1 /*
2 * Copyright 2016 Advanced Micro Devices, Inc.
3 * Copyright 2019 Raptor Engineering, LLC
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors: AMD
24 *
25 */
26
27 #include <linux/slab.h>
28
29 #include "dm_services.h"
30 #include "dc.h"
31
32 #include "dcn20_init.h"
33
34 #include "resource.h"
35 #include "include/irq_service_interface.h"
36 #include "dcn20/dcn20_resource.h"
37
38 #include "dml/dcn20/dcn20_fpu.h"
39
40 #include "dcn10/dcn10_hubp.h"
41 #include "dcn10/dcn10_ipp.h"
42 #include "dcn20_hubbub.h"
43 #include "dcn20_mpc.h"
44 #include "dcn20_hubp.h"
45 #include "irq/dcn20/irq_service_dcn20.h"
46 #include "dcn20_dpp.h"
47 #include "dcn20_optc.h"
48 #include "dcn20_hwseq.h"
49 #include "dce110/dce110_hw_sequencer.h"
50 #include "dcn10/dcn10_resource.h"
51 #include "dcn20_opp.h"
52
53 #include "dcn20_dsc.h"
54
55 #include "dcn20_link_encoder.h"
56 #include "dcn20_stream_encoder.h"
57 #include "dce/dce_clock_source.h"
58 #include "dce/dce_audio.h"
59 #include "dce/dce_hwseq.h"
60 #include "virtual/virtual_stream_encoder.h"
61 #include "dce110/dce110_resource.h"
62 #include "dml/display_mode_vba.h"
63 #include "dcn20_dccg.h"
64 #include "dcn20_vmid.h"
65 #include "dce/dce_panel_cntl.h"
66
67 #include "navi10_ip_offset.h"
68
69 #include "dcn/dcn_2_0_0_offset.h"
70 #include "dcn/dcn_2_0_0_sh_mask.h"
71 #include "dpcs/dpcs_2_0_0_offset.h"
72 #include "dpcs/dpcs_2_0_0_sh_mask.h"
73
74 #include "nbio/nbio_2_3_offset.h"
75
76 #include "dcn20/dcn20_dwb.h"
77 #include "dcn20/dcn20_mmhubbub.h"
78
79 #include "mmhub/mmhub_2_0_0_offset.h"
80 #include "mmhub/mmhub_2_0_0_sh_mask.h"
81
82 #include "reg_helper.h"
83 #include "dce/dce_abm.h"
84 #include "dce/dce_dmcu.h"
85 #include "dce/dce_aux.h"
86 #include "dce/dce_i2c.h"
87 #include "vm_helper.h"
88 #include "link_enc_cfg.h"
89
90 #include "amdgpu_socbb.h"
91
92 #include "link.h"
93 #define DC_LOGGER_INIT(logger)
94
95 #ifndef mmDP0_DP_DPHY_INTERNAL_CTRL
96 #define mmDP0_DP_DPHY_INTERNAL_CTRL 0x210f
97 #define mmDP0_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
98 #define mmDP1_DP_DPHY_INTERNAL_CTRL 0x220f
99 #define mmDP1_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
100 #define mmDP2_DP_DPHY_INTERNAL_CTRL 0x230f
101 #define mmDP2_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
102 #define mmDP3_DP_DPHY_INTERNAL_CTRL 0x240f
103 #define mmDP3_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
104 #define mmDP4_DP_DPHY_INTERNAL_CTRL 0x250f
105 #define mmDP4_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
106 #define mmDP5_DP_DPHY_INTERNAL_CTRL 0x260f
107 #define mmDP5_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
108 #define mmDP6_DP_DPHY_INTERNAL_CTRL 0x270f
109 #define mmDP6_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
110 #endif
111
112
113 enum dcn20_clk_src_array_id {
114 DCN20_CLK_SRC_PLL0,
115 DCN20_CLK_SRC_PLL1,
116 DCN20_CLK_SRC_PLL2,
117 DCN20_CLK_SRC_PLL3,
118 DCN20_CLK_SRC_PLL4,
119 DCN20_CLK_SRC_PLL5,
120 DCN20_CLK_SRC_TOTAL
121 };
122
123 /* begin *********************
124 * macros to expend register list macro defined in HW object header file */
125
126 /* DCN */
127 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
128
129 #define BASE(seg) BASE_INNER(seg)
130
131 #define SR(reg_name)\
132 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
133 mm ## reg_name
134
135 #define SRI(reg_name, block, id)\
136 .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
137 mm ## block ## id ## _ ## reg_name
138
139 #define SRI2_DWB(reg_name, block, id)\
140 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
141 mm ## reg_name
142 #define SF_DWB(reg_name, field_name, post_fix)\
143 .field_name = reg_name ## __ ## field_name ## post_fix
144
145 #define SF_DWB2(reg_name, block, id, field_name, post_fix) \
146 .field_name = reg_name ## __ ## field_name ## post_fix
147
148 #define SRIR(var_name, reg_name, block, id)\
149 .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
150 mm ## block ## id ## _ ## reg_name
151
152 #define SRII(reg_name, block, id)\
153 .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
154 mm ## block ## id ## _ ## reg_name
155
156 #define DCCG_SRII(reg_name, block, id)\
157 .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
158 mm ## block ## id ## _ ## reg_name
159
160 #define VUPDATE_SRII(reg_name, block, id)\
161 .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
162 mm ## reg_name ## _ ## block ## id
163
164 /* NBIO */
165 #define NBIO_BASE_INNER(seg) \
166 NBIO_BASE__INST0_SEG ## seg
167
168 #define NBIO_BASE(seg) \
169 NBIO_BASE_INNER(seg)
170
171 #define NBIO_SR(reg_name)\
172 .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \
173 mm ## reg_name
174
175 /* MMHUB */
176 #define MMHUB_BASE_INNER(seg) \
177 MMHUB_BASE__INST0_SEG ## seg
178
179 #define MMHUB_BASE(seg) \
180 MMHUB_BASE_INNER(seg)
181
182 #define MMHUB_SR(reg_name)\
183 .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \
184 mmMM ## reg_name
185
186 static const struct bios_registers bios_regs = {
187 NBIO_SR(BIOS_SCRATCH_3),
188 NBIO_SR(BIOS_SCRATCH_6)
189 };
190
191 #define clk_src_regs(index, pllid)\
192 [index] = {\
193 CS_COMMON_REG_LIST_DCN2_0(index, pllid),\
194 }
195
196 static const struct dce110_clk_src_regs clk_src_regs[] = {
197 clk_src_regs(0, A),
198 clk_src_regs(1, B),
199 clk_src_regs(2, C),
200 clk_src_regs(3, D),
201 clk_src_regs(4, E),
202 clk_src_regs(5, F)
203 };
204
205 static const struct dce110_clk_src_shift cs_shift = {
206 CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
207 };
208
209 static const struct dce110_clk_src_mask cs_mask = {
210 CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
211 };
212
213 static const struct dce_dmcu_registers dmcu_regs = {
214 DMCU_DCN10_REG_LIST()
215 };
216
217 static const struct dce_dmcu_shift dmcu_shift = {
218 DMCU_MASK_SH_LIST_DCN10(__SHIFT)
219 };
220
221 static const struct dce_dmcu_mask dmcu_mask = {
222 DMCU_MASK_SH_LIST_DCN10(_MASK)
223 };
224
225 static const struct dce_abm_registers abm_regs = {
226 ABM_DCN20_REG_LIST()
227 };
228
229 static const struct dce_abm_shift abm_shift = {
230 ABM_MASK_SH_LIST_DCN20(__SHIFT)
231 };
232
233 static const struct dce_abm_mask abm_mask = {
234 ABM_MASK_SH_LIST_DCN20(_MASK)
235 };
236
237 #define audio_regs(id)\
238 [id] = {\
239 AUD_COMMON_REG_LIST(id)\
240 }
241
242 static const struct dce_audio_registers audio_regs[] = {
243 audio_regs(0),
244 audio_regs(1),
245 audio_regs(2),
246 audio_regs(3),
247 audio_regs(4),
248 audio_regs(5),
249 audio_regs(6),
250 };
251
252 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
253 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
254 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
255 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
256
257 static const struct dce_audio_shift audio_shift = {
258 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
259 };
260
261 static const struct dce_audio_mask audio_mask = {
262 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
263 };
264
265 #define stream_enc_regs(id)\
266 [id] = {\
267 SE_DCN2_REG_LIST(id)\
268 }
269
270 static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
271 stream_enc_regs(0),
272 stream_enc_regs(1),
273 stream_enc_regs(2),
274 stream_enc_regs(3),
275 stream_enc_regs(4),
276 stream_enc_regs(5),
277 };
278
279 static const struct dcn10_stream_encoder_shift se_shift = {
280 SE_COMMON_MASK_SH_LIST_DCN20(__SHIFT)
281 };
282
283 static const struct dcn10_stream_encoder_mask se_mask = {
284 SE_COMMON_MASK_SH_LIST_DCN20(_MASK)
285 };
286
287
288 #define aux_regs(id)\
289 [id] = {\
290 DCN2_AUX_REG_LIST(id)\
291 }
292
293 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
294 aux_regs(0),
295 aux_regs(1),
296 aux_regs(2),
297 aux_regs(3),
298 aux_regs(4),
299 aux_regs(5)
300 };
301
302 #define hpd_regs(id)\
303 [id] = {\
304 HPD_REG_LIST(id)\
305 }
306
307 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
308 hpd_regs(0),
309 hpd_regs(1),
310 hpd_regs(2),
311 hpd_regs(3),
312 hpd_regs(4),
313 hpd_regs(5)
314 };
315
316 #define link_regs(id, phyid)\
317 [id] = {\
318 LE_DCN10_REG_LIST(id), \
319 UNIPHY_DCN2_REG_LIST(phyid), \
320 DPCS_DCN2_REG_LIST(id), \
321 SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
322 }
323
324 static const struct dcn10_link_enc_registers link_enc_regs[] = {
325 link_regs(0, A),
326 link_regs(1, B),
327 link_regs(2, C),
328 link_regs(3, D),
329 link_regs(4, E),
330 link_regs(5, F)
331 };
332
333 static const struct dcn10_link_enc_shift le_shift = {
334 LINK_ENCODER_MASK_SH_LIST_DCN20(__SHIFT),\
335 DPCS_DCN2_MASK_SH_LIST(__SHIFT)
336 };
337
338 static const struct dcn10_link_enc_mask le_mask = {
339 LINK_ENCODER_MASK_SH_LIST_DCN20(_MASK),\
340 DPCS_DCN2_MASK_SH_LIST(_MASK)
341 };
342
343 static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
344 { DCN_PANEL_CNTL_REG_LIST() }
345 };
346
347 static const struct dce_panel_cntl_shift panel_cntl_shift = {
348 DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
349 };
350
351 static const struct dce_panel_cntl_mask panel_cntl_mask = {
352 DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
353 };
354
355 #define ipp_regs(id)\
356 [id] = {\
357 IPP_REG_LIST_DCN20(id),\
358 }
359
360 static const struct dcn10_ipp_registers ipp_regs[] = {
361 ipp_regs(0),
362 ipp_regs(1),
363 ipp_regs(2),
364 ipp_regs(3),
365 ipp_regs(4),
366 ipp_regs(5),
367 };
368
369 static const struct dcn10_ipp_shift ipp_shift = {
370 IPP_MASK_SH_LIST_DCN20(__SHIFT)
371 };
372
373 static const struct dcn10_ipp_mask ipp_mask = {
374 IPP_MASK_SH_LIST_DCN20(_MASK),
375 };
376
377 #define opp_regs(id)\
378 [id] = {\
379 OPP_REG_LIST_DCN20(id),\
380 }
381
382 static const struct dcn20_opp_registers opp_regs[] = {
383 opp_regs(0),
384 opp_regs(1),
385 opp_regs(2),
386 opp_regs(3),
387 opp_regs(4),
388 opp_regs(5),
389 };
390
391 static const struct dcn20_opp_shift opp_shift = {
392 OPP_MASK_SH_LIST_DCN20(__SHIFT)
393 };
394
395 static const struct dcn20_opp_mask opp_mask = {
396 OPP_MASK_SH_LIST_DCN20(_MASK)
397 };
398
399 #define aux_engine_regs(id)\
400 [id] = {\
401 AUX_COMMON_REG_LIST0(id), \
402 .AUXN_IMPCAL = 0, \
403 .AUXP_IMPCAL = 0, \
404 .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
405 }
406
407 static const struct dce110_aux_registers aux_engine_regs[] = {
