1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/extable.h> /* search_exception_tables */
11 #include <linux/memblock.h> /* max_low_pfn */
12 #include <linux/kfence.h> /* kfence_handle_page_fault */
13 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
14 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
15 #include <linux/perf_event.h> /* perf_sw_event */
16 #include <linux/hugetlb.h> /* hstate_index_to_shift */
17 #include <linux/prefetch.h> /* prefetchw */
18 #include <linux/context_tracking.h> /* exception_enter(), ... */
19 #include <linux/uaccess.h> /* faulthandler_disabled() */
20 #include <linux/efi.h> /* efi_crash_gracefully_on_page_fault()*/
21 #include <linux/mm_types.h>
22
23 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
24 #include <asm/traps.h> /* dotraplinkage, ... */
25 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
26 #include <asm/vsyscall.h> /* emulate_vsyscall */
27 #include <asm/vm86.h> /* struct vm86 */
28 #include <asm/mmu_context.h> /* vma_pkey() */
29 #include <asm/efi.h> /* efi_crash_gracefully_on_page_fault()*/
30 #include <asm/desc.h> /* store_idt(), ... */
31 #include <asm/cpu_entry_area.h> /* exception stack */
32 #include <asm/pgtable_areas.h> /* VMALLOC_START, ... */
33 #include <asm/kvm_para.h> /* kvm_handle_async_pf */
34 #include <asm/vdso.h> /* fixup_vdso_exception() */
35 #include <asm/irq_stack.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <asm/trace/exceptions.h>
39
40 /*
41 * Returns 0 if mmiotrace is disabled, or if the fault is not
42 * handled by mmiotrace:
43 */
44 static nokprobe_inline int
kmmio_fault(struct pt_regs * regs,unsigned long addr)45 kmmio_fault(struct pt_regs *regs, unsigned long addr)
46 {
47 if (unlikely(is_kmmio_active()))
48 if (kmmio_handler(regs, addr) == 1)
49 return -1;
50 return 0;
51 }
52
53 /*
54 * Prefetch quirks:
55 *
56 * 32-bit mode:
57 *
58 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
59 * Check that here and ignore it. This is AMD erratum #91.
60 *
61 * 64-bit mode:
62 *
63 * Sometimes the CPU reports invalid exceptions on prefetch.
64 * Check that here and ignore it.
65 *
66 * Opcode checker based on code by Richard Brunner.
67 */
68 static inline int
check_prefetch_opcode(struct pt_regs * regs,unsigned char * instr,unsigned char opcode,int * prefetch)69 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
70 unsigned char opcode, int *prefetch)
71 {
72 unsigned char instr_hi = opcode & 0xf0;
73 unsigned char instr_lo = opcode & 0x0f;
74
75 switch (instr_hi) {
76 case 0x20:
77 case 0x30:
78 /*
79 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
80 * In X86_64 long mode, the CPU will signal invalid
81 * opcode if some of these prefixes are present so
82 * X86_64 will never get here anyway
83 */
84 return ((instr_lo & 7) == 0x6);
85 #ifdef CONFIG_X86_64
86 case 0x40:
87 /*
88 * In 64-bit mode 0x40..0x4F are valid REX prefixes
89 */
90 return (!user_mode(regs) || user_64bit_mode(regs));
91 #endif
92 case 0x60:
93 /* 0x64 thru 0x67 are valid prefixes in all modes. */
94 return (instr_lo & 0xC) == 0x4;
95 case 0xF0:
96 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
97 return !instr_lo || (instr_lo>>1) == 1;
98 case 0x00:
99 /* Prefetch instruction is 0x0F0D or 0x0F18 */
100 if (get_kernel_nofault(opcode, instr))
101 return 0;
102
103 *prefetch = (instr_lo == 0xF) &&
104 (opcode == 0x0D || opcode == 0x18);
105 return 0;
106 default:
107 return 0;
108 }
109 }
110
is_amd_k8_pre_npt(void)111 static bool is_amd_k8_pre_npt(void)
112 {
113 struct cpuinfo_x86 *c = &boot_cpu_data;
114
115 return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
116 c->x86_vendor == X86_VENDOR_AMD &&
117 c->x86 == 0xf && c->x86_model < 0x40);
118 }
119
120 static int
is_prefetch(struct pt_regs * regs,unsigned long error_code,unsigned long addr)121 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
122 {
123 unsigned char *max_instr;
124 unsigned char *instr;
125 int prefetch = 0;
126
127 /* Erratum #91 affects AMD K8, pre-NPT CPUs */
128 if (!is_amd_k8_pre_npt())
129 return 0;
130
131 /*
132 * If it was a exec (instruction fetch) fault on NX page, then
133 * do not ignore the fault:
134 */
135 if (error_code & X86_PF_INSTR)
136 return 0;
137
138 instr = (void *)convert_ip_to_linear(current, regs);
139 max_instr = instr + 15;
140
141 /*
142 * This code has historically always bailed out if IP points to a
143 * not-present page (e.g. due to a race). No one has ever
144 * complained about this.
145 */
146 pagefault_disable();
147
148 while (instr < max_instr) {
149 unsigned char opcode;
150
151 if (user_mode(regs)) {
152 if (get_user(opcode, (unsigned char __user *) instr))
153 break;
154 } else {
155 if (get_kernel_nofault(opcode, instr))
156 break;
157 }
158
159 instr++;
160
161 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
162 break;
163 }
164
165 pagefault_enable();
166 return prefetch;
167 }
168
169 DEFINE_SPINLOCK(pgd_lock);
170 LIST_HEAD(pgd_list);
171
172 #ifdef CONFIG_X86_32
vmalloc_sync_one(pgd_t * pgd,unsigned long address)173 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
174 {
175 unsigned index = pgd_index(address);
176 pgd_t *pgd_k;
177 p4d_t *p4d, *p4d_k;
178 pud_t *pud, *pud_k;
179 pmd_t *pmd, *pmd_k;
180
181 pgd += index;
182 pgd_k = init_mm.pgd + index;
183
184 if (!pgd_present(*pgd_k))
185 return NULL;
186
187 /*
188 * set_pgd(pgd, *pgd_k); here would be useless on PAE
189 * and redundant with the set_pmd() on non-PAE. As would
190 * set_p4d/set_pud.
