (is_guest_mode(vcpu)) {
6479 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6480 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6481 } else {
6482 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6483 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6484 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6485 /*
6486 * L1 hypervisor is not obliged to keep eVMCS
6487 * clean fields data always up-to-date while
6488 * not in guest mode, 'hv_clean_fields' is only
6489 * supposed to be actual upon vmentry so we need
6490 * to ignore it here and do full copy.
6491 */
6492 copy_enlightened_to_vmcs12(vmx, 0);
6493 else if (enable_shadow_vmcs)
6494 copy_shadow_to_vmcs12(vmx);
6495 }
6496 }
6497
6498 BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6499 BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6500
6501 /*
6502 * Copy over the full allocated size of vmcs12 rather than just the size
6503 * of the struct.
6504 */
6505 if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6506 return -EFAULT;
6507
6508 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6509 vmcs12->vmcs_link_pointer != INVALID_GPA) {
6510 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6511 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6512 return -EFAULT;
6513 }
6514 out:
6515 return kvm_state.size;
6516 }
6517
vmx_leave_nested(struct kvm_vcpu * vcpu)6518 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6519 {
6520 if (is_guest_mode(vcpu)) {
6521 to_vmx(vcpu)->nested.nested_run_pending = 0;
6522 nested_vmx_vmexit(vcpu, -1, 0, 0);
6523 }
6524 free_nested(vcpu);
6525 }
6526
vmx_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)6527 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6528 struct kvm_nested_state __user *user_kvm_nested_state,
6529 struct kvm_nested_state *kvm_state)
6530 {
6531 struct vcpu_vmx *vmx = to_vmx(vcpu);
6532 struct vmcs12 *vmcs12;
6533 enum vm_entry_failure_code ignored;
6534 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6535 &user_kvm_nested_state->data.vmx[0];
6536 int ret;
6537
6538 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6539 return -EINVAL;
6540
6541 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6542 if (kvm_state->hdr.vmx.smm.flags)
6543 return -EINVAL;
6544
6545 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6546 return -EINVAL;
6547
6548 /*
6549 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6550 * enable eVMCS capability on vCPU. However, since then
6551 * code was changed such that flag signals vmcs12 should
6552 * be copied into eVMCS in guest memory.
6553 *
6554 * To preserve backwards compatability, allow user
6555 * to set this flag even when there is no VMXON region.
6556 */
6557 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6558 return -EINVAL;
6559 } else {
6560 if (!nested_vmx_allowed(vcpu))
6561 return -EINVAL;
6562
6563 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6564 return -EINVAL;
6565 }
6566
6567 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6568 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6569 return -EINVAL;
6570
6571 if (kvm_state->hdr.vmx.smm.flags &
6572 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6573 return -EINVAL;
6574
6575 if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6576 return -EINVAL;
6577
6578 /*
6579 * SMM temporarily disables VMX, so we cannot be in guest mode,
6580 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
6581 * must be zero.
6582 */
6583 if (is_smm(vcpu) ?
6584 (kvm_state->flags &
6585 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6586 : kvm_state->hdr.vmx.smm.flags)
6587 return -EINVAL;
6588
6589 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6590 !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6591 return -EINVAL;
6592
6593 if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6594 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6595 return -EINVAL;
6596
6597 vmx_leave_nested(vcpu);
6598
6599 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6600 return 0;
6601
6602 vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6603 ret = enter_vmx_operation(vcpu);
6604 if (ret)
6605 return ret;
6606
6607 /* Empty 'VMXON' state is permitted if no VMCS loaded */
6608 if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6609 /* See vmx_has_valid_vmcs12. */
6610 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6611 (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6612 (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6613 return -EINVAL;
6614 else
6615 return 0;
6616 }
6617
6618 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6619 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6620 !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6621 return -EINVAL;
6622
6623 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6624 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6625 /*
6626 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6627 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6628 * restored yet. EVMCS will be mapped from
6629 * nested_get_vmcs12_pages().
