1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Core of Xen paravirt_ops implementation.
4 *
5 * This file contains the xen_paravirt_ops structure itself, and the
6 * implementations for:
7 * - privileged instructions
8 * - interrupt flags
9 * - segment operations
10 * - booting and setup
11 *
12 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
13 */
14
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/smp.h>
19 #include <linux/preempt.h>
20 #include <linux/hardirq.h>
21 #include <linux/percpu.h>
22 #include <linux/delay.h>
23 #include <linux/start_kernel.h>
24 #include <linux/sched.h>
25 #include <linux/kprobes.h>
26 #include <linux/kstrtox.h>
27 #include <linux/memblock.h>
28 #include <linux/export.h>
29 #include <linux/mm.h>
30 #include <linux/page-flags.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/edd.h>
34 #include <linux/reboot.h>
35 #include <linux/virtio_anchor.h>
36 #include <linux/stackprotector.h>
37
38 #include <xen/xen.h>
39 #include <xen/events.h>
40 #include <xen/interface/xen.h>
41 #include <xen/interface/version.h>
42 #include <xen/interface/physdev.h>
43 #include <xen/interface/vcpu.h>
44 #include <xen/interface/memory.h>
45 #include <xen/interface/nmi.h>
46 #include <xen/interface/xen-mca.h>
47 #include <xen/features.h>
48 #include <xen/page.h>
49 #include <xen/hvc-console.h>
50 #include <xen/acpi.h>
51
52 #include <asm/paravirt.h>
53 #include <asm/apic.h>
54 #include <asm/page.h>
55 #include <asm/xen/pci.h>
56 #include <asm/xen/hypercall.h>
57 #include <asm/xen/hypervisor.h>
58 #include <asm/xen/cpuid.h>
59 #include <asm/fixmap.h>
60 #include <asm/processor.h>
61 #include <asm/proto.h>
62 #include <asm/msr-index.h>
63 #include <asm/traps.h>
64 #include <asm/setup.h>
65 #include <asm/desc.h>
66 #include <asm/pgalloc.h>
67 #include <asm/tlbflush.h>
68 #include <asm/reboot.h>
69 #include <asm/hypervisor.h>
70 #include <asm/mach_traps.h>
71 #include <asm/mwait.h>
72 #include <asm/pci_x86.h>
73 #include <asm/cpu.h>
74 #ifdef CONFIG_X86_IOPL_IOPERM
75 #include <asm/io_bitmap.h>
76 #endif
77
78 #ifdef CONFIG_ACPI
79 #include <linux/acpi.h>
80 #include <asm/acpi.h>
81 #include <acpi/pdc_intel.h>
82 #include <acpi/processor.h>
83 #include <xen/interface/platform.h>
84 #endif
85
86 #include "xen-ops.h"
87 #include "mmu.h"
88 #include "smp.h"
89 #include "multicalls.h"
90 #include "pmu.h"
91
92 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
93
94 void *xen_initial_gdt;
95
96 static int xen_cpu_up_prepare_pv(unsigned int cpu);
97 static int xen_cpu_dead_pv(unsigned int cpu);
98
99 struct tls_descs {
100 struct desc_struct desc[3];
101 };
102
103 /*
104 * Updating the 3 TLS descriptors in the GDT on every task switch is
105 * surprisingly expensive so we avoid updating them if they haven't
106 * changed. Since Xen writes different descriptors than the one
107 * passed in the update_descriptor hypercall we keep shadow copies to
108 * compare against.
109 */
110 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
111
112 static __read_mostly bool xen_msr_safe = IS_ENABLED(CONFIG_XEN_PV_MSR_SAFE);
113
parse_xen_msr_safe(char * str)114 static int __init parse_xen_msr_safe(char *str)
115 {
116 if (str)
117 return kstrtobool(str, &xen_msr_safe);
118 return -EINVAL;
119 }
120 early_param("xen_msr_safe", parse_xen_msr_safe);
121
xen_pv_init_platform(void)122 static void __init xen_pv_init_platform(void)
123 {
124 /* PV guests can't operate virtio devices without grants. */
125 if (IS_ENABLED(CONFIG_XEN_VIRTIO))
126 virtio_set_mem_acc_cb(xen_virtio_restricted_mem_acc);
127
128 populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
129
130 set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
131 HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
132
133 /* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
134 xen_vcpu_info_reset(0);
135
136 /* pvclock is in shared info area */
137 xen_init_time_ops();
138 }
139
xen_pv_guest_late_init(void)140 static void __init xen_pv_guest_late_init(void)
141 {
142 #ifndef CONFIG_SMP
143 /* Setup shared vcpu info for non-smp configurations */
144 xen_setup_vcpu_info_placement();
145 #endif
146 }
147
148 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
149 static __read_mostly unsigned int cpuid_leaf5_edx_val;
150
xen_cpuid(unsigned int * ax,unsigned int * bx,unsigned int * cx,unsigned int * dx)151 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
152 unsigned int *cx, unsigned int *dx)
153 {
154 unsigned maskebx = ~0;
155
156 /*
157 * Mask out inconvenient features, to try and disable as many
158 * unsupported kernel subsystems as possible.
159 */
160 switch (*ax) {
161 case CPUID_MWAIT_LEAF:
162 /* Synthesize the values.. */
163 *ax = 0;
164 *bx = 0;
165 *cx = cpuid_leaf5_ecx_val;
166 *dx = cpuid_leaf5_edx_val;
167 return;
168
169 case 0xb:
170 /* Suppress extended topology stuff */
171 maskebx = 0;
172 break;
173 }
174
175 asm(XEN_EMULATE_PREFIX "cpuid"
176 : "=a" (*ax),
177 "=b" (*bx),
178 "=c" (*cx),
179 "=d" (*dx)
180 : "0" (*ax), "2" (*cx));
181
182 *bx &= maskebx;
183 }
184
xen_check_mwait(void)185 static bool __init xen_check_mwait(void)
186 {
187 #ifdef CONFIG_ACPI
188 struct xen_platform_op op = {
189 .cmd = XENPF_set_processor_pminfo,
190 .u.set_pminfo.id = -1,
191 .u.set_pminfo.type = XEN_PM_PDC,
192 };
193 uint32_t buf[3];
194 unsigned int ax, bx, cx, dx;
195 unsigned int mwait_mask;
196
197 /* We need to determine whether it is OK to expose the MWAIT
198 * capability to the kernel to harvest deeper than C3 states from ACPI
199 * _CST using the processor_harvest_xen.c module. For this to work, we
200 * need to gather the MWAIT_LEAF values (which the cstate.c code
201 * checks against). The hypervisor won't expose the MWAIT flag because
202 * it would break backwards compatibility; so we will find out directly
203 * from the hardware and hypercall.