191 */
192 p4d = p4d_offset(pgd, address);
193 p4d_k = p4d_offset(pgd_k, address);
194 if (!p4d_present(*p4d_k))
195 return NULL;
196
197 pud = pud_offset(p4d, address);
198 pud_k = pud_offset(p4d_k, address);
199 if (!pud_present(*pud_k))
200 return NULL;
201
202 pmd = pmd_offset(pud, address);
203 pmd_k = pmd_offset(pud_k, address);
204
205 if (pmd_present(*pmd) != pmd_present(*pmd_k))
206 set_pmd(pmd, *pmd_k);
207
208 if (!pmd_present(*pmd_k))
209 return NULL;
210 else
211 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
212
213 return pmd_k;
214 }
215
216 /*
217 * Handle a fault on the vmalloc or module mapping area
218 *
219 * This is needed because there is a race condition between the time
220 * when the vmalloc mapping code updates the PMD to the point in time
221 * where it synchronizes this update with the other page-tables in the
222 * system.
223 *
224 * In this race window another thread/CPU can map an area on the same
225 * PMD, finds it already present and does not synchronize it with the
226 * rest of the system yet. As a result v[mz]alloc might return areas
227 * which are not mapped in every page-table in the system, causing an
228 * unhandled page-fault when they are accessed.
229 */
vmalloc_fault(unsigned long address)230 static noinline int vmalloc_fault(unsigned long address)
231 {
232 unsigned long pgd_paddr;
233 pmd_t *pmd_k;
234 pte_t *pte_k;
235
236 /* Make sure we are in vmalloc area: */
237 if (!(address >= VMALLOC_START && address < VMALLOC_END))
238 return -1;
239
240 /*
241 * Synchronize this task's top level page-table
242 * with the 'reference' page table.
243 *
244 * Do _not_ use "current" here. We might be inside
245 * an interrupt in the middle of a task switch..
246 */
247 pgd_paddr = read_cr3_pa();
248 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
249 if (!pmd_k)
250 return -1;
251
252 if (pmd_large(*pmd_k))
253 return 0;
254
255 pte_k = pte_offset_kernel(pmd_k, address);
256 if (!pte_present(*pte_k))
257 return -1;
258
259 return 0;
260 }
261 NOKPROBE_SYMBOL(vmalloc_fault);
262
arch_sync_kernel_mappings(unsigned long start,unsigned long end)263 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
264 {
265 unsigned long addr;
266
267 for (addr = start & PMD_MASK;
268 addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
269 addr += PMD_SIZE) {
270 struct page *page;
271
272 spin_lock(&pgd_lock);
273 list_for_each_entry(page, &pgd_list, lru) {
274 spinlock_t *pgt_lock;
275
276 /* the pgt_lock only for Xen */
277 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
278
279 spin_lock(pgt_lock);
280 vmalloc_sync_one(page_address(page), addr);
281 spin_unlock(pgt_lock);
282 }
283 spin_unlock(&pgd_lock);
284 }
285 }
286
low_pfn(unsigned long pfn)287 static bool low_pfn(unsigned long pfn)
288 {
289 return pfn < max_low_pfn;
290 }
291
dump_pagetable(unsigned long address)292 static void dump_pagetable(unsigned long address)
293 {
294 pgd_t *base = __va(read_cr3_pa());
295 pgd_t *pgd = &base[pgd_index(address)];
296 p4d_t *p4d;
297 pud_t *pud;
298 pmd_t *pmd;
299 pte_t *pte;
300
301 #ifdef CONFIG_X86_PAE
302 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
303 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
304 goto out;
305 #define pr_pde pr_cont
306 #else
307 #define pr_pde pr_info
308 #endif
309 p4d = p4d_offset(pgd, address);
310 pud = pud_offset(p4d, address);
311 pmd = pmd_offset(pud, address);
312 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
313 #undef pr_pde
314
315 /*
316 * We must not directly access the pte in the highpte
317 * case if the page table is located in highmem.
318 * And let's rather not kmap-atomic the pte, just in case
319 * it's allocated already:
320 */
321 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
322 goto out;
323
324 pte = pte_offset_kernel(pmd, address);
325 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
326 out:
327 pr_cont("\n");
328 }
329
330 #else /* CONFIG_X86_64: */
331
332 #ifdef CONFIG_CPU_SUP_AMD
333 static const char errata93_warning[] =
334 KERN_ERR
335 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
336 "******* Working around it, but it may cause SEGVs or burn power.\n"
337 "******* Please consider a BIOS update.\n"
338 "******* Disabling USB legacy in the BIOS may also help.\n";
339 #endif
340
bad_address(void * p)341 static int bad_address(void *p)
342 {
343 unsigned long dummy;
344
345 return get_kernel_nofault(dummy, (unsigned long *)p);
346 }
347
dump_pagetable(unsigned long address)348 static void dump_pagetable(unsigned long address)
349 {
350 pgd_t *base = __va(read_cr3_pa());
351 pgd_t *pgd = base + pgd_index(address);
352 p4d_t *p4d;
353 pud_t *pud;
354 pmd_t *pmd;
355 pte_t *pte;
356
357 if (bad_address(pgd))
358 goto bad;
359
360 pr_info("PGD %lx ", pgd_val(*pgd));
361
362 if (!pgd_present(*pgd))
363 goto out;
364
365 p4d = p4d_offset(pgd, address);
366 if (bad_address(p4d))
367 goto bad;
368
369 pr_cont("P4D %lx ", p4d_val(*p4d));
370 if (!p4d_present(*p4d) || p4d_large(*p4d))
371 goto out;
372
373 pud = pud_offset(p4d, address);
374 if (bad_address(pud))
375 goto bad;
376
377 pr_cont("PUD %lx ", pud_val(*pud));
378 if (!pud_present(*pud) || pud_large(*pud))
379 goto out;
380
381 pmd = pmd_offset(pud, address);
382 if (bad_address(pmd))
383 goto bad;
384
385 pr_cont("PMD %lx ", pmd_val(*pmd));
386 if (!pmd_present(*pmd) || pmd_large(*pmd))
387 goto out;
388
389 pte = pte_offset_kernel(pmd, address);
390 if (bad_address(pte))
391 goto bad;
392
393 pr_cont("PTE %lx", pte_val(*pte));
394 out:
395 pr_cont("\n");
396 return;
397 bad:
398 pr_info("BAD\n");
399 }
400
401 #endif /* CONFIG_X86_64 */
402
403 /*
404 * Workaround for K8 erratum #93 & buggy BIOS.