408 aux_engine_regs(0),
409 aux_engine_regs(1),
410 aux_engine_regs(2),
411 aux_engine_regs(3),
412 aux_engine_regs(4),
413 aux_engine_regs(5)
414 };
415
416 #define tf_regs(id)\
417 [id] = {\
418 TF_REG_LIST_DCN20(id),\
419 TF_REG_LIST_DCN20_COMMON_APPEND(id),\
420 }
421
422 static const struct dcn2_dpp_registers tf_regs[] = {
423 tf_regs(0),
424 tf_regs(1),
425 tf_regs(2),
426 tf_regs(3),
427 tf_regs(4),
428 tf_regs(5),
429 };
430
431 static const struct dcn2_dpp_shift tf_shift = {
432 TF_REG_LIST_SH_MASK_DCN20(__SHIFT),
433 TF_DEBUG_REG_LIST_SH_DCN20
434 };
435
436 static const struct dcn2_dpp_mask tf_mask = {
437 TF_REG_LIST_SH_MASK_DCN20(_MASK),
438 TF_DEBUG_REG_LIST_MASK_DCN20
439 };
440
441 #define dwbc_regs_dcn2(id)\
442 [id] = {\
443 DWBC_COMMON_REG_LIST_DCN2_0(id),\
444 }
445
446 static const struct dcn20_dwbc_registers dwbc20_regs[] = {
447 dwbc_regs_dcn2(0),
448 };
449
450 static const struct dcn20_dwbc_shift dwbc20_shift = {
451 DWBC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
452 };
453
454 static const struct dcn20_dwbc_mask dwbc20_mask = {
455 DWBC_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
456 };
457
458 #define mcif_wb_regs_dcn2(id)\
459 [id] = {\
460 MCIF_WB_COMMON_REG_LIST_DCN2_0(id),\
461 }
462
463 static const struct dcn20_mmhubbub_registers mcif_wb20_regs[] = {
464 mcif_wb_regs_dcn2(0),
465 };
466
467 static const struct dcn20_mmhubbub_shift mcif_wb20_shift = {
468 MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
469 };
470
471 static const struct dcn20_mmhubbub_mask mcif_wb20_mask = {
472 MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
473 };
474
475 static const struct dcn20_mpc_registers mpc_regs = {
476 MPC_REG_LIST_DCN2_0(0),
477 MPC_REG_LIST_DCN2_0(1),
478 MPC_REG_LIST_DCN2_0(2),
479 MPC_REG_LIST_DCN2_0(3),
480 MPC_REG_LIST_DCN2_0(4),
481 MPC_REG_LIST_DCN2_0(5),
482 MPC_OUT_MUX_REG_LIST_DCN2_0(0),
483 MPC_OUT_MUX_REG_LIST_DCN2_0(1),
484 MPC_OUT_MUX_REG_LIST_DCN2_0(2),
485 MPC_OUT_MUX_REG_LIST_DCN2_0(3),
486 MPC_OUT_MUX_REG_LIST_DCN2_0(4),
487 MPC_OUT_MUX_REG_LIST_DCN2_0(5),
488 MPC_DBG_REG_LIST_DCN2_0()
489 };
490
491 static const struct dcn20_mpc_shift mpc_shift = {
492 MPC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT),
493 MPC_DEBUG_REG_LIST_SH_DCN20
494 };
495
496 static const struct dcn20_mpc_mask mpc_mask = {
497 MPC_COMMON_MASK_SH_LIST_DCN2_0(_MASK),
498 MPC_DEBUG_REG_LIST_MASK_DCN20
499 };
500
501 #define tg_regs(id)\
502 [id] = {TG_COMMON_REG_LIST_DCN2_0(id)}
503
504
505 static const struct dcn_optc_registers tg_regs[] = {
506 tg_regs(0),
507 tg_regs(1),
508 tg_regs(2),
509 tg_regs(3),
510 tg_regs(4),
511 tg_regs(5)
512 };
513
514 static const struct dcn_optc_shift tg_shift = {
515 TG_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
516 };
517
518 static const struct dcn_optc_mask tg_mask = {
519 TG_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
520 };
521
522 #define hubp_regs(id)\
523 [id] = {\
524 HUBP_REG_LIST_DCN20(id)\
525 }
526
527 static const struct dcn_hubp2_registers hubp_regs[] = {
528 hubp_regs(0),
529 hubp_regs(1),
530 hubp_regs(2),
531 hubp_regs(3),
532 hubp_regs(4),
533 hubp_regs(5)
534 };
535
536 static const struct dcn_hubp2_shift hubp_shift = {
537 HUBP_MASK_SH_LIST_DCN20(__SHIFT)
538 };
539
540 static const struct dcn_hubp2_mask hubp_mask = {
541 HUBP_MASK_SH_LIST_DCN20(_MASK)
542 };
543
544 static const struct dcn_hubbub_registers hubbub_reg = {
545 HUBBUB_REG_LIST_DCN20(0)
546 };
547
548 static const struct dcn_hubbub_shift hubbub_shift = {
549 HUBBUB_MASK_SH_LIST_DCN20(__SHIFT)
550 };
551
552 static const struct dcn_hubbub_mask hubbub_mask = {
553 HUBBUB_MASK_SH_LIST_DCN20(_MASK)
554 };
555
556 #define vmid_regs(id)\
557 [id] = {\
558 DCN20_VMID_REG_LIST(id)\
559 }
560
561 static const struct dcn_vmid_registers vmid_regs[] = {
562 vmid_regs(0),
563 vmid_regs(1),
564 vmid_regs(2),
565 vmid_regs(3),
566 vmid_regs(4),
567 vmid_regs(5),
568 vmid_regs(6),
569 vmid_regs(7),
570 vmid_regs(8),
571 vmid_regs(9),
572 vmid_regs(10),
573 vmid_regs(11),
574 vmid_regs(12),
575 vmid_regs(13),
576 vmid_regs(14),
577 vmid_regs(15)
578 };
579
580 static const struct dcn20_vmid_shift vmid_shifts = {
581 DCN20_VMID_MASK_SH_LIST(__SHIFT)
582 };
583
584 static const struct dcn20_vmid_mask vmid_masks = {
585 DCN20_VMID_MASK_SH_LIST(_MASK)
586 };
587
588 static const struct dce110_aux_registers_shift aux_shift = {
589 DCN_AUX_MASK_SH_LIST(__SHIFT)
590 };
591
592 static const struct dce110_aux_registers_mask aux_mask = {
593 DCN_AUX_MASK_SH_LIST(_MASK)
594 };
595
map_transmitter_id_to_phy_instance(enum transmitter transmitter)596 static int map_transmitter_id_to_phy_instance(
597 enum transmitter transmitter)
598 {
599 switch (transmitter) {
600 case TRANSMITTER_UNIPHY_A:
601 return 0;
602 break;
603 case TRANSMITTER_UNIPHY_B:
604 return 1;
605 break;
606 case TRANSMITTER_UNIPHY_C:
607 return 2;
608 break;
609 case TRANSMITTER_UNIPHY_D:
610 return 3;
611 break;
612 case TRANSMITTER_UNIPHY_E:
613 return 4;
614 break;
615 case TRANSMITTER_UNIPHY_F:
616 return 5;
617 break;
618 default:
619 ASSERT(0);
620 return 0;
621 }
622 }
623
624 #define dsc_regsDCN20(id)\
625 [id] = {\
626 DSC_REG_LIST_DCN20(id)\
627 }
628
629 static const struct dcn20_dsc_registers dsc_regs[] = {
630 dsc_regsDCN20(0),
631 dsc_regsDCN20(1),
632 dsc_regsDCN20(2),
633 dsc_regsDCN20(3),
634 dsc_regsDCN20(4),
635 dsc_regsDCN20(5)
636 };
637
638 static const struct dcn20_dsc_shift dsc_shift = {
639 DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
640 };
641
642 static const struct dcn20_dsc_mask dsc_mask = {
643 DSC_REG_LIST_SH_MASK_DCN20(_MASK)
644 };
645
646 static const struct dccg_registers dccg_regs = {
647 DCCG_REG_LIST_DCN2()
648 };
649
650 static const struct dccg_shift dccg_shift = {
651 DCCG_MASK_SH_LIST_DCN2(__SHIFT)
652 };
653
654 static const struct dccg_mask dccg_mask = {
655 DCCG_MASK_SH_LIST_DCN2(_MASK)
656 };
657
658 static const struct resource_caps res_cap_nv10 = {
659 .num_timing_generator = 6,
660 .num_opp = 6,
661 .num_video_plane = 6,
662 .num_audio = 7,
663 .num_stream_encoder = 6,
664 .num_pll = 6,
665 .num_dwb = 1,
666 .num_ddc = 6,
667 .num_vmid = 16,
668 .num_dsc = 6,
669 };
670
671 static const struct dc_plane_cap plane_cap = {
672 .type = DC_PLANE_TYPE_DCN_UNIVERSAL,
673 .blends_with_above = true,
674 .blends_with_below = true,
675 .per_pixel_alpha = true,
676
677 .pixel_format_support = {
678 .argb8888 = true,
679 .nv12 = true,
680 .fp16 = true,
681 .p010 = true
682 },
683
684 .max_upscale_factor = {
685 .argb8888 = 16000,
686 .nv12 = 16000,
687 .fp16 = 1
688 },
689
690 .max_downscale_factor = {
691 .argb8888 = 250,
692 .nv12 = 250,
693 .fp16 = 1
694 },
695 16,
696 16
697 };
698 static const struct resource_caps res_cap_nv14 = {
699 .num_timing_generator = 5,
700 .num_opp = 5,
701 .num_video_plane = 5,
702 .num_audio = 6,
703 .num_stream_encoder = 5,
704 .num_pll = 5,
705 .num_dwb = 1,
706 .num_ddc = 5,
707 .num_vmid = 16,
708 .num_dsc = 5,
709 };
710
711 static const struct dc_debug_options debug_defaults_drv = {
712 .disable_dmcu = false,
713 .force_abm_enable = false,
714 .timing_trace = false,
715 .clock_trace = true,
716 .disable_pplib_clock_request = true,
717 .pipe_split_policy = MPC_SPLIT_AVOID_MULT_DISP,
718 .force_single_disp_pipe_split = false,
719 .disable_dcc = DCC_ENABLE,
720 .vsr_support = true,
721 .performance_trace = false,
722 .max_downscale_src_width = 5120,/*upto 5K*/
723 .disable_pplib_wm_range = false,
724 .scl_reset_length10 = true,
725 .sanity_checks = false,
726 .underflow_assert_delay_us = 0xFFFFFFFF,
727 };
728
729 static const struct dc_debug_options debug_defaults_diags = {
730 .disable_dmcu = false,
731 .force_abm_enable = false,
732 .timing_trace = true,
733 .clock_trace = true,
734 .disable_dpp_power_gate = true,
735 .disable_hubp_power_gate = true,
736 .disable_clock_gate = true,
737 .disable_pplib_clock_request = true,
738 .disable_pplib_wm_range = true,
739 .disable_stutter = true,
740 .scl_reset_length10 = true,
741 .underflow_assert_delay_us = 0xFFFFFFFF,
742 .enable_tri_buf = true,
743 };
744
dcn20_dpp_destroy(struct dpp ** dpp)745 void dcn20_dpp_destroy(struct dpp **dpp)
746 {
747 kfree(TO_DCN20_DPP(*dpp));
748 *dpp = NULL;
749 }
750
dcn20_dpp_create(struct dc_context * ctx,uint32_t inst)751 struct dpp *dcn20_dpp_create(
752 struct dc_context *ctx,
753 uint32_t inst)
754 {
755 struct dcn20_dpp *dpp =
756 kzalloc(sizeof(struct dcn20_dpp), GFP_ATOMIC);
757
758 if (!dpp)
759 return NULL;
760
761 if (dpp2_construct(dpp, ctx, inst,
762 &tf_regs[inst], &tf_shift, &tf_mask))
763 return &dpp->base;
764
765 BREAK_TO_DEBUGGER();
766 kfree(dpp);
767 return NULL;
768 }
769
dcn20_ipp_create(struct dc_context * ctx,uint32_t inst)770 struct input_pixel_processor *dcn20_ipp_create(
771 struct dc_context *ctx, uint32_t inst)
772 {
773 struct dcn10_ipp *ipp =
774 kzalloc(sizeof(struct dcn10_ipp), GFP_ATOMIC);
775
776 if (!ipp) {
777 BREAK_TO_DEBUGGER();
778 return NULL;
779 }
780
781 dcn20_ipp_construct(ipp, ctx, inst,
782 &ipp_regs[inst], &ipp_shift, &ipp_mask);
783 return &ipp->base;
784 }
785
786
dcn20_opp_create(struct dc_context * ctx,uint32_t inst)787 struct output_pixel_processor *dcn20_opp_create(
788 struct dc_context *ctx, uint32_t inst)
789 {
790 struct dcn20_opp *opp =
791 kzalloc(sizeof(struct dcn20_opp), GFP_ATOMIC);
792
793 if (!opp) {
794 BREAK_TO_DEBUGGER();
795 return NULL;
796 }
797
798 dcn20_opp_construct(opp, ctx, inst,
799 &opp_regs[inst], &opp_shift, &opp_mask);
800 return &opp->base;
801 }
802
dcn20_aux_engine_create(struct dc_context * ctx,uint32_t inst)803 struct dce_aux *dcn20_aux_engine_create(
804 struct dc_context *ctx,
805 uint32_t inst)
806 {
807 struct aux_engine_dce110 *aux_engine =
808 kzalloc(sizeof(struct aux_engine_dce110), GFP_ATOMIC);
809
810 if (!aux_engine)
811 return NULL;
812
813 dce110_aux_engine_construct(aux_engine, ctx, inst,
814 SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
815 &aux_engine_regs[inst],
816 &aux_mask,
817 &aux_shift,
818 ctx->dc->caps.extended_aux_timeout_support);
819
820 return &aux_engine->base;
821 }
822 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) }
823
824 static const struct dce_i2c_registers i2c_hw_regs[] = {
825 i2c_inst_regs(1),
826 i2c_inst_regs(2),
827 i2c_inst_regs(3),