6630 */
6631 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6632 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6633 } else {
6634 return -EINVAL;
6635 }
6636
6637 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6638 vmx->nested.smm.vmxon = true;
6639 vmx->nested.vmxon = false;
6640
6641 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6642 vmx->nested.smm.guest_mode = true;
6643 }
6644
6645 vmcs12 = get_vmcs12(vcpu);
6646 if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6647 return -EFAULT;
6648
6649 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6650 return -EINVAL;
6651
6652 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6653 return 0;
6654
6655 vmx->nested.nested_run_pending =
6656 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6657
6658 vmx->nested.mtf_pending =
6659 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6660
6661 ret = -EINVAL;
6662 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6663 vmcs12->vmcs_link_pointer != INVALID_GPA) {
6664 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6665
6666 if (kvm_state->size <
6667 sizeof(*kvm_state) +
6668 sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6669 goto error_guest_mode;
6670
6671 if (copy_from_user(shadow_vmcs12,
6672 user_vmx_nested_state->shadow_vmcs12,
6673 sizeof(*shadow_vmcs12))) {
6674 ret = -EFAULT;
6675 goto error_guest_mode;
6676 }
6677
6678 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6679 !shadow_vmcs12->hdr.shadow_vmcs)
6680 goto error_guest_mode;
6681 }
6682
6683 vmx->nested.has_preemption_timer_deadline = false;
6684 if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6685 vmx->nested.has_preemption_timer_deadline = true;
6686 vmx->nested.preemption_timer_deadline =
6687 kvm_state->hdr.vmx.preemption_timer_deadline;
6688 }
6689
6690 if (nested_vmx_check_controls(vcpu, vmcs12) ||
6691 nested_vmx_check_host_state(vcpu, vmcs12) ||
6692 nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6693 goto error_guest_mode;
6694
6695 vmx->nested.dirty_vmcs12 = true;
6696 vmx->nested.force_msr_bitmap_recalc = true;
6697 ret = nested_vmx_enter_non_root_mode(vcpu, false);
6698 if (ret)
6699 goto error_guest_mode;
6700
6701 if (vmx->nested.mtf_pending)
6702 kvm_make_request(KVM_REQ_EVENT, vcpu);
6703
6704 return 0;
6705
6706 error_guest_mode:
6707 vmx->nested.nested_run_pending = 0;
6708 return ret;
6709 }
6710
nested_vmx_set_vmcs_shadowing_bitmap(void)6711 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6712 {
6713 if (enable_shadow_vmcs) {
6714 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6715 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6716 }
6717 }
6718
6719 /*
6720 * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6. Undo
6721 * that madness to get the encoding for comparison.
6722 */
6723 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6724
nested_vmx_calc_vmcs_enum_msr(void)6725 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6726 {
6727 /*
6728 * Note these are the so called "index" of the VMCS field encoding, not
6729 * the index into vmcs12.
6730 */
6731 unsigned int max_idx, idx;
6732 int i;
6733
6734 /*
6735 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6736 * vmcs12, regardless of whether or not the associated feature is
6737 * exposed to L1. Simply find the field with the highest index.
6738 */
6739 max_idx = 0;
6740 for (i = 0; i < nr_vmcs12_fields; i++) {
6741 /* The vmcs12 table is very, very sparsely populated. */
6742 if (!vmcs12_field_offsets[i])
6743 continue;
6744
6745 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6746 if (idx > max_idx)
6747 max_idx = idx;
6748 }
6749
6750 return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6751 }
6752
6753 /*
6754 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6755 * returned for the various VMX controls MSRs when nested VMX is enabled.
6756 * The same values should also be used to verify that vmcs12 control fields are
6757 * valid during nested entry from L1 to L2.
6758 * Each of these control msrs has a low and high 32-bit half: A low bit is on
6759 * if the corresponding bit in the (32-bit) control field *must* be on, and a
6760 * bit in the high half is on if the corresponding bit in the control field
6761 * may be on. See also vmx_control_verify().
6762 */
nested_vmx_setup_ctls_msrs(struct vmcs_config * vmcs_conf,u32 ept_caps)6763 void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps)
6764 {
6765 struct nested_vmx_msrs *msrs = &vmcs_conf->nested;
6766
6767 /*
6768 * Note that as a general rule, the high half of the MSRs (bits in
6769 * the control fields which may be 1) should be initialized by the
6770 * intersection of the underlying hardware's MSR (i.e., features which
6771 * can be supported) and the list of features we want to expose -
6772 * because they are known to be properly supported in our code.
6773 * Also, usually, the low half of the MSRs (bits which must be 1) can
6774 * be set to 0, meaning that L1 may turn off any of these bits. The
6775 * reason is that if one of these bits is necessary, it will appear
6776 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6777 * fields of vmcs01 and vmcs02, will turn these bits off - and
6778 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6779 * These rules have exceptions below.