405 *
406 * BIOS SMM functions are required to use a specific workaround
407 * to avoid corruption of the 64bit RIP register on C stepping K8.
408 *
409 * A lot of BIOS that didn't get tested properly miss this.
410 *
411 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
412 * Try to work around it here.
413 *
414 * Note we only handle faults in kernel here.
415 * Does nothing on 32-bit.
416 */
is_errata93(struct pt_regs * regs,unsigned long address)417 static int is_errata93(struct pt_regs *regs, unsigned long address)
418 {
419 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
420 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
421 || boot_cpu_data.x86 != 0xf)
422 return 0;
423
424 if (user_mode(regs))
425 return 0;
426
427 if (address != regs->ip)
428 return 0;
429
430 if ((address >> 32) != 0)
431 return 0;
432
433 address |= 0xffffffffUL << 32;
434 if ((address >= (u64)_stext && address <= (u64)_etext) ||
435 (address >= MODULES_VADDR && address <= MODULES_END)) {
436 printk_once(errata93_warning);
437 regs->ip = address;
438 return 1;
439 }
440 #endif
441 return 0;
442 }
443
444 /*
445 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
446 * to illegal addresses >4GB.
447 *
448 * We catch this in the page fault handler because these addresses
449 * are not reachable. Just detect this case and return. Any code
450 * segment in LDT is compatibility mode.
451 */
is_errata100(struct pt_regs * regs,unsigned long address)452 static int is_errata100(struct pt_regs *regs, unsigned long address)
453 {
454 #ifdef CONFIG_X86_64
455 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
456 return 1;
457 #endif
458 return 0;
459 }
460
461 /* Pentium F0 0F C7 C8 bug workaround: */
is_f00f_bug(struct pt_regs * regs,unsigned long error_code,unsigned long address)462 static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
463 unsigned long address)
464 {
465 #ifdef CONFIG_X86_F00F_BUG
466 if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
467 idt_is_f00f_address(address)) {
468 handle_invalid_op(regs);
469 return 1;
470 }
471 #endif
472 return 0;
473 }
474
show_ldttss(const struct desc_ptr * gdt,const char * name,u16 index)475 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
476 {
477 u32 offset = (index >> 3) * sizeof(struct desc_struct);
478 unsigned long addr;
479 struct ldttss_desc desc;
480
481 if (index == 0) {
482 pr_alert("%s: NULL\n", name);
483 return;
484 }
485
486 if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
487 pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
488 return;
489 }
490
491 if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
492 sizeof(struct ldttss_desc))) {
493 pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
494 name, index);
495 return;
496 }
497
498 addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
499 #ifdef CONFIG_X86_64
500 addr |= ((u64)desc.base3 << 32);
501 #endif
502 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
503 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
504 }
505
506 static void
show_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)507 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
508 {
509 if (!oops_may_print())
510 return;
511
512 if (error_code & X86_PF_INSTR) {
513 unsigned int level;
514 pgd_t *pgd;
515 pte_t *pte;
516
517 pgd = __va(read_cr3_pa());
518 pgd += pgd_index(address);
519
520 pte = lookup_address_in_pgd(pgd, address, &level);
521
522 if (pte && pte_present(*pte) && !pte_exec(*pte))
523 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
524 from_kuid(&init_user_ns, current_uid()));
525 if (pte && pte_present(*pte) && pte_exec(*pte) &&
526 (pgd_flags(*pgd) & _PAGE_USER) &&
527 (__read_cr4() & X86_CR4_SMEP))
528 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
529 from_kuid(&init_user_ns, current_uid()));
530 }
531
532 if (address < PAGE_SIZE && !user_mode(regs))
533 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
534 (void *)address);
535 else
536 pr_alert("BUG: unable to handle page fault for address: %px\n",
537 (void *)address);
538
539 pr_alert("#PF: %s %s in %s mode\n",
540 (error_code & X86_PF_USER) ? "user" : "supervisor",
541 (error_code & X86_PF_INSTR) ? "instruction fetch" :
542 (error_code & X86_PF_WRITE) ? "write access" :
543 "read access",
544 user_mode(regs) ? "user" : "kernel");
545 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
546 !(error_code & X86_PF_PROT) ? "not-present page" :
547 (error_code & X86_PF_RSVD) ? "reserved bit violation" :
548 (error_code & X86_PF_PK) ? "protection keys violation" :
549 "permissions violation");
550
551 if (!(error_code & X86_PF_USER) && user_mode(regs)) {
552 struct desc_ptr idt, gdt;
553 u16 ldtr, tr;
554
555 /*
556 * This can happen for quite a few reasons. The more obvious
557 * ones are faults accessing the GDT, or LDT. Perhaps
558 * surprisingly, if the CPU tries to deliver a benign or
559 * contributory exception from user code and gets a page fault
560 * during delivery, the page fault can be delivered as though
561 * it originated directly from user code. This could happen
562 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
563 * kernel or IST stack.
564 */
565 store_idt(&idt);
566
567 /* Usable even on Xen PV -- it's just slow. */
568 native_store_gdt(&gdt);
569
570 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
571 idt.address, idt.size, gdt.address, gdt.size);
572
573 store_ldt(ldtr);
574 show_ldttss(&gdt, "LDTR", ldtr);
575
576 store_tr(tr);
577 show_ldttss(&gdt, "TR", tr);
578 }
579
580 dump_pagetable(address);
581 }
582
583 static noinline void
pgtable_bad(struct pt_regs * regs,unsigned long error_code,unsigned long address)584 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
585 unsigned long address)
586 {
587 struct task_struct *tsk;
588 unsigned long flags;
589 int sig;
590
591 flags = oops_begin();
592 tsk = current;
593 sig = SIGKILL;
594
595 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
596 tsk->comm, address);
597 dump_pagetable(address);
598
599 if (__die("Bad pagetable", regs, error_code))
600 sig = 0;
601
602 oops_end(flags, regs, sig);
603 }
604
sanitize_error_code(unsigned long address,unsigned long * error_code)605 static void sanitize_error_code(unsigned long address,
606 unsigned long *error_code)
607 {
608 /*
609 * To avoid leaking information about the kernel page
610 * table layout, pretend that user-mode accesses to
611 * kernel addresses are always protection faults.