828 i2c_inst_regs(4),
829 i2c_inst_regs(5),
830 i2c_inst_regs(6),
831 };
832
833 static const struct dce_i2c_shift i2c_shifts = {
834 I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT)
835 };
836
837 static const struct dce_i2c_mask i2c_masks = {
838 I2C_COMMON_MASK_SH_LIST_DCN2(_MASK)
839 };
840
dcn20_i2c_hw_create(struct dc_context * ctx,uint32_t inst)841 struct dce_i2c_hw *dcn20_i2c_hw_create(
842 struct dc_context *ctx,
843 uint32_t inst)
844 {
845 struct dce_i2c_hw *dce_i2c_hw =
846 kzalloc(sizeof(struct dce_i2c_hw), GFP_ATOMIC);
847
848 if (!dce_i2c_hw)
849 return NULL;
850
851 dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
852 &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
853
854 return dce_i2c_hw;
855 }
dcn20_mpc_create(struct dc_context * ctx)856 struct mpc *dcn20_mpc_create(struct dc_context *ctx)
857 {
858 struct dcn20_mpc *mpc20 = kzalloc(sizeof(struct dcn20_mpc),
859 GFP_ATOMIC);
860
861 if (!mpc20)
862 return NULL;
863
864 dcn20_mpc_construct(mpc20, ctx,
865 &mpc_regs,
866 &mpc_shift,
867 &mpc_mask,
868 6);
869
870 return &mpc20->base;
871 }
872
dcn20_hubbub_create(struct dc_context * ctx)873 struct hubbub *dcn20_hubbub_create(struct dc_context *ctx)
874 {
875 int i;
876 struct dcn20_hubbub *hubbub = kzalloc(sizeof(struct dcn20_hubbub),
877 GFP_ATOMIC);
878
879 if (!hubbub)
880 return NULL;
881
882 hubbub2_construct(hubbub, ctx,
883 &hubbub_reg,
884 &hubbub_shift,
885 &hubbub_mask);
886
887 for (i = 0; i < res_cap_nv10.num_vmid; i++) {
888 struct dcn20_vmid *vmid = &hubbub->vmid[i];
889
890 vmid->ctx = ctx;
891
892 vmid->regs = &vmid_regs[i];
893 vmid->shifts = &vmid_shifts;
894 vmid->masks = &vmid_masks;
895 }
896
897 return &hubbub->base;
898 }
899
dcn20_timing_generator_create(struct dc_context * ctx,uint32_t instance)900 struct timing_generator *dcn20_timing_generator_create(
901 struct dc_context *ctx,
902 uint32_t instance)
903 {
904 struct optc *tgn10 =
905 kzalloc(sizeof(struct optc), GFP_ATOMIC);
906
907 if (!tgn10)
908 return NULL;
909
910 tgn10->base.inst = instance;
911 tgn10->base.ctx = ctx;
912
913 tgn10->tg_regs = &tg_regs[instance];
914 tgn10->tg_shift = &tg_shift;
915 tgn10->tg_mask = &tg_mask;
916
917 dcn20_timing_generator_init(tgn10);
918
919 return &tgn10->base;
920 }
921
922 static const struct encoder_feature_support link_enc_feature = {
923 .max_hdmi_deep_color = COLOR_DEPTH_121212,
924 .max_hdmi_pixel_clock = 600000,
925 .hdmi_ycbcr420_supported = true,
926 .dp_ycbcr420_supported = true,
927 .fec_supported = true,
928 .flags.bits.IS_HBR2_CAPABLE = true,
929 .flags.bits.IS_HBR3_CAPABLE = true,
930 .flags.bits.IS_TPS3_CAPABLE = true,
931 .flags.bits.IS_TPS4_CAPABLE = true
932 };
933
dcn20_link_encoder_create(struct dc_context * ctx,const struct encoder_init_data * enc_init_data)934 struct link_encoder *dcn20_link_encoder_create(
935 struct dc_context *ctx,
936 const struct encoder_init_data *enc_init_data)
937 {
938 struct dcn20_link_encoder *enc20 =
939 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
940 int link_regs_id;
941
942 if (!enc20)
943 return NULL;
944
945 link_regs_id =
946 map_transmitter_id_to_phy_instance(enc_init_data->transmitter);
947
948 dcn20_link_encoder_construct(enc20,
949 enc_init_data,
950 &link_enc_feature,
951 &link_enc_regs[link_regs_id],
952 &link_enc_aux_regs[enc_init_data->channel - 1],
953 &link_enc_hpd_regs[enc_init_data->hpd_source],
954 &le_shift,
955 &le_mask);
956
957 return &enc20->enc10.base;
958 }
959
dcn20_panel_cntl_create(const struct panel_cntl_init_data * init_data)960 static struct panel_cntl *dcn20_panel_cntl_create(const struct panel_cntl_init_data *init_data)
961 {
962 struct dce_panel_cntl *panel_cntl =
963 kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
964
965 if (!panel_cntl)
966 return NULL;
967
968 dce_panel_cntl_construct(panel_cntl,
969 init_data,
970 &panel_cntl_regs[init_data->inst],
971 &panel_cntl_shift,
972 &panel_cntl_mask);
973
974 return &panel_cntl->base;
975 }
976
dcn20_clock_source_create(struct dc_context * ctx,struct dc_bios * bios,enum clock_source_id id,const struct dce110_clk_src_regs * regs,bool dp_clk_src)977 static struct clock_source *dcn20_clock_source_create(
978 struct dc_context *ctx,
979 struct dc_bios *bios,
980 enum clock_source_id id,
981 const struct dce110_clk_src_regs *regs,
982 bool dp_clk_src)
983 {
984 struct dce110_clk_src *clk_src =
985 kzalloc(sizeof(struct dce110_clk_src), GFP_ATOMIC);
986
987 if (!clk_src)
988 return NULL;
989
990 if (dcn20_clk_src_construct(clk_src, ctx, bios, id,
991 regs, &cs_shift, &cs_mask)) {
992 clk_src->base.dp_clk_src = dp_clk_src;
993 return &clk_src->base;
994 }
995
996 kfree(clk_src);
997 BREAK_TO_DEBUGGER();
998 return NULL;
999 }
1000
read_dce_straps(struct dc_context * ctx,struct resource_straps * straps)1001 static void read_dce_straps(
1002 struct dc_context *ctx,
1003 struct resource_straps *straps)
1004 {
1005 generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX),
1006 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
1007 }
1008
dcn20_create_audio(struct dc_context * ctx,unsigned int inst)1009 static struct audio *dcn20_create_audio(
1010 struct dc_context *ctx, unsigned int inst)
1011 {
1012 return dce_audio_create(ctx, inst,
1013 &audio_regs[inst], &audio_shift, &audio_mask);
1014 }
1015
dcn20_stream_encoder_create(enum engine_id eng_id,struct dc_context * ctx)1016 struct stream_encoder *dcn20_stream_encoder_create(
1017 enum engine_id eng_id,
1018 struct dc_context *ctx)
1019 {
1020 struct dcn10_stream_encoder *enc1 =
1021 kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1022
1023 if (!enc1)
1024 return NULL;
1025
1026 if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) {
1027 if (eng_id >= ENGINE_ID_DIGD)
1028 eng_id++;
1029 }
1030
1031 dcn20_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id,
1032 &stream_enc_regs[eng_id],
1033 &se_shift, &se_mask);
1034
1035 return &enc1->base;
1036 }
1037
1038 static const struct dce_hwseq_registers hwseq_reg = {
1039 HWSEQ_DCN2_REG_LIST()
1040 };
1041
1042 static const struct dce_hwseq_shift hwseq_shift = {
1043 HWSEQ_DCN2_MASK_SH_LIST(__SHIFT)
1044 };
1045
1046 static const struct dce_hwseq_mask hwseq_mask = {
1047 HWSEQ_DCN2_MASK_SH_LIST(_MASK)
1048 };
1049
dcn20_hwseq_create(struct dc_context * ctx)1050 struct dce_hwseq *dcn20_hwseq_create(
1051 struct dc_context *ctx)
1052 {
1053 struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1054
1055 if (hws) {
1056 hws->ctx = ctx;
1057 hws->regs = &hwseq_reg;
1058 hws->shifts = &hwseq_shift;
1059 hws->masks = &hwseq_mask;
1060 }
1061 return hws;
1062 }
1063
1064 static const struct resource_create_funcs res_create_funcs = {
1065 .read_dce_straps = read_dce_straps,
1066 .create_audio = dcn20_create_audio,
1067 .create_stream_encoder = dcn20_stream_encoder_create,
1068 .create_hwseq = dcn20_hwseq_create,
1069 };
1070
1071 static const struct resource_create_funcs res_create_maximus_funcs = {
1072 .read_dce_straps = NULL,
1073 .create_audio = NULL,
1074 .create_stream_encoder = NULL,
1075 .create_hwseq = dcn20_hwseq_create,
1076 };
1077
1078 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu);
1079
dcn20_clock_source_destroy(struct clock_source ** clk_src)1080 void dcn20_clock_source_destroy(struct clock_source **clk_src)
1081 {
1082 kfree(TO_DCE110_CLK_SRC(*clk_src));
1083 *clk_src = NULL;
1084 }
1085
1086
dcn20_dsc_create(struct dc_context * ctx,uint32_t inst)1087 struct display_stream_compressor *dcn20_dsc_create(
1088 struct dc_context *ctx, uint32_t inst)
1089 {
1090 struct dcn20_dsc *dsc =
1091 kzalloc(sizeof(struct dcn20_dsc), GFP_ATOMIC);
1092
1093 if (!dsc) {
1094 BREAK_TO_DEBUGGER();
1095 return NULL;
1096 }
1097
1098 dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1099 return &dsc->base;
1100 }
1101
dcn20_dsc_destroy(struct display_stream_compressor ** dsc)1102 void dcn20_dsc_destroy(struct display_stream_compressor **dsc)
1103 {
1104 kfree(container_of(*dsc, struct dcn20_dsc, base));
1105 *dsc = NULL;
1106 }
1107
1108
dcn20_resource_destruct(struct dcn20_resource_pool * pool)1109 static void dcn20_resource_destruct(struct dcn20_resource_pool *pool)
1110 {
1111 unsigned int i;
1112
1113 for (i = 0; i < pool->base.stream_enc_count; i++) {
1114 if (pool->base.stream_enc[i] != NULL) {
1115 kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1116 pool->base.stream_enc[i] = NULL;
1117 }
1118 }
1119
1120 for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1121 if (pool->base.dscs[i] != NULL)
1122 dcn20_dsc_destroy(&pool->base.dscs[i]);
1123 }
1124
1125 if (pool->base.mpc != NULL) {
1126 kfree(TO_DCN20_MPC(pool->base.mpc));
1127 pool->base.mpc = NULL;
1128 }
1129 if (pool->base.hubbub != NULL) {
1130 kfree(pool->base.hubbub);
1131 pool->base.hubbub = NULL;
1132 }
1133 for (i = 0; i < pool->base.pipe_count; i++) {
1134 if (pool->base.dpps[i] != NULL)
1135 dcn20_dpp_destroy(&pool->base.dpps[i]);
1136
1137 if (pool->base.ipps[i] != NULL)
1138 pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1139
1140 if (pool->base.hubps[i] != NULL) {
1141 kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1142 pool->base.hubps[i] = NULL;
1143 }
1144
1145 if (pool->base.irqs != NULL) {
1146 dal_irq_service_destroy(&pool->base.irqs);
1147 }
1148 }
1149
1150 for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1151 if (pool->base.engines[i] != NULL)
1152 dce110_engine_destroy(&pool->base.engines[i]);
1153 if (pool->base.hw_i2cs[i] != NULL) {
1154 kfree(pool->base.hw_i2cs[i]);
1155 pool->base.hw_i2cs[i] = NULL;
1156 }
1157 if (pool->base.sw_i2cs[i] != NULL) {
1158 kfree(pool->base.sw_i2cs[i]);
1159 pool->base.sw_i2cs[i] = NULL;
1160 }
1161 }
1162
1163 for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1164 if (pool->base.opps[i] != NULL)
1165 pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1166 }
1167
1168 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1169 if (pool->base.timing_generators[i] != NULL) {
1170 kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1171 pool->base.timing_generators[i] = NULL;
1172 }
1173 }
1174
1175 for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1176 if (pool->base.dwbc[i] != NULL) {
1177 kfree(TO_DCN20_DWBC(pool->base.dwbc[i]));
1178 pool->base.dwbc[i] = NULL;
1179 }
1180 if (pool->base.mcif_wb[i] != NULL) {