6780 */
6781
6782 /* pin-based controls */
6783 msrs->pinbased_ctls_low =
6784 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6785
6786 msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl;
6787 msrs->pinbased_ctls_high &=
6788 PIN_BASED_EXT_INTR_MASK |
6789 PIN_BASED_NMI_EXITING |
6790 PIN_BASED_VIRTUAL_NMIS |
6791 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6792 msrs->pinbased_ctls_high |=
6793 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6794 PIN_BASED_VMX_PREEMPTION_TIMER;
6795
6796 /* exit controls */
6797 msrs->exit_ctls_low =
6798 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6799
6800 msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl;
6801 msrs->exit_ctls_high &=
6802 #ifdef CONFIG_X86_64
6803 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6804 #endif
6805 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6806 VM_EXIT_CLEAR_BNDCFGS;
6807 msrs->exit_ctls_high |=
6808 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6809 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6810 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT |
6811 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6812
6813 /* We support free control of debug control saving. */
6814 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6815
6816 /* entry controls */
6817 msrs->entry_ctls_low =
6818 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6819
6820 msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl;
6821 msrs->entry_ctls_high &=
6822 #ifdef CONFIG_X86_64
6823 VM_ENTRY_IA32E_MODE |
6824 #endif
6825 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
6826 msrs->entry_ctls_high |=
6827 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER |
6828 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
6829
6830 /* We support free control of debug control loading. */
6831 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6832
6833 /* cpu-based controls */
6834 msrs->procbased_ctls_low =
6835 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6836
6837 msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl;
6838 msrs->procbased_ctls_high &=
6839 CPU_BASED_INTR_WINDOW_EXITING |
6840 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6841 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6842 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6843 CPU_BASED_CR3_STORE_EXITING |
6844 #ifdef CONFIG_X86_64
6845 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6846 #endif
6847 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6848 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6849 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6850 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6851 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6852 /*
6853 * We can allow some features even when not supported by the
6854 * hardware. For example, L1 can specify an MSR bitmap - and we
6855 * can use it to avoid exits to L1 - even when L0 runs L2
6856 * without MSR bitmaps.
6857 */
6858 msrs->procbased_ctls_high |=
6859 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6860 CPU_BASED_USE_MSR_BITMAPS;
6861
6862 /* We support free control of CR3 access interception. */
6863 msrs->procbased_ctls_low &=
6864 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6865
6866 /*
6867 * secondary cpu-based controls. Do not include those that
6868 * depend on CPUID bits, they are added later by
6869 * vmx_vcpu_after_set_cpuid.
6870 */
6871 msrs->secondary_ctls_low = 0;
6872
6873 msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl;
6874 msrs->secondary_ctls_high &=
6875 SECONDARY_EXEC_DESC |
6876 SECONDARY_EXEC_ENABLE_RDTSCP |
6877 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6878 SECONDARY_EXEC_WBINVD_EXITING |
6879 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6880 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6881 SECONDARY_EXEC_RDRAND_EXITING |
6882 SECONDARY_EXEC_ENABLE_INVPCID |
6883 SECONDARY_EXEC_ENABLE_VMFUNC |
6884 SECONDARY_EXEC_RDSEED_EXITING |
6885 SECONDARY_EXEC_XSAVES |
6886 SECONDARY_EXEC_TSC_SCALING |
6887 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
6888
6889 /*
6890 * We can emulate "VMCS shadowing," even if the hardware
6891 * doesn't support it.
6892 */
6893 msrs->secondary_ctls_high |=
6894 SECONDARY_EXEC_SHADOW_VMCS;
6895
6896 if (enable_ept) {
6897 /* nested EPT: emulate EPT also to L1 */
6898 msrs->secondary_ctls_high |=
6899 SECONDARY_EXEC_ENABLE_EPT;
6900 msrs->ept_caps =
6901 VMX_EPT_PAGE_WALK_4_BIT |
6902 VMX_EPT_PAGE_WALK_5_BIT |
6903 VMX_EPTP_WB_BIT |
6904 VMX_EPT_INVEPT_BIT |
6905 VMX_EPT_EXECUTE_ONLY_BIT;
6906
6907 msrs->ept_caps &= ept_caps;
6908 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6909 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6910 VMX_EPT_1GB_PAGE_BIT;
6911 if (enable_ept_ad_bits) {
6912 msrs->secondary_ctls_high |=
6913 SECONDARY_EXEC_ENABLE_PML;
6914 msrs->ept_caps |= VMX_EPT_AD_BIT;
6915 }
6916
6917 /*
6918 * Advertise EPTP switching irrespective of hardware support,
6919 * KVM emulates it in software so long as VMFUNC is supported.