612 *
613 * NB: This means that failed vsyscalls with vsyscall=none
614 * will have the PROT bit. This doesn't leak any
615 * information and does not appear to cause any problems.
616 */
617 if (address >= TASK_SIZE_MAX)
618 *error_code |= X86_PF_PROT;
619 }
620
set_signal_archinfo(unsigned long address,unsigned long error_code)621 static void set_signal_archinfo(unsigned long address,
622 unsigned long error_code)
623 {
624 struct task_struct *tsk = current;
625
626 tsk->thread.trap_nr = X86_TRAP_PF;
627 tsk->thread.error_code = error_code | X86_PF_USER;
628 tsk->thread.cr2 = address;
629 }
630
631 static noinline void
page_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)632 page_fault_oops(struct pt_regs *regs, unsigned long error_code,
633 unsigned long address)
634 {
635 #ifdef CONFIG_VMAP_STACK
636 struct stack_info info;
637 #endif
638 unsigned long flags;
639 int sig;
640
641 if (user_mode(regs)) {
642 /*
643 * Implicit kernel access from user mode? Skip the stack
644 * overflow and EFI special cases.
645 */
646 goto oops;
647 }
648
649 #ifdef CONFIG_VMAP_STACK
650 /*
651 * Stack overflow? During boot, we can fault near the initial
652 * stack in the direct map, but that's not an overflow -- check
653 * that we're in vmalloc space to avoid this.
654 */
655 if (is_vmalloc_addr((void *)address) &&
656 get_stack_guard_info((void *)address, &info)) {
657 /*
658 * We're likely to be running with very little stack space
659 * left. It's plausible that we'd hit this condition but
660 * double-fault even before we get this far, in which case
661 * we're fine: the double-fault handler will deal with it.
662 *
663 * We don't want to make it all the way into the oops code
664 * and then double-fault, though, because we're likely to
665 * break the console driver and lose most of the stack dump.
666 */
667 call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
668 handle_stack_overflow,
669 ASM_CALL_ARG3,
670 , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
671
672 unreachable();
673 }
674 #endif
675
676 /*
677 * Buggy firmware could access regions which might page fault. If
678 * this happens, EFI has a special OOPS path that will try to
679 * avoid hanging the system.
680 */
681 if (IS_ENABLED(CONFIG_EFI))
682 efi_crash_gracefully_on_page_fault(address);
683
684 /* Only not-present faults should be handled by KFENCE. */
685 if (!(error_code & X86_PF_PROT) &&
686 kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
687 return;
688
689 oops:
690 /*
691 * Oops. The kernel tried to access some bad page. We'll have to
692 * terminate things with extreme prejudice:
693 */
694 flags = oops_begin();
695
696 show_fault_oops(regs, error_code, address);
697
698 if (task_stack_end_corrupted(current))
699 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
700
701 sig = SIGKILL;
702 if (__die("Oops", regs, error_code))
703 sig = 0;
704
705 /* Executive summary in case the body of the oops scrolled away */
706 printk(KERN_DEFAULT "CR2: %016lx\n", address);
707
708 oops_end(flags, regs, sig);
709 }
710
711 static noinline void
kernelmode_fixup_or_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address,int signal,int si_code,u32 pkey)712 kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
713 unsigned long address, int signal, int si_code,
714 u32 pkey)
715 {
716 WARN_ON_ONCE(user_mode(regs));
717
718 /* Are we prepared to handle this kernel fault? */
719 if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
720 /*
721 * Any interrupt that takes a fault gets the fixup. This makes
722 * the below recursive fault logic only apply to a faults from
723 * task context.
724 */
725 if (in_interrupt())
726 return;
727
728 /*
729 * Per the above we're !in_interrupt(), aka. task context.
730 *
731 * In this case we need to make sure we're not recursively
732 * faulting through the emulate_vsyscall() logic.
733 */
734 if (current->thread.sig_on_uaccess_err && signal) {
735 sanitize_error_code(address, &error_code);
736
737 set_signal_archinfo(address, error_code);
738
739 if (si_code == SEGV_PKUERR) {
740 force_sig_pkuerr((void __user *)address, pkey);
741 } else {
742 /* XXX: hwpoison faults will set the wrong code. */
743 force_sig_fault(signal, si_code, (void __user *)address);
744 }
745 }
746
747 /*
748 * Barring that, we can do the fixup and be happy.
749 */
750 return;
751 }
752
753 /*
754 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
755 * instruction.
756 */
757 if (is_prefetch(regs, error_code, address))
758 return;
759
760 page_fault_oops(regs, error_code, address);
761 }
762
763 /*
764 * Print out info about fatal segfaults, if the show_unhandled_signals
765 * sysctl is set:
766 */
767 static inline void
show_signal_msg(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct task_struct * tsk)768 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
769 unsigned long address, struct task_struct *tsk)
770 {
771 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
772 /* This is a racy snapshot, but it's better than nothing. */
773 int cpu = raw_smp_processor_id();
774
775 if (!unhandled_signal(tsk, SIGSEGV))
776 return;
777
778 if (!printk_ratelimit())
779 return;
780
781 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
782 loglvl, tsk->comm, task_pid_nr(tsk), address,
783 (void *)regs->ip, (void *)regs->sp, error_code);
784
785 print_vma_addr(KERN_CONT " in ", regs->ip);
786
787 /*
788 * Dump the likely CPU where the fatal segfault happened.
789 * This can help identify faulty hardware.
790 */
791 printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
792 topology_core_id(cpu), topology_physical_package_id(cpu));
793
794
795 printk(KERN_CONT "\n");
796
797 show_opcodes(regs, loglvl);
798 }
799
800 /*
801 * The (legacy) vsyscall page is the long page in the kernel portion
802 * of the address space that has user-accessible permissions.