1181 kfree(TO_DCN20_MMHUBBUB(pool->base.mcif_wb[i]));
1182 pool->base.mcif_wb[i] = NULL;
1183 }
1184 }
1185
1186 for (i = 0; i < pool->base.audio_count; i++) {
1187 if (pool->base.audios[i])
1188 dce_aud_destroy(&pool->base.audios[i]);
1189 }
1190
1191 for (i = 0; i < pool->base.clk_src_count; i++) {
1192 if (pool->base.clock_sources[i] != NULL) {
1193 dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1194 pool->base.clock_sources[i] = NULL;
1195 }
1196 }
1197
1198 if (pool->base.dp_clock_source != NULL) {
1199 dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1200 pool->base.dp_clock_source = NULL;
1201 }
1202
1203
1204 if (pool->base.abm != NULL)
1205 dce_abm_destroy(&pool->base.abm);
1206
1207 if (pool->base.dmcu != NULL)
1208 dce_dmcu_destroy(&pool->base.dmcu);
1209
1210 if (pool->base.dccg != NULL)
1211 dcn_dccg_destroy(&pool->base.dccg);
1212
1213 if (pool->base.pp_smu != NULL)
1214 dcn20_pp_smu_destroy(&pool->base.pp_smu);
1215
1216 if (pool->base.oem_device != NULL)
1217 link_destroy_ddc_service(&pool->base.oem_device);
1218 }
1219
dcn20_hubp_create(struct dc_context * ctx,uint32_t inst)1220 struct hubp *dcn20_hubp_create(
1221 struct dc_context *ctx,
1222 uint32_t inst)
1223 {
1224 struct dcn20_hubp *hubp2 =
1225 kzalloc(sizeof(struct dcn20_hubp), GFP_ATOMIC);
1226
1227 if (!hubp2)
1228 return NULL;
1229
1230 if (hubp2_construct(hubp2, ctx, inst,
1231 &hubp_regs[inst], &hubp_shift, &hubp_mask))
1232 return &hubp2->base;
1233
1234 BREAK_TO_DEBUGGER();
1235 kfree(hubp2);
1236 return NULL;
1237 }
1238
get_pixel_clock_parameters(struct pipe_ctx * pipe_ctx,struct pixel_clk_params * pixel_clk_params)1239 static void get_pixel_clock_parameters(
1240 struct pipe_ctx *pipe_ctx,
1241 struct pixel_clk_params *pixel_clk_params)
1242 {
1243 const struct dc_stream_state *stream = pipe_ctx->stream;
1244 struct pipe_ctx *odm_pipe;
1245 int opp_cnt = 1;
1246 struct dc_link *link = stream->link;
1247 struct link_encoder *link_enc = NULL;
1248 struct dc *dc = pipe_ctx->stream->ctx->dc;
1249 struct dce_hwseq *hws = dc->hwseq;
1250
1251 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1252 opp_cnt++;
1253
1254 pixel_clk_params->requested_pix_clk_100hz = stream->timing.pix_clk_100hz;
1255
1256 link_enc = link_enc_cfg_get_link_enc(link);
1257 if (link_enc)
1258 pixel_clk_params->encoder_object_id = link_enc->id;
1259
1260 pixel_clk_params->signal_type = pipe_ctx->stream->signal;
1261 pixel_clk_params->controller_id = pipe_ctx->stream_res.tg->inst + 1;
1262 /* TODO: un-hardcode*/
1263 /* TODO - DP2.0 HW: calculate requested_sym_clk for UHBR rates */
1264 pixel_clk_params->requested_sym_clk = LINK_RATE_LOW *
1265 LINK_RATE_REF_FREQ_IN_KHZ;
1266 pixel_clk_params->flags.ENABLE_SS = 0;
1267 pixel_clk_params->color_depth =
1268 stream->timing.display_color_depth;
1269 pixel_clk_params->flags.DISPLAY_BLANKED = 1;
1270 pixel_clk_params->pixel_encoding = stream->timing.pixel_encoding;
1271
1272 if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
1273 pixel_clk_params->color_depth = COLOR_DEPTH_888;
1274
1275 if (opp_cnt == 4)
1276 pixel_clk_params->requested_pix_clk_100hz /= 4;
1277 else if (optc2_is_two_pixels_per_containter(&stream->timing) || opp_cnt == 2)
1278 pixel_clk_params->requested_pix_clk_100hz /= 2;
1279 else if (hws->funcs.is_dp_dig_pixel_rate_div_policy) {
1280 if (hws->funcs.is_dp_dig_pixel_rate_div_policy(pipe_ctx))
1281 pixel_clk_params->requested_pix_clk_100hz /= 2;
1282 }
1283
1284 if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
1285 pixel_clk_params->requested_pix_clk_100hz *= 2;
1286
1287 }
1288
build_clamping_params(struct dc_stream_state * stream)1289 static void build_clamping_params(struct dc_stream_state *stream)
1290 {
1291 stream->clamping.clamping_level = CLAMPING_FULL_RANGE;
1292 stream->clamping.c_depth = stream->timing.display_color_depth;
1293 stream->clamping.pixel_encoding = stream->timing.pixel_encoding;
1294 }
1295
build_pipe_hw_param(struct pipe_ctx * pipe_ctx)1296 static enum dc_status build_pipe_hw_param(struct pipe_ctx *pipe_ctx)
1297 {
1298
1299 get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->stream_res.pix_clk_params);
1300
1301 pipe_ctx->clock_source->funcs->get_pix_clk_dividers(
1302 pipe_ctx->clock_source,
1303 &pipe_ctx->stream_res.pix_clk_params,
1304 &pipe_ctx->pll_settings);
1305
1306 pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->timing.pixel_encoding;
1307
1308 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
1309 &pipe_ctx->stream->bit_depth_params);
1310 build_clamping_params(pipe_ctx->stream);
1311
1312 return DC_OK;
1313 }
1314
dcn20_build_mapped_resource(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)1315 enum dc_status dcn20_build_mapped_resource(const struct dc *dc, struct dc_state *context, struct dc_stream_state *stream)
1316 {
1317 enum dc_status status = DC_OK;
1318 struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1319
1320 if (!pipe_ctx)
1321 return DC_ERROR_UNEXPECTED;
1322
1323
1324 status = build_pipe_hw_param(pipe_ctx);
1325
1326 return status;
1327 }
1328
1329
dcn20_acquire_dsc(const struct dc * dc,struct resource_context * res_ctx,struct display_stream_compressor ** dsc,int pipe_idx)1330 void dcn20_acquire_dsc(const struct dc *dc,
1331 struct resource_context *res_ctx,
1332 struct display_stream_compressor **dsc,
1333 int pipe_idx)
1334 {
1335 int i;
1336 const struct resource_pool *pool = dc->res_pool;
1337 struct display_stream_compressor *dsc_old = dc->current_state->res_ctx.pipe_ctx[pipe_idx].stream_res.dsc;
1338
1339 ASSERT(*dsc == NULL); /* If this ASSERT fails, dsc was not released properly */
1340 *dsc = NULL;
1341
1342 /* Always do 1-to-1 mapping when number of DSCs is same as number of pipes */
1343 if (pool->res_cap->num_dsc == pool->res_cap->num_opp) {
1344 *dsc = pool->dscs[pipe_idx];
1345 res_ctx->is_dsc_acquired[pipe_idx] = true;
1346 return;
1347 }
1348
1349 /* Return old DSC to avoid the need for re-programming */
1350 if (dsc_old && !res_ctx->is_dsc_acquired[dsc_old->inst]) {
1351 *dsc = dsc_old;
1352 res_ctx->is_dsc_acquired[dsc_old->inst] = true;
1353 return ;
1354 }
1355
1356 /* Find first free DSC */
1357 for (i = 0; i < pool->res_cap->num_dsc; i++)
1358 if (!res_ctx->is_dsc_acquired[i]) {
1359 *dsc = pool->dscs[i];
1360 res_ctx->is_dsc_acquired[i] = true;
1361 break;
1362 }
1363 }
1364
dcn20_release_dsc(struct resource_context * res_ctx,const struct resource_pool * pool,struct display_stream_compressor ** dsc)1365 void dcn20_release_dsc(struct resource_context *res_ctx,
1366 const struct resource_pool *pool,
1367 struct display_stream_compressor **dsc)
1368 {
1369 int i;
1370
1371 for (i = 0; i < pool->res_cap->num_dsc; i++)
1372 if (pool->dscs[i] == *dsc) {
1373 res_ctx->is_dsc_acquired[i] = false;
1374 *dsc = NULL;
1375 break;
1376 }
1377 }
1378
1379
1380
dcn20_add_dsc_to_stream_resource(struct dc * dc,struct dc_state * dc_ctx,struct dc_stream_state * dc_stream)1381 enum dc_status dcn20_add_dsc_to_stream_resource(struct dc *dc,
1382 struct dc_state *dc_ctx,
1383 struct dc_stream_state *dc_stream)
1384 {
1385 enum dc_status result = DC_OK;
1386 int i;
1387
1388 /* Get a DSC if required and available */
1389 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1390 struct pipe_ctx *pipe_ctx = &dc_ctx->res_ctx.pipe_ctx[i];
1391
1392 if (pipe_ctx->top_pipe)
1393 continue;
1394
1395 if (pipe_ctx->stream != dc_stream)
1396 continue;
1397
1398 if (pipe_ctx->stream_res.dsc)
1399 continue;
1400
1401 dcn20_acquire_dsc(dc, &dc_ctx->res_ctx, &pipe_ctx->stream_res.dsc, i);
1402
1403 /* The number of DSCs can be less than the number of pipes */
1404 if (!pipe_ctx->stream_res.dsc) {
1405 result = DC_NO_DSC_RESOURCE;
1406 }
1407
1408 break;
1409 }
1410
1411 return result;
1412 }
1413
1414
remove_dsc_from_stream_resource(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * dc_stream)1415 static enum dc_status remove_dsc_from_stream_resource(struct dc *dc,
1416 struct dc_state *new_ctx,
1417 struct dc_stream_state *dc_stream)
1418 {
1419 struct pipe_ctx *pipe_ctx = NULL;
1420 int i;
1421
1422 for (i = 0; i < MAX_PIPES; i++) {
1423 if (new_ctx->res_ctx.pipe_ctx[i].stream == dc_stream && !new_ctx->res_ctx.pipe_ctx[i].top_pipe) {
1424 pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i];
1425
1426 if (pipe_ctx->stream_res.dsc)
1427 dcn20_release_dsc(&new_ctx->res_ctx, dc->res_pool, &pipe_ctx->stream_res.dsc);
1428 }
1429 }
1430
1431 if (!pipe_ctx)
1432 return DC_ERROR_UNEXPECTED;
1433 else
1434 return DC_OK;
1435 }
1436
1437
dcn20_add_stream_to_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * dc_stream)1438 enum dc_status dcn20_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1439 {
1440 enum dc_status result = DC_ERROR_UNEXPECTED;
1441
1442 result = resource_map_pool_resources(dc, new_ctx, dc_stream);
1443
1444 if (result == DC_OK)
1445 result = resource_map_phy_clock_resources(dc, new_ctx, dc_stream);
1446
1447 /* Get a DSC if required and available */
1448 if (result == DC_OK && dc_stream->timing.flags.DSC)
1449 result = dcn20_add_dsc_to_stream_resource(dc, new_ctx, dc_stream);
1450
1451 if (result == DC_OK)
1452 result = dcn20_build_mapped_resource(dc, new_ctx, dc_stream);
1453
1454 return result;
1455 }
1456
1457
dcn20_remove_stream_from_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * dc_stream)1458 enum dc_status dcn20_remove_stream_from_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1459 {
1460 enum dc_status result = DC_OK;
1461
1462 result = remove_dsc_from_stream_resource(dc, new_ctx, dc_stream);
1463
1464 return result;
1465 }
1466
1467 /**
1468 * dcn20_split_stream_for_odm - Check if stream can be splited for ODM
1469 *
1470 * @dc: DC object with resource pool info required for pipe split
1471 * @res_ctx: Persistent state of resources
1472 * @prev_odm_pipe: Reference to the previous ODM pipe
1473 * @next_odm_pipe: Reference to the next ODM pipe
1474 *
1475 * This function takes a logically active pipe and a logically free pipe and
1476 * halves all the scaling parameters that need to be halved while populating
1477 * the free pipe with the required resources and configuring the next/previous
1478 * ODM pipe pointers.
1479 *
1480 * Return:
1481 * Return true if split stream for ODM is possible, otherwise, return false.
