1  /*
2   * A driver for the PCMCIA Smartcard Reader "Omnikey CardMan Mobile 4000"
3   *
4   * cm4000_cs.c support.linux@omnikey.com
5   *
6   * Tue Oct 23 11:32:43 GMT 2001 herp - cleaned up header files
7   * Sun Jan 20 10:11:15 MET 2002 herp - added modversion header files
8   * Thu Nov 14 16:34:11 GMT 2002 mh   - added PPS functionality
9   * Tue Nov 19 16:36:27 GMT 2002 mh   - added SUSPEND/RESUME functionailty
10   * Wed Jul 28 12:55:01 CEST 2004 mh  - kernel 2.6 adjustments
11   *
12   * current version: 2.4.0gm4
13   *
14   * (C) 2000,2001,2002,2003,2004 Omnikey AG
15   *
16   * (C) 2005-2006 Harald Welte <laforge@gnumonks.org>
17   * 	- Adhere to Kernel process/coding-style.rst
18   * 	- Port to 2.6.13 "new" style PCMCIA
19   * 	- Check for copy_{from,to}_user return values
20   * 	- Use nonseekable_open()
21   * 	- add class interface for udev device creation
22   *
23   * All rights reserved. Licensed under dual BSD/GPL license.
24   */
25 
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/init.h>
30 #include <linux/fs.h>
31 #include <linux/delay.h>
32 #include <linux/bitrev.h>
33 #include <linux/mutex.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 
37 #include <pcmcia/cistpl.h>
38 #include <pcmcia/cisreg.h>
39 #include <pcmcia/ciscode.h>
40 #include <pcmcia/ds.h>
41 
42 #include <linux/cm4000_cs.h>
43 
44 /* #define ATR_CSUM */
45 
46 #define reader_to_dev(x)	(&x->p_dev->dev)
47 
48 /* n (debug level) is ignored */
49 /* additional debug output may be enabled by re-compiling with
50  * CM4000_DEBUG set */
51 /* #define CM4000_DEBUG */
52 #define DEBUGP(n, rdr, x, args...) do { 		\
53 		dev_dbg(reader_to_dev(rdr), "%s:" x, 	\
54 			   __func__ , ## args);		\
55 	} while (0)
56 
57 static DEFINE_MUTEX(cmm_mutex);
58 
59 #define	T_1SEC		(HZ)
60 #define	T_10MSEC	msecs_to_jiffies(10)
61 #define	T_20MSEC	msecs_to_jiffies(20)
62 #define	T_40MSEC	msecs_to_jiffies(40)
63 #define	T_50MSEC	msecs_to_jiffies(50)
64 #define	T_100MSEC	msecs_to_jiffies(100)
65 #define	T_500MSEC	msecs_to_jiffies(500)
66 
67 static void cm4000_release(struct pcmcia_device *link);
68 
69 static int major;		/* major number we get from the kernel */
70 
71 /* note: the first state has to have number 0 always */
72 
73 #define	M_FETCH_ATR	0
74 #define	M_TIMEOUT_WAIT	1
75 #define	M_READ_ATR_LEN	2
76 #define	M_READ_ATR	3
77 #define	M_ATR_PRESENT	4
78 #define	M_BAD_CARD	5
79 #define M_CARDOFF	6
80 
81 #define	LOCK_IO			0
82 #define	LOCK_MONITOR		1
83 
84 #define IS_AUTOPPS_ACT		 6
85 #define	IS_PROCBYTE_PRESENT	 7
86 #define	IS_INVREV		 8
87 #define IS_ANY_T0		 9
88 #define	IS_ANY_T1		10
89 #define	IS_ATR_PRESENT		11
90 #define	IS_ATR_VALID		12
91 #define	IS_CMM_ABSENT		13
92 #define	IS_BAD_LENGTH		14
93 #define	IS_BAD_CSUM		15
94 #define	IS_BAD_CARD		16
95 
96 #define REG_FLAGS0(x)		(x + 0)
97 #define REG_FLAGS1(x)		(x + 1)
98 #define REG_NUM_BYTES(x)	(x + 2)
99 #define REG_BUF_ADDR(x)		(x + 3)
100 #define REG_BUF_DATA(x)		(x + 4)
101 #define REG_NUM_SEND(x)		(x + 5)
102 #define REG_BAUDRATE(x)		(x + 6)
103 #define REG_STOPBITS(x)		(x + 7)
104 
105 struct cm4000_dev {
106 	struct pcmcia_device *p_dev;
107 
108 	unsigned char atr[MAX_ATR];
109 	unsigned char rbuf[512];
110 	unsigned char sbuf[512];
111 
112 	wait_queue_head_t devq;		/* when removing cardman must not be
113 					   zeroed! */
114 
115 	wait_queue_head_t ioq;		/* if IO is locked, wait on this Q */
116 	wait_queue_head_t atrq;		/* wait for ATR valid */
117 	wait_queue_head_t readq;	/* used by write to wake blk.read */
118 
119 	/* warning: do not move this struct group.
120 	 * initialising to zero depends on it - see ZERO_DEV below.  */
121 	struct_group(init,
122 	unsigned char atr_csum;
123 	unsigned char atr_len_retry;
124 	unsigned short atr_len;
125 	unsigned short rlen;	/* bytes avail. after write */
126 	unsigned short rpos;	/* latest read pos. write zeroes */
127 	unsigned char procbyte;	/* T=0 procedure byte */
128 	unsigned char mstate;	/* state of card monitor */
129 	unsigned char cwarn;	/* slow down warning */
130 	unsigned char flags0;	/* cardman IO-flags 0 */
131 	unsigned char flags1;	/* cardman IO-flags 1 */
132 	unsigned int mdelay;	/* variable monitor speeds, in jiffies */
133 
134 	unsigned int baudv;	/* baud value for speed */
135 	unsigned char ta1;
136 	unsigned char proto;	/* T=0, T=1, ... */
137 	unsigned long flags;	/* lock+flags (MONITOR,IO,ATR) * for concurrent
138 				   access */
139 
140 	unsigned char pts[4];
141 
142 	struct timer_list timer;	/* used to keep monitor running */
143 	int monitor_running;
144 	);
145 };
146 
147 #define	ZERO_DEV(dev)	memset(&((dev)->init), 0, sizeof((dev)->init))
148 
149 static struct pcmcia_device *dev_table[CM4000_MAX_DEV];
150 static struct class *cmm_class;
151 
152 /* This table doesn't use spaces after the comma between fields and thus
153  * violates process/coding-style.rst.  However, I don't really think wrapping it around will
154  * make it any clearer to read -HW */
155 static unsigned char fi_di_table[10][14] = {
156 /*FI     00   01   02   03   04   05   06   07   08   09   10   11   12   13 */
157 /*DI */
158 /* 0 */ {0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11},
159 /* 1 */ {0x01,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x91,0x11,0x11,0x11,0x11},
160 /* 2 */ {0x02,0x12,0x22,0x32,0x11,0x11,0x11,0x11,0x11,0x92,0xA2,0xB2,0x11,0x11},
161 /* 3 */ {0x03,0x13,0x23,0x33,0x43,0x53,0x63,0x11,0x11,0x93,0xA3,0xB3,0xC3,0xD3},
162 /* 4 */ {0x04,0x14,0x24,0x34,0x44,0x54,0x64,0x11,0x11,0x94,0xA4,0xB4,0xC4,0xD4},
163 /* 5 */ {0x00,0x15,0x25,0x35,0x45,0x55,0x65,0x11,0x11,0x95,0xA5,0xB5,0xC5,0xD5},
164 /* 6 */ {0x06,0x16,0x26,0x36,0x46,0x56,0x66,0x11,0x11,0x96,0xA6,0xB6,0xC6,0xD6},
165 /* 7 */ {0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11},
166 /* 8 */ {0x08,0x11,0x28,0x38,0x48,0x58,0x68,0x11,0x11,0x98,0xA8,0xB8,0xC8,0xD8},
167 /* 9 */ {0x09,0x19,0x29,0x39,0x49,0x59,0x69,0x11,0x11,0x99,0xA9,0xB9,0xC9,0xD9}
168 };
169 
170 #ifndef CM4000_DEBUG
171 #define	xoutb	outb
172 #define	xinb	inb
173 #else
xoutb(unsigned char val,unsigned short port)174 static inline void xoutb(unsigned char val, unsigned short port)
175 {
176 	pr_debug("outb(val=%.2x,port=%.4x)\n", val, port);
177 	outb(val, port);
178 }
xinb(unsigned short port)179 static inline unsigned char xinb(unsigned short port)
180 {
181 	unsigned char val;
182 
183 	val = inb(port);
184 	pr_debug("%.2x=inb(%.4x)\n", val, port);
185 
186 	return val;
187 }
188 #endif
189 
invert_revert(unsigned char ch)190 static inline unsigned char invert_revert(unsigned char ch)
191 {
