1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * RDMA Transport Layer
4 *
5 * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6 * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7 * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8 */
9
10 #undef pr_fmt
11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
12
13 #include <linux/module.h>
14 #include <linux/rculist.h>
15 #include <linux/random.h>
16
17 #include "rtrs-clt.h"
18 #include "rtrs-log.h"
19 #include "rtrs-clt-trace.h"
20
21 #define RTRS_CONNECT_TIMEOUT_MS 30000
22 /*
23 * Wait a bit before trying to reconnect after a failure
24 * in order to give server time to finish clean up which
25 * leads to "false positives" failed reconnect attempts
26 */
27 #define RTRS_RECONNECT_BACKOFF 1000
28 /*
29 * Wait for additional random time between 0 and 8 seconds
30 * before starting to reconnect to avoid clients reconnecting
31 * all at once in case of a major network outage
32 */
33 #define RTRS_RECONNECT_SEED 8
34
35 #define FIRST_CONN 0x01
36 /* limit to 128 * 4k = 512k max IO */
37 #define RTRS_MAX_SEGMENTS 128
38
39 MODULE_DESCRIPTION("RDMA Transport Client");
40 MODULE_LICENSE("GPL");
41
42 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops;
43 static struct rtrs_rdma_dev_pd dev_pd = {
44 .ops = &dev_pd_ops
45 };
46
47 static struct workqueue_struct *rtrs_wq;
48 static struct class *rtrs_clt_dev_class;
49
rtrs_clt_is_connected(const struct rtrs_clt_sess * clt)50 static inline bool rtrs_clt_is_connected(const struct rtrs_clt_sess *clt)
51 {
52 struct rtrs_clt_path *clt_path;
53 bool connected = false;
54
55 rcu_read_lock();
56 list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry)
57 if (READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTED) {
58 connected = true;
59 break;
60 }
61 rcu_read_unlock();
62
63 return connected;
64 }
65
66 static struct rtrs_permit *
__rtrs_get_permit(struct rtrs_clt_sess * clt,enum rtrs_clt_con_type con_type)67 __rtrs_get_permit(struct rtrs_clt_sess *clt, enum rtrs_clt_con_type con_type)
68 {
69 size_t max_depth = clt->queue_depth;
70 struct rtrs_permit *permit;
71 int bit;
72
73 /*
74 * Adapted from null_blk get_tag(). Callers from different cpus may
75 * grab the same bit, since find_first_zero_bit is not atomic.
76 * But then the test_and_set_bit_lock will fail for all the
77 * callers but one, so that they will loop again.
78 * This way an explicit spinlock is not required.
79 */
80 do {
81 bit = find_first_zero_bit(clt->permits_map, max_depth);
82 if (bit >= max_depth)
83 return NULL;
84 } while (test_and_set_bit_lock(bit, clt->permits_map));
85
86 permit = get_permit(clt, bit);
87 WARN_ON(permit->mem_id != bit);
88 permit->cpu_id = raw_smp_processor_id();
89 permit->con_type = con_type;
90
91 return permit;
92 }
93
__rtrs_put_permit(struct rtrs_clt_sess * clt,struct rtrs_permit * permit)94 static inline void __rtrs_put_permit(struct rtrs_clt_sess *clt,
95 struct rtrs_permit *permit)
96 {
97 clear_bit_unlock(permit->mem_id, clt->permits_map);
98 }
99
100 /**
101 * rtrs_clt_get_permit() - allocates permit for future RDMA operation
102 * @clt: Current session
103 * @con_type: Type of connection to use with the permit
104 * @can_wait: Wait type
105 *
106 * Description:
107 * Allocates permit for the following RDMA operation. Permit is used
108 * to preallocate all resources and to propagate memory pressure
109 * up earlier.
110 *
111 * Context:
112 * Can sleep if @wait == RTRS_PERMIT_WAIT
113 */
rtrs_clt_get_permit(struct rtrs_clt_sess * clt,enum rtrs_clt_con_type con_type,enum wait_type can_wait)114 struct rtrs_permit *rtrs_clt_get_permit(struct rtrs_clt_sess *clt,
115 enum rtrs_clt_con_type con_type,
116 enum wait_type can_wait)
117 {
118 struct rtrs_permit *permit;
119 DEFINE_WAIT(wait);
120
121 permit = __rtrs_get_permit(clt, con_type);
122 if (permit || !can_wait)
123 return permit;
124
125 do {
126 prepare_to_wait(&clt->permits_wait, &wait,
127 TASK_UNINTERRUPTIBLE);
128 permit = __rtrs_get_permit(clt, con_type);
129 if (permit)
130 break;
131
132 io_schedule();
133 } while (1);
134
135 finish_wait(&clt->permits_wait, &wait);
136
137 return permit;
138 }
139 EXPORT_SYMBOL(rtrs_clt_get_permit);
140
141 /**
142 * rtrs_clt_put_permit() - puts allocated permit
143 * @clt: Current session
144 * @permit: Permit to be freed
145 *
146 * Context:
147 * Does not matter
148 */
rtrs_clt_put_permit(struct rtrs_clt_sess * clt,struct rtrs_permit * permit)149 void rtrs_clt_put_permit(struct rtrs_clt_sess *clt,
150 struct rtrs_permit *permit)
151 {
152 if (WARN_ON(!test_bit(permit->mem_id, clt->permits_map)))
153 return;
154
155 __rtrs_put_permit(clt, permit);
156
157 /*
158 * rtrs_clt_get_permit() adds itself to the &clt->permits_wait list
159 * before calling schedule(). So if rtrs_clt_get_permit() is sleeping
160 * it must have added itself to &clt->permits_wait before
161 * __rtrs_put_permit() finished.
162 * Hence it is safe to guard wake_up() with a waitqueue_active() test.
163 */
164 if (waitqueue_active(&clt->permits_wait))
165 wake_up(&clt->permits_wait);
166 }
167 EXPORT_SYMBOL(rtrs_clt_put_permit);
168
169 /**
170 * rtrs_permit_to_clt_con() - returns RDMA connection pointer by the permit
171 * @clt_path: client path pointer
172 * @permit: permit for the allocation of the RDMA buffer
173 * Note:
174 * IO connection starts from 1.
175 * 0 connection is for user messages.
176 */
177 static
rtrs_permit_to_clt_con(struct rtrs_clt_path * clt_path,struct rtrs_permit * permit)178 struct rtrs_clt_con *rtrs_permit_to_clt_con(struct rtrs_clt_path *clt_path,
179 struct rtrs_permit *permit)
180 {
181 int id = 0;
182
183 if (permit->con_type == RTRS_IO_CON)
184 id = (permit->cpu_id % (clt_path->s.irq_con_num - 1)) + 1;
185
186 return to_clt_con(clt_path->s.con[id]);
187 }
188
189 /**
190 * rtrs_clt_change_state() - change the session state through session state
191 * machine.
192 *
193 * @clt_path: client path to change the state of.
194 * @new_state: state to change to.
195 *
196 * returns true if sess's state is changed to new state, otherwise return false.
197 *
198 * Locks:
199 * state_wq lock must be hold.