803 */
is_vsyscall_vaddr(unsigned long vaddr)804 static bool is_vsyscall_vaddr(unsigned long vaddr)
805 {
806 return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
807 }
808
809 static void
__bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address,u32 pkey,int si_code)810 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
811 unsigned long address, u32 pkey, int si_code)
812 {
813 struct task_struct *tsk = current;
814
815 if (!user_mode(regs)) {
816 kernelmode_fixup_or_oops(regs, error_code, address,
817 SIGSEGV, si_code, pkey);
818 return;
819 }
820
821 if (!(error_code & X86_PF_USER)) {
822 /* Implicit user access to kernel memory -- just oops */
823 page_fault_oops(regs, error_code, address);
824 return;
825 }
826
827 /*
828 * User mode accesses just cause a SIGSEGV.
829 * It's possible to have interrupts off here:
830 */
831 local_irq_enable();
832
833 /*
834 * Valid to do another page fault here because this one came
835 * from user space:
836 */
837 if (is_prefetch(regs, error_code, address))
838 return;
839
840 if (is_errata100(regs, address))
841 return;
842
843 sanitize_error_code(address, &error_code);
844
845 if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
846 return;
847
848 if (likely(show_unhandled_signals))
849 show_signal_msg(regs, error_code, address, tsk);
850
851 set_signal_archinfo(address, error_code);
852
853 if (si_code == SEGV_PKUERR)
854 force_sig_pkuerr((void __user *)address, pkey);
855 else
856 force_sig_fault(SIGSEGV, si_code, (void __user *)address);
857
858 local_irq_disable();
859 }
860
861 static noinline void
bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address)862 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
863 unsigned long address)
864 {
865 __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
866 }
867
868 static void
__bad_area(struct pt_regs * regs,unsigned long error_code,unsigned long address,u32 pkey,int si_code)869 __bad_area(struct pt_regs *regs, unsigned long error_code,
870 unsigned long address, u32 pkey, int si_code)
871 {
872 struct mm_struct *mm = current->mm;
873 /*
874 * Something tried to access memory that isn't in our memory map..
875 * Fix it, but check if it's kernel or user first..
876 */
877 mmap_read_unlock(mm);
878
879 __bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
880 }
881
882 static noinline void
bad_area(struct pt_regs * regs,unsigned long error_code,unsigned long address)883 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
884 {
885 __bad_area(regs, error_code, address, 0, SEGV_MAPERR);
886 }
887
bad_area_access_from_pkeys(unsigned long error_code,struct vm_area_struct * vma)888 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
889 struct vm_area_struct *vma)
890 {
891 /* This code is always called on the current mm */
892 bool foreign = false;
893
894 if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
895 return false;
896 if (error_code & X86_PF_PK)
897 return true;
898 /* this checks permission keys on the VMA: */
899 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
900 (error_code & X86_PF_INSTR), foreign))
901 return true;
902 return false;
903 }
904
905 static noinline void
bad_area_access_error(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct vm_area_struct * vma)906 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
907 unsigned long address, struct vm_area_struct *vma)
908 {
909 /*
910 * This OSPKE check is not strictly necessary at runtime.
911 * But, doing it this way allows compiler optimizations
912 * if pkeys are compiled out.
913 */
914 if (bad_area_access_from_pkeys(error_code, vma)) {
915 /*
916 * A protection key fault means that the PKRU value did not allow
917 * access to some PTE. Userspace can figure out what PKRU was
918 * from the XSAVE state. This function captures the pkey from
919 * the vma and passes it to userspace so userspace can discover
920 * which protection key was set on the PTE.
921 *
922 * If we get here, we know that the hardware signaled a X86_PF_PK
923 * fault and that there was a VMA once we got in the fault
924 * handler. It does *not* guarantee that the VMA we find here
925 * was the one that we faulted on.
926 *
927 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
928 * 2. T1 : set PKRU to deny access to pkey=4, touches page
929 * 3. T1 : faults...
930 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
931 * 5. T1 : enters fault handler, takes mmap_lock, etc...
932 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
933 * faulted on a pte with its pkey=4.
934 */
935 u32 pkey = vma_pkey(vma);
936
937 __bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
938 } else {
939 __bad_area(regs, error_code, address, 0, SEGV_ACCERR);
940 }
941 }
942
943 static void
do_sigbus(struct pt_regs * regs,unsigned long error_code,unsigned long address,vm_fault_t fault)944 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
945 vm_fault_t fault)
946 {
947 /* Kernel mode? Handle exceptions or die: */
948 if (!user_mode(regs)) {
949 kernelmode_fixup_or_oops(regs, error_code, address,
950 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
951 return;
952 }
953
954 /* User-space => ok to do another page fault: */
955 if (is_prefetch(regs, error_code, address))
956 return;
957
958 sanitize_error_code(address, &error_code);
959
960 if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
961 return;
962
963 set_signal_archinfo(address, error_code);
964
965 #ifdef CONFIG_MEMORY_FAILURE
966 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
967 struct task_struct *tsk = current;
968 unsigned lsb = 0;
969
970 pr_err(
971 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
972 tsk->comm, tsk->pid, address);
973 if (fault & VM_FAULT_HWPOISON_LARGE)
974 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
975 if (fault & VM_FAULT_HWPOISON)
976 lsb = PAGE_SHIFT;
977 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
978 return;
979 }
980 #endif
981 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
982 }
983
spurious_kernel_fault_check(unsigned long error_code,pte_t * pte)984 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
985 {
986 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
987 return 0;
988
989 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
990 return 0;
991
992 return 1;
993 }
994
995 /*
996 * Handle a spurious fault caused by a stale TLB entry.
997 *
998 * This allows us to lazily refresh the TLB when increasing the
999 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1000 * eagerly is very expensive since that implies doing a full
1001 * cross-processor TLB flush, even if no stale TLB entries exist
1002 * on other processors.
1003 *
1004 * Spurious faults may only occur if the TLB contains an entry with
1005 * fewer permission than the page table entry. Non-present (P = 0)
1006 * and reserved bit (R = 1) faults are never spurious.
1007 *
1008 * There are no security implications to leaving a stale TLB when
1009 * increasing the permissions on a page.
1010 *
1011 * Returns non-zero if a spurious fault was handled, zero otherwise.