192 	return bitrev8(~ch);
193 }
194 
str_invert_revert(unsigned char * b,int len)195 static void str_invert_revert(unsigned char *b, int len)
196 {
197 	int i;
198 
199 	for (i = 0; i < len; i++)
200 		b[i] = invert_revert(b[i]);
201 }
202 
203 #define	ATRLENCK(dev,pos) \
204 	if (pos>=dev->atr_len || pos>=MAX_ATR) \
205 		goto return_0;
206 
calc_baudv(unsigned char fidi)207 static unsigned int calc_baudv(unsigned char fidi)
208 {
209 	unsigned int wcrcf, wbrcf, fi_rfu, di_rfu;
210 
211 	fi_rfu = 372;
212 	di_rfu = 1;
213 
214 	/* FI */
215 	switch ((fidi >> 4) & 0x0F) {
216 	case 0x00:
217 		wcrcf = 372;
218 		break;
219 	case 0x01:
220 		wcrcf = 372;
221 		break;
222 	case 0x02:
223 		wcrcf = 558;
224 		break;
225 	case 0x03:
226 		wcrcf = 744;
227 		break;
228 	case 0x04:
229 		wcrcf = 1116;
230 		break;
231 	case 0x05:
232 		wcrcf = 1488;
233 		break;
234 	case 0x06:
235 		wcrcf = 1860;
236 		break;
237 	case 0x07:
238 		wcrcf = fi_rfu;
239 		break;
240 	case 0x08:
241 		wcrcf = fi_rfu;
242 		break;
243 	case 0x09:
244 		wcrcf = 512;
245 		break;
246 	case 0x0A:
247 		wcrcf = 768;
248 		break;
249 	case 0x0B:
250 		wcrcf = 1024;
251 		break;
252 	case 0x0C:
253 		wcrcf = 1536;
254 		break;
255 	case 0x0D:
256 		wcrcf = 2048;
257 		break;
258 	default:
259 		wcrcf = fi_rfu;
260 		break;
261 	}
262 
263 	/* DI */
264 	switch (fidi & 0x0F) {
265 	case 0x00:
266 		wbrcf = di_rfu;
267 		break;
268 	case 0x01:
269 		wbrcf = 1;
270 		break;
271 	case 0x02:
272 		wbrcf = 2;
273 		break;
274 	case 0x03:
275 		wbrcf = 4;
276 		break;
277 	case 0x04:
278 		wbrcf = 8;
279 		break;
280 	case 0x05:
281 		wbrcf = 16;
282 		break;
283 	case 0x06:
284 		wbrcf = 32;
285 		break;
286 	case 0x07:
287 		wbrcf = di_rfu;
288 		break;
289 	case 0x08:
290 		wbrcf = 12;
291 		break;
292 	case 0x09:
293 		wbrcf = 20;
294 		break;
295 	default:
296 		wbrcf = di_rfu;
297 		break;
298 	}
299 
300 	return (wcrcf / wbrcf);
301 }
302 
io_read_num_rec_bytes(unsigned int iobase,unsigned short * s)303 static unsigned short io_read_num_rec_bytes(unsigned int iobase,
304 					    unsigned short *s)
305 {
306 	unsigned short tmp;
307 
308 	tmp = *s = 0;
309 	do {
310 		*s = tmp;
311 		tmp = inb(REG_NUM_BYTES(iobase)) |
312 				(inb(REG_FLAGS0(iobase)) & 4 ? 0x100 : 0);
313 	} while (tmp != *s);
314 
315 	return *s;
316 }
317 
parse_atr(struct cm4000_dev * dev)318 static int parse_atr(struct cm4000_dev *dev)
319 {
320 	unsigned char any_t1, any_t0;
321 	unsigned char ch, ifno;
322 	int ix, done;
323 
324 	DEBUGP(3, dev, "-> parse_atr: dev->atr_len = %i\n", dev->atr_len);
325 
326 	if (dev->atr_len < 3) {
327 		DEBUGP(5, dev, "parse_atr: atr_len < 3\n");
328 		return 0;
329 	}
330 
331 	if (dev->atr[0] == 0x3f)
332 		set_bit(IS_INVREV, &dev->flags);
333 	else
334 		clear_bit(IS_INVREV, &dev->flags);
335 	ix = 1;
336 	ifno = 1;
337 	ch = dev->atr[1];
338 	dev->proto = 0;		/* XXX PROTO */
339 	any_t1 = any_t0 = done = 0;
340 	dev->ta1 = 0x11;	/* defaults to 9600 baud */
341 	do {
342 		if (ifno == 1 && (ch & 0x10)) {
343 			/* read first interface byte and TA1 is present */
344 			dev->ta1 = dev->atr[2];
345 			DEBUGP(5, dev, "Card says FiDi is 0x%.2x\n", dev->ta1);
346 			ifno++;
347 		} else if ((ifno == 2) && (ch & 0x10)) { /* TA(2) */
348 			dev->ta1 = 0x11;
349 			ifno++;
350 		}
351 
352 		DEBUGP(5, dev, "Yi=%.2x\n", ch & 0xf0);
353 		ix += ((ch & 0x10) >> 4)	/* no of int.face chars */
354 		    +((ch & 0x20) >> 5)
355 		    + ((ch & 0x40) >> 6)
356 		    + ((ch & 0x80) >> 7);
357 		/* ATRLENCK(dev,ix); */
358 		if (ch & 0x80) {	/* TDi */
359 			ch = dev->atr[ix];
360 			if ((ch & 0x0f)) {
361 				any_t1 = 1;
362 				DEBUGP(5, dev, "card is capable of T=1\n");
363 			} else {
364 				any_t0 = 1;
365 				DEBUGP(5, dev, "card is capable of T=0\n");
366 			}
367 		} else
368 			done = 1;
369 	} while (!done);
370 
371 	DEBUGP(5, dev, "ix=%d noHist=%d any_t1=%d\n",
372 	      ix, dev->atr[1] & 15, any_t1);
373 	if (ix + 1 + (dev->atr[1] & 0x0f) + any_t1 != dev->atr_len) {
374 		DEBUGP(5, dev, "length error\n");
375 		return 0;
376 	}
377 	if (any_t0)
378 		set_bit(IS_ANY_T0, &dev->flags);
379 
380 	if (any_t1) {		/* compute csum */
381 		dev->atr_csum = 0;
382 #ifdef ATR_CSUM
383 		for (i = 1; i < dev->atr_len; i++)
384 			dev->atr_csum ^= dev->atr[i];
385 		if (dev->atr_csum) {
386 			set_bit(IS_BAD_CSUM, &dev->flags);
387 			DEBUGP(5, dev, "bad checksum\n");
388 			goto return_0;
389 		}
390 #endif
391 		if (any_t0 == 0)
392 			dev->proto = 1;	/* XXX PROTO */
393 		set_bit(IS_ANY_T1, &dev->flags);
394 	}
395 
396 	return 1;
397 }
398 
399 struct card_fixup {
400 	char atr[12];
401 	u_int8_t atr_len;
402 	u_int8_t stopbits;
403 };
404 
405 static struct card_fixup card_fixups[] = {
406 	{	/* ACOS */
407 		.atr = { 0x3b, 0xb3, 0x11, 0x00, 0x00, 0x41, 0x01 },
408 		.atr_len = 7,
409 		.stopbits = 0x03,
410 	},
411 	{	/* Motorola */
412 		.atr = {0x3b, 0x76, 0x13, 0x00, 0x00, 0x80, 0x62, 0x07,
413 			0x41, 0x81, 0x81 },
414 		.atr_len = 11,
415 		.stopbits = 0x04,
416 	},
417 };
418 
set_cardparameter(struct cm4000_dev * dev)419 static void set_cardparameter(struct cm4000_dev *dev)
420 {
421 	int i;
422 	unsigned int iobase = dev->p_dev->resource[0]->start;
423 	u_int8_t stopbits = 0x02; /* ISO default */
424 
425 	DEBUGP(3, dev, "-> set_cardparameter\n");
426 
427 	dev->flags1 = dev->flags1 | (((dev->baudv - 1) & 0x0100) >> 8);
428 	xoutb(dev->flags1, REG_FLAGS1(iobase));
429 	DEBUGP(5, dev, "flags1 = 0x%02x\n", dev->flags1);
430 
431 	/* set baudrate */
432 	xoutb((unsigned char)((dev->baudv - 1) & 0xFF), REG_BAUDRATE(iobase));
433 
434 	DEBUGP(5, dev, "baudv = %i -> write 0x%02x\n", dev->baudv,
435 	      ((dev->baudv - 1) & 0xFF));
436 
437 	/* set stopbits */
438 	for (i = 0; i < ARRAY_SIZE(card_fixups); i++) {
439 		if (!memcmp(dev->atr, card_fixups[i].atr,
440 			    card_fixups[i].atr_len))
441 			stopbits = card_fixups[i].stopbits;
442 	}
443 	xoutb(stopbits, REG_STOPBITS(iobase));
444 
445 	DEBUGP(3, dev, "<- set_cardparameter\n");
446 }
447 
set_protocol(struct cm4000_dev * dev,struct ptsreq * ptsreq)448 static int set_protocol(struct cm4000_dev *dev, struct ptsreq *ptsreq)
449 {
450 
451 	unsigned long tmp, i;
452 	unsigned short num_bytes_read;
453 	unsigned char pts_reply[4];
454 	ssize_t rc;
455 	unsigned int iobase = dev->p_dev->resource[0]->start;
456 
457 	rc = 0;
458 
459 	DEBUGP(3, dev, "-> set_protocol\n");
460 	DEBUGP(5, dev, "ptsreq->Protocol = 0x%.8x, ptsreq->Flags=0x%.8x, "
461 		 "ptsreq->pts1=0x%.2x, ptsreq->pts2=0x%.2x, "
462 		 "ptsreq->pts3=0x%.2x\n", (unsigned int)ptsreq->protocol,