200 */
rtrs_clt_change_state(struct rtrs_clt_path * clt_path,enum rtrs_clt_state new_state)201 static bool rtrs_clt_change_state(struct rtrs_clt_path *clt_path,
202 enum rtrs_clt_state new_state)
203 {
204 enum rtrs_clt_state old_state;
205 bool changed = false;
206
207 lockdep_assert_held(&clt_path->state_wq.lock);
208
209 old_state = clt_path->state;
210 switch (new_state) {
211 case RTRS_CLT_CONNECTING:
212 switch (old_state) {
213 case RTRS_CLT_RECONNECTING:
214 changed = true;
215 fallthrough;
216 default:
217 break;
218 }
219 break;
220 case RTRS_CLT_RECONNECTING:
221 switch (old_state) {
222 case RTRS_CLT_CONNECTED:
223 case RTRS_CLT_CONNECTING_ERR:
224 case RTRS_CLT_CLOSED:
225 changed = true;
226 fallthrough;
227 default:
228 break;
229 }
230 break;
231 case RTRS_CLT_CONNECTED:
232 switch (old_state) {
233 case RTRS_CLT_CONNECTING:
234 changed = true;
235 fallthrough;
236 default:
237 break;
238 }
239 break;
240 case RTRS_CLT_CONNECTING_ERR:
241 switch (old_state) {
242 case RTRS_CLT_CONNECTING:
243 changed = true;
244 fallthrough;
245 default:
246 break;
247 }
248 break;
249 case RTRS_CLT_CLOSING:
250 switch (old_state) {
251 case RTRS_CLT_CONNECTING:
252 case RTRS_CLT_CONNECTING_ERR:
253 case RTRS_CLT_RECONNECTING:
254 case RTRS_CLT_CONNECTED:
255 changed = true;
256 fallthrough;
257 default:
258 break;
259 }
260 break;
261 case RTRS_CLT_CLOSED:
262 switch (old_state) {
263 case RTRS_CLT_CLOSING:
264 changed = true;
265 fallthrough;
266 default:
267 break;
268 }
269 break;
270 case RTRS_CLT_DEAD:
271 switch (old_state) {
272 case RTRS_CLT_CLOSED:
273 changed = true;
274 fallthrough;
275 default:
276 break;
277 }
278 break;
279 default:
280 break;
281 }
282 if (changed) {
283 clt_path->state = new_state;
284 wake_up_locked(&clt_path->state_wq);
285 }
286
287 return changed;
288 }
289
rtrs_clt_change_state_from_to(struct rtrs_clt_path * clt_path,enum rtrs_clt_state old_state,enum rtrs_clt_state new_state)290 static bool rtrs_clt_change_state_from_to(struct rtrs_clt_path *clt_path,
291 enum rtrs_clt_state old_state,
292 enum rtrs_clt_state new_state)
293 {
294 bool changed = false;
295
296 spin_lock_irq(&clt_path->state_wq.lock);
297 if (clt_path->state == old_state)
298 changed = rtrs_clt_change_state(clt_path, new_state);
299 spin_unlock_irq(&clt_path->state_wq.lock);
300
301 return changed;
302 }
303
304 static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_path *clt_path);
rtrs_rdma_error_recovery(struct rtrs_clt_con * con)305 static void rtrs_rdma_error_recovery(struct rtrs_clt_con *con)
306 {
307 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
308
309 trace_rtrs_rdma_error_recovery(clt_path);
310
311 if (rtrs_clt_change_state_from_to(clt_path,
312 RTRS_CLT_CONNECTED,
313 RTRS_CLT_RECONNECTING)) {
314 queue_work(rtrs_wq, &clt_path->err_recovery_work);
315 } else {
316 /*
317 * Error can happen just on establishing new connection,
318 * so notify waiter with error state, waiter is responsible
319 * for cleaning the rest and reconnect if needed.
320 */
321 rtrs_clt_change_state_from_to(clt_path,
322 RTRS_CLT_CONNECTING,
323 RTRS_CLT_CONNECTING_ERR);
324 }
325 }
326
rtrs_clt_fast_reg_done(struct ib_cq * cq,struct ib_wc * wc)327 static void rtrs_clt_fast_reg_done(struct ib_cq *cq, struct ib_wc *wc)
328 {
329 struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
330
331 if (wc->status != IB_WC_SUCCESS) {
332 rtrs_err(con->c.path, "Failed IB_WR_REG_MR: %s\n",
333 ib_wc_status_msg(wc->status));
334 rtrs_rdma_error_recovery(con);
335 }
336 }
337
338 static struct ib_cqe fast_reg_cqe = {
339 .done = rtrs_clt_fast_reg_done
340 };
341
342 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
343 bool notify, bool can_wait);
344
rtrs_clt_inv_rkey_done(struct ib_cq * cq,struct ib_wc * wc)345 static void rtrs_clt_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
346 {
347 struct rtrs_clt_io_req *req =
348 container_of(wc->wr_cqe, typeof(*req), inv_cqe);
349 struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
350
351 if (wc->status != IB_WC_SUCCESS) {
352 rtrs_err(con->c.path, "Failed IB_WR_LOCAL_INV: %s\n",
353 ib_wc_status_msg(wc->status));
354 rtrs_rdma_error_recovery(con);
355 }
356 req->need_inv = false;
357 if (req->need_inv_comp)
358 complete(&req->inv_comp);
359 else
360 /* Complete request from INV callback */
361 complete_rdma_req(req, req->inv_errno, true, false);
362 }
363
rtrs_inv_rkey(struct rtrs_clt_io_req * req)364 static int rtrs_inv_rkey(struct rtrs_clt_io_req *req)
365 {
366 struct rtrs_clt_con *con = req->con;
367 struct ib_send_wr wr = {
368 .opcode = IB_WR_LOCAL_INV,
369 .wr_cqe = &req->inv_cqe,
370 .send_flags = IB_SEND_SIGNALED,
371 .ex.invalidate_rkey = req->mr->rkey,
372 };
373 req->inv_cqe.done = rtrs_clt_inv_rkey_done;
374
375 return ib_post_send(con->c.qp, &wr, NULL);
376 }
377
complete_rdma_req(struct rtrs_clt_io_req * req,int errno,bool notify,bool can_wait)378 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
379 bool notify, bool can_wait)
380 {
381 struct rtrs_clt_con *con = req->con;
382 struct rtrs_clt_path *clt_path;
383 int err;
384
385 if (WARN_ON(!req->in_use))
386 return;
387 if (WARN_ON(!req->con))
388 return;
389 clt_path = to_clt_path(con->c.path);
390
391 if (req->sg_cnt) {
392 if (req->dir == DMA_FROM_DEVICE && req->need_inv) {
393 /*
394 * We are here to invalidate read requests
395 * ourselves. In normal scenario server should
396 * send INV for all read requests, but
397 * we are here, thus two things could happen:
398 *
399 * 1. this is failover, when errno != 0
400 * and can_wait == 1,
401 *
402 * 2. something totally bad happened and
403 * server forgot to send INV, so we
404 * should do that ourselves.
405 */
406
407 if (can_wait) {
408 req->need_inv_comp = true;
409 } else {
410 /* This should be IO path, so always notify */
411 WARN_ON(!notify);
412 /* Save errno for INV callback */
413 req->inv_errno = errno;
414 }
415
416 refcount_inc(&req->ref);
417 err = rtrs_inv_rkey(req);
418 if (err) {
419 rtrs_err(con->c.path, "Send INV WR key=%#x: %d\n",
420 req->mr->rkey, err);
421 } else if (can_wait) {
422 wait_for_completion(&req->inv_comp);
423 } else {
424 /*
425 * Something went wrong, so request will be
426 * completed from INV callback.
427 */
428 WARN_ON_ONCE(1);
429
430 return;
431 }
432 if (!refcount_dec_and_test(&req->ref))
433 return;
434 }
435 ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist,
436 req->sg_cnt, req->dir);
437 }
438 if (!refcount_dec_and_test(&req->ref))
439 return;
440 if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
441 atomic_dec(&clt_path->stats->inflight);
442
443 req->in_use = false;
444 req->con = NULL;
445
446 if (errno) {
447 rtrs_err_rl(con->c.path, "IO request failed: error=%d path=%s [%s:%u] notify=%d\n",
448 errno, kobject_name(&clt_path->kobj), clt_path->hca_name,
449 clt_path->hca_port, notify);
450 }
451
452 if (notify)
453 req->conf(req->priv, errno);
454 }
455
rtrs_post_send_rdma(struct rtrs_clt_con * con,struct rtrs_clt_io_req * req,struct rtrs_rbuf * rbuf,u32 off,u32 imm,struct ib_send_wr * wr)456 static int rtrs_post_send_rdma(struct rtrs_clt_con *con,
457 struct rtrs_clt_io_req *req,
458 struct rtrs_rbuf *rbuf, u32 off,
459 u32 imm, struct ib_send_wr *wr)
460 {
461 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
462 enum ib_send_flags flags;
463 struct ib_sge sge;
464
465 if (!req->sg_size) {
466 rtrs_wrn(con->c.path,
467 "Doing RDMA Write failed, no data supplied\n");
468 return -EINVAL;
469 }
470
471 /* user data and user message in the first list element */
472 sge.addr = req->iu->dma_addr;
473 sge.length = req->sg_size;
474 sge.lkey = clt_path->s.dev->ib_pd->local_dma_lkey;
475
476 /*
477 * From time to time we have to post signalled sends,
478 * or send queue will fill up and only QP reset can help.
479 */
480 flags = atomic_inc_return(&con->c.wr_cnt) % clt_path->s.signal_interval ?