204 */
205 if (!xen_initial_domain())
206 return false;
207
208 /*
209 * When running under platform earlier than Xen4.2, do not expose
210 * mwait, to avoid the risk of loading native acpi pad driver
211 */
212 if (!xen_running_on_version_or_later(4, 2))
213 return false;
214
215 ax = 1;
216 cx = 0;
217
218 native_cpuid(&ax, &bx, &cx, &dx);
219
220 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
221 (1 << (X86_FEATURE_MWAIT % 32));
222
223 if ((cx & mwait_mask) != mwait_mask)
224 return false;
225
226 /* We need to emulate the MWAIT_LEAF and for that we need both
227 * ecx and edx. The hypercall provides only partial information.
228 */
229
230 ax = CPUID_MWAIT_LEAF;
231 bx = 0;
232 cx = 0;
233 dx = 0;
234
235 native_cpuid(&ax, &bx, &cx, &dx);
236
237 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
238 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
239 */
240 buf[0] = ACPI_PDC_REVISION_ID;
241 buf[1] = 1;
242 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
243
244 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
245
246 if ((HYPERVISOR_platform_op(&op) == 0) &&
247 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
248 cpuid_leaf5_ecx_val = cx;
249 cpuid_leaf5_edx_val = dx;
250 }
251 return true;
252 #else
253 return false;
254 #endif
255 }
256
xen_check_xsave(void)257 static bool __init xen_check_xsave(void)
258 {
259 unsigned int cx, xsave_mask;
260
261 cx = cpuid_ecx(1);
262
263 xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
264 (1 << (X86_FEATURE_OSXSAVE % 32));
265
266 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
267 return (cx & xsave_mask) == xsave_mask;
268 }
269
xen_init_capabilities(void)270 static void __init xen_init_capabilities(void)
271 {
272 setup_force_cpu_cap(X86_FEATURE_XENPV);
273 setup_clear_cpu_cap(X86_FEATURE_DCA);
274 setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
275 setup_clear_cpu_cap(X86_FEATURE_MTRR);
276 setup_clear_cpu_cap(X86_FEATURE_ACC);
277 setup_clear_cpu_cap(X86_FEATURE_X2APIC);
278 setup_clear_cpu_cap(X86_FEATURE_SME);
279 setup_clear_cpu_cap(X86_FEATURE_LKGS);
280
281 /*
282 * Xen PV would need some work to support PCID: CR3 handling as well
283 * as xen_flush_tlb_others() would need updating.
284 */
285 setup_clear_cpu_cap(X86_FEATURE_PCID);
286
287 if (!xen_initial_domain())
288 setup_clear_cpu_cap(X86_FEATURE_ACPI);
289
290 if (xen_check_mwait())
291 setup_force_cpu_cap(X86_FEATURE_MWAIT);
292 else
293 setup_clear_cpu_cap(X86_FEATURE_MWAIT);
294
295 if (!xen_check_xsave()) {
296 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
297 setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
298 }
299 }
300
xen_set_debugreg(int reg,unsigned long val)301 static noinstr void xen_set_debugreg(int reg, unsigned long val)
302 {
303 HYPERVISOR_set_debugreg(reg, val);
304 }
305
xen_get_debugreg(int reg)306 static noinstr unsigned long xen_get_debugreg(int reg)
307 {
308 return HYPERVISOR_get_debugreg(reg);
309 }
310
xen_end_context_switch(struct task_struct * next)311 static void xen_end_context_switch(struct task_struct *next)
312 {
313 xen_mc_flush();
314 paravirt_end_context_switch(next);
315 }
316
xen_store_tr(void)317 static unsigned long xen_store_tr(void)
318 {
319 return 0;
320 }
321
322 /*
323 * Set the page permissions for a particular virtual address. If the
324 * address is a vmalloc mapping (or other non-linear mapping), then
325 * find the linear mapping of the page and also set its protections to
326 * match.
327 */
set_aliased_prot(void * v,pgprot_t prot)328 static void set_aliased_prot(void *v, pgprot_t prot)
329 {
330 int level;
331 pte_t *ptep;
332 pte_t pte;
333 unsigned long pfn;
334 unsigned char dummy;
335 void *va;
336
337 ptep = lookup_address((unsigned long)v, &level);
338 BUG_ON(ptep == NULL);
339
340 pfn = pte_pfn(*ptep);
341 pte = pfn_pte(pfn, prot);
342
343 /*
344 * Careful: update_va_mapping() will fail if the virtual address
345 * we're poking isn't populated in the page tables. We don't
346 * need to worry about the direct map (that's always in the page
347 * tables), but we need to be careful about vmap space. In
348 * particular, the top level page table can lazily propagate
349 * entries between processes, so if we've switched mms since we
350 * vmapped the target in the first place, we might not have the
351 * top-level page table entry populated.
352 *
353 * We disable preemption because we want the same mm active when
354 * we probe the target and when we issue the hypercall. We'll
355 * have the same nominal mm, but if we're a kernel thread, lazy
356 * mm dropping could change our pgd.
357 *
358 * Out of an abundance of caution, this uses __get_user() to fault
359 * in the target address just in case there's some obscure case
360 * in which the target address isn't readable.