463 		 (unsigned int)ptsreq->flags, ptsreq->pts1, ptsreq->pts2,
464 		 ptsreq->pts3);
465 
466 	/* Fill PTS structure */
467 	dev->pts[0] = 0xff;
468 	dev->pts[1] = 0x00;
469 	tmp = ptsreq->protocol;
470 	while ((tmp = (tmp >> 1)) > 0)
471 		dev->pts[1]++;
472 	dev->proto = dev->pts[1];	/* Set new protocol */
473 	dev->pts[1] = (0x01 << 4) | (dev->pts[1]);
474 
475 	/* Correct Fi/Di according to CM4000 Fi/Di table */
476 	DEBUGP(5, dev, "Ta(1) from ATR is 0x%.2x\n", dev->ta1);
477 	/* set Fi/Di according to ATR TA(1) */
478 	dev->pts[2] = fi_di_table[dev->ta1 & 0x0F][(dev->ta1 >> 4) & 0x0F];
479 
480 	/* Calculate PCK character */
481 	dev->pts[3] = dev->pts[0] ^ dev->pts[1] ^ dev->pts[2];
482 
483 	DEBUGP(5, dev, "pts0=%.2x, pts1=%.2x, pts2=%.2x, pts3=%.2x\n",
484 	       dev->pts[0], dev->pts[1], dev->pts[2], dev->pts[3]);
485 
486 	/* check card convention */
487 	if (test_bit(IS_INVREV, &dev->flags))
488 		str_invert_revert(dev->pts, 4);
489 
490 	/* reset SM */
491 	xoutb(0x80, REG_FLAGS0(iobase));
492 
493 	/* Enable access to the message buffer */
494 	DEBUGP(5, dev, "Enable access to the messages buffer\n");
495 	dev->flags1 = 0x20	/* T_Active */
496 	    | (test_bit(IS_INVREV, &dev->flags) ? 0x02 : 0x00) /* inv parity */
497 	    | ((dev->baudv >> 8) & 0x01);	/* MSB-baud */
498 	xoutb(dev->flags1, REG_FLAGS1(iobase));
499 
500 	DEBUGP(5, dev, "Enable message buffer -> flags1 = 0x%.2x\n",
501 	       dev->flags1);
502 
503 	/* write challenge to the buffer */
504 	DEBUGP(5, dev, "Write challenge to buffer: ");
505 	for (i = 0; i < 4; i++) {
506 		xoutb(i, REG_BUF_ADDR(iobase));
507 		xoutb(dev->pts[i], REG_BUF_DATA(iobase));	/* buf data */
508 #ifdef CM4000_DEBUG
509 		pr_debug("0x%.2x ", dev->pts[i]);
510 	}
511 	pr_debug("\n");
512 #else
513 	}
514 #endif
515 
516 	/* set number of bytes to write */
517 	DEBUGP(5, dev, "Set number of bytes to write\n");
518 	xoutb(0x04, REG_NUM_SEND(iobase));
519 
520 	/* Trigger CARDMAN CONTROLLER */
521 	xoutb(0x50, REG_FLAGS0(iobase));
522 
523 	/* Monitor progress */
524 	/* wait for xmit done */
525 	DEBUGP(5, dev, "Waiting for NumRecBytes getting valid\n");
526 
527 	for (i = 0; i < 100; i++) {
528 		if (inb(REG_FLAGS0(iobase)) & 0x08) {
529 			DEBUGP(5, dev, "NumRecBytes is valid\n");
530 			break;
531 		}
532 		/* can not sleep as this is in atomic context */
533 		mdelay(10);
534 	}
535 	if (i == 100) {
536 		DEBUGP(5, dev, "Timeout waiting for NumRecBytes getting "
537 		       "valid\n");
538 		rc = -EIO;
539 		goto exit_setprotocol;
540 	}
541 
542 	DEBUGP(5, dev, "Reading NumRecBytes\n");
543 	for (i = 0; i < 100; i++) {
544 		io_read_num_rec_bytes(iobase, &num_bytes_read);
545 		if (num_bytes_read >= 4) {
546 			DEBUGP(2, dev, "NumRecBytes = %i\n", num_bytes_read);
547 			if (num_bytes_read > 4) {
548 				rc = -EIO;
549 				goto exit_setprotocol;
550 			}
551 			break;
552 		}
553 		/* can not sleep as this is in atomic context */
554 		mdelay(10);
555 	}
556 
557 	/* check whether it is a short PTS reply? */
558 	if (num_bytes_read == 3)
559 		i = 0;
560 
561 	if (i == 100) {
562 		DEBUGP(5, dev, "Timeout reading num_bytes_read\n");
563 		rc = -EIO;
564 		goto exit_setprotocol;
565 	}
566 
567 	DEBUGP(5, dev, "Reset the CARDMAN CONTROLLER\n");
568 	xoutb(0x80, REG_FLAGS0(iobase));
569 
570 	/* Read PPS reply */
571 	DEBUGP(5, dev, "Read PPS reply\n");
572 	for (i = 0; i < num_bytes_read; i++) {
573 		xoutb(i, REG_BUF_ADDR(iobase));
574 		pts_reply[i] = inb(REG_BUF_DATA(iobase));
575 	}
576 
577 #ifdef CM4000_DEBUG
578 	DEBUGP(2, dev, "PTSreply: ");
579 	for (i = 0; i < num_bytes_read; i++) {
580 		pr_debug("0x%.2x ", pts_reply[i]);
581 	}
582 	pr_debug("\n");
583 #endif	/* CM4000_DEBUG */
584 
585 	DEBUGP(5, dev, "Clear Tactive in Flags1\n");
586 	xoutb(0x20, REG_FLAGS1(iobase));
587 
588 	/* Compare ptsreq and ptsreply */
589 	if ((dev->pts[0] == pts_reply[0]) &&
590 	    (dev->pts[1] == pts_reply[1]) &&
591 	    (dev->pts[2] == pts_reply[2]) && (dev->pts[3] == pts_reply[3])) {
592 		/* setcardparameter according to PPS */
593 		dev->baudv = calc_baudv(dev->pts[2]);
594 		set_cardparameter(dev);
595 	} else if ((dev->pts[0] == pts_reply[0]) &&
596 		   ((dev->pts[1] & 0xef) == pts_reply[1]) &&
597 		   ((pts_reply[0] ^ pts_reply[1]) == pts_reply[2])) {
598 		/* short PTS reply, set card parameter to default values */
599 		dev->baudv = calc_baudv(0x11);
600 		set_cardparameter(dev);
601 	} else
602 		rc = -EIO;
603 
604 exit_setprotocol:
605 	DEBUGP(3, dev, "<- set_protocol\n");
606 	return rc;
607 }
608 
io_detect_cm4000(unsigned int iobase,struct cm4000_dev * dev)609 static int io_detect_cm4000(unsigned int iobase, struct cm4000_dev *dev)
610 {
611 
612 	/* note: statemachine is assumed to be reset */
613 	if (inb(REG_FLAGS0(iobase)) & 8) {
614 		clear_bit(IS_ATR_VALID, &dev->flags);
615 		set_bit(IS_CMM_ABSENT, &dev->flags);
616 		return 0;	/* detect CMM = 1 -> failure */
617 	}
618 	/* xoutb(0x40, REG_FLAGS1(iobase)); detectCMM */
619 	xoutb(dev->flags1 | 0x40, REG_FLAGS1(iobase));
620 	if ((inb(REG_FLAGS0(iobase)) & 8) == 0) {
621 		clear_bit(IS_ATR_VALID, &dev->flags);
622 		set_bit(IS_CMM_ABSENT, &dev->flags);
623 		return 0;	/* detect CMM=0 -> failure */
624 	}
625 	/* clear detectCMM again by restoring original flags1 */
626 	xoutb(dev->flags1, REG_FLAGS1(iobase));
627 	return 1;
628 }
629 
terminate_monitor(struct cm4000_dev * dev)630 static void terminate_monitor(struct cm4000_dev *dev)
631 {
632 
633 	/* tell the monitor to stop and wait until
634 	 * it terminates.
635 	 */
636 	DEBUGP(3, dev, "-> terminate_monitor\n");
637 	wait_event_interruptible(dev->devq,
638 				 test_and_set_bit(LOCK_MONITOR,
639 						  (void *)&dev->flags));
640 
641 	/* now, LOCK_MONITOR has been set.
642 	 * allow a last cycle in the monitor.
643 	 * the monitor will indicate that it has
644 	 * finished by clearing this bit.
645 	 */
646 	DEBUGP(5, dev, "Now allow last cycle of monitor!\n");
647 	while (test_bit(LOCK_MONITOR, (void *)&dev->flags))
648 		msleep(25);
649 
650 	DEBUGP(5, dev, "Delete timer\n");
651 	del_timer_sync(&dev->timer);
652 #ifdef CM4000_DEBUG
653 	dev->monitor_running = 0;
654 #endif
655 
656 	DEBUGP(3, dev, "<- terminate_monitor\n");
657 }
658 
659 /*
660  * monitor the card every 50msec. as a side-effect, retrieve the
661  * atr once a card is inserted. another side-effect of retrieving the
662  * atr is that the card will be powered on, so there is no need to
663  * power on the card explicitly from the application: the driver
664  * is already doing that for you.