481 0 : IB_SEND_SIGNALED;
482
483 ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev,
484 req->iu->dma_addr,
485 req->sg_size, DMA_TO_DEVICE);
486
487 return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, &sge, 1,
488 rbuf->rkey, rbuf->addr + off,
489 imm, flags, wr, NULL);
490 }
491
process_io_rsp(struct rtrs_clt_path * clt_path,u32 msg_id,s16 errno,bool w_inval)492 static void process_io_rsp(struct rtrs_clt_path *clt_path, u32 msg_id,
493 s16 errno, bool w_inval)
494 {
495 struct rtrs_clt_io_req *req;
496
497 if (WARN_ON(msg_id >= clt_path->queue_depth))
498 return;
499
500 req = &clt_path->reqs[msg_id];
501 /* Drop need_inv if server responded with send with invalidation */
502 req->need_inv &= !w_inval;
503 complete_rdma_req(req, errno, true, false);
504 }
505
rtrs_clt_recv_done(struct rtrs_clt_con * con,struct ib_wc * wc)506 static void rtrs_clt_recv_done(struct rtrs_clt_con *con, struct ib_wc *wc)
507 {
508 struct rtrs_iu *iu;
509 int err;
510 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
511
512 WARN_ON((clt_path->flags & RTRS_MSG_NEW_RKEY_F) == 0);
513 iu = container_of(wc->wr_cqe, struct rtrs_iu,
514 cqe);
515 err = rtrs_iu_post_recv(&con->c, iu);
516 if (err) {
517 rtrs_err(con->c.path, "post iu failed %d\n", err);
518 rtrs_rdma_error_recovery(con);
519 }
520 }
521
rtrs_clt_rkey_rsp_done(struct rtrs_clt_con * con,struct ib_wc * wc)522 static void rtrs_clt_rkey_rsp_done(struct rtrs_clt_con *con, struct ib_wc *wc)
523 {
524 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
525 struct rtrs_msg_rkey_rsp *msg;
526 u32 imm_type, imm_payload;
527 bool w_inval = false;
528 struct rtrs_iu *iu;
529 u32 buf_id;
530 int err;
531
532 WARN_ON((clt_path->flags & RTRS_MSG_NEW_RKEY_F) == 0);
533
534 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
535
536 if (wc->byte_len < sizeof(*msg)) {
537 rtrs_err(con->c.path, "rkey response is malformed: size %d\n",
538 wc->byte_len);
539 goto out;
540 }
541 ib_dma_sync_single_for_cpu(clt_path->s.dev->ib_dev, iu->dma_addr,
542 iu->size, DMA_FROM_DEVICE);
543 msg = iu->buf;
544 if (le16_to_cpu(msg->type) != RTRS_MSG_RKEY_RSP) {
545 rtrs_err(clt_path->clt,
546 "rkey response is malformed: type %d\n",
547 le16_to_cpu(msg->type));
548 goto out;
549 }
550 buf_id = le16_to_cpu(msg->buf_id);
551 if (WARN_ON(buf_id >= clt_path->queue_depth))
552 goto out;
553
554 rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), &imm_type, &imm_payload);
555 if (imm_type == RTRS_IO_RSP_IMM ||
556 imm_type == RTRS_IO_RSP_W_INV_IMM) {
557 u32 msg_id;
558
559 w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
560 rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
561
562 if (WARN_ON(buf_id != msg_id))
563 goto out;
564 clt_path->rbufs[buf_id].rkey = le32_to_cpu(msg->rkey);
565 process_io_rsp(clt_path, msg_id, err, w_inval);
566 }
567 ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev, iu->dma_addr,
568 iu->size, DMA_FROM_DEVICE);
569 return rtrs_clt_recv_done(con, wc);
570 out:
571 rtrs_rdma_error_recovery(con);
572 }
573
574 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
575
576 static struct ib_cqe io_comp_cqe = {
577 .done = rtrs_clt_rdma_done
578 };
579
580 /*
581 * Post x2 empty WRs: first is for this RDMA with IMM,
582 * second is for RECV with INV, which happened earlier.
583 */
rtrs_post_recv_empty_x2(struct rtrs_con * con,struct ib_cqe * cqe)584 static int rtrs_post_recv_empty_x2(struct rtrs_con *con, struct ib_cqe *cqe)
585 {
586 struct ib_recv_wr wr_arr[2], *wr;
587 int i;
588
589 memset(wr_arr, 0, sizeof(wr_arr));
590 for (i = 0; i < ARRAY_SIZE(wr_arr); i++) {
591 wr = &wr_arr[i];
592 wr->wr_cqe = cqe;
593 if (i)
594 /* Chain backwards */
595 wr->next = &wr_arr[i - 1];
596 }
597
598 return ib_post_recv(con->qp, wr, NULL);
599 }
600
rtrs_clt_rdma_done(struct ib_cq * cq,struct ib_wc * wc)601 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
602 {
603 struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
604 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
605 u32 imm_type, imm_payload;
606 bool w_inval = false;
607 int err;
608
609 if (wc->status != IB_WC_SUCCESS) {
610 if (wc->status != IB_WC_WR_FLUSH_ERR) {
611 rtrs_err(clt_path->clt, "RDMA failed: %s\n",
612 ib_wc_status_msg(wc->status));
613 rtrs_rdma_error_recovery(con);
614 }
615 return;
616 }
617 rtrs_clt_update_wc_stats(con);
618
619 switch (wc->opcode) {
620 case IB_WC_RECV_RDMA_WITH_IMM:
621 /*
622 * post_recv() RDMA write completions of IO reqs (read/write)
623 * and hb
624 */
625 if (WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done))
626 return;
627 rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
628 &imm_type, &imm_payload);
629 if (imm_type == RTRS_IO_RSP_IMM ||
630 imm_type == RTRS_IO_RSP_W_INV_IMM) {
631 u32 msg_id;
632
633 w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
634 rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
635
636 process_io_rsp(clt_path, msg_id, err, w_inval);
637 } else if (imm_type == RTRS_HB_MSG_IMM) {
638 WARN_ON(con->c.cid);
639 rtrs_send_hb_ack(&clt_path->s);
640 if (clt_path->flags & RTRS_MSG_NEW_RKEY_F)
641 return rtrs_clt_recv_done(con, wc);
642 } else if (imm_type == RTRS_HB_ACK_IMM) {
643 WARN_ON(con->c.cid);
644 clt_path->s.hb_missed_cnt = 0;
645 clt_path->s.hb_cur_latency =
646 ktime_sub(ktime_get(), clt_path->s.hb_last_sent);
647 if (clt_path->flags & RTRS_MSG_NEW_RKEY_F)
648 return rtrs_clt_recv_done(con, wc);
649 } else {
650 rtrs_wrn(con->c.path, "Unknown IMM type %u\n",
651 imm_type);
652 }
653 if (w_inval)
654 /*
655 * Post x2 empty WRs: first is for this RDMA with IMM,
656 * second is for RECV with INV, which happened earlier.
657 */
658 err = rtrs_post_recv_empty_x2(&con->c, &io_comp_cqe);
659 else
660 err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
661 if (err) {
662 rtrs_err(con->c.path, "rtrs_post_recv_empty(): %d\n",
663 err);
664 rtrs_rdma_error_recovery(con);
665 }
666 break;
667 case IB_WC_RECV:
668 /*
669 * Key invalidations from server side
670 */
671 WARN_ON(!(wc->wc_flags & IB_WC_WITH_INVALIDATE ||
672 wc->wc_flags & IB_WC_WITH_IMM));
673 WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done);
674 if (clt_path->flags & RTRS_MSG_NEW_RKEY_F) {
675 if (wc->wc_flags & IB_WC_WITH_INVALIDATE)
676 return rtrs_clt_recv_done(con, wc);
677
678 return rtrs_clt_rkey_rsp_done(con, wc);
679 }
680 break;
681 case IB_WC_RDMA_WRITE:
682 /*
683 * post_send() RDMA write completions of IO reqs (read/write)
684 * and hb.