1482 */
dcn20_split_stream_for_odm(const struct dc * dc,struct resource_context * res_ctx,struct pipe_ctx * prev_odm_pipe,struct pipe_ctx * next_odm_pipe)1483 bool dcn20_split_stream_for_odm(
1484 const struct dc *dc,
1485 struct resource_context *res_ctx,
1486 struct pipe_ctx *prev_odm_pipe,
1487 struct pipe_ctx *next_odm_pipe)
1488 {
1489 int pipe_idx = next_odm_pipe->pipe_idx;
1490 const struct resource_pool *pool = dc->res_pool;
1491
1492 *next_odm_pipe = *prev_odm_pipe;
1493
1494 next_odm_pipe->pipe_idx = pipe_idx;
1495 next_odm_pipe->plane_res.mi = pool->mis[next_odm_pipe->pipe_idx];
1496 next_odm_pipe->plane_res.hubp = pool->hubps[next_odm_pipe->pipe_idx];
1497 next_odm_pipe->plane_res.ipp = pool->ipps[next_odm_pipe->pipe_idx];
1498 next_odm_pipe->plane_res.xfm = pool->transforms[next_odm_pipe->pipe_idx];
1499 next_odm_pipe->plane_res.dpp = pool->dpps[next_odm_pipe->pipe_idx];
1500 next_odm_pipe->plane_res.mpcc_inst = pool->dpps[next_odm_pipe->pipe_idx]->inst;
1501 next_odm_pipe->stream_res.dsc = NULL;
1502 if (prev_odm_pipe->next_odm_pipe && prev_odm_pipe->next_odm_pipe != next_odm_pipe) {
1503 next_odm_pipe->next_odm_pipe = prev_odm_pipe->next_odm_pipe;
1504 next_odm_pipe->next_odm_pipe->prev_odm_pipe = next_odm_pipe;
1505 }
1506 if (prev_odm_pipe->top_pipe && prev_odm_pipe->top_pipe->next_odm_pipe) {
1507 prev_odm_pipe->top_pipe->next_odm_pipe->bottom_pipe = next_odm_pipe;
1508 next_odm_pipe->top_pipe = prev_odm_pipe->top_pipe->next_odm_pipe;
1509 }
1510 if (prev_odm_pipe->bottom_pipe && prev_odm_pipe->bottom_pipe->next_odm_pipe) {
1511 prev_odm_pipe->bottom_pipe->next_odm_pipe->top_pipe = next_odm_pipe;
1512 next_odm_pipe->bottom_pipe = prev_odm_pipe->bottom_pipe->next_odm_pipe;
1513 }
1514 prev_odm_pipe->next_odm_pipe = next_odm_pipe;
1515 next_odm_pipe->prev_odm_pipe = prev_odm_pipe;
1516
1517 if (prev_odm_pipe->plane_state) {
1518 struct scaler_data *sd = &prev_odm_pipe->plane_res.scl_data;
1519 int new_width;
1520
1521 /* HACTIVE halved for odm combine */
1522 sd->h_active /= 2;
1523 /* Calculate new vp and recout for left pipe */
1524 /* Need at least 16 pixels width per side */
1525 if (sd->recout.x + 16 >= sd->h_active)
1526 return false;
1527 new_width = sd->h_active - sd->recout.x;
1528 sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1529 sd->ratios.horz, sd->recout.width - new_width));
1530 sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1531 sd->ratios.horz_c, sd->recout.width - new_width));
1532 sd->recout.width = new_width;
1533
1534 /* Calculate new vp and recout for right pipe */
1535 sd = &next_odm_pipe->plane_res.scl_data;
1536 /* HACTIVE halved for odm combine */
1537 sd->h_active /= 2;
1538 /* Need at least 16 pixels width per side */
1539 if (new_width <= 16)
1540 return false;
1541 new_width = sd->recout.width + sd->recout.x - sd->h_active;
1542 sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1543 sd->ratios.horz, sd->recout.width - new_width));
1544 sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1545 sd->ratios.horz_c, sd->recout.width - new_width));
1546 sd->recout.width = new_width;
1547 sd->viewport.x += dc_fixpt_floor(dc_fixpt_mul_int(
1548 sd->ratios.horz, sd->h_active - sd->recout.x));
1549 sd->viewport_c.x += dc_fixpt_floor(dc_fixpt_mul_int(
1550 sd->ratios.horz_c, sd->h_active - sd->recout.x));
1551 sd->recout.x = 0;
1552 }
1553 if (!next_odm_pipe->top_pipe)
1554 next_odm_pipe->stream_res.opp = pool->opps[next_odm_pipe->pipe_idx];
1555 else
1556 next_odm_pipe->stream_res.opp = next_odm_pipe->top_pipe->stream_res.opp;
1557 if (next_odm_pipe->stream->timing.flags.DSC == 1 && !next_odm_pipe->top_pipe) {
1558 dcn20_acquire_dsc(dc, res_ctx, &next_odm_pipe->stream_res.dsc, next_odm_pipe->pipe_idx);
1559 ASSERT(next_odm_pipe->stream_res.dsc);
1560 if (next_odm_pipe->stream_res.dsc == NULL)
1561 return false;
1562 }
1563
1564 return true;
1565 }
1566
dcn20_split_stream_for_mpc(struct resource_context * res_ctx,const struct resource_pool * pool,struct pipe_ctx * primary_pipe,struct pipe_ctx * secondary_pipe)1567 void dcn20_split_stream_for_mpc(
1568 struct resource_context *res_ctx,
1569 const struct resource_pool *pool,
1570 struct pipe_ctx *primary_pipe,
1571 struct pipe_ctx *secondary_pipe)
1572 {
1573 int pipe_idx = secondary_pipe->pipe_idx;
1574 struct pipe_ctx *sec_bot_pipe = secondary_pipe->bottom_pipe;
1575
1576 *secondary_pipe = *primary_pipe;
1577 secondary_pipe->bottom_pipe = sec_bot_pipe;
1578
1579 secondary_pipe->pipe_idx = pipe_idx;
1580 secondary_pipe->plane_res.mi = pool->mis[secondary_pipe->pipe_idx];
1581 secondary_pipe->plane_res.hubp = pool->hubps[secondary_pipe->pipe_idx];
1582 secondary_pipe->plane_res.ipp = pool->ipps[secondary_pipe->pipe_idx];
1583 secondary_pipe->plane_res.xfm = pool->transforms[secondary_pipe->pipe_idx];
1584 secondary_pipe->plane_res.dpp = pool->dpps[secondary_pipe->pipe_idx];
1585 secondary_pipe->plane_res.mpcc_inst = pool->dpps[secondary_pipe->pipe_idx]->inst;
1586 secondary_pipe->stream_res.dsc = NULL;
1587 if (primary_pipe->bottom_pipe && primary_pipe->bottom_pipe != secondary_pipe) {
1588 ASSERT(!secondary_pipe->bottom_pipe);
1589 secondary_pipe->bottom_pipe = primary_pipe->bottom_pipe;
1590 secondary_pipe->bottom_pipe->top_pipe = secondary_pipe;
1591 }
1592 primary_pipe->bottom_pipe = secondary_pipe;
1593 secondary_pipe->top_pipe = primary_pipe;
1594
1595 ASSERT(primary_pipe->plane_state);
1596 }
1597
dcn20_calc_max_scaled_time(unsigned int time_per_pixel,enum mmhubbub_wbif_mode mode,unsigned int urgent_watermark)1598 unsigned int dcn20_calc_max_scaled_time(
1599 unsigned int time_per_pixel,
1600 enum mmhubbub_wbif_mode mode,
1601 unsigned int urgent_watermark)
1602 {
1603 unsigned int time_per_byte = 0;
1604 unsigned int total_y_free_entry = 0x200; /* two memory piece for luma */
1605 unsigned int total_c_free_entry = 0x140; /* two memory piece for chroma */
1606 unsigned int small_free_entry, max_free_entry;
1607 unsigned int buf_lh_capability;
1608 unsigned int max_scaled_time;
1609
1610 if (mode == PACKED_444) /* packed mode */
1611 time_per_byte = time_per_pixel/4;
1612 else if (mode == PLANAR_420_8BPC)
1613 time_per_byte = time_per_pixel;
1614 else if (mode == PLANAR_420_10BPC) /* p010 */
1615 time_per_byte = time_per_pixel * 819/1024;
1616
1617 if (time_per_byte == 0)
1618 time_per_byte = 1;
1619
1620 small_free_entry = (total_y_free_entry > total_c_free_entry) ? total_c_free_entry : total_y_free_entry;
1621 max_free_entry = (mode == PACKED_444) ? total_y_free_entry + total_c_free_entry : small_free_entry;
1622 buf_lh_capability = max_free_entry*time_per_byte*32/16; /* there is 4bit fraction */
1623 max_scaled_time = buf_lh_capability - urgent_watermark;
1624 return max_scaled_time;
1625 }
1626
dcn20_set_mcif_arb_params(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt)1627 void dcn20_set_mcif_arb_params(
1628 struct dc *dc,
1629 struct dc_state *context,
1630 display_e2e_pipe_params_st *pipes,
1631 int pipe_cnt)
1632 {
1633 enum mmhubbub_wbif_mode wbif_mode;
1634 struct mcif_arb_params *wb_arb_params;
1635 int i, j, dwb_pipe;
1636
1637 /* Writeback MCIF_WB arbitration parameters */
1638 dwb_pipe = 0;
1639 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1640
1641 if (!context->res_ctx.pipe_ctx[i].stream)
1642 continue;
1643
1644 for (j = 0; j < MAX_DWB_PIPES; j++) {
1645 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].wb_enabled == false)
1646 continue;
1647
1648 //wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params;
1649 wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe];
1650
1651 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.out_format == dwb_scaler_mode_yuv420) {
1652 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.output_depth == DWB_OUTPUT_PIXEL_DEPTH_8BPC)
1653 wbif_mode = PLANAR_420_8BPC;
1654 else
1655 wbif_mode = PLANAR_420_10BPC;
1656 } else
1657 wbif_mode = PACKED_444;
1658
1659 DC_FP_START();
1660 dcn20_fpu_set_wb_arb_params(wb_arb_params, context, pipes, pipe_cnt, i);
1661 DC_FP_END();
1662
1663 wb_arb_params->slice_lines = 32;
1664 wb_arb_params->arbitration_slice = 2;
1665 wb_arb_params->max_scaled_time = dcn20_calc_max_scaled_time(wb_arb_params->time_per_pixel,
1666 wbif_mode,
1667 wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */
1668
1669 dwb_pipe++;
1670
1671 if (dwb_pipe >= MAX_DWB_PIPES)
1672 return;
1673 }
1674 if (dwb_pipe >= MAX_DWB_PIPES)
1675 return;
1676 }
1677 }
1678
dcn20_validate_dsc(struct dc * dc,struct dc_state * new_ctx)1679 bool dcn20_validate_dsc(struct dc *dc, struct dc_state *new_ctx)
1680 {
1681 int i;
1682
1683 /* Validate DSC config, dsc count validation is already done */
1684 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1685 struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i];
1686 struct dc_stream_state *stream = pipe_ctx->stream;
1687 struct dsc_config dsc_cfg;
1688 struct pipe_ctx *odm_pipe;
1689 int opp_cnt = 1;
1690
1691 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1692 opp_cnt++;
1693
1694 /* Only need to validate top pipe */
1695 if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe || !stream || !stream->timing.flags.DSC)
1696 continue;
1697
1698 dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left
1699 + stream->timing.h_border_right) / opp_cnt;
1700 dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top
1701 + stream->timing.v_border_bottom;
1702 dsc_cfg.pixel_encoding = stream->timing.pixel_encoding;
1703 dsc_cfg.color_depth = stream->timing.display_color_depth;
1704 dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false;
1705 dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg;
1706 dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt;
1707
1708 if (!pipe_ctx->stream_res.dsc->funcs->dsc_validate_stream(pipe_ctx->stream_res.dsc, &dsc_cfg))
1709 return false;
1710 }
1711 return true;
1712 }
1713
dcn20_find_secondary_pipe(struct dc * dc,struct resource_context * res_ctx,const struct resource_pool * pool,const struct pipe_ctx * primary_pipe)1714 struct pipe_ctx *dcn20_find_secondary_pipe(struct dc *dc,
1715 struct resource_context *res_ctx,
1716 const struct resource_pool *pool,
1717 const struct pipe_ctx *primary_pipe)
1718 {
1719 struct pipe_ctx *secondary_pipe = NULL;
1720
1721 if (dc && primary_pipe) {
1722 int j;
1723 int preferred_pipe_idx = 0;
1724
1725 /* first check the prev dc state:
1726 * if this primary pipe has a bottom pipe in prev. state
1727 * and if the bottom pipe is still available (which it should be),
1728 * pick that pipe as secondary
1729 * Same logic applies for ODM pipes
1730 */
1731 if (dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe) {
1732 preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe->pipe_idx;
1733 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1734 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1735 secondary_pipe->pipe_idx = preferred_pipe_idx;
1736 }
1737 }
1738 if (secondary_pipe == NULL &&
1739 dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe) {
1740 preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe->pipe_idx;
1741 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1742 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1743 secondary_pipe->pipe_idx = preferred_pipe_idx;
1744 }
1745 }
1746
1747 /*
1748 * if this primary pipe does not have a bottom pipe in prev. state
1749 * start backward and find a pipe that did not used to be a bottom pipe in
1750 * prev. dc state. This way we make sure we keep the same assignment as
1751 * last state and will not have to reprogram every pipe
1752 */
1753 if (secondary_pipe == NULL) {
1754 for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) {
1755 if (dc->current_state->res_ctx.pipe_ctx[j].top_pipe == NULL
1756 && dc->current_state->res_ctx.pipe_ctx[j].prev_odm_pipe == NULL) {
1757 preferred_pipe_idx = j;
1758
1759 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1760 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1761 secondary_pipe->pipe_idx = preferred_pipe_idx;
1762 break;
1763 }
1764 }
1765 }
1766 }
1767 /*
1768 * We should never hit this assert unless assignments are shuffled around
1769 * if this happens we will prob. hit a vsync tdr
1770 */
1771 ASSERT(secondary_pipe);
1772 /*
1773 * search backwards for the second pipe to keep pipe
1774 * assignment more consistent
1775 */
1776 if (secondary_pipe == NULL) {
1777 for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) {
1778 preferred_pipe_idx = j;
1779
1780 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1781 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1782 secondary_pipe->pipe_idx = preferred_pipe_idx;
1783 break;
1784 }
1785 }
1786 }
1787 }
1788
1789 return secondary_pipe;
1790 }
1791
dcn20_merge_pipes_for_validate(struct dc * dc,struct dc_state * context)1792 void dcn20_merge_pipes_for_validate(
1793 struct dc *dc,
1794 struct dc_state *context)
1795 {
1796 int i;
1797
1798 /* merge previously split odm pipes since mode support needs to make the decision */
1799 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1800 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1801 struct pipe_ctx *odm_pipe = pipe->next_odm_pipe;
1802
1803 if (pipe->prev_odm_pipe)
1804 continue;
1805
1806 pipe->next_odm_pipe = NULL;
1807 while (odm_pipe) {
1808 struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
1809
1810 odm_pipe->plane_state = NULL;
1811 odm_pipe->stream = NULL;
1812 odm_pipe->top_pipe = NULL;
1813 odm_pipe->bottom_pipe = NULL;
1814 odm_pipe->prev_odm_pipe = NULL;
1815 odm_pipe->next_odm_pipe = NULL;
1816 if (odm_pipe->stream_res.dsc)
1817 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &odm_pipe->stream_res.dsc);
1818 /* Clear plane_res and stream_res */
1819 memset(&odm_pipe->plane_res, 0, sizeof(odm_pipe->plane_res));
1820 memset(&odm_pipe->stream_res, 0, sizeof(odm_pipe->stream_res));
1821 odm_pipe = next_odm_pipe;
1822 }
1823 if (pipe->plane_state)
1824 resource_build_scaling_params(pipe);
1825 }
1826
1827 /* merge previously mpc split pipes since mode support needs to make the decision */
1828 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1829 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1830 struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe;
1831
1832 if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state)
1833 continue;
1834
1835 pipe->bottom_pipe = hsplit_pipe->bottom_pipe;
1836 if (hsplit_pipe->bottom_pipe)
1837 hsplit_pipe->bottom_pipe->top_pipe = pipe;
1838 hsplit_pipe->plane_state = NULL;
1839 hsplit_pipe->stream = NULL;
1840 hsplit_pipe->top_pipe = NULL;
1841 hsplit_pipe->bottom_pipe = NULL;
1842
1843 /* Clear plane_res and stream_res */
1844 memset(&hsplit_pipe->plane_res, 0, sizeof(hsplit_pipe->plane_res));
1845 memset(&hsplit_pipe->stream_res, 0, sizeof(hsplit_pipe->stream_res));
1846 if (pipe->plane_state)
1847 resource_build_scaling_params(pipe);
1848 }
1849 }
1850
dcn20_validate_apply_pipe_split_flags(struct dc * dc,struct dc_state * context,int vlevel,int * split,bool * merge)1851 int dcn20_validate_apply_pipe_split_flags(
1852 struct dc *dc,
1853 struct dc_state *context,
1854 int vlevel,
1855 int *split,
1856 bool *merge)
1857 {
1858 int i, pipe_idx, vlevel_split;
1859 int plane_count = 0;
1860 bool force_split = false;
1861 bool avoid_split = dc->debug.pipe_split_policy == MPC_SPLIT_AVOID;
1862 struct vba_vars_st *v = &context->bw_ctx.dml.vba;
1863 int max_mpc_comb = v->maxMpcComb;
1864
1865 if (context->stream_count > 1) {
1866 if (dc->debug.pipe_split_policy == MPC_SPLIT_AVOID_MULT_DISP)
1867 avoid_split = true;
1868 } else if (dc->debug.force_single_disp_pipe_split)
1869 force_split = true;
1870
1871 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1872 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1873
1874 /**
1875 * Workaround for avoiding pipe-split in cases where we'd split
1876 * planes that are too small, resulting in splits that aren't
1877 * valid for the scaler.