665  */
666 
monitor_card(struct timer_list * t)667 static void monitor_card(struct timer_list *t)
668 {
669 	struct cm4000_dev *dev = from_timer(dev, t, timer);
670 	unsigned int iobase = dev->p_dev->resource[0]->start;
671 	unsigned short s;
672 	struct ptsreq ptsreq;
673 	int i, atrc;
674 
675 	DEBUGP(7, dev, "->  monitor_card\n");
676 
677 	/* if someone has set the lock for us: we're done! */
678 	if (test_and_set_bit(LOCK_MONITOR, &dev->flags)) {
679 		DEBUGP(4, dev, "About to stop monitor\n");
680 		/* no */
681 		dev->rlen =
682 		    dev->rpos =
683 		    dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0;
684 		dev->mstate = M_FETCH_ATR;
685 		clear_bit(LOCK_MONITOR, &dev->flags);
686 		/* close et al. are sleeping on devq, so wake it */
687 		wake_up_interruptible(&dev->devq);
688 		DEBUGP(2, dev, "<- monitor_card (we are done now)\n");
689 		return;
690 	}
691 
692 	/* try to lock io: if it is already locked, just add another timer */
693 	if (test_and_set_bit(LOCK_IO, (void *)&dev->flags)) {
694 		DEBUGP(4, dev, "Couldn't get IO lock\n");
695 		goto return_with_timer;
696 	}
697 
698 	/* is a card/a reader inserted at all ? */
699 	dev->flags0 = xinb(REG_FLAGS0(iobase));
700 	DEBUGP(7, dev, "dev->flags0 = 0x%2x\n", dev->flags0);
701 	DEBUGP(7, dev, "smartcard present: %s\n",
702 	       dev->flags0 & 1 ? "yes" : "no");
703 	DEBUGP(7, dev, "cardman present: %s\n",
704 	       dev->flags0 == 0xff ? "no" : "yes");
705 
706 	if ((dev->flags0 & 1) == 0	/* no smartcard inserted */
707 	    || dev->flags0 == 0xff) {	/* no cardman inserted */
708 		/* no */
709 		dev->rlen =
710 		    dev->rpos =
711 		    dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0;
712 		dev->mstate = M_FETCH_ATR;
713 
714 		dev->flags &= 0x000000ff; /* only keep IO and MONITOR locks */
715 
716 		if (dev->flags0 == 0xff) {
717 			DEBUGP(4, dev, "set IS_CMM_ABSENT bit\n");
718 			set_bit(IS_CMM_ABSENT, &dev->flags);
719 		} else if (test_bit(IS_CMM_ABSENT, &dev->flags)) {
720 			DEBUGP(4, dev, "clear IS_CMM_ABSENT bit "
721 			       "(card is removed)\n");
722 			clear_bit(IS_CMM_ABSENT, &dev->flags);
723 		}
724 
725 		goto release_io;
726 	} else if ((dev->flags0 & 1) && test_bit(IS_CMM_ABSENT, &dev->flags)) {
727 		/* cardman and card present but cardman was absent before
728 		 * (after suspend with inserted card) */
729 		DEBUGP(4, dev, "clear IS_CMM_ABSENT bit (card is inserted)\n");
730 		clear_bit(IS_CMM_ABSENT, &dev->flags);
731 	}
732 
733 	if (test_bit(IS_ATR_VALID, &dev->flags) == 1) {
734 		DEBUGP(7, dev, "believe ATR is already valid (do nothing)\n");
735 		goto release_io;
736 	}
737 
738 	switch (dev->mstate) {
739 	case M_CARDOFF: {
740 		unsigned char flags0;
741 
742 		DEBUGP(4, dev, "M_CARDOFF\n");
743 		flags0 = inb(REG_FLAGS0(iobase));
744 		if (flags0 & 0x02) {
745 			/* wait until Flags0 indicate power is off */
746 			dev->mdelay = T_10MSEC;
747 		} else {
748 			/* Flags0 indicate power off and no card inserted now;
749 			 * Reset CARDMAN CONTROLLER */
750 			xoutb(0x80, REG_FLAGS0(iobase));
751 
752 			/* prepare for fetching ATR again: after card off ATR
753 			 * is read again automatically */
754 			dev->rlen =
755 			    dev->rpos =
756 			    dev->atr_csum =
757 			    dev->atr_len_retry = dev->cwarn = 0;
758 			dev->mstate = M_FETCH_ATR;
759 
760 			/* minimal gap between CARDOFF and read ATR is 50msec */
761 			dev->mdelay = T_50MSEC;
762 		}
763 		break;
764 	}
765 	case M_FETCH_ATR:
766 		DEBUGP(4, dev, "M_FETCH_ATR\n");
767 		xoutb(0x80, REG_FLAGS0(iobase));
768 		DEBUGP(4, dev, "Reset BAUDV to 9600\n");
769 		dev->baudv = 0x173;	/* 9600 */
770 		xoutb(0x02, REG_STOPBITS(iobase));	/* stopbits=2 */
771 		xoutb(0x73, REG_BAUDRATE(iobase));	/* baud value */
772 		xoutb(0x21, REG_FLAGS1(iobase));	/* T_Active=1, baud
773 							   value */
774 		/* warm start vs. power on: */
775 		xoutb(dev->flags0 & 2 ? 0x46 : 0x44, REG_FLAGS0(iobase));
776 		dev->mdelay = T_40MSEC;
777 		dev->mstate = M_TIMEOUT_WAIT;
778 		break;
779 	case M_TIMEOUT_WAIT:
780 		DEBUGP(4, dev, "M_TIMEOUT_WAIT\n");
781 		/* numRecBytes */
782 		io_read_num_rec_bytes(iobase, &dev->atr_len);
783 		dev->mdelay = T_10MSEC;
784 		dev->mstate = M_READ_ATR_LEN;
785 		break;
786 	case M_READ_ATR_LEN:
787 		DEBUGP(4, dev, "M_READ_ATR_LEN\n");
788 		/* infinite loop possible, since there is no timeout */
789 
790 #define	MAX_ATR_LEN_RETRY	100
791 
792 		if (dev->atr_len == io_read_num_rec_bytes(iobase, &s)) {
793 			if (dev->atr_len_retry++ >= MAX_ATR_LEN_RETRY) {					/* + XX msec */
794 				dev->mdelay = T_10MSEC;
795 				dev->mstate = M_READ_ATR;
796 			}
797 		} else {
798 			dev->atr_len = s;
799 			dev->atr_len_retry = 0;	/* set new timeout */
800 		}
801 
802 		DEBUGP(4, dev, "Current ATR_LEN = %i\n", dev->atr_len);
803 		break;
804 	case M_READ_ATR:
805 		DEBUGP(4, dev, "M_READ_ATR\n");
806 		xoutb(0x80, REG_FLAGS0(iobase));	/* reset SM */
807 		for (i = 0; i < dev->atr_len; i++) {
808 			xoutb(i, REG_BUF_ADDR(iobase));
809 			dev->atr[i] = inb(REG_BUF_DATA(iobase));
810 		}
811 		/* Deactivate T_Active flags */
812 		DEBUGP(4, dev, "Deactivate T_Active flags\n");
813 		dev->flags1 = 0x01;
814 		xoutb(dev->flags1, REG_FLAGS1(iobase));
815 
816 		/* atr is present (which doesn't mean it's valid) */
817 		set_bit(IS_ATR_PRESENT, &dev->flags);
818 		if (dev->atr[0] == 0x03)
819 			str_invert_revert(dev->atr, dev->atr_len);
820 		atrc = parse_atr(dev);
821 		if (atrc == 0) {	/* atr invalid */
822 			dev->mdelay = 0;
823 			dev->mstate = M_BAD_CARD;
824 		} else {
825 			dev->mdelay = T_50MSEC;
826 			dev->mstate = M_ATR_PRESENT;
827 			set_bit(IS_ATR_VALID, &dev->flags);
828 		}
829 
830 		if (test_bit(IS_ATR_VALID, &dev->flags) == 1) {
831 			DEBUGP(4, dev, "monitor_card: ATR valid\n");
832  			/* if ta1 == 0x11, no PPS necessary (default values) */
833 			/* do not do PPS with multi protocol cards */
834 			if ((test_bit(IS_AUTOPPS_ACT, &dev->flags) == 0) &&
835 			    (dev->ta1 != 0x11) &&
836 			    !(test_bit(IS_ANY_T0, &dev->flags) &&
837 			    test_bit(IS_ANY_T1, &dev->flags))) {
838 				DEBUGP(4, dev, "Perform AUTOPPS\n");
839 				set_bit(IS_AUTOPPS_ACT, &dev->flags);
840 				ptsreq.protocol = (0x01 << dev->proto);
841 				ptsreq.flags = 0x01;
842 				ptsreq.pts1 = 0x00;
843 				ptsreq.pts2 = 0x00;
844 				ptsreq.pts3 = 0x00;
845 				if (set_protocol(dev, &ptsreq) == 0) {
846 					DEBUGP(4, dev, "AUTOPPS ret SUCC\n");
847 					clear_bit(IS_AUTOPPS_ACT, &dev->flags);
848 					wake_up_interruptible(&dev->atrq);
849 				} else {
850 					DEBUGP(4, dev, "AUTOPPS failed: "
851 					       "repower using defaults\n");
852 					/* prepare for repowering  */
853 					clear_bit(IS_ATR_PRESENT, &dev->flags);
854 					clear_bit(IS_ATR_VALID, &dev->flags);
855 					dev->rlen =
856 					    dev->rpos =
857 					    dev->atr_csum =
858 					    dev->atr_len_retry = dev->cwarn = 0;
859 					dev->mstate = M_FETCH_ATR;
860 
861 					dev->mdelay = T_50MSEC;
862 				}
863 			} else {
864 				/* for cards which use slightly different
865 				 * params (extra guard time) */
866 				set_cardparameter(dev);
867 				if (test_bit(IS_AUTOPPS_ACT, &dev->flags) == 1)
868 					DEBUGP(4, dev, "AUTOPPS already active "
869 					       "2nd try:use default values\n");
870 				if (dev->ta1 == 0x11)
871 					DEBUGP(4, dev, "No AUTOPPS necessary "
872 					       "TA(1)==0x11\n");
873 				if (test_bit(IS_ANY_T0, &dev->flags)
874 				    && test_bit(IS_ANY_T1, &dev->flags))
875 					DEBUGP(4, dev, "Do NOT perform AUTOPPS "
876 					       "with multiprotocol cards\n");
877 				clear_bit(IS_AUTOPPS_ACT, &dev->flags);
878 				wake_up_interruptible(&dev->atrq);
879 			}
880 		} else {
881 			DEBUGP(4, dev, "ATR invalid\n");
882 			wake_up_interruptible(&dev->atrq);
883 		}
884 		break;
885 	case M_BAD_CARD:
886 		DEBUGP(4, dev, "M_BAD_CARD\n");
887 		/* slow down warning, but prompt immediately after insertion */
888 		if (dev->cwarn == 0 || dev->cwarn == 10) {
889 			set_bit(IS_BAD_CARD, &dev->flags);
890 			dev_warn(&dev->p_dev->dev, MODULE_NAME ": ");
891 			if (test_bit(IS_BAD_CSUM, &dev->flags)) {
892 				DEBUGP(4, dev, "ATR checksum (0x%.2x, should "
893 				       "be zero) failed\n", dev->atr_csum);
894 			}
895 #ifdef CM4000_DEBUG
896 			else if (test_bit(IS_BAD_LENGTH, &dev->flags)) {
897 				DEBUGP(4, dev, "ATR length error\n");
898 			} else {
899 				DEBUGP(4, dev, "card damaged or wrong way "