685 */
686 break;
687
688 default:
689 rtrs_wrn(clt_path->clt, "Unexpected WC type: %d\n", wc->opcode);
690 return;
691 }
692 }
693
post_recv_io(struct rtrs_clt_con * con,size_t q_size)694 static int post_recv_io(struct rtrs_clt_con *con, size_t q_size)
695 {
696 int err, i;
697 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
698
699 for (i = 0; i < q_size; i++) {
700 if (clt_path->flags & RTRS_MSG_NEW_RKEY_F) {
701 struct rtrs_iu *iu = &con->rsp_ius[i];
702
703 err = rtrs_iu_post_recv(&con->c, iu);
704 } else {
705 err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
706 }
707 if (err)
708 return err;
709 }
710
711 return 0;
712 }
713
post_recv_path(struct rtrs_clt_path * clt_path)714 static int post_recv_path(struct rtrs_clt_path *clt_path)
715 {
716 size_t q_size = 0;
717 int err, cid;
718
719 for (cid = 0; cid < clt_path->s.con_num; cid++) {
720 if (cid == 0)
721 q_size = SERVICE_CON_QUEUE_DEPTH;
722 else
723 q_size = clt_path->queue_depth;
724
725 /*
726 * x2 for RDMA read responses + FR key invalidations,
727 * RDMA writes do not require any FR registrations.
728 */
729 q_size *= 2;
730
731 err = post_recv_io(to_clt_con(clt_path->s.con[cid]), q_size);
732 if (err) {
733 rtrs_err(clt_path->clt, "post_recv_io(), err: %d\n",
734 err);
735 return err;
736 }
737 }
738
739 return 0;
740 }
741
742 struct path_it {
743 int i;
744 struct list_head skip_list;
745 struct rtrs_clt_sess *clt;
746 struct rtrs_clt_path *(*next_path)(struct path_it *it);
747 };
748
749 /*
750 * rtrs_clt_get_next_path_or_null - get clt path from the list or return NULL
751 * @head: the head for the list.
752 * @clt_path: The element to take the next clt_path from.
753 *
754 * Next clt path returned in round-robin fashion, i.e. head will be skipped,
755 * but if list is observed as empty, NULL will be returned.
756 *
757 * This function may safely run concurrently with the _rcu list-mutation
758 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
759 */
760 static inline struct rtrs_clt_path *
rtrs_clt_get_next_path_or_null(struct list_head * head,struct rtrs_clt_path * clt_path)761 rtrs_clt_get_next_path_or_null(struct list_head *head, struct rtrs_clt_path *clt_path)
762 {
763 return list_next_or_null_rcu(head, &clt_path->s.entry, typeof(*clt_path), s.entry) ?:
764 list_next_or_null_rcu(head,
765 READ_ONCE((&clt_path->s.entry)->next),
766 typeof(*clt_path), s.entry);
767 }
768
769 /**
770 * get_next_path_rr() - Returns path in round-robin fashion.
771 * @it: the path pointer
772 *
773 * Related to @MP_POLICY_RR
774 *
775 * Locks:
776 * rcu_read_lock() must be hold.
777 */
get_next_path_rr(struct path_it * it)778 static struct rtrs_clt_path *get_next_path_rr(struct path_it *it)
779 {
780 struct rtrs_clt_path __rcu **ppcpu_path;
781 struct rtrs_clt_path *path;
782 struct rtrs_clt_sess *clt;
783
784 clt = it->clt;
785
786 /*
787 * Here we use two RCU objects: @paths_list and @pcpu_path
788 * pointer. See rtrs_clt_remove_path_from_arr() for details
789 * how that is handled.
790 */
791
792 ppcpu_path = this_cpu_ptr(clt->pcpu_path);
793 path = rcu_dereference(*ppcpu_path);
794 if (!path)
795 path = list_first_or_null_rcu(&clt->paths_list,
796 typeof(*path), s.entry);
797 else
798 path = rtrs_clt_get_next_path_or_null(&clt->paths_list, path);
799
800 rcu_assign_pointer(*ppcpu_path, path);
801
802 return path;
803 }
804
805 /**
806 * get_next_path_min_inflight() - Returns path with minimal inflight count.
807 * @it: the path pointer
808 *
809 * Related to @MP_POLICY_MIN_INFLIGHT
810 *
811 * Locks:
812 * rcu_read_lock() must be hold.
813 */
get_next_path_min_inflight(struct path_it * it)814 static struct rtrs_clt_path *get_next_path_min_inflight(struct path_it *it)
815 {
816 struct rtrs_clt_path *min_path = NULL;
817 struct rtrs_clt_sess *clt = it->clt;
818 struct rtrs_clt_path *clt_path;
819 int min_inflight = INT_MAX;
820 int inflight;
821
822 list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry) {
823 if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
824 continue;
825
826 if (!list_empty(raw_cpu_ptr(clt_path->mp_skip_entry)))
827 continue;
828
829 inflight = atomic_read(&clt_path->stats->inflight);
830
831 if (inflight < min_inflight) {
832 min_inflight = inflight;
833 min_path = clt_path;
834 }
835 }
836
837 /*
838 * add the path to the skip list, so that next time we can get
839 * a different one
840 */
841 if (min_path)
842 list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
843
844 return min_path;
845 }
846
847 /**
848 * get_next_path_min_latency() - Returns path with minimal latency.
849 * @it: the path pointer
850 *
851 * Return: a path with the lowest latency or NULL if all paths are tried
852 *
853 * Locks:
854 * rcu_read_lock() must be hold.
855 *
856 * Related to @MP_POLICY_MIN_LATENCY
857 *
858 * This DOES skip an already-tried path.
859 * There is a skip-list to skip a path if the path has tried but failed.
860 * It will try the minimum latency path and then the second minimum latency
861 * path and so on. Finally it will return NULL if all paths are tried.
862 * Therefore the caller MUST check the returned
863 * path is NULL and trigger the IO error.
864 */
get_next_path_min_latency(struct path_it * it)865 static struct rtrs_clt_path *get_next_path_min_latency(struct path_it *it)
866 {
867 struct rtrs_clt_path *min_path = NULL;
868 struct rtrs_clt_sess *clt = it->clt;
869 struct rtrs_clt_path *clt_path;
870 ktime_t min_latency = KTIME_MAX;
871 ktime_t latency;
872
873 list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry) {
874 if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
875 continue;
876
877 if (!list_empty(raw_cpu_ptr(clt_path->mp_skip_entry)))
878 continue;
879
880 latency = clt_path->s.hb_cur_latency;
881
882 if (latency < min_latency) {
883 min_latency = latency;
884 min_path = clt_path;
885 }
886 }
887
888 /*
889 * add the path to the skip list, so that next time we can get
890 * a different one
891 */
892 if (min_path)
893 list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
894
895 return min_path;
896 }
897
path_it_init(struct path_it * it,struct rtrs_clt_sess * clt)898 static inline void path_it_init(struct path_it *it, struct rtrs_clt_sess *clt)
899 {
900 INIT_LIST_HEAD(&it->skip_list);
901 it->clt = clt;
902 it->i = 0;
903
904 if (clt->mp_policy == MP_POLICY_RR)
905 it->next_path = get_next_path_rr;
906 else if (clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
907 it->next_path = get_next_path_min_inflight;
908 else
909 it->next_path = get_next_path_min_latency;
910 }
911
path_it_deinit(struct path_it * it)912 static inline void path_it_deinit(struct path_it *it)
913 {
914 struct list_head *skip, *tmp;
915 /*
916 * The skip_list is used only for the MIN_INFLIGHT and MIN_LATENCY policies.
917 * We need to remove paths from it, so that next IO can insert
918 * paths (->mp_skip_entry) into a skip_list again.
919 */
920 list_for_each_safe(skip, tmp, &it->skip_list)
921 list_del_init(skip);
922 }
923
924 /**
925 * rtrs_clt_init_req() - Initialize an rtrs_clt_io_req holding information
926 * about an inflight IO.
927 * The user buffer holding user control message (not data) is copied into
928 * the corresponding buffer of rtrs_iu (req->iu->buf), which later on will
929 * also hold the control message of rtrs.
930 * @req: an io request holding information about IO.
931 * @clt_path: client path
932 * @conf: conformation callback function to notify upper layer.
933 * @permit: permit for allocation of RDMA remote buffer
934 * @priv: private pointer
935 * @vec: kernel vector containing control message
936 * @usr_len: length of the user message
937 * @sg: scater list for IO data
938 * @sg_cnt: number of scater list entries
939 * @data_len: length of the IO data
940 * @dir: direction of the IO.