6920 */
6921 if (cpu_has_vmx_vmfunc())
6922 msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING;
6923 }
6924
6925 /*
6926 * Old versions of KVM use the single-context version without
6927 * checking for support, so declare that it is supported even
6928 * though it is treated as global context. The alternative is
6929 * not failing the single-context invvpid, and it is worse.
6930 */
6931 if (enable_vpid) {
6932 msrs->secondary_ctls_high |=
6933 SECONDARY_EXEC_ENABLE_VPID;
6934 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6935 VMX_VPID_EXTENT_SUPPORTED_MASK;
6936 }
6937
6938 if (enable_unrestricted_guest)
6939 msrs->secondary_ctls_high |=
6940 SECONDARY_EXEC_UNRESTRICTED_GUEST;
6941
6942 if (flexpriority_enabled)
6943 msrs->secondary_ctls_high |=
6944 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6945
6946 if (enable_sgx)
6947 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6948
6949 /* miscellaneous data */
6950 msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA;
6951 msrs->misc_low |=
6952 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6953 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6954 VMX_MISC_ACTIVITY_HLT |
6955 VMX_MISC_ACTIVITY_WAIT_SIPI;
6956 msrs->misc_high = 0;
6957
6958 /*
6959 * This MSR reports some information about VMX support. We
6960 * should return information about the VMX we emulate for the
6961 * guest, and the VMCS structure we give it - not about the
6962 * VMX support of the underlying hardware.
6963 */
6964 msrs->basic =
6965 VMCS12_REVISION |
6966 VMX_BASIC_TRUE_CTLS |
6967 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6968 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6969
6970 if (cpu_has_vmx_basic_inout())
6971 msrs->basic |= VMX_BASIC_INOUT;
6972
6973 /*
6974 * These MSRs specify bits which the guest must keep fixed on
6975 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6976 * We picked the standard core2 setting.
6977 */
6978 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6979 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
6980 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6981 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6982
6983 /* These MSRs specify bits which the guest must keep fixed off. */
6984 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6985 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6986
6987 if (vmx_umip_emulated())
6988 msrs->cr4_fixed1 |= X86_CR4_UMIP;
6989
6990 msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
6991 }
6992
nested_vmx_hardware_unsetup(void)6993 void nested_vmx_hardware_unsetup(void)
6994 {
6995 int i;
6996
6997 if (enable_shadow_vmcs) {
6998 for (i = 0; i < VMX_BITMAP_NR; i++)
6999 free_page((unsigned long)vmx_bitmap[i]);
7000 }
7001 }
7002
nested_vmx_hardware_setup(int (* exit_handlers[])(struct kvm_vcpu *))7003 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
7004 {
7005 int i;
7006
7007 if (!cpu_has_vmx_shadow_vmcs())
7008 enable_shadow_vmcs = 0;
7009 if (enable_shadow_vmcs) {
7010 for (i = 0; i < VMX_BITMAP_NR; i++) {
7011 /*
7012 * The vmx_bitmap is not tied to a VM and so should
7013 * not be charged to a memcg.
7014 */
7015 vmx_bitmap[i] = (unsigned long *)
7016 __get_free_page(GFP_KERNEL);
7017 if (!vmx_bitmap[i]) {
7018 nested_vmx_hardware_unsetup();
7019 return -ENOMEM;
7020 }
7021 }
7022
7023 init_vmcs_shadow_fields();
7024 }
7025
7026 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear;
7027 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch;
7028 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld;
7029 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst;
7030 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread;
7031 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume;
7032 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite;
7033 exit_handlers[EXIT_REASON_VMOFF] = handle_vmxoff;
7034 exit_handlers[EXIT_REASON_VMON] = handle_vmxon;
7035 exit_handlers[EXIT_REASON_INVEPT] = handle_invept;
7036 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid;
7037 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc;
7038
7039 return 0;
7040 }
7041
7042 struct kvm_x86_nested_ops vmx_nested_ops = {
7043 .leave_nested = vmx_leave_nested,
7044 .is_exception_vmexit = nested_vmx_is_exception_vmexit,
7045 .check_events = vmx_check_nested_events,
7046 .has_events = vmx_has_nested_events,
7047 .triple_fault = nested_vmx_triple_fault,
7048 .get_state = vmx_get_nested_state,
7049 .set_state = vmx_set_nested_state,
7050 .get_nested_state_pages = vmx_get_nested_state_pages,
7051 .write_log_dirty = nested_vmx_write_pml_buffer,
7052 .enable_evmcs = nested_enable_evmcs,
7053 .get_evmcs_version = nested_get_evmcs_version,
7054 .hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush,
7055 };
7056