900 					"inserted\n");
901 			}
902 #endif
903 			dev->cwarn = 0;
904 			wake_up_interruptible(&dev->atrq);	/* wake open */
905 		}
906 		dev->cwarn++;
907 		dev->mdelay = T_100MSEC;
908 		dev->mstate = M_FETCH_ATR;
909 		break;
910 	default:
911 		DEBUGP(7, dev, "Unknown action\n");
912 		break;		/* nothing */
913 	}
914 
915 release_io:
916 	DEBUGP(7, dev, "release_io\n");
917 	clear_bit(LOCK_IO, &dev->flags);
918 	wake_up_interruptible(&dev->ioq);	/* whoever needs IO */
919 
920 return_with_timer:
921 	DEBUGP(7, dev, "<- monitor_card (returns with timer)\n");
922 	mod_timer(&dev->timer, jiffies + dev->mdelay);
923 	clear_bit(LOCK_MONITOR, &dev->flags);
924 }
925 
926 /* Interface to userland (file_operations) */
927 
cmm_read(struct file * filp,__user char * buf,size_t count,loff_t * ppos)928 static ssize_t cmm_read(struct file *filp, __user char *buf, size_t count,
929 			loff_t *ppos)
930 {
931 	struct cm4000_dev *dev = filp->private_data;
932 	unsigned int iobase = dev->p_dev->resource[0]->start;
933 	ssize_t rc;
934 	int i, j, k;
935 
936 	DEBUGP(2, dev, "-> cmm_read(%s,%d)\n", current->comm, current->pid);
937 
938 	if (count == 0)		/* according to manpage */
939 		return 0;
940 
941 	if (!pcmcia_dev_present(dev->p_dev) || /* device removed */
942 	    test_bit(IS_CMM_ABSENT, &dev->flags))
943 		return -ENODEV;
944 
945 	if (test_bit(IS_BAD_CSUM, &dev->flags))
946 		return -EIO;
947 
948 	/* also see the note about this in cmm_write */
949 	if (wait_event_interruptible
950 	    (dev->atrq,
951 	     ((filp->f_flags & O_NONBLOCK)
952 	      || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) {
953 		if (filp->f_flags & O_NONBLOCK)
954 			return -EAGAIN;
955 		return -ERESTARTSYS;
956 	}
957 
958 	if (test_bit(IS_ATR_VALID, &dev->flags) == 0)
959 		return -EIO;
960 
961 	/* this one implements blocking IO */
962 	if (wait_event_interruptible
963 	    (dev->readq,
964 	     ((filp->f_flags & O_NONBLOCK) || (dev->rpos < dev->rlen)))) {
965 		if (filp->f_flags & O_NONBLOCK)
966 			return -EAGAIN;
967 		return -ERESTARTSYS;
968 	}
969 
970 	/* lock io */
971 	if (wait_event_interruptible
972 	    (dev->ioq,
973 	     ((filp->f_flags & O_NONBLOCK)
974 	      || (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) {
975 		if (filp->f_flags & O_NONBLOCK)
976 			return -EAGAIN;
977 		return -ERESTARTSYS;
978 	}
979 
980 	rc = 0;
981 	dev->flags0 = inb(REG_FLAGS0(iobase));
982 	if ((dev->flags0 & 1) == 0	/* no smartcard inserted */
983 	    || dev->flags0 == 0xff) {	/* no cardman inserted */
984 		clear_bit(IS_ATR_VALID, &dev->flags);
985 		if (dev->flags0 & 1) {
986 			set_bit(IS_CMM_ABSENT, &dev->flags);
987 			rc = -ENODEV;
988 		} else {
989 			rc = -EIO;
990 		}
991 		goto release_io;
992 	}
993 
994 	DEBUGP(4, dev, "begin read answer\n");
995 	j = min(count, (size_t)(dev->rlen - dev->rpos));
996 	k = dev->rpos;
997 	if (k + j > 255)
998 		j = 256 - k;
999 	DEBUGP(4, dev, "read1 j=%d\n", j);
1000 	for (i = 0; i < j; i++) {
1001 		xoutb(k++, REG_BUF_ADDR(iobase));
1002 		dev->rbuf[i] = xinb(REG_BUF_DATA(iobase));
1003 	}
1004 	j = min(count, (size_t)(dev->rlen - dev->rpos));
1005 	if (k + j > 255) {
1006 		DEBUGP(4, dev, "read2 j=%d\n", j);
1007 		dev->flags1 |= 0x10;	/* MSB buf addr set */
1008 		xoutb(dev->flags1, REG_FLAGS1(iobase));
1009 		for (; i < j; i++) {
1010 			xoutb(k++, REG_BUF_ADDR(iobase));
1011 			dev->rbuf[i] = xinb(REG_BUF_DATA(iobase));
1012 		}
1013 	}
1014 
1015 	if (dev->proto == 0 && count > dev->rlen - dev->rpos && i) {
1016 		DEBUGP(4, dev, "T=0 and count > buffer\n");
1017 		dev->rbuf[i] = dev->rbuf[i - 1];
1018 		dev->rbuf[i - 1] = dev->procbyte;
1019 		j++;
1020 	}
1021 	count = j;
1022 
1023 	dev->rpos = dev->rlen + 1;
1024 
1025 	/* Clear T1Active */
1026 	DEBUGP(4, dev, "Clear T1Active\n");
1027 	dev->flags1 &= 0xdf;
1028 	xoutb(dev->flags1, REG_FLAGS1(iobase));
1029 
1030 	xoutb(0, REG_FLAGS1(iobase));	/* clear detectCMM */
1031 	/* last check before exit */
1032 	if (!io_detect_cm4000(iobase, dev)) {
1033 		rc = -ENODEV;
1034 		goto release_io;
1035 	}
1036 
1037 	if (test_bit(IS_INVREV, &dev->flags) && count > 0)
1038 		str_invert_revert(dev->rbuf, count);
1039 
1040 	if (copy_to_user(buf, dev->rbuf, count))
1041 		rc = -EFAULT;
1042 
1043 release_io:
1044 	clear_bit(LOCK_IO, &dev->flags);
1045 	wake_up_interruptible(&dev->ioq);
1046 
1047 	DEBUGP(2, dev, "<- cmm_read returns: rc = %zi\n",
1048 	       (rc < 0 ? rc : count));
1049 	return rc < 0 ? rc : count;
1050 }
1051 
cmm_write(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1052 static ssize_t cmm_write(struct file *filp, const char __user *buf,
1053 			 size_t count, loff_t *ppos)
1054 {
1055 	struct cm4000_dev *dev = filp->private_data;
1056 	unsigned int iobase = dev->p_dev->resource[0]->start;
1057 	unsigned short s;
1058 	unsigned char infolen;
1059 	unsigned char sendT0;
1060 	unsigned short nsend;
1061 	unsigned short nr;
1062 	ssize_t rc;
1063 	int i;
1064 
1065 	DEBUGP(2, dev, "-> cmm_write(%s,%d)\n", current->comm, current->pid);
1066 
1067 	if (count == 0)		/* according to manpage */
1068 		return 0;
1069 
1070 	if (dev->proto == 0 && count < 4) {
1071 		/* T0 must have at least 4 bytes */
1072 		DEBUGP(4, dev, "T0 short write\n");
1073 		return -EIO;
1074 	}
1075 
1076 	nr = count & 0x1ff;	/* max bytes to write */
1077 
1078 	sendT0 = dev->proto ? 0 : nr > 5 ? 0x08 : 0;
1079 
1080 	if (!pcmcia_dev_present(dev->p_dev) || /* device removed */
1081 	    test_bit(IS_CMM_ABSENT, &dev->flags))
1082 		return -ENODEV;
1083 
1084 	if (test_bit(IS_BAD_CSUM, &dev->flags)) {
1085 		DEBUGP(4, dev, "bad csum\n");
1086 		return -EIO;
1087 	}
1088 
1089 	/*
1090 	 * wait for atr to become valid.
1091 	 * note: it is important to lock this code. if we dont, the monitor
1092 	 * could be run between test_bit and the call to sleep on the
1093 	 * atr-queue.  if *then* the monitor detects atr valid, it will wake up
1094 	 * any process on the atr-queue, *but* since we have been interrupted,
1095 	 * we do not yet sleep on this queue. this would result in a missed
1096 	 * wake_up and the calling process would sleep forever (until
1097 	 * interrupted).  also, do *not* restore_flags before sleep_on, because
1098 	 * this could result in the same situation!
1099 	 */
1100 	if (wait_event_interruptible
1101 	    (dev->atrq,
1102 	     ((filp->f_flags & O_NONBLOCK)
1103 	      || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) {
1104 		if (filp->f_flags & O_NONBLOCK)
1105 			return -EAGAIN;
1106 		return -ERESTARTSYS;
1107 	}
1108 
1109 	if (test_bit(IS_ATR_VALID, &dev->flags) == 0) {	/* invalid atr */
1110 		DEBUGP(4, dev, "invalid ATR\n");
1111 		return -EIO;
1112 	}
1113 
1114 	/* lock io */
1115 	if (wait_event_interruptible
1116 	    (dev->ioq,
1117 	     ((filp->f_flags & O_NONBLOCK)
1118 	      || (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) {
1119 		if (filp->f_flags & O_NONBLOCK)
1120 			return -EAGAIN;
1121 		return -ERESTARTSYS;
1122 	}
1123 
1124 	if (copy_from_user(dev->sbuf, buf, ((count > 512) ? 512 : count)))
1125 		return -EFAULT;
1126 
1127 	rc = 0;
1128 	dev->flags0 = inb(REG_FLAGS0(iobase));
1129 	if ((dev->flags0 & 1) == 0	/* no smartcard inserted */
1130 	    || dev->flags0 == 0xff) {	/* no cardman inserted */
1131 		clear_bit(IS_ATR_VALID, &dev->flags);
1132 		if (dev->flags0 & 1) {
1133 			set_bit(IS_CMM_ABSENT, &dev->flags);
1134 			rc = -ENODEV;
1135 		} else {
1136 			DEBUGP(4, dev, "IO error\n");
1137 			rc = -EIO;
1138 		}
1139 		goto release_io;
1140 	}
1141 
1142 	xoutb(0x80, REG_FLAGS0(iobase));	/* reset SM  */
1143 
1144 	if (!io_detect_cm4000(iobase, dev)) {
1145 		rc = -ENODEV;
1146 		goto release_io;
1147 	}
1148 
1149 	/* reflect T=0 send/read mode in flags1 */
1150 	dev->flags1 |= (sendT0);
1151 
1152 	set_cardparameter(dev);
1153 
1154 	/* dummy read, reset flag procedure received */
1155 	inb(REG_FLAGS1(iobase));
1156 
1157 	dev->flags1 = 0x20	/* T_Active */
1158 	    | (sendT0)
1159 	    | (test_bit(IS_INVREV, &dev->flags) ? 2 : 0)/* inverse parity  */
1160 	    | (((dev->baudv - 1) & 0x0100) >> 8);	/* MSB-Baud */
1161 	DEBUGP(1, dev, "set dev->flags1 = 0x%.2x\n", dev->flags1);
1162 	xoutb(dev->flags1, REG_FLAGS1(iobase));
1163 
1164 	/* xmit data */
1165 	DEBUGP(4, dev, "Xmit data\n");
1166 	for (i = 0; i < nr; i++) {
1167 		if (i >= 256) {
1168 			dev->flags1 = 0x20	/* T_Active */
1169 			    | (sendT0)	/* SendT0 */