1012 *
1013 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1014 * (Optional Invalidation).
1015 */
1016 static noinline int
spurious_kernel_fault(unsigned long error_code,unsigned long address)1017 spurious_kernel_fault(unsigned long error_code, unsigned long address)
1018 {
1019 pgd_t *pgd;
1020 p4d_t *p4d;
1021 pud_t *pud;
1022 pmd_t *pmd;
1023 pte_t *pte;
1024 int ret;
1025
1026 /*
1027 * Only writes to RO or instruction fetches from NX may cause
1028 * spurious faults.
1029 *
1030 * These could be from user or supervisor accesses but the TLB
1031 * is only lazily flushed after a kernel mapping protection
1032 * change, so user accesses are not expected to cause spurious
1033 * faults.
1034 */
1035 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1036 error_code != (X86_PF_INSTR | X86_PF_PROT))
1037 return 0;
1038
1039 pgd = init_mm.pgd + pgd_index(address);
1040 if (!pgd_present(*pgd))
1041 return 0;
1042
1043 p4d = p4d_offset(pgd, address);
1044 if (!p4d_present(*p4d))
1045 return 0;
1046
1047 if (p4d_large(*p4d))
1048 return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1049
1050 pud = pud_offset(p4d, address);
1051 if (!pud_present(*pud))
1052 return 0;
1053
1054 if (pud_large(*pud))
1055 return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1056
1057 pmd = pmd_offset(pud, address);
1058 if (!pmd_present(*pmd))
1059 return 0;
1060
1061 if (pmd_large(*pmd))
1062 return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1063
1064 pte = pte_offset_kernel(pmd, address);
1065 if (!pte_present(*pte))
1066 return 0;
1067
1068 ret = spurious_kernel_fault_check(error_code, pte);
1069 if (!ret)
1070 return 0;
1071
1072 /*
1073 * Make sure we have permissions in PMD.
1074 * If not, then there's a bug in the page tables:
1075 */
1076 ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1077 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1078
1079 return ret;
1080 }
1081 NOKPROBE_SYMBOL(spurious_kernel_fault);
1082
1083 int show_unhandled_signals = 1;
1084
1085 static inline int
access_error(unsigned long error_code,struct vm_area_struct * vma)1086 access_error(unsigned long error_code, struct vm_area_struct *vma)
1087 {
1088 /* This is only called for the current mm, so: */
1089 bool foreign = false;
1090
1091 /*
1092 * Read or write was blocked by protection keys. This is
1093 * always an unconditional error and can never result in
1094 * a follow-up action to resolve the fault, like a COW.
1095 */
1096 if (error_code & X86_PF_PK)
1097 return 1;
1098
1099 /*
1100 * SGX hardware blocked the access. This usually happens
1101 * when the enclave memory contents have been destroyed, like
1102 * after a suspend/resume cycle. In any case, the kernel can't
1103 * fix the cause of the fault. Handle the fault as an access
1104 * error even in cases where no actual access violation
1105 * occurred. This allows userspace to rebuild the enclave in
1106 * response to the signal.
1107 */
1108 if (unlikely(error_code & X86_PF_SGX))
1109 return 1;
1110
1111 /*
1112 * Make sure to check the VMA so that we do not perform
1113 * faults just to hit a X86_PF_PK as soon as we fill in a
1114 * page.
1115 */
1116 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1117 (error_code & X86_PF_INSTR), foreign))
1118 return 1;
1119
1120 if (error_code & X86_PF_WRITE) {
1121 /* write, present and write, not present: */
1122 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1123 return 1;
1124 return 0;
1125 }
1126
1127 /* read, present: */
1128 if (unlikely(error_code & X86_PF_PROT))
1129 return 1;
1130
1131 /* read, not present: */
1132 if (unlikely(!vma_is_accessible(vma)))
1133 return 1;
1134
1135 return 0;
1136 }
1137
fault_in_kernel_space(unsigned long address)1138 bool fault_in_kernel_space(unsigned long address)
1139 {
1140 /*
1141 * On 64-bit systems, the vsyscall page is at an address above
1142 * TASK_SIZE_MAX, but is not considered part of the kernel
1143 * address space.
1144 */
1145 if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1146 return false;
1147
1148 return address >= TASK_SIZE_MAX;
1149 }
1150
1151 /*
1152 * Called for all faults where 'address' is part of the kernel address
1153 * space. Might get called for faults that originate from *code* that
1154 * ran in userspace or the kernel.
1155 */
1156 static void
do_kern_addr_fault(struct pt_regs * regs,unsigned long hw_error_code,unsigned long address)1157 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1158 unsigned long address)
1159 {
1160 /*
1161 * Protection keys exceptions only happen on user pages. We
1162 * have no user pages in the kernel portion of the address
1163 * space, so do not expect them here.
1164 */
1165 WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1166
1167 #ifdef CONFIG_X86_32
1168 /*
1169 * We can fault-in kernel-space virtual memory on-demand. The
1170 * 'reference' page table is init_mm.pgd.
1171 *
1172 * NOTE! We MUST NOT take any locks for this case. We may
1173 * be in an interrupt or a critical region, and should
1174 * only copy the information from the master page table,
1175 * nothing more.
1176 *
1177 * Before doing this on-demand faulting, ensure that the
1178 * fault is not any of the following:
1179 * 1. A fault on a PTE with a reserved bit set.
1180 * 2. A fault caused by a user-mode access. (Do not demand-
1181 * fault kernel memory due to user-mode accesses).
1182 * 3. A fault caused by a page-level protection violation.
1183 * (A demand fault would be on a non-present page which
1184 * would have X86_PF_PROT==0).
1185 *
1186 * This is only needed to close a race condition on x86-32 in
1187 * the vmalloc mapping/unmapping code. See the comment above
1188 * vmalloc_fault() for details. On x86-64 the race does not
1189 * exist as the vmalloc mappings don't need to be synchronized
1190 * there.