361 */
362
363 preempt_disable();
364
365 copy_from_kernel_nofault(&dummy, v, 1);
366
367 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
368 BUG();
369
370 va = __va(PFN_PHYS(pfn));
371
372 if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
373 BUG();
374
375 preempt_enable();
376 }
377
xen_alloc_ldt(struct desc_struct * ldt,unsigned entries)378 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
379 {
380 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
381 int i;
382
383 /*
384 * We need to mark the all aliases of the LDT pages RO. We
385 * don't need to call vm_flush_aliases(), though, since that's
386 * only responsible for flushing aliases out the TLBs, not the
387 * page tables, and Xen will flush the TLB for us if needed.
388 *
389 * To avoid confusing future readers: none of this is necessary
390 * to load the LDT. The hypervisor only checks this when the
391 * LDT is faulted in due to subsequent descriptor access.
392 */
393
394 for (i = 0; i < entries; i += entries_per_page)
395 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
396 }
397
xen_free_ldt(struct desc_struct * ldt,unsigned entries)398 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
399 {
400 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
401 int i;
402
403 for (i = 0; i < entries; i += entries_per_page)
404 set_aliased_prot(ldt + i, PAGE_KERNEL);
405 }
406
xen_set_ldt(const void * addr,unsigned entries)407 static void xen_set_ldt(const void *addr, unsigned entries)
408 {
409 struct mmuext_op *op;
410 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
411
412 trace_xen_cpu_set_ldt(addr, entries);
413
414 op = mcs.args;
415 op->cmd = MMUEXT_SET_LDT;
416 op->arg1.linear_addr = (unsigned long)addr;
417 op->arg2.nr_ents = entries;
418
419 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
420
421 xen_mc_issue(PARAVIRT_LAZY_CPU);
422 }
423
xen_load_gdt(const struct desc_ptr * dtr)424 static void xen_load_gdt(const struct desc_ptr *dtr)
425 {
426 unsigned long va = dtr->address;
427 unsigned int size = dtr->size + 1;
428 unsigned long pfn, mfn;
429 int level;
430 pte_t *ptep;
431 void *virt;
432
433 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
434 BUG_ON(size > PAGE_SIZE);
435 BUG_ON(va & ~PAGE_MASK);
436
437 /*
438 * The GDT is per-cpu and is in the percpu data area.
439 * That can be virtually mapped, so we need to do a
440 * page-walk to get the underlying MFN for the
441 * hypercall. The page can also be in the kernel's
442 * linear range, so we need to RO that mapping too.
443 */
444 ptep = lookup_address(va, &level);
445 BUG_ON(ptep == NULL);
446
447 pfn = pte_pfn(*ptep);
448 mfn = pfn_to_mfn(pfn);
449 virt = __va(PFN_PHYS(pfn));
450
451 make_lowmem_page_readonly((void *)va);
452 make_lowmem_page_readonly(virt);
453
454 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
455 BUG();
456 }
457
458 /*
459 * load_gdt for early boot, when the gdt is only mapped once
460 */
xen_load_gdt_boot(const struct desc_ptr * dtr)461 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
462 {
463 unsigned long va = dtr->address;
464 unsigned int size = dtr->size + 1;
465 unsigned long pfn, mfn;
466 pte_t pte;
467
468 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
469 BUG_ON(size > PAGE_SIZE);
470 BUG_ON(va & ~PAGE_MASK);
471
472 pfn = virt_to_pfn(va);
473 mfn = pfn_to_mfn(pfn);
474
475 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
476
477 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
478 BUG();
479
480 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
481 BUG();
482 }
483
desc_equal(const struct desc_struct * d1,const struct desc_struct * d2)484 static inline bool desc_equal(const struct desc_struct *d1,
485 const struct desc_struct *d2)
486 {
487 return !memcmp(d1, d2, sizeof(*d1));
488 }
489
load_TLS_descriptor(struct thread_struct * t,unsigned int cpu,unsigned int i)490 static void load_TLS_descriptor(struct thread_struct *t,
491 unsigned int cpu, unsigned int i)
492 {
493 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
494 struct desc_struct *gdt;
495 xmaddr_t maddr;
496 struct multicall_space mc;
497
498 if (desc_equal(shadow, &t->tls_array[i]))
499 return;
500
501 *shadow = t->tls_array[i];
502
503 gdt = get_cpu_gdt_rw(cpu);
504 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
505 mc = __xen_mc_entry(0);
506
507 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
508 }
509
xen_load_tls(struct thread_struct * t,unsigned int cpu)510 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
511 {
512 /*
513 * In lazy mode we need to zero %fs, otherwise we may get an
514 * exception between the new %fs descriptor being loaded and
515 * %fs being effectively cleared at __switch_to().
516 */
517 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
518 loadsegment(fs, 0);
519
520 xen_mc_batch();
521
522 load_TLS_descriptor(t, cpu, 0);
523 load_TLS_descriptor(t, cpu, 1);
524 load_TLS_descriptor(t, cpu, 2);
525
526 xen_mc_issue(PARAVIRT_LAZY_CPU);
527 }
528
xen_load_gs_index(unsigned int idx)529 static void xen_load_gs_index(unsigned int idx)
530 {
531 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
532 BUG();
533 }
534
xen_write_ldt_entry(struct desc_struct * dt,int entrynum,const void * ptr)535 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
536 const void *ptr)
537 {
538 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
539 u64 entry = *(u64 *)ptr;
540
541 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
542
543 preempt_disable();
544
545 xen_mc_flush();
546 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
547 BUG();
548
549 preempt_enable();
550 }
551
552 void noist_exc_debug(struct pt_regs *regs);
553
DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)554 DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)
555 {
556 /* On Xen PV, NMI doesn't use IST. The C part is the same as native. */
557 exc_nmi(regs);
558 }
559
DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)560 DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)
561 {
562 /* On Xen PV, DF doesn't use IST. The C part is the same as native. */
563 exc_double_fault(regs, error_code);
564 }
565
DEFINE_IDTENTRY_RAW(xenpv_exc_debug)566 DEFINE_IDTENTRY_RAW(xenpv_exc_debug)
567 {
568 /*
569 * There's no IST on Xen PV, but we still need to dispatch
570 * to the correct handler.