1170 				/* inverse parity: */
1171 			    | (test_bit(IS_INVREV, &dev->flags) ? 2 : 0)
1172 			    | (((dev->baudv - 1) & 0x0100) >> 8) /* MSB-Baud */
1173 			    | 0x10;	/* set address high */
1174 			DEBUGP(4, dev, "dev->flags = 0x%.2x - set address "
1175 			       "high\n", dev->flags1);
1176 			xoutb(dev->flags1, REG_FLAGS1(iobase));
1177 		}
1178 		if (test_bit(IS_INVREV, &dev->flags)) {
1179 			DEBUGP(4, dev, "Apply inverse convention for 0x%.2x "
1180 				"-> 0x%.2x\n", (unsigned char)dev->sbuf[i],
1181 			      invert_revert(dev->sbuf[i]));
1182 			xoutb(i, REG_BUF_ADDR(iobase));
1183 			xoutb(invert_revert(dev->sbuf[i]),
1184 			      REG_BUF_DATA(iobase));
1185 		} else {
1186 			xoutb(i, REG_BUF_ADDR(iobase));
1187 			xoutb(dev->sbuf[i], REG_BUF_DATA(iobase));
1188 		}
1189 	}
1190 	DEBUGP(4, dev, "Xmit done\n");
1191 
1192 	if (dev->proto == 0) {
1193 		/* T=0 proto: 0 byte reply  */
1194 		if (nr == 4) {
1195 			DEBUGP(4, dev, "T=0 assumes 0 byte reply\n");
1196 			xoutb(i, REG_BUF_ADDR(iobase));
1197 			if (test_bit(IS_INVREV, &dev->flags))
1198 				xoutb(0xff, REG_BUF_DATA(iobase));
1199 			else
1200 				xoutb(0x00, REG_BUF_DATA(iobase));
1201 		}
1202 
1203 		/* numSendBytes */
1204 		if (sendT0)
1205 			nsend = nr;
1206 		else {
1207 			if (nr == 4)
1208 				nsend = 5;
1209 			else {
1210 				nsend = 5 + (unsigned char)dev->sbuf[4];
1211 				if (dev->sbuf[4] == 0)
1212 					nsend += 0x100;
1213 			}
1214 		}
1215 	} else
1216 		nsend = nr;
1217 
1218 	/* T0: output procedure byte */
1219 	if (test_bit(IS_INVREV, &dev->flags)) {
1220 		DEBUGP(4, dev, "T=0 set Procedure byte (inverse-reverse) "
1221 		       "0x%.2x\n", invert_revert(dev->sbuf[1]));
1222 		xoutb(invert_revert(dev->sbuf[1]), REG_NUM_BYTES(iobase));
1223 	} else {
1224 		DEBUGP(4, dev, "T=0 set Procedure byte 0x%.2x\n", dev->sbuf[1]);
1225 		xoutb(dev->sbuf[1], REG_NUM_BYTES(iobase));
1226 	}
1227 
1228 	DEBUGP(1, dev, "set NumSendBytes = 0x%.2x\n",
1229 	       (unsigned char)(nsend & 0xff));
1230 	xoutb((unsigned char)(nsend & 0xff), REG_NUM_SEND(iobase));
1231 
1232 	DEBUGP(1, dev, "Trigger CARDMAN CONTROLLER (0x%.2x)\n",
1233 	       0x40	/* SM_Active */
1234 	      | (dev->flags0 & 2 ? 0 : 4)	/* power on if needed */
1235 	      |(dev->proto ? 0x10 : 0x08)	/* T=1/T=0 */
1236 	      |(nsend & 0x100) >> 8 /* MSB numSendBytes */ );
1237 	xoutb(0x40		/* SM_Active */
1238 	      | (dev->flags0 & 2 ? 0 : 4)	/* power on if needed */
1239 	      |(dev->proto ? 0x10 : 0x08)	/* T=1/T=0 */
1240 	      |(nsend & 0x100) >> 8,	/* MSB numSendBytes */
1241 	      REG_FLAGS0(iobase));
1242 
1243 	/* wait for xmit done */
1244 	if (dev->proto == 1) {
1245 		DEBUGP(4, dev, "Wait for xmit done\n");
1246 		for (i = 0; i < 1000; i++) {
1247 			if (inb(REG_FLAGS0(iobase)) & 0x08)
1248 				break;
1249 			msleep_interruptible(10);
1250 		}
1251 		if (i == 1000) {
1252 			DEBUGP(4, dev, "timeout waiting for xmit done\n");
1253 			rc = -EIO;
1254 			goto release_io;
1255 		}
1256 	}
1257 
1258 	/* T=1: wait for infoLen */
1259 
1260 	infolen = 0;
1261 	if (dev->proto) {
1262 		/* wait until infoLen is valid */
1263 		for (i = 0; i < 6000; i++) {	/* max waiting time of 1 min */
1264 			io_read_num_rec_bytes(iobase, &s);
1265 			if (s >= 3) {
1266 				infolen = inb(REG_FLAGS1(iobase));
1267 				DEBUGP(4, dev, "infolen=%d\n", infolen);
1268 				break;
1269 			}
1270 			msleep_interruptible(10);
1271 		}
1272 		if (i == 6000) {
1273 			DEBUGP(4, dev, "timeout waiting for infoLen\n");
1274 			rc = -EIO;
1275 			goto release_io;
1276 		}
1277 	} else
1278 		clear_bit(IS_PROCBYTE_PRESENT, &dev->flags);
1279 
1280 	/* numRecBytes | bit9 of numRecytes */
1281 	io_read_num_rec_bytes(iobase, &dev->rlen);
1282 	for (i = 0; i < 600; i++) {	/* max waiting time of 2 sec */
1283 		if (dev->proto) {
1284 			if (dev->rlen >= infolen + 4)
1285 				break;
1286 		}
1287 		msleep_interruptible(10);
1288 		/* numRecBytes | bit9 of numRecytes */
1289 		io_read_num_rec_bytes(iobase, &s);
1290 		if (s > dev->rlen) {
1291 			DEBUGP(1, dev, "NumRecBytes inc (reset timeout)\n");
1292 			i = 0;	/* reset timeout */
1293 			dev->rlen = s;
1294 		}
1295 		/* T=0: we are done when numRecBytes doesn't
1296 		 *      increment any more and NoProcedureByte
1297 		 *      is set and numRecBytes == bytes sent + 6
1298 		 *      (header bytes + data + 1 for sw2)
1299 		 *      except when the card replies an error
1300 		 *      which means, no data will be sent back.
1301 		 */
1302 		else if (dev->proto == 0) {
1303 			if ((inb(REG_BUF_ADDR(iobase)) & 0x80)) {
1304 				/* no procedure byte received since last read */
1305 				DEBUGP(1, dev, "NoProcedure byte set\n");
1306 				/* i=0; */
1307 			} else {
1308 				/* procedure byte received since last read */
1309 				DEBUGP(1, dev, "NoProcedure byte unset "
1310 					"(reset timeout)\n");
1311 				dev->procbyte = inb(REG_FLAGS1(iobase));
1312 				DEBUGP(1, dev, "Read procedure byte 0x%.2x\n",
1313 				      dev->procbyte);
1314 				i = 0;	/* resettimeout */
1315 			}
1316 			if (inb(REG_FLAGS0(iobase)) & 0x08) {
1317 				DEBUGP(1, dev, "T0Done flag (read reply)\n");
1318 				break;
1319 			}
1320 		}
1321 		if (dev->proto)
1322 			infolen = inb(REG_FLAGS1(iobase));
1323 	}
1324 	if (i == 600) {
1325 		DEBUGP(1, dev, "timeout waiting for numRecBytes\n");
1326 		rc = -EIO;
1327 		goto release_io;
1328 	} else {
1329 		if (dev->proto == 0) {
1330 			DEBUGP(1, dev, "Wait for T0Done bit to be  set\n");
1331 			for (i = 0; i < 1000; i++) {
1332 				if (inb(REG_FLAGS0(iobase)) & 0x08)
1333 					break;
1334 				msleep_interruptible(10);
1335 			}
1336 			if (i == 1000) {
1337 				DEBUGP(1, dev, "timeout waiting for T0Done\n");
1338 				rc = -EIO;
1339 				goto release_io;
1340 			}
1341 
1342 			dev->procbyte = inb(REG_FLAGS1(iobase));
1343 			DEBUGP(4, dev, "Read procedure byte 0x%.2x\n",
1344 			      dev->procbyte);
1345 
1346 			io_read_num_rec_bytes(iobase, &dev->rlen);
1347 			DEBUGP(4, dev, "Read NumRecBytes = %i\n", dev->rlen);
1348 
1349 		}
1350 	}
1351 	/* T=1: read offset=zero, T=0: read offset=after challenge */
1352 	dev->rpos = dev->proto ? 0 : nr == 4 ? 5 : nr > dev->rlen ? 5 : nr;
1353 	DEBUGP(4, dev, "dev->rlen = %i,  dev->rpos = %i, nr = %i\n",
1354 	      dev->rlen, dev->rpos, nr);
1355 
1356 release_io:
1357 	DEBUGP(4, dev, "Reset SM\n");
1358 	xoutb(0x80, REG_FLAGS0(iobase));	/* reset SM */
1359 
1360 	if (rc < 0) {
1361 		DEBUGP(4, dev, "Write failed but clear T_Active\n");
1362 		dev->flags1 &= 0xdf;
1363 		xoutb(dev->flags1, REG_FLAGS1(iobase));
1364 	}
1365 
1366 	clear_bit(LOCK_IO, &dev->flags);
1367 	wake_up_interruptible(&dev->ioq);
1368 	wake_up_interruptible(&dev->readq);	/* tell read we have data */
1369 
1370 	/* ITSEC E2: clear write buffer */
1371 	memset((char *)dev->sbuf, 0, 512);
1372 
1373 	/* return error or actually written bytes */
1374 	DEBUGP(2, dev, "<- cmm_write\n");
1375 	return rc < 0 ? rc : nr;
1376 }
1377 
start_monitor(struct cm4000_dev * dev)1378 static void start_monitor(struct cm4000_dev *dev)
1379 {
1380 	DEBUGP(3, dev, "-> start_monitor\n");
1381 	if (!dev->monitor_running) {
1382 		DEBUGP(5, dev, "create, init and add timer\n");
1383 		timer_setup(&dev->timer, monitor_card, 0);
1384 		dev->monitor_running = 1;
1385 		mod_timer(&dev->timer, jiffies);
1386 	} else
1387 		DEBUGP(5, dev, "monitor already running\n");
1388 	DEBUGP(3, dev, "<- start_monitor\n");
1389 }
1390 
stop_monitor(struct cm4000_dev * dev)1391 static void stop_monitor(struct cm4000_dev *dev)
1392 {
1393 	DEBUGP(3, dev, "-> stop_monitor\n");
1394 	if (dev->monitor_running) {
1395 		DEBUGP(5, dev, "stopping monitor\n");
1396 		terminate_monitor(dev);
1397 		/* reset monitor SM */
1398 		clear_bit(IS_ATR_VALID, &dev->flags);
1399 		clear_bit(IS_ATR_PRESENT, &dev->flags);
1400 	} else
1401 		DEBUGP(5, dev, "monitor already stopped\n");
1402 	DEBUGP(3, dev, "<- stop_monitor\n");
1403 }
1404 
cmm_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1405 static long cmm_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1406 {
1407 	struct cm4000_dev *dev = filp->private_data;
1408 	unsigned int iobase = dev->p_dev->resource[0]->start;
1409 	struct inode *inode = file_inode(filp);
1410 	struct pcmcia_device *link;
1411 	int rc;
1412 	void __user *argp = (void __user *)arg;
1413 #ifdef CM4000_DEBUG
1414 	char *ioctl_names[CM_IOC_MAXNR + 1] = {
1415 		[_IOC_NR(CM_IOCGSTATUS)] "CM_IOCGSTATUS",