1878 */
1879 if (pipe->plane_state &&
1880 (pipe->plane_state->dst_rect.width <= 16 ||
1881 pipe->plane_state->dst_rect.height <= 16 ||
1882 pipe->plane_state->src_rect.width <= 16 ||
1883 pipe->plane_state->src_rect.height <= 16))
1884 avoid_split = true;
1885
1886 /* TODO: fix dc bugs and remove this split threshold thing */
1887 if (pipe->stream && !pipe->prev_odm_pipe &&
1888 (!pipe->top_pipe || pipe->top_pipe->plane_state != pipe->plane_state))
1889 ++plane_count;
1890 }
1891 if (plane_count > dc->res_pool->pipe_count / 2)
1892 avoid_split = true;
1893
1894 /* W/A: Mode timing with borders may not work well with pipe split, avoid for this corner case */
1895 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1896 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1897 struct dc_crtc_timing timing;
1898
1899 if (!pipe->stream)
1900 continue;
1901 else {
1902 timing = pipe->stream->timing;
1903 if (timing.h_border_left + timing.h_border_right
1904 + timing.v_border_top + timing.v_border_bottom > 0) {
1905 avoid_split = true;
1906 break;
1907 }
1908 }
1909 }
1910
1911 /* Avoid split loop looks for lowest voltage level that allows most unsplit pipes possible */
1912 if (avoid_split) {
1913 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1914 if (!context->res_ctx.pipe_ctx[i].stream)
1915 continue;
1916
1917 for (vlevel_split = vlevel; vlevel <= context->bw_ctx.dml.soc.num_states; vlevel++)
1918 if (v->NoOfDPP[vlevel][0][pipe_idx] == 1 &&
1919 v->ModeSupport[vlevel][0])
1920 break;
1921 /* Impossible to not split this pipe */
1922 if (vlevel > context->bw_ctx.dml.soc.num_states)
1923 vlevel = vlevel_split;
1924 else
1925 max_mpc_comb = 0;
1926 pipe_idx++;
1927 }
1928 v->maxMpcComb = max_mpc_comb;
1929 }
1930
1931 /* Split loop sets which pipe should be split based on dml outputs and dc flags */
1932 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1933 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1934 int pipe_plane = v->pipe_plane[pipe_idx];
1935 bool split4mpc = context->stream_count == 1 && plane_count == 1
1936 && dc->config.enable_4to1MPC && dc->res_pool->pipe_count >= 4;
1937
1938 if (!context->res_ctx.pipe_ctx[i].stream)
1939 continue;
1940
1941 if (split4mpc || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 4)
1942 split[i] = 4;
1943 else if (force_split || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 2)
1944 split[i] = 2;
1945
1946 if ((pipe->stream->view_format ==
1947 VIEW_3D_FORMAT_SIDE_BY_SIDE ||
1948 pipe->stream->view_format ==
1949 VIEW_3D_FORMAT_TOP_AND_BOTTOM) &&
1950 (pipe->stream->timing.timing_3d_format ==
1951 TIMING_3D_FORMAT_TOP_AND_BOTTOM ||
1952 pipe->stream->timing.timing_3d_format ==
1953 TIMING_3D_FORMAT_SIDE_BY_SIDE))
1954 split[i] = 2;
1955 if (dc->debug.force_odm_combine & (1 << pipe->stream_res.tg->inst)) {
1956 split[i] = 2;
1957 v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_2to1;
1958 }
1959 if (dc->debug.force_odm_combine_4to1 & (1 << pipe->stream_res.tg->inst)) {
1960 split[i] = 4;
1961 v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_4to1;
1962 }
1963 /*420 format workaround*/
1964 if (pipe->stream->timing.h_addressable > 7680 &&
1965 pipe->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1966 split[i] = 4;
1967 }
1968 v->ODMCombineEnabled[pipe_plane] =
1969 v->ODMCombineEnablePerState[vlevel][pipe_plane];
1970
1971 if (v->ODMCombineEnabled[pipe_plane] == dm_odm_combine_mode_disabled) {
1972 if (get_num_mpc_splits(pipe) == 1) {
1973 /*If need split for mpc but 2 way split already*/
1974 if (split[i] == 4)
1975 split[i] = 2; /* 2 -> 4 MPC */
1976 else if (split[i] == 2)
1977 split[i] = 0; /* 2 -> 2 MPC */
1978 else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state)
1979 merge[i] = true; /* 2 -> 1 MPC */
1980 } else if (get_num_mpc_splits(pipe) == 3) {
1981 /*If need split for mpc but 4 way split already*/
1982 if (split[i] == 2 && ((pipe->top_pipe && !pipe->top_pipe->top_pipe)
1983 || !pipe->bottom_pipe)) {
1984 merge[i] = true; /* 4 -> 2 MPC */
1985 } else if (split[i] == 0 && pipe->top_pipe &&
1986 pipe->top_pipe->plane_state == pipe->plane_state)
1987 merge[i] = true; /* 4 -> 1 MPC */
1988 split[i] = 0;
1989 } else if (get_num_odm_splits(pipe)) {
1990 /* ODM -> MPC transition */
1991 if (pipe->prev_odm_pipe) {
1992 split[i] = 0;
1993 merge[i] = true;
1994 }
1995 }
1996 } else {
1997 if (get_num_odm_splits(pipe) == 1) {
1998 /*If need split for odm but 2 way split already*/
1999 if (split[i] == 4)
2000 split[i] = 2; /* 2 -> 4 ODM */
2001 else if (split[i] == 2)
2002 split[i] = 0; /* 2 -> 2 ODM */
2003 else if (pipe->prev_odm_pipe) {
2004 ASSERT(0); /* NOT expected yet */
2005 merge[i] = true; /* exit ODM */
2006 }
2007 } else if (get_num_odm_splits(pipe) == 3) {
2008 /*If need split for odm but 4 way split already*/
2009 if (split[i] == 2 && ((pipe->prev_odm_pipe && !pipe->prev_odm_pipe->prev_odm_pipe)
2010 || !pipe->next_odm_pipe)) {
2011 merge[i] = true; /* 4 -> 2 ODM */
2012 } else if (split[i] == 0 && pipe->prev_odm_pipe) {
2013 ASSERT(0); /* NOT expected yet */
2014 merge[i] = true; /* exit ODM */
2015 }
2016 split[i] = 0;
2017 } else if (get_num_mpc_splits(pipe)) {
2018 /* MPC -> ODM transition */
2019 ASSERT(0); /* NOT expected yet */
2020 if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
2021 split[i] = 0;
2022 merge[i] = true;
2023 }
2024 }
2025 }
2026
2027 /* Adjust dppclk when split is forced, do not bother with dispclk */
2028 if (split[i] != 0 && v->NoOfDPP[vlevel][max_mpc_comb][pipe_idx] == 1) {
2029 DC_FP_START();
2030 dcn20_fpu_adjust_dppclk(v, vlevel, max_mpc_comb, pipe_idx, false);
2031 DC_FP_END();
2032 }
2033 pipe_idx++;
2034 }
2035
2036 return vlevel;
2037 }
2038
dcn20_fast_validate_bw(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * pipe_cnt_out,int * pipe_split_from,int * vlevel_out,bool fast_validate)2039 bool dcn20_fast_validate_bw(
2040 struct dc *dc,
2041 struct dc_state *context,
2042 display_e2e_pipe_params_st *pipes,
2043 int *pipe_cnt_out,
2044 int *pipe_split_from,
2045 int *vlevel_out,
2046 bool fast_validate)
2047 {
2048 bool out = false;
2049 int split[MAX_PIPES] = { 0 };
2050 int pipe_cnt, i, pipe_idx, vlevel;
2051
2052 ASSERT(pipes);
2053 if (!pipes)
2054 return false;
2055
2056 dcn20_merge_pipes_for_validate(dc, context);
2057
2058 DC_FP_START();
2059 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2060 DC_FP_END();
2061
2062 *pipe_cnt_out = pipe_cnt;
2063
2064 if (!pipe_cnt) {
2065 out = true;
2066 goto validate_out;
2067 }
2068
2069 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
2070
2071 if (vlevel > context->bw_ctx.dml.soc.num_states)
2072 goto validate_fail;
2073
2074 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, NULL);
2075
2076 /*initialize pipe_just_split_from to invalid idx*/
2077 for (i = 0; i < MAX_PIPES; i++)
2078 pipe_split_from[i] = -1;
2079
2080 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
2081 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2082 struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe;
2083
2084 if (!pipe->stream || pipe_split_from[i] >= 0)
2085 continue;
2086
2087 pipe_idx++;
2088
2089 if (!pipe->top_pipe && !pipe->plane_state && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) {
2090 hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe);
2091 ASSERT(hsplit_pipe);
2092 if (!dcn20_split_stream_for_odm(
2093 dc, &context->res_ctx,
2094 pipe, hsplit_pipe))
2095 goto validate_fail;
2096 pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx;
2097 dcn20_build_mapped_resource(dc, context, pipe->stream);
2098 }
2099
2100 if (!pipe->plane_state)
2101 continue;
2102 /* Skip 2nd half of already split pipe */
2103 if (pipe->top_pipe && pipe->plane_state == pipe->top_pipe->plane_state)
2104 continue;
2105
2106 /* We do not support mpo + odm at the moment */
2107 if (hsplit_pipe && hsplit_pipe->plane_state != pipe->plane_state
2108 && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx])
2109 goto validate_fail;
2110
2111 if (split[i] == 2) {
2112 if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) {
2113 /* pipe not split previously needs split */
2114 hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe);
2115 ASSERT(hsplit_pipe);
2116 if (!hsplit_pipe) {
2117 DC_FP_START();
2118 dcn20_fpu_adjust_dppclk(&context->bw_ctx.dml.vba, vlevel, context->bw_ctx.dml.vba.maxMpcComb, pipe_idx, true);
2119 DC_FP_END();
2120 continue;
2121 }
2122 if (context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) {
2123 if (!dcn20_split_stream_for_odm(
2124 dc, &context->res_ctx,
2125 pipe, hsplit_pipe))
2126 goto validate_fail;
2127 dcn20_build_mapped_resource(dc, context, pipe->stream);
2128 } else {
2129 dcn20_split_stream_for_mpc(
2130 &context->res_ctx, dc->res_pool,
2131 pipe, hsplit_pipe);
2132 resource_build_scaling_params(pipe);
2133 resource_build_scaling_params(hsplit_pipe);
2134 }
2135 pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx;
2136 }
2137 } else if (hsplit_pipe && hsplit_pipe->plane_state == pipe->plane_state) {
2138 /* merge should already have been done */
2139 ASSERT(0);
2140 }
2141 }
2142 /* Actual dsc count per stream dsc validation*/
2143 if (!dcn20_validate_dsc(dc, context)) {
2144 context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states] =
2145 DML_FAIL_DSC_VALIDATION_FAILURE;
2146 goto validate_fail;
2147 }
2148
2149 *vlevel_out = vlevel;
2150
2151 out = true;
2152 goto validate_out;
2153
2154 validate_fail:
2155 out = false;
2156
2157 validate_out:
2158 return out;
2159 }
2160
dcn20_validate_bandwidth(struct dc * dc,struct dc_state * context,bool fast_validate)2161 bool dcn20_validate_bandwidth(struct dc *dc, struct dc_state *context,
2162 bool fast_validate)
2163 {
2164 bool voltage_supported;
2165 DC_FP_START();
2166 voltage_supported = dcn20_validate_bandwidth_fp(dc, context, fast_validate);
2167 DC_FP_END();
2168 return voltage_supported;
2169 }
2170
dcn20_acquire_idle_pipe_for_layer(struct dc_state * state,const struct resource_pool * pool,struct dc_stream_state * stream)2171 struct pipe_ctx *dcn20_acquire_idle_pipe_for_layer(
2172 struct dc_state *state,
2173 const struct resource_pool *pool,
2174 struct dc_stream_state *stream)
2175 {
2176 struct resource_context *res_ctx = &state->res_ctx;
2177 struct pipe_ctx *head_pipe = resource_get_head_pipe_for_stream(res_ctx, stream);
2178 struct pipe_ctx *idle_pipe = find_idle_secondary_pipe(res_ctx, pool, head_pipe);
2179
2180 if (!head_pipe)
2181 ASSERT(0);
2182
2183 if (!idle_pipe)
2184 return NULL;
2185