571 */
572 if (user_mode(regs))
573 noist_exc_debug(regs);
574 else
575 exc_debug(regs);
576 }
577
DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)578 DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)
579 {
580 /* This should never happen and there is no way to handle it. */
581 instrumentation_begin();
582 pr_err("Unknown trap in Xen PV mode.");
583 BUG();
584 instrumentation_end();
585 }
586
587 #ifdef CONFIG_X86_MCE
DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)588 DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)
589 {
590 /*
591 * There's no IST on Xen PV, but we still need to dispatch
592 * to the correct handler.
593 */
594 if (user_mode(regs))
595 noist_exc_machine_check(regs);
596 else
597 exc_machine_check(regs);
598 }
599 #endif
600
601 struct trap_array_entry {
602 void (*orig)(void);
603 void (*xen)(void);
604 bool ist_okay;
605 };
606
607 #define TRAP_ENTRY(func, ist_ok) { \
608 .orig = asm_##func, \
609 .xen = xen_asm_##func, \
610 .ist_okay = ist_ok }
611
612 #define TRAP_ENTRY_REDIR(func, ist_ok) { \
613 .orig = asm_##func, \
614 .xen = xen_asm_xenpv_##func, \
615 .ist_okay = ist_ok }
616
617 static struct trap_array_entry trap_array[] = {
618 TRAP_ENTRY_REDIR(exc_debug, true ),
619 TRAP_ENTRY_REDIR(exc_double_fault, true ),
620 #ifdef CONFIG_X86_MCE
621 TRAP_ENTRY_REDIR(exc_machine_check, true ),
622 #endif
623 TRAP_ENTRY_REDIR(exc_nmi, true ),
624 TRAP_ENTRY(exc_int3, false ),
625 TRAP_ENTRY(exc_overflow, false ),
626 #ifdef CONFIG_IA32_EMULATION
627 { entry_INT80_compat, xen_entry_INT80_compat, false },
628 #endif
629 TRAP_ENTRY(exc_page_fault, false ),
630 TRAP_ENTRY(exc_divide_error, false ),
631 TRAP_ENTRY(exc_bounds, false ),
632 TRAP_ENTRY(exc_invalid_op, false ),
633 TRAP_ENTRY(exc_device_not_available, false ),
634 TRAP_ENTRY(exc_coproc_segment_overrun, false ),
635 TRAP_ENTRY(exc_invalid_tss, false ),
636 TRAP_ENTRY(exc_segment_not_present, false ),
637 TRAP_ENTRY(exc_stack_segment, false ),
638 TRAP_ENTRY(exc_general_protection, false ),
639 TRAP_ENTRY(exc_spurious_interrupt_bug, false ),
640 TRAP_ENTRY(exc_coprocessor_error, false ),
641 TRAP_ENTRY(exc_alignment_check, false ),
642 TRAP_ENTRY(exc_simd_coprocessor_error, false ),
643 #ifdef CONFIG_X86_KERNEL_IBT
644 TRAP_ENTRY(exc_control_protection, false ),
645 #endif
646 };
647
get_trap_addr(void ** addr,unsigned int ist)648 static bool __ref get_trap_addr(void **addr, unsigned int ist)
649 {
650 unsigned int nr;
651 bool ist_okay = false;
652 bool found = false;
653
654 /*
655 * Replace trap handler addresses by Xen specific ones.
656 * Check for known traps using IST and whitelist them.
657 * The debugger ones are the only ones we care about.
658 * Xen will handle faults like double_fault, so we should never see
659 * them. Warn if there's an unexpected IST-using fault handler.
660 */
661 for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
662 struct trap_array_entry *entry = trap_array + nr;
663
664 if (*addr == entry->orig) {
665 *addr = entry->xen;
666 ist_okay = entry->ist_okay;
667 found = true;
668 break;
669 }
670 }
671
672 if (nr == ARRAY_SIZE(trap_array) &&
673 *addr >= (void *)early_idt_handler_array[0] &&
674 *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
675 nr = (*addr - (void *)early_idt_handler_array[0]) /
676 EARLY_IDT_HANDLER_SIZE;
677 *addr = (void *)xen_early_idt_handler_array[nr];
678 found = true;
679 }
680
681 if (!found)
682 *addr = (void *)xen_asm_exc_xen_unknown_trap;
683
684 if (WARN_ON(found && ist != 0 && !ist_okay))
685 return false;
686
687 return true;
688 }
689
cvt_gate_to_trap(int vector,const gate_desc * val,struct trap_info * info)690 static int cvt_gate_to_trap(int vector, const gate_desc *val,
691 struct trap_info *info)
692 {
693 unsigned long addr;
694
695 if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
696 return 0;
697
698 info->vector = vector;
699
700 addr = gate_offset(val);
701 if (!get_trap_addr((void **)&addr, val->bits.ist))
702 return 0;
703 info->address = addr;
704
705 info->cs = gate_segment(val);
706 info->flags = val->bits.dpl;
707 /* interrupt gates clear IF */
708 if (val->bits.type == GATE_INTERRUPT)
709 info->flags |= 1 << 2;
710
711 return 1;
712 }
713
714 /* Locations of each CPU's IDT */
715 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
716
717 /* Set an IDT entry. If the entry is part of the current IDT, then
718 also update Xen. */
xen_write_idt_entry(gate_desc * dt,int entrynum,const gate_desc * g)719 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
720 {
721 unsigned long p = (unsigned long)&dt[entrynum];
722 unsigned long start, end;
723
724 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
725
726 preempt_disable();
727
728 start = __this_cpu_read(idt_desc.address);
729 end = start + __this_cpu_read(idt_desc.size) + 1;
730
731 xen_mc_flush();
732
733 native_write_idt_entry(dt, entrynum, g);
734
735 if (p >= start && (p + 8) <= end) {
736 struct trap_info info[2];
737
738 info[1].address = 0;
739
740 if (cvt_gate_to_trap(entrynum, g, &info[0]))
741 if (HYPERVISOR_set_trap_table(info))
742 BUG();
743 }
744
745 preempt_enable();
746 }
747
xen_convert_trap_info(const struct desc_ptr * desc,struct trap_info * traps,bool full)748 static unsigned xen_convert_trap_info(const struct desc_ptr *desc,
749 struct trap_info *traps, bool full)
750 {
751 unsigned in, out, count;
752
753 count = (desc->size+1) / sizeof(gate_desc);
754 BUG_ON(count > 256);
755
756 for (in = out = 0; in < count; in++) {