1191 */
1192 if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1193 if (vmalloc_fault(address) >= 0)
1194 return;
1195 }
1196 #endif
1197
1198 if (is_f00f_bug(regs, hw_error_code, address))
1199 return;
1200
1201 /* Was the fault spurious, caused by lazy TLB invalidation? */
1202 if (spurious_kernel_fault(hw_error_code, address))
1203 return;
1204
1205 /* kprobes don't want to hook the spurious faults: */
1206 if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1207 return;
1208
1209 /*
1210 * Note, despite being a "bad area", there are quite a few
1211 * acceptable reasons to get here, such as erratum fixups
1212 * and handling kernel code that can fault, like get_user().
1213 *
1214 * Don't take the mm semaphore here. If we fixup a prefetch
1215 * fault we could otherwise deadlock:
1216 */
1217 bad_area_nosemaphore(regs, hw_error_code, address);
1218 }
1219 NOKPROBE_SYMBOL(do_kern_addr_fault);
1220
1221 /*
1222 * Handle faults in the user portion of the address space. Nothing in here
1223 * should check X86_PF_USER without a specific justification: for almost
1224 * all purposes, we should treat a normal kernel access to user memory
1225 * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1226 * The one exception is AC flag handling, which is, per the x86
1227 * architecture, special for WRUSS.
1228 */
1229 static inline
do_user_addr_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address)1230 void do_user_addr_fault(struct pt_regs *regs,
1231 unsigned long error_code,
1232 unsigned long address)
1233 {
1234 struct vm_area_struct *vma;
1235 struct task_struct *tsk;
1236 struct mm_struct *mm;
1237 vm_fault_t fault;
1238 unsigned int flags = FAULT_FLAG_DEFAULT;
1239
1240 tsk = current;
1241 mm = tsk->mm;
1242
1243 if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1244 /*
1245 * Whoops, this is kernel mode code trying to execute from
1246 * user memory. Unless this is AMD erratum #93, which
1247 * corrupts RIP such that it looks like a user address,
1248 * this is unrecoverable. Don't even try to look up the
1249 * VMA or look for extable entries.
1250 */
1251 if (is_errata93(regs, address))
1252 return;
1253
1254 page_fault_oops(regs, error_code, address);
1255 return;
1256 }
1257
1258 /* kprobes don't want to hook the spurious faults: */
1259 if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1260 return;
1261
1262 /*
1263 * Reserved bits are never expected to be set on
1264 * entries in the user portion of the page tables.
1265 */
1266 if (unlikely(error_code & X86_PF_RSVD))
1267 pgtable_bad(regs, error_code, address);
1268
1269 /*
1270 * If SMAP is on, check for invalid kernel (supervisor) access to user
1271 * pages in the user address space. The odd case here is WRUSS,
1272 * which, according to the preliminary documentation, does not respect
1273 * SMAP and will have the USER bit set so, in all cases, SMAP
1274 * enforcement appears to be consistent with the USER bit.
1275 */
1276 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1277 !(error_code & X86_PF_USER) &&
1278 !(regs->flags & X86_EFLAGS_AC))) {
1279 /*
1280 * No extable entry here. This was a kernel access to an
1281 * invalid pointer. get_kernel_nofault() will not get here.
1282 */
1283 page_fault_oops(regs, error_code, address);
1284 return;
1285 }
1286
1287 /*
1288 * If we're in an interrupt, have no user context or are running
1289 * in a region with pagefaults disabled then we must not take the fault
1290 */
1291 if (unlikely(faulthandler_disabled() || !mm)) {
1292 bad_area_nosemaphore(regs, error_code, address);
1293 return;
1294 }
1295
1296 /*
1297 * It's safe to allow irq's after cr2 has been saved and the
1298 * vmalloc fault has been handled.
1299 *
1300 * User-mode registers count as a user access even for any
1301 * potential system fault or CPU buglet:
1302 */
1303 if (user_mode(regs)) {
1304 local_irq_enable();
1305 flags |= FAULT_FLAG_USER;
1306 } else {
1307 if (regs->flags & X86_EFLAGS_IF)
1308 local_irq_enable();
1309 }
1310
1311 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1312
1313 if (error_code & X86_PF_WRITE)
1314 flags |= FAULT_FLAG_WRITE;
1315 if (error_code & X86_PF_INSTR)
1316 flags |= FAULT_FLAG_INSTRUCTION;
1317
1318 #ifdef CONFIG_X86_64
1319 /*
1320 * Faults in the vsyscall page might need emulation. The
1321 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1322 * considered to be part of the user address space.
1323 *
1324 * The vsyscall page does not have a "real" VMA, so do this
1325 * emulation before we go searching for VMAs.
1326 *
1327 * PKRU never rejects instruction fetches, so we don't need
1328 * to consider the PF_PK bit.
1329 */
1330 if (is_vsyscall_vaddr(address)) {
1331 if (emulate_vsyscall(error_code, regs, address))
1332 return;
1333 }
1334 #endif
1335
1336 /*
1337 * Kernel-mode access to the user address space should only occur
1338 * on well-defined single instructions listed in the exception
1339 * tables. But, an erroneous kernel fault occurring outside one of
1340 * those areas which also holds mmap_lock might deadlock attempting
1341 * to validate the fault against the address space.
1342 *
1343 * Only do the expensive exception table search when we might be at
1344 * risk of a deadlock. This happens if we
1345 * 1. Failed to acquire mmap_lock, and
1346 * 2. The access did not originate in userspace.
1347 */
1348 if (unlikely(!mmap_read_trylock(mm))) {
1349 if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1350 /*
1351 * Fault from code in kernel from
1352 * which we do not expect faults.
1353 */
1354 bad_area_nosemaphore(regs, error_code, address);
1355 return;
1356 }
1357 retry:
1358 mmap_read_lock(mm);
1359 } else {
1360 /*
1361 * The above down_read_trylock() might have succeeded in
1362 * which case we'll have missed the might_sleep() from
1363 * down_read():
1364 */
1365 might_sleep();
1366 }
1367
1368 vma = find_vma(mm, address);
1369 if (unlikely(!vma)) {
1370 bad_area(regs, error_code, address);
1371 return;
1372 }
1373 if (likely(vma->vm_start <= address))
1374 goto good_area;
1375 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1376 bad_area(regs, error_code, address);
1377 return;
1378 }
1379 if (unlikely(expand_stack(vma, address))) {
1380 bad_area(regs, error_code, address);
1381 return;
1382 }
1383
1384 /*
1385 * Ok, we have a good vm_area for this memory access, so
1386 * we can handle it..