941 */
rtrs_clt_init_req(struct rtrs_clt_io_req * req,struct rtrs_clt_path * clt_path,void (* conf)(void * priv,int errno),struct rtrs_permit * permit,void * priv,const struct kvec * vec,size_t usr_len,struct scatterlist * sg,size_t sg_cnt,size_t data_len,int dir)942 static void rtrs_clt_init_req(struct rtrs_clt_io_req *req,
943 struct rtrs_clt_path *clt_path,
944 void (*conf)(void *priv, int errno),
945 struct rtrs_permit *permit, void *priv,
946 const struct kvec *vec, size_t usr_len,
947 struct scatterlist *sg, size_t sg_cnt,
948 size_t data_len, int dir)
949 {
950 struct iov_iter iter;
951 size_t len;
952
953 req->permit = permit;
954 req->in_use = true;
955 req->usr_len = usr_len;
956 req->data_len = data_len;
957 req->sglist = sg;
958 req->sg_cnt = sg_cnt;
959 req->priv = priv;
960 req->dir = dir;
961 req->con = rtrs_permit_to_clt_con(clt_path, permit);
962 req->conf = conf;
963 req->need_inv = false;
964 req->need_inv_comp = false;
965 req->inv_errno = 0;
966 refcount_set(&req->ref, 1);
967 req->mp_policy = clt_path->clt->mp_policy;
968
969 iov_iter_kvec(&iter, ITER_SOURCE, vec, 1, usr_len);
970 len = _copy_from_iter(req->iu->buf, usr_len, &iter);
971 WARN_ON(len != usr_len);
972
973 reinit_completion(&req->inv_comp);
974 }
975
976 static struct rtrs_clt_io_req *
rtrs_clt_get_req(struct rtrs_clt_path * clt_path,void (* conf)(void * priv,int errno),struct rtrs_permit * permit,void * priv,const struct kvec * vec,size_t usr_len,struct scatterlist * sg,size_t sg_cnt,size_t data_len,int dir)977 rtrs_clt_get_req(struct rtrs_clt_path *clt_path,
978 void (*conf)(void *priv, int errno),
979 struct rtrs_permit *permit, void *priv,
980 const struct kvec *vec, size_t usr_len,
981 struct scatterlist *sg, size_t sg_cnt,
982 size_t data_len, int dir)
983 {
984 struct rtrs_clt_io_req *req;
985
986 req = &clt_path->reqs[permit->mem_id];
987 rtrs_clt_init_req(req, clt_path, conf, permit, priv, vec, usr_len,
988 sg, sg_cnt, data_len, dir);
989 return req;
990 }
991
992 static struct rtrs_clt_io_req *
rtrs_clt_get_copy_req(struct rtrs_clt_path * alive_path,struct rtrs_clt_io_req * fail_req)993 rtrs_clt_get_copy_req(struct rtrs_clt_path *alive_path,
994 struct rtrs_clt_io_req *fail_req)
995 {
996 struct rtrs_clt_io_req *req;
997 struct kvec vec = {
998 .iov_base = fail_req->iu->buf,
999 .iov_len = fail_req->usr_len
1000 };
1001
1002 req = &alive_path->reqs[fail_req->permit->mem_id];
1003 rtrs_clt_init_req(req, alive_path, fail_req->conf, fail_req->permit,
1004 fail_req->priv, &vec, fail_req->usr_len,
1005 fail_req->sglist, fail_req->sg_cnt,
1006 fail_req->data_len, fail_req->dir);
1007 return req;
1008 }
1009
rtrs_post_rdma_write_sg(struct rtrs_clt_con * con,struct rtrs_clt_io_req * req,struct rtrs_rbuf * rbuf,bool fr_en,u32 count,u32 size,u32 imm,struct ib_send_wr * wr,struct ib_send_wr * tail)1010 static int rtrs_post_rdma_write_sg(struct rtrs_clt_con *con,
1011 struct rtrs_clt_io_req *req,
1012 struct rtrs_rbuf *rbuf, bool fr_en,
1013 u32 count, u32 size, u32 imm,
1014 struct ib_send_wr *wr,
1015 struct ib_send_wr *tail)
1016 {
1017 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1018 struct ib_sge *sge = req->sge;
1019 enum ib_send_flags flags;
1020 struct scatterlist *sg;
1021 size_t num_sge;
1022 int i;
1023 struct ib_send_wr *ptail = NULL;
1024
1025 if (fr_en) {
1026 i = 0;
1027 sge[i].addr = req->mr->iova;
1028 sge[i].length = req->mr->length;
1029 sge[i].lkey = req->mr->lkey;
1030 i++;
1031 num_sge = 2;
1032 ptail = tail;
1033 } else {
1034 for_each_sg(req->sglist, sg, count, i) {
1035 sge[i].addr = sg_dma_address(sg);
1036 sge[i].length = sg_dma_len(sg);
1037 sge[i].lkey = clt_path->s.dev->ib_pd->local_dma_lkey;
1038 }
1039 num_sge = 1 + count;
1040 }
1041 sge[i].addr = req->iu->dma_addr;
1042 sge[i].length = size;
1043 sge[i].lkey = clt_path->s.dev->ib_pd->local_dma_lkey;
1044
1045 /*
1046 * From time to time we have to post signalled sends,
1047 * or send queue will fill up and only QP reset can help.
1048 */
1049 flags = atomic_inc_return(&con->c.wr_cnt) % clt_path->s.signal_interval ?
1050 0 : IB_SEND_SIGNALED;
1051
1052 ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev,
1053 req->iu->dma_addr,
1054 size, DMA_TO_DEVICE);
1055
1056 return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, sge, num_sge,
1057 rbuf->rkey, rbuf->addr, imm,
1058 flags, wr, ptail);
1059 }
1060
rtrs_map_sg_fr(struct rtrs_clt_io_req * req,size_t count)1061 static int rtrs_map_sg_fr(struct rtrs_clt_io_req *req, size_t count)
1062 {
1063 int nr;
1064
1065 /* Align the MR to a 4K page size to match the block virt boundary */
1066 nr = ib_map_mr_sg(req->mr, req->sglist, count, NULL, SZ_4K);
1067 if (nr != count)
1068 return nr < 0 ? nr : -EINVAL;
1069 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1070
1071 return nr;
1072 }
1073
rtrs_clt_write_req(struct rtrs_clt_io_req * req)1074 static int rtrs_clt_write_req(struct rtrs_clt_io_req *req)
1075 {
1076 struct rtrs_clt_con *con = req->con;
1077 struct rtrs_path *s = con->c.path;
1078 struct rtrs_clt_path *clt_path = to_clt_path(s);
1079 struct rtrs_msg_rdma_write *msg;
1080
1081 struct rtrs_rbuf *rbuf;
1082 int ret, count = 0;
1083 u32 imm, buf_id;
1084 struct ib_reg_wr rwr;
1085 struct ib_send_wr inv_wr;
1086 struct ib_send_wr *wr = NULL;
1087 bool fr_en = false;
1088
1089 const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1090
1091 if (tsize > clt_path->chunk_size) {
1092 rtrs_wrn(s, "Write request failed, size too big %zu > %d\n",
1093 tsize, clt_path->chunk_size);
1094 return -EMSGSIZE;
1095 }
1096 if (req->sg_cnt) {
1097 count = ib_dma_map_sg(clt_path->s.dev->ib_dev, req->sglist,
1098 req->sg_cnt, req->dir);
1099 if (!count) {
1100 rtrs_wrn(s, "Write request failed, map failed\n");
1101 return -EINVAL;
1102 }
1103 }
1104 /* put rtrs msg after sg and user message */
1105 msg = req->iu->buf + req->usr_len;
1106 msg->type = cpu_to_le16(RTRS_MSG_WRITE);
1107 msg->usr_len = cpu_to_le16(req->usr_len);
1108
1109 /* rtrs message on server side will be after user data and message */
1110 imm = req->permit->mem_off + req->data_len + req->usr_len;
1111 imm = rtrs_to_io_req_imm(imm);
1112 buf_id = req->permit->mem_id;
1113 req->sg_size = tsize;
1114 rbuf = &clt_path->rbufs[buf_id];
1115
1116 if (count) {
1117 ret = rtrs_map_sg_fr(req, count);
1118 if (ret < 0) {
1119 rtrs_err_rl(s,
1120 "Write request failed, failed to map fast reg. data, err: %d\n",
1121 ret);
1122 ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist,
1123 req->sg_cnt, req->dir);
1124 return ret;
1125 }
1126 inv_wr = (struct ib_send_wr) {
1127 .opcode = IB_WR_LOCAL_INV,
1128 .wr_cqe = &req->inv_cqe,
1129 .send_flags = IB_SEND_SIGNALED,
1130 .ex.invalidate_rkey = req->mr->rkey,
1131 };
1132 req->inv_cqe.done = rtrs_clt_inv_rkey_done;
1133 rwr = (struct ib_reg_wr) {
1134 .wr.opcode = IB_WR_REG_MR,
1135 .wr.wr_cqe = &fast_reg_cqe,
1136 .mr = req->mr,
1137 .key = req->mr->rkey,
1138 .access = (IB_ACCESS_LOCAL_WRITE),
1139 };
1140 wr = &rwr.wr;
1141 fr_en = true;
1142 refcount_inc(&req->ref);
1143 }
1144 /*
1145 * Update stats now, after request is successfully sent it is not
1146 * safe anymore to touch it.