757 gate_desc *entry = (gate_desc *)(desc->address) + in;
758
759 if (cvt_gate_to_trap(in, entry, &traps[out]) || full)
760 out++;
761 }
762
763 return out;
764 }
765
xen_copy_trap_info(struct trap_info * traps)766 void xen_copy_trap_info(struct trap_info *traps)
767 {
768 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
769
770 xen_convert_trap_info(desc, traps, true);
771 }
772
773 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
774 hold a spinlock to protect the static traps[] array (static because
775 it avoids allocation, and saves stack space). */
xen_load_idt(const struct desc_ptr * desc)776 static void xen_load_idt(const struct desc_ptr *desc)
777 {
778 static DEFINE_SPINLOCK(lock);
779 static struct trap_info traps[257];
780 static const struct trap_info zero = { };
781 unsigned out;
782
783 trace_xen_cpu_load_idt(desc);
784
785 spin_lock(&lock);
786
787 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
788
789 out = xen_convert_trap_info(desc, traps, false);
790 traps[out] = zero;
791
792 xen_mc_flush();
793 if (HYPERVISOR_set_trap_table(traps))
794 BUG();
795
796 spin_unlock(&lock);
797 }
798
799 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
800 they're handled differently. */
xen_write_gdt_entry(struct desc_struct * dt,int entry,const void * desc,int type)801 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
802 const void *desc, int type)
803 {
804 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
805
806 preempt_disable();
807
808 switch (type) {
809 case DESC_LDT:
810 case DESC_TSS:
811 /* ignore */
812 break;
813
814 default: {
815 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
816
817 xen_mc_flush();
818 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
819 BUG();
820 }
821
822 }
823
824 preempt_enable();
825 }
826
827 /*
828 * Version of write_gdt_entry for use at early boot-time needed to
829 * update an entry as simply as possible.
830 */
xen_write_gdt_entry_boot(struct desc_struct * dt,int entry,const void * desc,int type)831 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
832 const void *desc, int type)
833 {
834 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
835
836 switch (type) {
837 case DESC_LDT:
838 case DESC_TSS:
839 /* ignore */
840 break;
841
842 default: {
843 xmaddr_t maddr = virt_to_machine(&dt[entry]);
844
845 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
846 dt[entry] = *(struct desc_struct *)desc;
847 }
848
849 }
850 }
851
xen_load_sp0(unsigned long sp0)852 static void xen_load_sp0(unsigned long sp0)
853 {
854 struct multicall_space mcs;
855
856 mcs = xen_mc_entry(0);
857 MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
858 xen_mc_issue(PARAVIRT_LAZY_CPU);
859 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
860 }
861
862 #ifdef CONFIG_X86_IOPL_IOPERM
xen_invalidate_io_bitmap(void)863 static void xen_invalidate_io_bitmap(void)
864 {
865 struct physdev_set_iobitmap iobitmap = {
866 .bitmap = NULL,
867 .nr_ports = 0,
868 };
869
870 native_tss_invalidate_io_bitmap();
871 HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
872 }
873
xen_update_io_bitmap(void)874 static void xen_update_io_bitmap(void)
875 {
876 struct physdev_set_iobitmap iobitmap;
877 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
878
879 native_tss_update_io_bitmap();
880
881 iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
882 tss->x86_tss.io_bitmap_base;
883 if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
884 iobitmap.nr_ports = 0;
885 else
886 iobitmap.nr_ports = IO_BITMAP_BITS;
887
888 HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
889 }
890 #endif
891
xen_io_delay(void)892 static void xen_io_delay(void)
893 {
894 }
895
896 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
897
xen_read_cr0(void)898 static unsigned long xen_read_cr0(void)
899 {
900 unsigned long cr0 = this_cpu_read(xen_cr0_value);
901
902 if (unlikely(cr0 == 0)) {
903 cr0 = native_read_cr0();
904 this_cpu_write(xen_cr0_value, cr0);
905 }
906
907 return cr0;
908 }
909
xen_write_cr0(unsigned long cr0)910 static void xen_write_cr0(unsigned long cr0)
911 {
912 struct multicall_space mcs;
913
914 this_cpu_write(xen_cr0_value, cr0);
915
916 /* Only pay attention to cr0.TS; everything else is
917 ignored. */
918 mcs = xen_mc_entry(0);
919
920 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
921
922 xen_mc_issue(PARAVIRT_LAZY_CPU);
923 }
924
xen_write_cr4(unsigned long cr4)925 static void xen_write_cr4(unsigned long cr4)
926 {
927 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
928
929 native_write_cr4(cr4);
930 }
931
xen_do_read_msr(unsigned int msr,int * err)932 static u64 xen_do_read_msr(unsigned int msr, int *err)
933 {
934 u64 val = 0; /* Avoid uninitialized value for safe variant. */
935
936 if (pmu_msr_read(msr, &val, err))
937 return val;
938
939 if (err)
940 val = native_read_msr_safe(msr, err);
941 else
942 val = native_read_msr(msr);
943
944 switch (msr) {
945 case MSR_IA32_APICBASE:
946 val &= ~X2APIC_ENABLE;
947 break;
948 }
949 return val;
950 }
951
set_seg(unsigned int which,unsigned int low,unsigned int high,int * err)952 static void set_seg(unsigned int which, unsigned int low, unsigned int high,
953 int *err)
954 {
955 u64 base = ((u64)high << 32) | low;
956
957 if (HYPERVISOR_set_segment_base(which, base) == 0)
958 return;
959
960 if (err)
961 *err = -EIO;
962 else
963 WARN(1, "Xen set_segment_base(%u, %llx) failed\n", which, base);
964 }
965
966 /*
967 * Support write_msr_safe() and write_msr() semantics.