2186 idle_pipe->stream = head_pipe->stream;
2187 idle_pipe->stream_res.tg = head_pipe->stream_res.tg;
2188 idle_pipe->stream_res.opp = head_pipe->stream_res.opp;
2189
2190 idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx];
2191 idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx];
2192 idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx];
2193 idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst;
2194
2195 return idle_pipe;
2196 }
2197
dcn20_get_dcc_compression_cap(const struct dc * dc,const struct dc_dcc_surface_param * input,struct dc_surface_dcc_cap * output)2198 bool dcn20_get_dcc_compression_cap(const struct dc *dc,
2199 const struct dc_dcc_surface_param *input,
2200 struct dc_surface_dcc_cap *output)
2201 {
2202 return dc->res_pool->hubbub->funcs->get_dcc_compression_cap(
2203 dc->res_pool->hubbub,
2204 input,
2205 output);
2206 }
2207
dcn20_destroy_resource_pool(struct resource_pool ** pool)2208 static void dcn20_destroy_resource_pool(struct resource_pool **pool)
2209 {
2210 struct dcn20_resource_pool *dcn20_pool = TO_DCN20_RES_POOL(*pool);
2211
2212 dcn20_resource_destruct(dcn20_pool);
2213 kfree(dcn20_pool);
2214 *pool = NULL;
2215 }
2216
2217
2218 static struct dc_cap_funcs cap_funcs = {
2219 .get_dcc_compression_cap = dcn20_get_dcc_compression_cap
2220 };
2221
2222
dcn20_patch_unknown_plane_state(struct dc_plane_state * plane_state)2223 enum dc_status dcn20_patch_unknown_plane_state(struct dc_plane_state *plane_state)
2224 {
2225 enum surface_pixel_format surf_pix_format = plane_state->format;
2226 unsigned int bpp = resource_pixel_format_to_bpp(surf_pix_format);
2227
2228 plane_state->tiling_info.gfx9.swizzle = DC_SW_64KB_S;
2229 if (bpp == 64)
2230 plane_state->tiling_info.gfx9.swizzle = DC_SW_64KB_D;
2231
2232 return DC_OK;
2233 }
2234
2235 static const struct resource_funcs dcn20_res_pool_funcs = {
2236 .destroy = dcn20_destroy_resource_pool,
2237 .link_enc_create = dcn20_link_encoder_create,
2238 .panel_cntl_create = dcn20_panel_cntl_create,
2239 .validate_bandwidth = dcn20_validate_bandwidth,
2240 .acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer,
2241 .add_stream_to_ctx = dcn20_add_stream_to_ctx,
2242 .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2243 .remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2244 .populate_dml_writeback_from_context = dcn20_populate_dml_writeback_from_context,
2245 .patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2246 .set_mcif_arb_params = dcn20_set_mcif_arb_params,
2247 .populate_dml_pipes = dcn20_populate_dml_pipes_from_context,
2248 .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link
2249 };
2250
dcn20_dwbc_create(struct dc_context * ctx,struct resource_pool * pool)2251 bool dcn20_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
2252 {
2253 int i;
2254 uint32_t pipe_count = pool->res_cap->num_dwb;
2255
2256 for (i = 0; i < pipe_count; i++) {
2257 struct dcn20_dwbc *dwbc20 = kzalloc(sizeof(struct dcn20_dwbc),
2258 GFP_KERNEL);
2259
2260 if (!dwbc20) {
2261 dm_error("DC: failed to create dwbc20!\n");
2262 return false;
2263 }
2264 dcn20_dwbc_construct(dwbc20, ctx,
2265 &dwbc20_regs[i],
2266 &dwbc20_shift,
2267 &dwbc20_mask,
2268 i);
2269 pool->dwbc[i] = &dwbc20->base;
2270 }
2271 return true;
2272 }
2273
dcn20_mmhubbub_create(struct dc_context * ctx,struct resource_pool * pool)2274 bool dcn20_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
2275 {
2276 int i;
2277 uint32_t pipe_count = pool->res_cap->num_dwb;
2278
2279 ASSERT(pipe_count > 0);
2280
2281 for (i = 0; i < pipe_count; i++) {
2282 struct dcn20_mmhubbub *mcif_wb20 = kzalloc(sizeof(struct dcn20_mmhubbub),
2283 GFP_KERNEL);
2284
2285 if (!mcif_wb20) {
2286 dm_error("DC: failed to create mcif_wb20!\n");
2287 return false;
2288 }
2289
2290 dcn20_mmhubbub_construct(mcif_wb20, ctx,
2291 &mcif_wb20_regs[i],
2292 &mcif_wb20_shift,
2293 &mcif_wb20_mask,
2294 i);
2295
2296 pool->mcif_wb[i] = &mcif_wb20->base;
2297 }
2298 return true;
2299 }
2300
dcn20_pp_smu_create(struct dc_context * ctx)2301 static struct pp_smu_funcs *dcn20_pp_smu_create(struct dc_context *ctx)
2302 {
2303 struct pp_smu_funcs *pp_smu = kzalloc(sizeof(*pp_smu), GFP_ATOMIC);
2304
2305 if (!pp_smu)
2306 return pp_smu;
2307
2308 dm_pp_get_funcs(ctx, pp_smu);
2309
2310 if (pp_smu->ctx.ver != PP_SMU_VER_NV)
2311 pp_smu = memset(pp_smu, 0, sizeof(struct pp_smu_funcs));
2312
2313 return pp_smu;
2314 }
2315
dcn20_pp_smu_destroy(struct pp_smu_funcs ** pp_smu)2316 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu)
2317 {
2318 if (pp_smu && *pp_smu) {
2319 kfree(*pp_smu);
2320 *pp_smu = NULL;
2321 }
2322 }
2323
get_asic_rev_soc_bb(uint32_t hw_internal_rev)2324 static struct _vcs_dpi_soc_bounding_box_st *get_asic_rev_soc_bb(
2325 uint32_t hw_internal_rev)
2326 {
2327 if (ASICREV_IS_NAVI14_M(hw_internal_rev))
2328 return &dcn2_0_nv14_soc;
2329
2330 if (ASICREV_IS_NAVI12_P(hw_internal_rev))
2331 return &dcn2_0_nv12_soc;
2332
2333 return &dcn2_0_soc;
2334 }
2335
get_asic_rev_ip_params(uint32_t hw_internal_rev)2336 static struct _vcs_dpi_ip_params_st *get_asic_rev_ip_params(
2337 uint32_t hw_internal_rev)
2338 {
2339 /* NV14 */
2340 if (ASICREV_IS_NAVI14_M(hw_internal_rev))
2341 return &dcn2_0_nv14_ip;
2342
2343 /* NV12 and NV10 */
2344 return &dcn2_0_ip;
2345 }
2346
get_dml_project_version(uint32_t hw_internal_rev)2347 static enum dml_project get_dml_project_version(uint32_t hw_internal_rev)
2348 {
2349 return DML_PROJECT_NAVI10v2;
2350 }
2351
init_soc_bounding_box(struct dc * dc,struct dcn20_resource_pool * pool)2352 static bool init_soc_bounding_box(struct dc *dc,
2353 struct dcn20_resource_pool *pool)
2354 {
2355 struct _vcs_dpi_soc_bounding_box_st *loaded_bb =
2356 get_asic_rev_soc_bb(dc->ctx->asic_id.hw_internal_rev);
2357 struct _vcs_dpi_ip_params_st *loaded_ip =
2358 get_asic_rev_ip_params(dc->ctx->asic_id.hw_internal_rev);
2359
2360 DC_LOGGER_INIT(dc->ctx->logger);
2361
2362 if (pool->base.pp_smu) {
2363 struct pp_smu_nv_clock_table max_clocks = {0};
2364 unsigned int uclk_states[8] = {0};
2365 unsigned int num_states = 0;
2366 enum pp_smu_status status;
2367 bool clock_limits_available = false;
2368 bool uclk_states_available = false;
2369
2370 if (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) {
2371 status = (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states)
2372 (&pool->base.pp_smu->nv_funcs.pp_smu, uclk_states, &num_states);
2373
2374 uclk_states_available = (status == PP_SMU_RESULT_OK);
2375 }
2376
2377 if (pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) {
2378 status = (*pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks)
2379 (&pool->base.pp_smu->nv_funcs.pp_smu, &max_clocks);
2380 /* SMU cannot set DCF clock to anything equal to or higher than SOC clock
2381 */
2382 if (max_clocks.dcfClockInKhz >= max_clocks.socClockInKhz)
2383 max_clocks.dcfClockInKhz = max_clocks.socClockInKhz - 1000;
2384 clock_limits_available = (status == PP_SMU_RESULT_OK);
2385 }
2386
2387 if (clock_limits_available && uclk_states_available && num_states) {
2388 DC_FP_START();
2389 dcn20_update_bounding_box(dc, loaded_bb, &max_clocks, uclk_states, num_states);
2390 DC_FP_END();
2391 } else if (clock_limits_available) {
2392 DC_FP_START();
2393 dcn20_cap_soc_clocks(loaded_bb, max_clocks);
2394 DC_FP_END();
2395 }
2396 }
2397
2398 loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator;
2399 loaded_ip->max_num_dpp = pool->base.pipe_count;
2400 DC_FP_START();
2401 dcn20_patch_bounding_box(dc, loaded_bb);
2402 DC_FP_END();
2403 return true;
2404 }
2405
dcn20_resource_construct(uint8_t num_virtual_links,struct dc * dc,struct dcn20_resource_pool * pool)2406 static bool dcn20_resource_construct(
2407 uint8_t num_virtual_links,
2408 struct dc *dc,
2409 struct dcn20_resource_pool *pool)
2410 {
2411 int i;
2412 struct dc_context *ctx = dc->ctx;
2413 struct irq_service_init_data init_data;
2414 struct ddc_service_init_data ddc_init_data = {0};
2415 struct _vcs_dpi_soc_bounding_box_st *loaded_bb =
2416 get_asic_rev_soc_bb(ctx->asic_id.hw_internal_rev);
2417 struct _vcs_dpi_ip_params_st *loaded_ip =
2418 get_asic_rev_ip_params(ctx->asic_id.hw_internal_rev);
2419 enum dml_project dml_project_version =
2420 get_dml_project_version(ctx->asic_id.hw_internal_rev);
2421
2422 ctx->dc_bios->regs = &bios_regs;
2423 pool->base.funcs = &dcn20_res_pool_funcs;
2424
2425 if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) {
2426 pool->base.res_cap = &res_cap_nv14;
2427 pool->base.pipe_count = 5;
2428 pool->base.mpcc_count = 5;
2429 } else {
2430 pool->base.res_cap = &res_cap_nv10;
2431 pool->base.pipe_count = 6;
2432 pool->base.mpcc_count = 6;
2433 }
2434 /*************************************************
2435 * Resource + asic cap harcoding *
2436 *************************************************/
2437 pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2438
2439 dc->caps.max_downscale_ratio = 200;
2440 dc->caps.i2c_speed_in_khz = 100;
2441 dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/
2442 dc->caps.max_cursor_size = 256;
2443 dc->caps.min_horizontal_blanking_period = 80;
2444 dc->caps.dmdata_alloc_size = 2048;
2445
2446 dc->caps.max_slave_planes = 1;
2447 dc->caps.max_slave_yuv_planes = 1;
2448 dc->caps.max_slave_rgb_planes = 1;
2449 dc->caps.post_blend_color_processing = true;
2450 dc->caps.force_dp_tps4_for_cp2520 = true;
2451 dc->caps.extended_aux_timeout_support = true;
2452
2453 /* Color pipeline capabilities */
2454 dc->caps.color.dpp.dcn_arch = 1;
2455 dc->caps.color.dpp.input_lut_shared = 0;
2456 dc->caps.color.dpp.icsc = 1;
2457 dc->caps.color.dpp.dgam_ram = 1;
2458 dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2459 dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2460 dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 0;
2461 dc->caps.color.dpp.dgam_rom_caps.pq = 0;
2462 dc->caps.color.dpp.dgam_rom_caps.hlg = 0;
2463 dc->caps.color.dpp.post_csc = 0;
2464 dc->caps.color.dpp.gamma_corr = 0;
2465 dc->caps.color.dpp.dgam_rom_for_yuv = 1;
2466
2467 dc->caps.color.dpp.hw_3d_lut = 1;
2468 dc->caps.color.dpp.ogam_ram = 1;
2469 // no OGAM ROM on DCN2, only MPC ROM
2470 dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2471 dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2472 dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2473 dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2474 dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2475 dc->caps.color.dpp.ocsc = 0;
2476
2477 dc->caps.color.mpc.gamut_remap = 0;
2478 dc->caps.color.mpc.num_3dluts = 0;