1147 */
1148 rtrs_clt_update_all_stats(req, WRITE);
1149
1150 ret = rtrs_post_rdma_write_sg(req->con, req, rbuf, fr_en, count,
1151 req->usr_len + sizeof(*msg),
1152 imm, wr, &inv_wr);
1153 if (ret) {
1154 rtrs_err_rl(s,
1155 "Write request failed: error=%d path=%s [%s:%u]\n",
1156 ret, kobject_name(&clt_path->kobj), clt_path->hca_name,
1157 clt_path->hca_port);
1158 if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
1159 atomic_dec(&clt_path->stats->inflight);
1160 if (req->sg_cnt)
1161 ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist,
1162 req->sg_cnt, req->dir);
1163 }
1164
1165 return ret;
1166 }
1167
rtrs_clt_read_req(struct rtrs_clt_io_req * req)1168 static int rtrs_clt_read_req(struct rtrs_clt_io_req *req)
1169 {
1170 struct rtrs_clt_con *con = req->con;
1171 struct rtrs_path *s = con->c.path;
1172 struct rtrs_clt_path *clt_path = to_clt_path(s);
1173 struct rtrs_msg_rdma_read *msg;
1174 struct rtrs_ib_dev *dev = clt_path->s.dev;
1175
1176 struct ib_reg_wr rwr;
1177 struct ib_send_wr *wr = NULL;
1178
1179 int ret, count = 0;
1180 u32 imm, buf_id;
1181
1182 const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1183
1184 if (tsize > clt_path->chunk_size) {
1185 rtrs_wrn(s,
1186 "Read request failed, message size is %zu, bigger than CHUNK_SIZE %d\n",
1187 tsize, clt_path->chunk_size);
1188 return -EMSGSIZE;
1189 }
1190
1191 if (req->sg_cnt) {
1192 count = ib_dma_map_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1193 req->dir);
1194 if (!count) {
1195 rtrs_wrn(s,
1196 "Read request failed, dma map failed\n");
1197 return -EINVAL;
1198 }
1199 }
1200 /* put our message into req->buf after user message*/
1201 msg = req->iu->buf + req->usr_len;
1202 msg->type = cpu_to_le16(RTRS_MSG_READ);
1203 msg->usr_len = cpu_to_le16(req->usr_len);
1204
1205 if (count) {
1206 ret = rtrs_map_sg_fr(req, count);
1207 if (ret < 0) {
1208 rtrs_err_rl(s,
1209 "Read request failed, failed to map fast reg. data, err: %d\n",
1210 ret);
1211 ib_dma_unmap_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1212 req->dir);
1213 return ret;
1214 }
1215 rwr = (struct ib_reg_wr) {
1216 .wr.opcode = IB_WR_REG_MR,
1217 .wr.wr_cqe = &fast_reg_cqe,
1218 .mr = req->mr,
1219 .key = req->mr->rkey,
1220 .access = (IB_ACCESS_LOCAL_WRITE |
1221 IB_ACCESS_REMOTE_WRITE),
1222 };
1223 wr = &rwr.wr;
1224
1225 msg->sg_cnt = cpu_to_le16(1);
1226 msg->flags = cpu_to_le16(RTRS_MSG_NEED_INVAL_F);
1227
1228 msg->desc[0].addr = cpu_to_le64(req->mr->iova);
1229 msg->desc[0].key = cpu_to_le32(req->mr->rkey);
1230 msg->desc[0].len = cpu_to_le32(req->mr->length);
1231
1232 /* Further invalidation is required */
1233 req->need_inv = !!RTRS_MSG_NEED_INVAL_F;
1234
1235 } else {
1236 msg->sg_cnt = 0;
1237 msg->flags = 0;
1238 }
1239 /*
1240 * rtrs message will be after the space reserved for disk data and
1241 * user message
1242 */
1243 imm = req->permit->mem_off + req->data_len + req->usr_len;
1244 imm = rtrs_to_io_req_imm(imm);
1245 buf_id = req->permit->mem_id;
1246
1247 req->sg_size = sizeof(*msg);
1248 req->sg_size += le16_to_cpu(msg->sg_cnt) * sizeof(struct rtrs_sg_desc);
1249 req->sg_size += req->usr_len;
1250
1251 /*
1252 * Update stats now, after request is successfully sent it is not
1253 * safe anymore to touch it.
1254 */
1255 rtrs_clt_update_all_stats(req, READ);
1256
1257 ret = rtrs_post_send_rdma(req->con, req, &clt_path->rbufs[buf_id],
1258 req->data_len, imm, wr);
1259 if (ret) {
1260 rtrs_err_rl(s,
1261 "Read request failed: error=%d path=%s [%s:%u]\n",
1262 ret, kobject_name(&clt_path->kobj), clt_path->hca_name,
1263 clt_path->hca_port);
1264 if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
1265 atomic_dec(&clt_path->stats->inflight);
1266 req->need_inv = false;
1267 if (req->sg_cnt)
1268 ib_dma_unmap_sg(dev->ib_dev, req->sglist,
1269 req->sg_cnt, req->dir);
1270 }
1271
1272 return ret;
1273 }
1274
1275 /**
1276 * rtrs_clt_failover_req() - Try to find an active path for a failed request
1277 * @clt: clt context
1278 * @fail_req: a failed io request.
1279 */
rtrs_clt_failover_req(struct rtrs_clt_sess * clt,struct rtrs_clt_io_req * fail_req)1280 static int rtrs_clt_failover_req(struct rtrs_clt_sess *clt,
1281 struct rtrs_clt_io_req *fail_req)
1282 {
1283 struct rtrs_clt_path *alive_path;
1284 struct rtrs_clt_io_req *req;
1285 int err = -ECONNABORTED;
1286 struct path_it it;
1287
1288 rcu_read_lock();
1289 for (path_it_init(&it, clt);
1290 (alive_path = it.next_path(&it)) && it.i < it.clt->paths_num;
1291 it.i++) {
1292 if (READ_ONCE(alive_path->state) != RTRS_CLT_CONNECTED)
1293 continue;
1294 req = rtrs_clt_get_copy_req(alive_path, fail_req);
1295 if (req->dir == DMA_TO_DEVICE)
1296 err = rtrs_clt_write_req(req);
1297 else
1298 err = rtrs_clt_read_req(req);
1299 if (err) {
1300 req->in_use = false;
1301 continue;
1302 }
1303 /* Success path */
1304 rtrs_clt_inc_failover_cnt(alive_path->stats);
1305 break;
1306 }
1307 path_it_deinit(&it);
1308 rcu_read_unlock();
1309
1310 return err;
1311 }
1312
fail_all_outstanding_reqs(struct rtrs_clt_path * clt_path)1313 static void fail_all_outstanding_reqs(struct rtrs_clt_path *clt_path)
1314 {
1315 struct rtrs_clt_sess *clt = clt_path->clt;
1316 struct rtrs_clt_io_req *req;
1317 int i, err;
1318
1319 if (!clt_path->reqs)
1320 return;
1321 for (i = 0; i < clt_path->queue_depth; ++i) {
1322 req = &clt_path->reqs[i];
1323 if (!req->in_use)
1324 continue;
1325
1326 /*
1327 * Safely (without notification) complete failed request.
1328 * After completion this request is still useble and can
1329 * be failovered to another path.