968 * With err == NULL write_msr() semantics are selected.
969 * Supplying an err pointer requires err to be pre-initialized with 0.
970 */
xen_do_write_msr(unsigned int msr,unsigned int low,unsigned int high,int * err)971 static void xen_do_write_msr(unsigned int msr, unsigned int low,
972 unsigned int high, int *err)
973 {
974 switch (msr) {
975 case MSR_FS_BASE:
976 set_seg(SEGBASE_FS, low, high, err);
977 break;
978
979 case MSR_KERNEL_GS_BASE:
980 set_seg(SEGBASE_GS_USER, low, high, err);
981 break;
982
983 case MSR_GS_BASE:
984 set_seg(SEGBASE_GS_KERNEL, low, high, err);
985 break;
986
987 case MSR_STAR:
988 case MSR_CSTAR:
989 case MSR_LSTAR:
990 case MSR_SYSCALL_MASK:
991 case MSR_IA32_SYSENTER_CS:
992 case MSR_IA32_SYSENTER_ESP:
993 case MSR_IA32_SYSENTER_EIP:
994 /* Fast syscall setup is all done in hypercalls, so
995 these are all ignored. Stub them out here to stop
996 Xen console noise. */
997 break;
998
999 default:
1000 if (!pmu_msr_write(msr, low, high, err)) {
1001 if (err)
1002 *err = native_write_msr_safe(msr, low, high);
1003 else
1004 native_write_msr(msr, low, high);
1005 }
1006 }
1007 }
1008
xen_read_msr_safe(unsigned int msr,int * err)1009 static u64 xen_read_msr_safe(unsigned int msr, int *err)
1010 {
1011 return xen_do_read_msr(msr, err);
1012 }
1013
xen_write_msr_safe(unsigned int msr,unsigned int low,unsigned int high)1014 static int xen_write_msr_safe(unsigned int msr, unsigned int low,
1015 unsigned int high)
1016 {
1017 int err = 0;
1018
1019 xen_do_write_msr(msr, low, high, &err);
1020
1021 return err;
1022 }
1023
xen_read_msr(unsigned int msr)1024 static u64 xen_read_msr(unsigned int msr)
1025 {
1026 int err;
1027
1028 return xen_do_read_msr(msr, xen_msr_safe ? &err : NULL);
1029 }
1030
xen_write_msr(unsigned int msr,unsigned low,unsigned high)1031 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
1032 {
1033 int err;
1034
1035 xen_do_write_msr(msr, low, high, xen_msr_safe ? &err : NULL);
1036 }
1037
1038 /* This is called once we have the cpu_possible_mask */
xen_setup_vcpu_info_placement(void)1039 void __init xen_setup_vcpu_info_placement(void)
1040 {
1041 int cpu;
1042
1043 for_each_possible_cpu(cpu) {
1044 /* Set up direct vCPU id mapping for PV guests. */
1045 per_cpu(xen_vcpu_id, cpu) = cpu;
1046 xen_vcpu_setup(cpu);
1047 }
1048
1049 pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1050 pv_ops.irq.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1051 pv_ops.irq.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1052 pv_ops.mmu.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
1053 }
1054
1055 static const struct pv_info xen_info __initconst = {
1056 .extra_user_64bit_cs = FLAT_USER_CS64,
1057 .name = "Xen",
1058 };
1059
1060 static const typeof(pv_ops) xen_cpu_ops __initconst = {
1061 .cpu = {
1062 .cpuid = xen_cpuid,
1063
1064 .set_debugreg = xen_set_debugreg,
1065 .get_debugreg = xen_get_debugreg,
1066
1067 .read_cr0 = xen_read_cr0,
1068 .write_cr0 = xen_write_cr0,
1069
1070 .write_cr4 = xen_write_cr4,
1071
1072 .wbinvd = pv_native_wbinvd,
1073
1074 .read_msr = xen_read_msr,
1075 .write_msr = xen_write_msr,
1076
1077 .read_msr_safe = xen_read_msr_safe,
1078 .write_msr_safe = xen_write_msr_safe,
1079
1080 .read_pmc = xen_read_pmc,
1081
1082 .load_tr_desc = paravirt_nop,
1083 .set_ldt = xen_set_ldt,
1084 .load_gdt = xen_load_gdt,
1085 .load_idt = xen_load_idt,
1086 .load_tls = xen_load_tls,
1087 .load_gs_index = xen_load_gs_index,
1088
1089 .alloc_ldt = xen_alloc_ldt,
1090 .free_ldt = xen_free_ldt,
1091
1092 .store_tr = xen_store_tr,
1093
1094 .write_ldt_entry = xen_write_ldt_entry,
1095 .write_gdt_entry = xen_write_gdt_entry,
1096 .write_idt_entry = xen_write_idt_entry,
1097 .load_sp0 = xen_load_sp0,
1098
1099 #ifdef CONFIG_X86_IOPL_IOPERM
1100 .invalidate_io_bitmap = xen_invalidate_io_bitmap,
1101 .update_io_bitmap = xen_update_io_bitmap,
1102 #endif
1103 .io_delay = xen_io_delay,
1104
1105 .start_context_switch = paravirt_start_context_switch,
1106 .end_context_switch = xen_end_context_switch,
1107 },
1108 };
1109
xen_restart(char * msg)1110 static void xen_restart(char *msg)
1111 {
1112 xen_reboot(SHUTDOWN_reboot);
1113 }
1114
xen_machine_halt(void)1115 static void xen_machine_halt(void)
1116 {
1117 xen_reboot(SHUTDOWN_poweroff);
1118 }
1119
xen_machine_power_off(void)1120 static void xen_machine_power_off(void)
1121 {
1122 do_kernel_power_off();
1123 xen_reboot(SHUTDOWN_poweroff);
1124 }
1125
xen_crash_shutdown(struct pt_regs * regs)1126 static void xen_crash_shutdown(struct pt_regs *regs)
1127 {
1128 xen_reboot(SHUTDOWN_crash);
1129 }
1130
1131 static const struct machine_ops xen_machine_ops __initconst = {