2479 dc->caps.color.mpc.shared_3d_lut = 0;
2480 dc->caps.color.mpc.ogam_ram = 1;
2481 dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2482 dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2483 dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2484 dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2485 dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2486 dc->caps.color.mpc.ocsc = 1;
2487
2488 dc->caps.dp_hdmi21_pcon_support = true;
2489
2490 if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) {
2491 dc->debug = debug_defaults_drv;
2492 } else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) {
2493 pool->base.pipe_count = 4;
2494 pool->base.mpcc_count = pool->base.pipe_count;
2495 dc->debug = debug_defaults_diags;
2496 } else {
2497 dc->debug = debug_defaults_diags;
2498 }
2499 //dcn2.0x
2500 dc->work_arounds.dedcn20_305_wa = true;
2501
2502 // Init the vm_helper
2503 if (dc->vm_helper)
2504 vm_helper_init(dc->vm_helper, 16);
2505
2506 /*************************************************
2507 * Create resources *
2508 *************************************************/
2509
2510 pool->base.clock_sources[DCN20_CLK_SRC_PLL0] =
2511 dcn20_clock_source_create(ctx, ctx->dc_bios,
2512 CLOCK_SOURCE_COMBO_PHY_PLL0,
2513 &clk_src_regs[0], false);
2514 pool->base.clock_sources[DCN20_CLK_SRC_PLL1] =
2515 dcn20_clock_source_create(ctx, ctx->dc_bios,
2516 CLOCK_SOURCE_COMBO_PHY_PLL1,
2517 &clk_src_regs[1], false);
2518 pool->base.clock_sources[DCN20_CLK_SRC_PLL2] =
2519 dcn20_clock_source_create(ctx, ctx->dc_bios,
2520 CLOCK_SOURCE_COMBO_PHY_PLL2,
2521 &clk_src_regs[2], false);
2522 pool->base.clock_sources[DCN20_CLK_SRC_PLL3] =
2523 dcn20_clock_source_create(ctx, ctx->dc_bios,
2524 CLOCK_SOURCE_COMBO_PHY_PLL3,
2525 &clk_src_regs[3], false);
2526 pool->base.clock_sources[DCN20_CLK_SRC_PLL4] =
2527 dcn20_clock_source_create(ctx, ctx->dc_bios,
2528 CLOCK_SOURCE_COMBO_PHY_PLL4,
2529 &clk_src_regs[4], false);
2530 pool->base.clock_sources[DCN20_CLK_SRC_PLL5] =
2531 dcn20_clock_source_create(ctx, ctx->dc_bios,
2532 CLOCK_SOURCE_COMBO_PHY_PLL5,
2533 &clk_src_regs[5], false);
2534 pool->base.clk_src_count = DCN20_CLK_SRC_TOTAL;
2535 /* todo: not reuse phy_pll registers */
2536 pool->base.dp_clock_source =
2537 dcn20_clock_source_create(ctx, ctx->dc_bios,
2538 CLOCK_SOURCE_ID_DP_DTO,
2539 &clk_src_regs[0], true);
2540
2541 for (i = 0; i < pool->base.clk_src_count; i++) {
2542 if (pool->base.clock_sources[i] == NULL) {
2543 dm_error("DC: failed to create clock sources!\n");
2544 BREAK_TO_DEBUGGER();
2545 goto create_fail;
2546 }
2547 }
2548
2549 pool->base.dccg = dccg2_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2550 if (pool->base.dccg == NULL) {
2551 dm_error("DC: failed to create dccg!\n");
2552 BREAK_TO_DEBUGGER();
2553 goto create_fail;
2554 }
2555
2556 pool->base.dmcu = dcn20_dmcu_create(ctx,
2557 &dmcu_regs,
2558 &dmcu_shift,
2559 &dmcu_mask);
2560 if (pool->base.dmcu == NULL) {
2561 dm_error("DC: failed to create dmcu!\n");
2562 BREAK_TO_DEBUGGER();
2563 goto create_fail;
2564 }
2565
2566 pool->base.abm = dce_abm_create(ctx,
2567 &abm_regs,
2568 &abm_shift,
2569 &abm_mask);
2570 if (pool->base.abm == NULL) {
2571 dm_error("DC: failed to create abm!\n");
2572 BREAK_TO_DEBUGGER();
2573 goto create_fail;
2574 }
2575
2576 pool->base.pp_smu = dcn20_pp_smu_create(ctx);
2577
2578
2579 if (!init_soc_bounding_box(dc, pool)) {
2580 dm_error("DC: failed to initialize soc bounding box!\n");
2581 BREAK_TO_DEBUGGER();
2582 goto create_fail;
2583 }
2584
2585 dml_init_instance(&dc->dml, loaded_bb, loaded_ip, dml_project_version);
2586
2587 if (!dc->debug.disable_pplib_wm_range) {
2588 struct pp_smu_wm_range_sets ranges = {0};
2589 int i = 0;
2590
2591 ranges.num_reader_wm_sets = 0;
2592
2593 if (loaded_bb->num_states == 1) {
2594 ranges.reader_wm_sets[0].wm_inst = i;
2595 ranges.reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2596 ranges.reader_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2597 ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2598 ranges.reader_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2599
2600 ranges.num_reader_wm_sets = 1;
2601 } else if (loaded_bb->num_states > 1) {
2602 for (i = 0; i < 4 && i < loaded_bb->num_states; i++) {
2603 ranges.reader_wm_sets[i].wm_inst = i;
2604 ranges.reader_wm_sets[i].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2605 ranges.reader_wm_sets[i].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2606 DC_FP_START();
2607 dcn20_fpu_set_wm_ranges(i, &ranges, loaded_bb);
2608 DC_FP_END();
2609
2610 ranges.num_reader_wm_sets = i + 1;
2611 }
2612
2613 ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2614 ranges.reader_wm_sets[ranges.num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2615 }
2616
2617 ranges.num_writer_wm_sets = 1;
2618
2619 ranges.writer_wm_sets[0].wm_inst = 0;
2620 ranges.writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2621 ranges.writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2622 ranges.writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2623 ranges.writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2624
2625 /* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
2626 if (pool->base.pp_smu->nv_funcs.set_wm_ranges)
2627 pool->base.pp_smu->nv_funcs.set_wm_ranges(&pool->base.pp_smu->nv_funcs.pp_smu, &ranges);
2628 }
2629
2630 init_data.ctx = dc->ctx;
2631 pool->base.irqs = dal_irq_service_dcn20_create(&init_data);
2632 if (!pool->base.irqs)
2633 goto create_fail;
2634
2635 /* mem input -> ipp -> dpp -> opp -> TG */
2636 for (i = 0; i < pool->base.pipe_count; i++) {
2637 pool->base.hubps[i] = dcn20_hubp_create(ctx, i);
2638 if (pool->base.hubps[i] == NULL) {
2639 BREAK_TO_DEBUGGER();
2640 dm_error(
2641 "DC: failed to create memory input!\n");
2642 goto create_fail;
2643 }
2644
2645 pool->base.ipps[i] = dcn20_ipp_create(ctx, i);
2646 if (pool->base.ipps[i] == NULL) {
2647 BREAK_TO_DEBUGGER();
2648 dm_error(
2649 "DC: failed to create input pixel processor!\n");
2650 goto create_fail;
2651 }
2652
2653 pool->base.dpps[i] = dcn20_dpp_create(ctx, i);
2654 if (pool->base.dpps[i] == NULL) {
2655 BREAK_TO_DEBUGGER();
2656 dm_error(
2657 "DC: failed to create dpps!\n");
2658 goto create_fail;
2659 }
2660 }
2661 for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2662 pool->base.engines[i] = dcn20_aux_engine_create(ctx, i);
2663 if (pool->base.engines[i] == NULL) {
2664 BREAK_TO_DEBUGGER();
2665 dm_error(
2666 "DC:failed to create aux engine!!\n");
2667 goto create_fail;
2668 }
2669 pool->base.hw_i2cs[i] = dcn20_i2c_hw_create(ctx, i);
2670 if (pool->base.hw_i2cs[i] == NULL) {
2671 BREAK_TO_DEBUGGER();
2672 dm_error(
2673 "DC:failed to create hw i2c!!\n");
2674 goto create_fail;
2675 }
2676 pool->base.sw_i2cs[i] = NULL;
2677 }
2678
2679 for (i = 0; i < pool->base.res_cap->num_opp; i++) {
2680 pool->base.opps[i] = dcn20_opp_create(ctx, i);
2681 if (pool->base.opps[i] == NULL) {
2682 BREAK_TO_DEBUGGER();
2683 dm_error(
2684 "DC: failed to create output pixel processor!\n");
2685 goto create_fail;
2686 }
2687 }
2688
2689 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2690 pool->base.timing_generators[i] = dcn20_timing_generator_create(
2691 ctx, i);
2692 if (pool->base.timing_generators[i] == NULL) {
2693 BREAK_TO_DEBUGGER();
2694 dm_error("DC: failed to create tg!\n");
2695 goto create_fail;
2696 }
2697 }
2698
2699 pool->base.timing_generator_count = i;
2700
2701 pool->base.mpc = dcn20_mpc_create(ctx);
2702 if (pool->base.mpc == NULL) {
2703 BREAK_TO_DEBUGGER();
2704 dm_error("DC: failed to create mpc!\n");
2705 goto create_fail;
2706 }
2707
2708 pool->base.hubbub = dcn20_hubbub_create(ctx);
2709 if (pool->base.hubbub == NULL) {
2710 BREAK_TO_DEBUGGER();
2711 dm_error("DC: failed to create hubbub!\n");
2712 goto create_fail;
2713 }
2714
2715 for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2716 pool->base.dscs[i] = dcn20_dsc_create(ctx, i);
2717 if (pool->base.dscs[i] == NULL) {
2718 BREAK_TO_DEBUGGER();
2719 dm_error("DC: failed to create display stream compressor %d!\n", i);
2720 goto create_fail;
2721 }
2722 }
2723
2724 if (!dcn20_dwbc_create(ctx, &pool->base)) {
2725 BREAK_TO_DEBUGGER();
2726 dm_error("DC: failed to create dwbc!\n");
2727 goto create_fail;
2728 }
2729 if (!dcn20_mmhubbub_create(ctx, &pool->base)) {
2730 BREAK_TO_DEBUGGER();
2731 dm_error("DC: failed to create mcif_wb!\n");
2732 goto create_fail;
2733 }
2734
2735 if (!resource_construct(num_virtual_links, dc, &pool->base,
2736 (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ?
2737 &res_create_funcs : &res_create_maximus_funcs)))
2738 goto create_fail;
2739
2740 dcn20_hw_sequencer_construct(dc);
2741
2742 // IF NV12, set PG function pointer to NULL. It's not that
2743 // PG isn't supported for NV12, it's that we don't want to
2744 // program the registers because that will cause more power
2745 // to be consumed. We could have created dcn20_init_hw to get
2746 // the same effect by checking ASIC rev, but there was a
2747 // request at some point to not check ASIC rev on hw sequencer.
2748 if (ASICREV_IS_NAVI12_P(dc->ctx->asic_id.hw_internal_rev)) {
2749 dc->hwseq->funcs.enable_power_gating_plane = NULL;
2750 dc->debug.disable_dpp_power_gate = true;
2751 dc->debug.disable_hubp_power_gate = true;
2752 }
2753
2754
2755 dc->caps.max_planes = pool->base.pipe_count;
2756
2757 for (i = 0; i < dc->caps.max_planes; ++i)
2758 dc->caps.planes[i] = plane_cap;
2759
2760 dc->cap_funcs = cap_funcs;
2761
2762 if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2763 ddc_init_data.ctx = dc->ctx;
2764 ddc_init_data.link = NULL;
2765 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2766 ddc_init_data.id.enum_id = 0;
2767 ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2768 pool->base.oem_device = link_create_ddc_service(&ddc_init_data);
2769 } else {
2770 pool->base.oem_device = NULL;
2771 }
2772
2773 return true;
2774
2775 create_fail:
2776
2777 dcn20_resource_destruct(pool);
2778
2779 return false;
2780 }
2781
dcn20_create_resource_pool(const struct dc_init_data * init_data,struct dc * dc)2782 struct resource_pool *dcn20_create_resource_pool(
2783 const struct dc_init_data *init_data,
2784 struct dc *dc)
2785 {
2786 struct dcn20_resource_pool *pool =
2787 kzalloc(sizeof(struct dcn20_resource_pool), GFP_ATOMIC);
2788
2789 if (!pool)
2790 return NULL;
2791
2792 if (dcn20_resource_construct(init_data->num_virtual_links, dc, pool))
2793 return &pool->base;
2794
2795 BREAK_TO_DEBUGGER();
2796 kfree(pool);
2797 return NULL;
2798 }
2799