1330 */
1331 complete_rdma_req(req, -ECONNABORTED, false, true);
1332
1333 err = rtrs_clt_failover_req(clt, req);
1334 if (err)
1335 /* Failover failed, notify anyway */
1336 req->conf(req->priv, err);
1337 }
1338 }
1339
free_path_reqs(struct rtrs_clt_path * clt_path)1340 static void free_path_reqs(struct rtrs_clt_path *clt_path)
1341 {
1342 struct rtrs_clt_io_req *req;
1343 int i;
1344
1345 if (!clt_path->reqs)
1346 return;
1347 for (i = 0; i < clt_path->queue_depth; ++i) {
1348 req = &clt_path->reqs[i];
1349 if (req->mr)
1350 ib_dereg_mr(req->mr);
1351 kfree(req->sge);
1352 rtrs_iu_free(req->iu, clt_path->s.dev->ib_dev, 1);
1353 }
1354 kfree(clt_path->reqs);
1355 clt_path->reqs = NULL;
1356 }
1357
alloc_path_reqs(struct rtrs_clt_path * clt_path)1358 static int alloc_path_reqs(struct rtrs_clt_path *clt_path)
1359 {
1360 struct rtrs_clt_io_req *req;
1361 int i, err = -ENOMEM;
1362
1363 clt_path->reqs = kcalloc(clt_path->queue_depth,
1364 sizeof(*clt_path->reqs),
1365 GFP_KERNEL);
1366 if (!clt_path->reqs)
1367 return -ENOMEM;
1368
1369 for (i = 0; i < clt_path->queue_depth; ++i) {
1370 req = &clt_path->reqs[i];
1371 req->iu = rtrs_iu_alloc(1, clt_path->max_hdr_size, GFP_KERNEL,
1372 clt_path->s.dev->ib_dev,
1373 DMA_TO_DEVICE,
1374 rtrs_clt_rdma_done);
1375 if (!req->iu)
1376 goto out;
1377
1378 req->sge = kcalloc(2, sizeof(*req->sge), GFP_KERNEL);
1379 if (!req->sge)
1380 goto out;
1381
1382 req->mr = ib_alloc_mr(clt_path->s.dev->ib_pd,
1383 IB_MR_TYPE_MEM_REG,
1384 clt_path->max_pages_per_mr);
1385 if (IS_ERR(req->mr)) {
1386 err = PTR_ERR(req->mr);
1387 req->mr = NULL;
1388 pr_err("Failed to alloc clt_path->max_pages_per_mr %d\n",
1389 clt_path->max_pages_per_mr);
1390 goto out;
1391 }
1392
1393 init_completion(&req->inv_comp);
1394 }
1395
1396 return 0;
1397
1398 out:
1399 free_path_reqs(clt_path);
1400
1401 return err;
1402 }
1403
alloc_permits(struct rtrs_clt_sess * clt)1404 static int alloc_permits(struct rtrs_clt_sess *clt)
1405 {
1406 unsigned int chunk_bits;
1407 int err, i;
1408
1409 clt->permits_map = bitmap_zalloc(clt->queue_depth, GFP_KERNEL);
1410 if (!clt->permits_map) {
1411 err = -ENOMEM;
1412 goto out_err;
1413 }
1414 clt->permits = kcalloc(clt->queue_depth, permit_size(clt), GFP_KERNEL);
1415 if (!clt->permits) {
1416 err = -ENOMEM;
1417 goto err_map;
1418 }
1419 chunk_bits = ilog2(clt->queue_depth - 1) + 1;
1420 for (i = 0; i < clt->queue_depth; i++) {
1421 struct rtrs_permit *permit;
1422
1423 permit = get_permit(clt, i);
1424 permit->mem_id = i;
1425 permit->mem_off = i << (MAX_IMM_PAYL_BITS - chunk_bits);
1426 }
1427
1428 return 0;
1429
1430 err_map:
1431 bitmap_free(clt->permits_map);
1432 clt->permits_map = NULL;
1433 out_err:
1434 return err;
1435 }
1436
free_permits(struct rtrs_clt_sess * clt)1437 static void free_permits(struct rtrs_clt_sess *clt)
1438 {
1439 if (clt->permits_map)
1440 wait_event(clt->permits_wait,
1441 bitmap_empty(clt->permits_map, clt->queue_depth));
1442
1443 bitmap_free(clt->permits_map);
1444 clt->permits_map = NULL;
1445 kfree(clt->permits);
1446 clt->permits = NULL;
1447 }
1448
query_fast_reg_mode(struct rtrs_clt_path * clt_path)1449 static void query_fast_reg_mode(struct rtrs_clt_path *clt_path)
1450 {
1451 struct ib_device *ib_dev;
1452 u64 max_pages_per_mr;
1453 int mr_page_shift;
1454
1455 ib_dev = clt_path->s.dev->ib_dev;
1456
1457 /*
1458 * Use the smallest page size supported by the HCA, down to a
1459 * minimum of 4096 bytes. We're unlikely to build large sglists
1460 * out of smaller entries.
1461 */
1462 mr_page_shift = max(12, ffs(ib_dev->attrs.page_size_cap) - 1);
1463 max_pages_per_mr = ib_dev->attrs.max_mr_size;
1464 do_div(max_pages_per_mr, (1ull << mr_page_shift));
1465 clt_path->max_pages_per_mr =
1466 min3(clt_path->max_pages_per_mr, (u32)max_pages_per_mr,
1467 ib_dev->attrs.max_fast_reg_page_list_len);
1468 clt_path->clt->max_segments =
1469 min(clt_path->max_pages_per_mr, clt_path->clt->max_segments);
1470 }
1471
rtrs_clt_change_state_get_old(struct rtrs_clt_path * clt_path,enum rtrs_clt_state new_state,enum rtrs_clt_state * old_state)1472 static bool rtrs_clt_change_state_get_old(struct rtrs_clt_path *clt_path,
1473 enum rtrs_clt_state new_state,
1474 enum rtrs_clt_state *old_state)
1475 {
1476 bool changed;
1477
1478 spin_lock_irq(&clt_path->state_wq.lock);
1479 if (old_state)
1480 *old_state = clt_path->state;
1481 changed = rtrs_clt_change_state(clt_path, new_state);
1482 spin_unlock_irq(&clt_path->state_wq.lock);
1483
1484 return changed;
1485 }
1486
rtrs_clt_hb_err_handler(struct rtrs_con * c)1487 static void rtrs_clt_hb_err_handler(struct rtrs_con *c)
1488 {
1489 struct rtrs_clt_con *con = container_of(c, typeof(*con), c);
1490
1491 rtrs_rdma_error_recovery(con);
1492 }
1493
rtrs_clt_init_hb(struct rtrs_clt_path * clt_path)1494 static void rtrs_clt_init_hb(struct rtrs_clt_path *clt_path)
1495 {
1496 rtrs_init_hb(&clt_path->s, &io_comp_cqe,
1497 RTRS_HB_INTERVAL_MS,
1498 RTRS_HB_MISSED_MAX,
1499 rtrs_clt_hb_err_handler,
1500 rtrs_wq);
1501 }
1502
1503 static void rtrs_clt_reconnect_work(struct work_struct *work);
1504 static void rtrs_clt_close_work(struct work_struct *work);
1505
rtrs_clt_err_recovery_work(struct work_struct * work)1506 static void rtrs_clt_err_recovery_work(struct work_struct *work)
1507 {
1508 struct rtrs_clt_path *clt_path;
1509 struct rtrs_clt_sess *clt;
1510 int delay_ms;
1511
1512 clt_path = container_of(work, struct rtrs_clt_path, err_recovery_work);
1513 clt = clt_path->clt;
1514 delay_ms = clt->reconnect_delay_sec * 1000;
1515 rtrs_clt_stop_and_destroy_conns(clt_path);
1516 queue_delayed_work(rtrs_wq, &clt_path->reconnect_dwork,
1517 msecs_to_jiffies(delay_ms +
1518 get_random_u32_below(RTRS_RECONNECT_SEED)));
1519 }
1520
alloc_path(struct rtrs_clt_sess * clt,const struct rtrs_addr * path,size_t con_num,u32 nr_poll_queues)1521 static struct rtrs_clt_path *alloc_path(struct rtrs_clt_sess *clt,
1522 const struct rtrs_addr *path,
1523 size_t con_num, u32 nr_poll_queues)
1524 {
1525 struct rtrs_clt_path *clt_path;
1526 int err = -ENOMEM;
1527 int cpu;
1528 size_t total_con;
1529
1530 clt_path = kzalloc(sizeof(*clt_path), GFP_KERNEL);
1531 if (!clt_path)
1532 goto err;
1533
1534 /*
1535 * irqmode and poll
1536 * +1: Extra connection for user messages
1537 */
1538 total_con = con_num + nr_poll_queues + 1;
1539 clt_path->s.con = kcalloc(total_con, sizeof(*clt_path->s.con),
1540 GFP_KERNEL);
1541 if (!clt_path->s.con)
1542 goto err_free_path;
1543
1544 clt_path->s.con_num = total_con;
1545 clt_path->s.irq_con_num = con_num + 1;
1546
1547 clt_path->stats = kzalloc(sizeof(*clt_path->stats), GFP_KERNEL);
1548 if (!clt_path->stats)
1549 goto err_free_con;
1550
1551 mutex_init(&clt_path->init_mutex);
1552 uuid_gen(&clt_path->s.uuid);
1553 memcpy(&clt_path->s.dst_addr, path->dst,
1554 rdma_addr_size((struct sockaddr *)path->dst));
1555
1556 /*
1557 * rdma_resolve_addr() passes src_addr to cma_bind_addr, which
1558 * checks the sa_family to be non-zero. If user passed src_addr=NULL
1559 * the sess->src_addr will contain only zeros, which is then fine.