1132 .restart = xen_restart,
1133 .halt = xen_machine_halt,
1134 .power_off = xen_machine_power_off,
1135 .shutdown = xen_machine_halt,
1136 .crash_shutdown = xen_crash_shutdown,
1137 .emergency_restart = xen_emergency_restart,
1138 };
1139
xen_get_nmi_reason(void)1140 static unsigned char xen_get_nmi_reason(void)
1141 {
1142 unsigned char reason = 0;
1143
1144 /* Construct a value which looks like it came from port 0x61. */
1145 if (test_bit(_XEN_NMIREASON_io_error,
1146 &HYPERVISOR_shared_info->arch.nmi_reason))
1147 reason |= NMI_REASON_IOCHK;
1148 if (test_bit(_XEN_NMIREASON_pci_serr,
1149 &HYPERVISOR_shared_info->arch.nmi_reason))
1150 reason |= NMI_REASON_SERR;
1151
1152 return reason;
1153 }
1154
xen_boot_params_init_edd(void)1155 static void __init xen_boot_params_init_edd(void)
1156 {
1157 #if IS_ENABLED(CONFIG_EDD)
1158 struct xen_platform_op op;
1159 struct edd_info *edd_info;
1160 u32 *mbr_signature;
1161 unsigned nr;
1162 int ret;
1163
1164 edd_info = boot_params.eddbuf;
1165 mbr_signature = boot_params.edd_mbr_sig_buffer;
1166
1167 op.cmd = XENPF_firmware_info;
1168
1169 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1170 for (nr = 0; nr < EDDMAXNR; nr++) {
1171 struct edd_info *info = edd_info + nr;
1172
1173 op.u.firmware_info.index = nr;
1174 info->params.length = sizeof(info->params);
1175 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1176 &info->params);
1177 ret = HYPERVISOR_platform_op(&op);
1178 if (ret)
1179 break;
1180
1181 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1182 C(device);
1183 C(version);
1184 C(interface_support);
1185 C(legacy_max_cylinder);
1186 C(legacy_max_head);
1187 C(legacy_sectors_per_track);
1188 #undef C
1189 }
1190 boot_params.eddbuf_entries = nr;
1191
1192 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1193 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1194 op.u.firmware_info.index = nr;
1195 ret = HYPERVISOR_platform_op(&op);
1196 if (ret)
1197 break;
1198 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1199 }
1200 boot_params.edd_mbr_sig_buf_entries = nr;
1201 #endif
1202 }
1203
1204 /*
1205 * Set up the GDT and segment registers for -fstack-protector. Until
1206 * we do this, we have to be careful not to call any stack-protected
1207 * function, which is most of the kernel.
1208 */
xen_setup_gdt(int cpu)1209 static void __init xen_setup_gdt(int cpu)
1210 {
1211 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1212 pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1213
1214 switch_gdt_and_percpu_base(cpu);
1215
1216 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1217 pv_ops.cpu.load_gdt = xen_load_gdt;
1218 }
1219
xen_dom0_set_legacy_features(void)1220 static void __init xen_dom0_set_legacy_features(void)
1221 {
1222 x86_platform.legacy.rtc = 1;
1223 }
1224
xen_domu_set_legacy_features(void)1225 static void __init xen_domu_set_legacy_features(void)
1226 {
1227 x86_platform.legacy.rtc = 0;
1228 }
1229
1230 extern void early_xen_iret_patch(void);
1231
1232 /* First C function to be called on Xen boot */
xen_start_kernel(struct start_info * si)1233 asmlinkage __visible void __init xen_start_kernel(struct start_info *si)
1234 {
1235 struct physdev_set_iopl set_iopl;
1236 unsigned long initrd_start = 0;
1237 int rc;
1238
1239 if (!si)
1240 return;
1241
1242 clear_bss();
1243
1244 xen_start_info = si;
1245
1246 __text_gen_insn(&early_xen_iret_patch,
1247 JMP32_INSN_OPCODE, &early_xen_iret_patch, &xen_iret,
1248 JMP32_INSN_SIZE);
1249
1250 xen_domain_type = XEN_PV_DOMAIN;
1251 xen_start_flags = xen_start_info->flags;
1252
1253 xen_setup_features();
1254
1255 /* Install Xen paravirt ops */
1256 pv_info = xen_info;
1257 pv_ops.cpu = xen_cpu_ops.cpu;
1258 xen_init_irq_ops();
1259
1260 /*
1261 * Setup xen_vcpu early because it is needed for
1262 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1263 *
1264 * Don't do the full vcpu_info placement stuff until we have
1265 * the cpu_possible_mask and a non-dummy shared_info.
1266 */
1267 xen_vcpu_info_reset(0);
1268
1269 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1270 x86_platform.realmode_reserve = x86_init_noop;
1271 x86_platform.realmode_init = x86_init_noop;
1272
1273 x86_init.resources.memory_setup = xen_memory_setup;
1274 x86_init.irqs.intr_mode_select = x86_init_noop;
1275 x86_init.irqs.intr_mode_init = x86_init_noop;
1276 x86_init.oem.arch_setup = xen_arch_setup;
1277 x86_init.oem.banner = xen_banner;
1278 x86_init.hyper.init_platform = xen_pv_init_platform;
1279 x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1280
1281 /*
1282 * Set up some pagetable state before starting to set any ptes.