1387 */
1388 good_area:
1389 if (unlikely(access_error(error_code, vma))) {
1390 bad_area_access_error(regs, error_code, address, vma);
1391 return;
1392 }
1393
1394 /*
1395 * If for any reason at all we couldn't handle the fault,
1396 * make sure we exit gracefully rather than endlessly redo
1397 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1398 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1399 *
1400 * Note that handle_userfault() may also release and reacquire mmap_lock
1401 * (and not return with VM_FAULT_RETRY), when returning to userland to
1402 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1403 * (potentially after handling any pending signal during the return to
1404 * userland). The return to userland is identified whenever
1405 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1406 */
1407 fault = handle_mm_fault(vma, address, flags, regs);
1408
1409 if (fault_signal_pending(fault, regs)) {
1410 /*
1411 * Quick path to respond to signals. The core mm code
1412 * has unlocked the mm for us if we get here.
1413 */
1414 if (!user_mode(regs))
1415 kernelmode_fixup_or_oops(regs, error_code, address,
1416 SIGBUS, BUS_ADRERR,
1417 ARCH_DEFAULT_PKEY);
1418 return;
1419 }
1420
1421 /* The fault is fully completed (including releasing mmap lock) */
1422 if (fault & VM_FAULT_COMPLETED)
1423 return;
1424
1425 /*
1426 * If we need to retry the mmap_lock has already been released,
1427 * and if there is a fatal signal pending there is no guarantee
1428 * that we made any progress. Handle this case first.
1429 */
1430 if (unlikely(fault & VM_FAULT_RETRY)) {
1431 flags |= FAULT_FLAG_TRIED;
1432 goto retry;
1433 }
1434
1435 mmap_read_unlock(mm);
1436 if (likely(!(fault & VM_FAULT_ERROR)))
1437 return;
1438
1439 if (fatal_signal_pending(current) && !user_mode(regs)) {
1440 kernelmode_fixup_or_oops(regs, error_code, address,
1441 0, 0, ARCH_DEFAULT_PKEY);
1442 return;
1443 }
1444
1445 if (fault & VM_FAULT_OOM) {
1446 /* Kernel mode? Handle exceptions or die: */
1447 if (!user_mode(regs)) {
1448 kernelmode_fixup_or_oops(regs, error_code, address,
1449 SIGSEGV, SEGV_MAPERR,
1450 ARCH_DEFAULT_PKEY);
1451 return;
1452 }
1453
1454 /*
1455 * We ran out of memory, call the OOM killer, and return the
1456 * userspace (which will retry the fault, or kill us if we got
1457 * oom-killed):
1458 */
1459 pagefault_out_of_memory();
1460 } else {
1461 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1462 VM_FAULT_HWPOISON_LARGE))
1463 do_sigbus(regs, error_code, address, fault);
1464 else if (fault & VM_FAULT_SIGSEGV)
1465 bad_area_nosemaphore(regs, error_code, address);
1466 else
1467 BUG();
1468 }
1469 }
1470 NOKPROBE_SYMBOL(do_user_addr_fault);
1471
1472 static __always_inline void
trace_page_fault_entries(struct pt_regs * regs,unsigned long error_code,unsigned long address)1473 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1474 unsigned long address)
1475 {
1476 if (!trace_pagefault_enabled())
1477 return;
1478
1479 if (user_mode(regs))
1480 trace_page_fault_user(address, regs, error_code);
1481 else
1482 trace_page_fault_kernel(address, regs, error_code);
1483 }
1484
1485 static __always_inline void
handle_page_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address)1486 handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1487 unsigned long address)
1488 {
1489 trace_page_fault_entries(regs, error_code, address);
1490
1491 if (unlikely(kmmio_fault(regs, address)))
1492 return;
1493
1494 /* Was the fault on kernel-controlled part of the address space? */
1495 if (unlikely(fault_in_kernel_space(address))) {
1496 do_kern_addr_fault(regs, error_code, address);
1497 } else {
1498 do_user_addr_fault(regs, error_code, address);
1499 /*
1500 * User address page fault handling might have reenabled
1501 * interrupts. Fixing up all potential exit points of
1502 * do_user_addr_fault() and its leaf functions is just not
1503 * doable w/o creating an unholy mess or turning the code
1504 * upside down.
1505 */
1506 local_irq_disable();
1507 }
1508 }
1509
DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)1510 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1511 {
1512 unsigned long address = read_cr2();
1513 irqentry_state_t state;
1514
1515 prefetchw(¤t->mm->mmap_lock);
1516
1517 /*
1518 * KVM uses #PF vector to deliver 'page not present' events to guests
1519 * (asynchronous page fault mechanism). The event happens when a
1520 * userspace task is trying to access some valid (from guest's point of
1521 * view) memory which is not currently mapped by the host (e.g. the
1522 * memory is swapped out). Note, the corresponding "page ready" event
1523 * which is injected when the memory becomes available, is delivered via
1524 * an interrupt mechanism and not a #PF exception
1525 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1526 *
1527 * We are relying on the interrupted context being sane (valid RSP,
1528 * relevant locks not held, etc.), which is fine as long as the
1529 * interrupted context had IF=1. We are also relying on the KVM
1530 * async pf type field and CR2 being read consistently instead of
1531 * getting values from real and async page faults mixed up.
1532 *
1533 * Fingers crossed.
1534 *
1535 * The async #PF handling code takes care of idtentry handling
1536 * itself.
1537 */
1538 if (kvm_handle_async_pf(regs, (u32)address))
1539 return;
1540
1541 /*
1542 * Entry handling for valid #PF from kernel mode is slightly
1543 * different: RCU is already watching and ct_irq_enter() must not
1544 * be invoked because a kernel fault on a user space address might
1545 * sleep.
1546 *
1547 * In case the fault hit a RCU idle region the conditional entry
1548 * code reenabled RCU to avoid subsequent wreckage which helps
1549 * debuggability.
1550 */
1551 state = irqentry_enter(regs);
1552
1553 instrumentation_begin();
1554 handle_page_fault(regs, error_code, address);
1555 instrumentation_end();
1556
1557 irqentry_exit(regs, state);
1558 }
1559