1416 		[_IOC_NR(CM_IOCGATR)] "CM_IOCGATR",
1417 		[_IOC_NR(CM_IOCARDOFF)] "CM_IOCARDOFF",
1418 		[_IOC_NR(CM_IOCSPTS)] "CM_IOCSPTS",
1419 		[_IOC_NR(CM_IOSDBGLVL)] "CM4000_DBGLVL",
1420 	};
1421 	DEBUGP(3, dev, "cmm_ioctl(device=%d.%d) %s\n", imajor(inode),
1422 	       iminor(inode), ioctl_names[_IOC_NR(cmd)]);
1423 #endif
1424 
1425 	mutex_lock(&cmm_mutex);
1426 	rc = -ENODEV;
1427 	link = dev_table[iminor(inode)];
1428 	if (!pcmcia_dev_present(link)) {
1429 		DEBUGP(4, dev, "DEV_OK false\n");
1430 		goto out;
1431 	}
1432 
1433 	if (test_bit(IS_CMM_ABSENT, &dev->flags)) {
1434 		DEBUGP(4, dev, "CMM_ABSENT flag set\n");
1435 		goto out;
1436 	}
1437 	rc = -EINVAL;
1438 
1439 	if (_IOC_TYPE(cmd) != CM_IOC_MAGIC) {
1440 		DEBUGP(4, dev, "ioctype mismatch\n");
1441 		goto out;
1442 	}
1443 	if (_IOC_NR(cmd) > CM_IOC_MAXNR) {
1444 		DEBUGP(4, dev, "iocnr mismatch\n");
1445 		goto out;
1446 	}
1447 	rc = 0;
1448 
1449 	switch (cmd) {
1450 	case CM_IOCGSTATUS:
1451 		DEBUGP(4, dev, " ... in CM_IOCGSTATUS\n");
1452 		{
1453 			int status;
1454 
1455 			/* clear other bits, but leave inserted & powered as
1456 			 * they are */
1457 			status = dev->flags0 & 3;
1458 			if (test_bit(IS_ATR_PRESENT, &dev->flags))
1459 				status |= CM_ATR_PRESENT;
1460 			if (test_bit(IS_ATR_VALID, &dev->flags))
1461 				status |= CM_ATR_VALID;
1462 			if (test_bit(IS_CMM_ABSENT, &dev->flags))
1463 				status |= CM_NO_READER;
1464 			if (test_bit(IS_BAD_CARD, &dev->flags))
1465 				status |= CM_BAD_CARD;
1466 			if (copy_to_user(argp, &status, sizeof(int)))
1467 				rc = -EFAULT;
1468 		}
1469 		break;
1470 	case CM_IOCGATR:
1471 		DEBUGP(4, dev, "... in CM_IOCGATR\n");
1472 		{
1473 			struct atreq __user *atreq = argp;
1474 			int tmp;
1475 			/* allow nonblocking io and being interrupted */
1476 			if (wait_event_interruptible
1477 			    (dev->atrq,
1478 			     ((filp->f_flags & O_NONBLOCK)
1479 			      || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags)
1480 				  != 0)))) {
1481 				if (filp->f_flags & O_NONBLOCK)
1482 					rc = -EAGAIN;
1483 				else
1484 					rc = -ERESTARTSYS;
1485 				break;
1486 			}
1487 
1488 			rc = -EFAULT;
1489 			if (test_bit(IS_ATR_VALID, &dev->flags) == 0) {
1490 				tmp = -1;
1491 				if (copy_to_user(&(atreq->atr_len), &tmp,
1492 						 sizeof(int)))
1493 					break;
1494 			} else {
1495 				if (copy_to_user(atreq->atr, dev->atr,
1496 						 dev->atr_len))
1497 					break;
1498 
1499 				tmp = dev->atr_len;
1500 				if (copy_to_user(&(atreq->atr_len), &tmp, sizeof(int)))
1501 					break;
1502 			}
1503 			rc = 0;
1504 			break;
1505 		}
1506 	case CM_IOCARDOFF:
1507 
1508 #ifdef CM4000_DEBUG
1509 		DEBUGP(4, dev, "... in CM_IOCARDOFF\n");
1510 		if (dev->flags0 & 0x01) {
1511 			DEBUGP(4, dev, "    Card inserted\n");
1512 		} else {
1513 			DEBUGP(2, dev, "    No card inserted\n");
1514 		}
1515 		if (dev->flags0 & 0x02) {
1516 			DEBUGP(4, dev, "    Card powered\n");
1517 		} else {
1518 			DEBUGP(2, dev, "    Card not powered\n");
1519 		}
1520 #endif
1521 
1522 		/* is a card inserted and powered? */
1523 		if ((dev->flags0 & 0x01) && (dev->flags0 & 0x02)) {
1524 
1525 			/* get IO lock */
1526 			if (wait_event_interruptible
1527 			    (dev->ioq,
1528 			     ((filp->f_flags & O_NONBLOCK)
1529 			      || (test_and_set_bit(LOCK_IO, (void *)&dev->flags)
1530 				  == 0)))) {
1531 				if (filp->f_flags & O_NONBLOCK)
1532 					rc = -EAGAIN;
1533 				else
1534 					rc = -ERESTARTSYS;
1535 				break;
1536 			}
1537 			/* Set Flags0 = 0x42 */
1538 			DEBUGP(4, dev, "Set Flags0=0x42 \n");
1539 			xoutb(0x42, REG_FLAGS0(iobase));
1540 			clear_bit(IS_ATR_PRESENT, &dev->flags);
1541 			clear_bit(IS_ATR_VALID, &dev->flags);
1542 			dev->mstate = M_CARDOFF;
1543 			clear_bit(LOCK_IO, &dev->flags);
1544 			if (wait_event_interruptible
1545 			    (dev->atrq,
1546 			     ((filp->f_flags & O_NONBLOCK)
1547 			      || (test_bit(IS_ATR_VALID, (void *)&dev->flags) !=
1548 				  0)))) {
1549 				if (filp->f_flags & O_NONBLOCK)
1550 					rc = -EAGAIN;
1551 				else
1552 					rc = -ERESTARTSYS;
1553 				break;
1554 			}
1555 		}
1556 		/* release lock */
1557 		clear_bit(LOCK_IO, &dev->flags);
1558 		wake_up_interruptible(&dev->ioq);
1559 
1560 		rc = 0;
1561 		break;
1562 	case CM_IOCSPTS:
1563 		{
1564 			struct ptsreq krnptsreq;
1565 
1566 			if (copy_from_user(&krnptsreq, argp,
1567 					   sizeof(struct ptsreq))) {
1568 				rc = -EFAULT;
1569 				break;
1570 			}
1571 
1572 			rc = 0;
1573 			DEBUGP(4, dev, "... in CM_IOCSPTS\n");
1574 			/* wait for ATR to get valid */
1575 			if (wait_event_interruptible
1576 			    (dev->atrq,
1577 			     ((filp->f_flags & O_NONBLOCK)
1578 			      || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags)
1579 				  != 0)))) {
1580 				if (filp->f_flags & O_NONBLOCK)
1581 					rc = -EAGAIN;
1582 				else
1583 					rc = -ERESTARTSYS;
1584 				break;
1585 			}
1586 			/* get IO lock */
1587 			if (wait_event_interruptible
1588 			    (dev->ioq,
1589 			     ((filp->f_flags & O_NONBLOCK)
1590 			      || (test_and_set_bit(LOCK_IO, (void *)&dev->flags)
1591 				  == 0)))) {
1592 				if (filp->f_flags & O_NONBLOCK)
1593 					rc = -EAGAIN;
1594 				else
1595 					rc = -ERESTARTSYS;
1596 				break;
1597 			}
1598 
1599 			if ((rc = set_protocol(dev, &krnptsreq)) != 0) {
1600 				/* auto power_on again */
1601 				dev->mstate = M_FETCH_ATR;
1602 				clear_bit(IS_ATR_VALID, &dev->flags);
1603 			}
1604 			/* release lock */
1605 			clear_bit(LOCK_IO, &dev->flags);
1606 			wake_up_interruptible(&dev->ioq);
1607 
1608 		}
1609 		break;
1610 #ifdef CM4000_DEBUG
1611 	case CM_IOSDBGLVL:
1612 		rc = -ENOTTY;
1613 		break;
1614 #endif
1615 	default:
1616 		DEBUGP(4, dev, "... in default (unknown IOCTL code)\n");
1617 		rc = -ENOTTY;
1618 	}
1619 out:
1620 	mutex_unlock(&cmm_mutex);
1621 	return rc;
1622 }
1623 
cmm_open(struct inode * inode,struct file * filp)1624 static int cmm_open(struct inode *inode, struct file *filp)
1625 {
1626 	struct cm4000_dev *dev;
1627 	struct pcmcia_device *link;
1628 	int minor = iminor(inode);
1629 	int ret;
1630 
1631 	if (minor >= CM4000_MAX_DEV)
1632 		return -ENODEV;
1633 
1634 	mutex_lock(&cmm_mutex);
1635 	link = dev_table[minor];
1636 	if (link == NULL || !pcmcia_dev_present(link)) {
1637 		ret = -ENODEV;
1638 		goto out;
1639 	}
1640 
1641 	if (link->open) {
1642 		ret = -EBUSY;
1643 		goto out;
1644 	}
1645 
1646 	dev = link->priv;
1647 	filp->private_data = dev;
1648 
1649 	DEBUGP(2, dev, "-> cmm_open(device=%d.%d process=%s,%d)\n",
1650 	      imajor(inode), minor, current->comm, current->pid);
1651 
1652 	/* init device variables, they may be "polluted" after close
1653 	 * or, the device may never have been closed (i.e. open failed)
1654 	 */
1655 
1656 	ZERO_DEV(dev);
1657 
1658 	/* opening will always block since the
1659 	 * monitor will be started by open, which
1660 	 * means we have to wait for ATR becoming
1661 	 * valid = block until valid (or card
1662 	 * inserted)
1663 	 */
1664 	if (filp->f_flags & O_NONBLOCK) {
1665 		ret = -EAGAIN;
1666 		goto out;
1667 	}
1668 
1669 	dev->mdelay = T_50MSEC;
1670 
1671 	/* start monitoring the cardstatus */
1672 	start_monitor(dev);
1673 
1674 	link->open = 1;		/* only one open per device */
1675 
1676 	DEBUGP(2, dev, "<- cmm_open\n");
1677 	ret = stream_open(inode, filp);
1678 out:
1679 	mutex_unlock(&cmm_mutex);
1680 	return ret;
1681 }
1682 
cmm_close(struct inode * inode,struct file * filp)1683 static int cmm_close(struct inode *inode, struct file *filp)
1684 {
1685 	struct cm4000_dev *dev;
1686 	struct pcmcia_device *link;
1687 	int minor = iminor(inode);
1688 
1689 	if (minor >= CM4000_MAX_DEV)
1690 		return -ENODEV;
1691 
1692 	link = dev_table[minor];
1693 	if (link == NULL)
1694 		return -ENODEV;
1695 
1696 	dev = link->priv;
1697 
1698 	DEBUGP(2, dev, "-> cmm_close(maj/min=%d.%d)\n",
1699 	       imajor(inode), minor);
1700 
1701 	stop_monitor(dev);
1702 
1703 	ZERO_DEV(dev);
1704 
1705 	link->open = 0;		/* only one open per device */
1706 	wake_up(&dev->devq);	/* socket removed? */
1707 
1708 	DEBUGP(2, dev, "cmm_close\n");
1709 	return 0;
1710 }
1711 
cmm_cm4000_release(struct pcmcia_device * link)1712 static void cmm_cm4000_release(struct pcmcia_device * link)
1713 {
1714 	struct cm4000_dev *dev = link->priv;
1715 
1716 	/* dont terminate the monitor, rather rely on
1717 	 * close doing that for us.