1283 */
1284
1285 xen_setup_machphys_mapping();
1286 xen_init_mmu_ops();
1287
1288 /* Prevent unwanted bits from being set in PTEs. */
1289 __supported_pte_mask &= ~_PAGE_GLOBAL;
1290 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1291
1292 /* Get mfn list */
1293 xen_build_dynamic_phys_to_machine();
1294
1295 /* Work out if we support NX */
1296 get_cpu_cap(&boot_cpu_data);
1297 x86_configure_nx();
1298
1299 /*
1300 * Set up kernel GDT and segment registers, mainly so that
1301 * -fstack-protector code can be executed.
1302 */
1303 xen_setup_gdt(0);
1304
1305 /* Determine virtual and physical address sizes */
1306 get_cpu_address_sizes(&boot_cpu_data);
1307
1308 /* Let's presume PV guests always boot on vCPU with id 0. */
1309 per_cpu(xen_vcpu_id, 0) = 0;
1310
1311 idt_setup_early_handler();
1312
1313 xen_init_capabilities();
1314
1315 #ifdef CONFIG_X86_LOCAL_APIC
1316 /*
1317 * set up the basic apic ops.
1318 */
1319 xen_init_apic();
1320 #endif
1321
1322 machine_ops = xen_machine_ops;
1323
1324 /*
1325 * The only reliable way to retain the initial address of the
1326 * percpu gdt_page is to remember it here, so we can go and
1327 * mark it RW later, when the initial percpu area is freed.
1328 */
1329 xen_initial_gdt = &per_cpu(gdt_page, 0);
1330
1331 xen_smp_init();
1332
1333 #ifdef CONFIG_ACPI_NUMA
1334 /*
1335 * The pages we from Xen are not related to machine pages, so
1336 * any NUMA information the kernel tries to get from ACPI will
1337 * be meaningless. Prevent it from trying.
1338 */
1339 disable_srat();
1340 #endif
1341 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1342
1343 local_irq_disable();
1344 early_boot_irqs_disabled = true;
1345
1346 xen_raw_console_write("mapping kernel into physical memory\n");
1347 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1348 xen_start_info->nr_pages);
1349 xen_reserve_special_pages();
1350
1351 /*
1352 * We used to do this in xen_arch_setup, but that is too late
1353 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1354 * early_amd_init which pokes 0xcf8 port.
1355 */
1356 set_iopl.iopl = 1;
1357 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1358 if (rc != 0)
1359 xen_raw_printk("physdev_op failed %d\n", rc);
1360
1361
1362 if (xen_start_info->mod_start) {
1363 if (xen_start_info->flags & SIF_MOD_START_PFN)
1364 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1365 else
1366 initrd_start = __pa(xen_start_info->mod_start);
1367 }
1368
1369 /* Poke various useful things into boot_params */
1370 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1371 boot_params.hdr.ramdisk_image = initrd_start;
1372 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1373 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1374 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1375
1376 if (!xen_initial_domain()) {
1377 if (pci_xen)
1378 x86_init.pci.arch_init = pci_xen_init;
1379 x86_platform.set_legacy_features =
1380 xen_domu_set_legacy_features;
1381 } else {
1382 const struct dom0_vga_console_info *info =
1383 (void *)((char *)xen_start_info +
1384 xen_start_info->console.dom0.info_off);
1385 struct xen_platform_op op = {
1386 .cmd = XENPF_firmware_info,
1387 .interface_version = XENPF_INTERFACE_VERSION,
1388 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1389 };
1390
1391 x86_platform.set_legacy_features =
1392 xen_dom0_set_legacy_features;
1393 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1394 xen_start_info->console.domU.mfn = 0;
1395 xen_start_info->console.domU.evtchn = 0;
1396
1397 if (HYPERVISOR_platform_op(&op) == 0)
1398 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1399
1400 /* Make sure ACS will be enabled */
1401 pci_request_acs();
1402
1403 xen_acpi_sleep_register();
1404
1405 xen_boot_params_init_edd();
1406
1407 #ifdef CONFIG_ACPI
1408 /*
1409 * Disable selecting "Firmware First mode" for correctable
1410 * memory errors, as this is the duty of the hypervisor to
1411 * decide.
1412 */
1413 acpi_disable_cmcff = 1;
1414 #endif
1415 }
1416
1417 xen_add_preferred_consoles();
1418
1419 #ifdef CONFIG_PCI
1420 /* PCI BIOS service won't work from a PV guest. */
1421 pci_probe &= ~PCI_PROBE_BIOS;
1422 #endif
1423 xen_raw_console_write("about to get started...\n");
1424
1425 /* We need this for printk timestamps */
1426 xen_setup_runstate_info(0);
1427
1428 xen_efi_init(&boot_params);
1429
1430 /* Start the world */
1431 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1432 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1433 }
1434
xen_cpu_up_prepare_pv(unsigned int cpu)1435 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1436 {
1437 int rc;
1438
1439 if (per_cpu(xen_vcpu, cpu) == NULL)
1440 return -ENODEV;
1441
1442 xen_setup_timer(cpu);
1443
1444 rc = xen_smp_intr_init(cpu);
1445 if (rc) {
1446 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1447 cpu, rc);
1448 return rc;
1449 }
1450
1451 rc = xen_smp_intr_init_pv(cpu);
1452 if (rc) {
1453 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1454 cpu, rc);
1455 return rc;
1456 }
1457
1458 return 0;
1459 }
1460
xen_cpu_dead_pv(unsigned int cpu)1461 static int xen_cpu_dead_pv(unsigned int cpu)
1462 {
1463 xen_smp_intr_free(cpu);
1464 xen_smp_intr_free_pv(cpu);
1465
1466 xen_teardown_timer(cpu);
1467
1468 return 0;
1469 }
1470
xen_platform_pv(void)1471 static uint32_t __init xen_platform_pv(void)
1472 {
1473 if (xen_pv_domain())
1474 return xen_cpuid_base();
1475
1476 return 0;
1477 }
1478
1479 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1480 .name = "Xen PV",
1481 .detect = xen_platform_pv,
1482 .type = X86_HYPER_XEN_PV,
1483 .runtime.pin_vcpu = xen_pin_vcpu,
1484 .ignore_nopv = true,
1485 };
1486