1718 	 */
1719 	DEBUGP(3, dev, "-> cmm_cm4000_release\n");
1720 	while (link->open) {
1721 		printk(KERN_INFO MODULE_NAME ": delaying release until "
1722 		       "process has terminated\n");
1723 		/* note: don't interrupt us:
1724 		 * close the applications which own
1725 		 * the devices _first_ !
1726 		 */
1727 		wait_event(dev->devq, (link->open == 0));
1728 	}
1729 	/* dev->devq=NULL;	this cannot be zeroed earlier */
1730 	DEBUGP(3, dev, "<- cmm_cm4000_release\n");
1731 	return;
1732 }
1733 
1734 /*==== Interface to PCMCIA Layer =======================================*/
1735 
cm4000_config_check(struct pcmcia_device * p_dev,void * priv_data)1736 static int cm4000_config_check(struct pcmcia_device *p_dev, void *priv_data)
1737 {
1738 	return pcmcia_request_io(p_dev);
1739 }
1740 
cm4000_config(struct pcmcia_device * link,int devno)1741 static int cm4000_config(struct pcmcia_device * link, int devno)
1742 {
1743 	link->config_flags |= CONF_AUTO_SET_IO;
1744 
1745 	/* read the config-tuples */
1746 	if (pcmcia_loop_config(link, cm4000_config_check, NULL))
1747 		goto cs_release;
1748 
1749 	if (pcmcia_enable_device(link))
1750 		goto cs_release;
1751 
1752 	return 0;
1753 
1754 cs_release:
1755 	cm4000_release(link);
1756 	return -ENODEV;
1757 }
1758 
cm4000_suspend(struct pcmcia_device * link)1759 static int cm4000_suspend(struct pcmcia_device *link)
1760 {
1761 	struct cm4000_dev *dev;
1762 
1763 	dev = link->priv;
1764 	stop_monitor(dev);
1765 
1766 	return 0;
1767 }
1768 
cm4000_resume(struct pcmcia_device * link)1769 static int cm4000_resume(struct pcmcia_device *link)
1770 {
1771 	struct cm4000_dev *dev;
1772 
1773 	dev = link->priv;
1774 	if (link->open)
1775 		start_monitor(dev);
1776 
1777 	return 0;
1778 }
1779 
cm4000_release(struct pcmcia_device * link)1780 static void cm4000_release(struct pcmcia_device *link)
1781 {
1782 	cmm_cm4000_release(link);	/* delay release until device closed */
1783 	pcmcia_disable_device(link);
1784 }
1785 
cm4000_probe(struct pcmcia_device * link)1786 static int cm4000_probe(struct pcmcia_device *link)
1787 {
1788 	struct cm4000_dev *dev;
1789 	int i, ret;
1790 
1791 	for (i = 0; i < CM4000_MAX_DEV; i++)
1792 		if (dev_table[i] == NULL)
1793 			break;
1794 
1795 	if (i == CM4000_MAX_DEV) {
1796 		printk(KERN_NOTICE MODULE_NAME ": all devices in use\n");
1797 		return -ENODEV;
1798 	}
1799 
1800 	/* create a new cm4000_cs device */
1801 	dev = kzalloc(sizeof(struct cm4000_dev), GFP_KERNEL);
1802 	if (dev == NULL)
1803 		return -ENOMEM;
1804 
1805 	dev->p_dev = link;
1806 	link->priv = dev;
1807 	dev_table[i] = link;
1808 
1809 	init_waitqueue_head(&dev->devq);
1810 	init_waitqueue_head(&dev->ioq);
1811 	init_waitqueue_head(&dev->atrq);
1812 	init_waitqueue_head(&dev->readq);
1813 
1814 	ret = cm4000_config(link, i);
1815 	if (ret) {
1816 		dev_table[i] = NULL;
1817 		kfree(dev);
1818 		return ret;
1819 	}
1820 
1821 	device_create(cmm_class, NULL, MKDEV(major, i), NULL, "cmm%d", i);
1822 
1823 	return 0;
1824 }
1825 
cm4000_detach(struct pcmcia_device * link)1826 static void cm4000_detach(struct pcmcia_device *link)
1827 {
1828 	struct cm4000_dev *dev = link->priv;
1829 	int devno;
1830 
1831 	/* find device */
1832 	for (devno = 0; devno < CM4000_MAX_DEV; devno++)
1833 		if (dev_table[devno] == link)
1834 			break;
1835 	if (devno == CM4000_MAX_DEV)
1836 		return;
1837 
1838 	stop_monitor(dev);
1839 
1840 	cm4000_release(link);
1841 
1842 	dev_table[devno] = NULL;
1843 	kfree(dev);
1844 
1845 	device_destroy(cmm_class, MKDEV(major, devno));
1846 
1847 	return;
1848 }
1849 
1850 static const struct file_operations cm4000_fops = {
1851 	.owner	= THIS_MODULE,
1852 	.read	= cmm_read,
1853 	.write	= cmm_write,
1854 	.unlocked_ioctl	= cmm_ioctl,
1855 	.open	= cmm_open,
1856 	.release= cmm_close,
1857 	.llseek = no_llseek,
1858 };
1859 
1860 static const struct pcmcia_device_id cm4000_ids[] = {
1861 	PCMCIA_DEVICE_MANF_CARD(0x0223, 0x0002),
1862 	PCMCIA_DEVICE_PROD_ID12("CardMan", "4000", 0x2FB368CA, 0xA2BD8C39),
1863 	PCMCIA_DEVICE_NULL,
1864 };
1865 MODULE_DEVICE_TABLE(pcmcia, cm4000_ids);
1866 
1867 static struct pcmcia_driver cm4000_driver = {
1868 	.owner	  = THIS_MODULE,
1869 	.name	  = "cm4000_cs",
1870 	.probe    = cm4000_probe,
1871 	.remove   = cm4000_detach,
1872 	.suspend  = cm4000_suspend,
1873 	.resume   = cm4000_resume,
1874 	.id_table = cm4000_ids,
1875 };
1876 
cmm_init(void)1877 static int __init cmm_init(void)
1878 {
1879 	int rc;
1880 
1881 	cmm_class = class_create(THIS_MODULE, "cardman_4000");
1882 	if (IS_ERR(cmm_class))
1883 		return PTR_ERR(cmm_class);
1884 
1885 	major = register_chrdev(0, DEVICE_NAME, &cm4000_fops);
1886 	if (major < 0) {
1887 		printk(KERN_WARNING MODULE_NAME
1888 			": could not get major number\n");
1889 		class_destroy(cmm_class);
1890 		return major;
1891 	}
1892 
1893 	rc = pcmcia_register_driver(&cm4000_driver);
1894 	if (rc < 0) {
1895 		unregister_chrdev(major, DEVICE_NAME);
1896 		class_destroy(cmm_class);
1897 		return rc;
1898 	}
1899 
1900 	return 0;
1901 }
1902 
cmm_exit(void)1903 static void __exit cmm_exit(void)
1904 {
1905 	pcmcia_unregister_driver(&cm4000_driver);
1906 	unregister_chrdev(major, DEVICE_NAME);
1907 	class_destroy(cmm_class);
1908 };
1909 
1910 module_init(cmm_init);
1911 module_exit(cmm_exit);
1912 MODULE_LICENSE("Dual BSD/GPL");
1913