1560 */
1561 if (path->src)
1562 memcpy(&clt_path->s.src_addr, path->src,
1563 rdma_addr_size((struct sockaddr *)path->src));
1564 strscpy(clt_path->s.sessname, clt->sessname,
1565 sizeof(clt_path->s.sessname));
1566 clt_path->clt = clt;
1567 clt_path->max_pages_per_mr = RTRS_MAX_SEGMENTS;
1568 init_waitqueue_head(&clt_path->state_wq);
1569 clt_path->state = RTRS_CLT_CONNECTING;
1570 atomic_set(&clt_path->connected_cnt, 0);
1571 INIT_WORK(&clt_path->close_work, rtrs_clt_close_work);
1572 INIT_WORK(&clt_path->err_recovery_work, rtrs_clt_err_recovery_work);
1573 INIT_DELAYED_WORK(&clt_path->reconnect_dwork, rtrs_clt_reconnect_work);
1574 rtrs_clt_init_hb(clt_path);
1575
1576 clt_path->mp_skip_entry = alloc_percpu(typeof(*clt_path->mp_skip_entry));
1577 if (!clt_path->mp_skip_entry)
1578 goto err_free_stats;
1579
1580 for_each_possible_cpu(cpu)
1581 INIT_LIST_HEAD(per_cpu_ptr(clt_path->mp_skip_entry, cpu));
1582
1583 err = rtrs_clt_init_stats(clt_path->stats);
1584 if (err)
1585 goto err_free_percpu;
1586
1587 return clt_path;
1588
1589 err_free_percpu:
1590 free_percpu(clt_path->mp_skip_entry);
1591 err_free_stats:
1592 kfree(clt_path->stats);
1593 err_free_con:
1594 kfree(clt_path->s.con);
1595 err_free_path:
1596 kfree(clt_path);
1597 err:
1598 return ERR_PTR(err);
1599 }
1600
free_path(struct rtrs_clt_path * clt_path)1601 void free_path(struct rtrs_clt_path *clt_path)
1602 {
1603 free_percpu(clt_path->mp_skip_entry);
1604 mutex_destroy(&clt_path->init_mutex);
1605 kfree(clt_path->s.con);
1606 kfree(clt_path->rbufs);
1607 kfree(clt_path);
1608 }
1609
create_con(struct rtrs_clt_path * clt_path,unsigned int cid)1610 static int create_con(struct rtrs_clt_path *clt_path, unsigned int cid)
1611 {
1612 struct rtrs_clt_con *con;
1613
1614 con = kzalloc(sizeof(*con), GFP_KERNEL);
1615 if (!con)
1616 return -ENOMEM;
1617
1618 /* Map first two connections to the first CPU */
1619 con->cpu = (cid ? cid - 1 : 0) % nr_cpu_ids;
1620 con->c.cid = cid;
1621 con->c.path = &clt_path->s;
1622 /* Align with srv, init as 1 */
1623 atomic_set(&con->c.wr_cnt, 1);
1624 mutex_init(&con->con_mutex);
1625
1626 clt_path->s.con[cid] = &con->c;
1627
1628 return 0;
1629 }
1630
destroy_con(struct rtrs_clt_con * con)1631 static void destroy_con(struct rtrs_clt_con *con)
1632 {
1633 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1634
1635 clt_path->s.con[con->c.cid] = NULL;
1636 mutex_destroy(&con->con_mutex);
1637 kfree(con);
1638 }
1639
create_con_cq_qp(struct rtrs_clt_con * con)1640 static int create_con_cq_qp(struct rtrs_clt_con *con)
1641 {
1642 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1643 u32 max_send_wr, max_recv_wr, cq_num, max_send_sge, wr_limit;
1644 int err, cq_vector;
1645 struct rtrs_msg_rkey_rsp *rsp;
1646
1647 lockdep_assert_held(&con->con_mutex);
1648 if (con->c.cid == 0) {
1649 max_send_sge = 1;
1650 /* We must be the first here */
1651 if (WARN_ON(clt_path->s.dev))
1652 return -EINVAL;
1653
1654 /*
1655 * The whole session uses device from user connection.
1656 * Be careful not to close user connection before ib dev
1657 * is gracefully put.
1658 */
1659 clt_path->s.dev = rtrs_ib_dev_find_or_add(con->c.cm_id->device,
1660 &dev_pd);
1661 if (!clt_path->s.dev) {
1662 rtrs_wrn(clt_path->clt,
1663 "rtrs_ib_dev_find_get_or_add(): no memory\n");
1664 return -ENOMEM;
1665 }
1666 clt_path->s.dev_ref = 1;
1667 query_fast_reg_mode(clt_path);
1668 wr_limit = clt_path->s.dev->ib_dev->attrs.max_qp_wr;
1669 /*
1670 * Two (request + registration) completion for send
1671 * Two for recv if always_invalidate is set on server
1672 * or one for recv.
1673 * + 2 for drain and heartbeat
1674 * in case qp gets into error state.
1675 */
1676 max_send_wr =
1677 min_t(int, wr_limit, SERVICE_CON_QUEUE_DEPTH * 2 + 2);
1678 max_recv_wr = max_send_wr;
1679 } else {
1680 /*
1681 * Here we assume that session members are correctly set.
1682 * This is always true if user connection (cid == 0) is
1683 * established first.
1684 */
1685 if (WARN_ON(!clt_path->s.dev))
1686 return -EINVAL;
1687 if (WARN_ON(!clt_path->queue_depth))
1688 return -EINVAL;
1689
1690 wr_limit = clt_path->s.dev->ib_dev->attrs.max_qp_wr;
1691 /* Shared between connections */
1692 clt_path->s.dev_ref++;
1693 max_send_wr = min_t(int, wr_limit,
1694 /* QD * (REQ + RSP + FR REGS or INVS) + drain */
1695 clt_path->queue_depth * 3 + 1);
1696 max_recv_wr = min_t(int, wr_limit,
1697 clt_path->queue_depth * 3 + 1);
1698 max_send_sge = 2;
1699 }
1700 atomic_set(&con->c.sq_wr_avail, max_send_wr);
1701 cq_num = max_send_wr + max_recv_wr;
1702 /* alloc iu to recv new rkey reply when server reports flags set */
1703 if (clt_path->flags & RTRS_MSG_NEW_RKEY_F || con->c.cid == 0) {
1704 con->rsp_ius = rtrs_iu_alloc(cq_num, sizeof(*rsp),
1705 GFP_KERNEL,
1706 clt_path->s.dev->ib_dev,
1707 DMA_FROM_DEVICE,
1708 rtrs_clt_rdma_done);
1709 if (!con->rsp_ius)
1710 return -ENOMEM;
1711 con->queue_num = cq_num;
1712 }
1713 cq_num = max_send_wr + max_recv_wr;
1714 cq_vector = con->cpu % clt_path->s.dev->ib_dev->num_comp_vectors;
1715 if (con->c.cid >= clt_path->s.irq_con_num)
1716 err = rtrs_cq_qp_create(&clt_path->s, &con->c, max_send_sge,
1717 cq_vector, cq_num, max_send_wr,
1718 max_recv_wr, IB_POLL_DIRECT);
1719 else
1720 err = rtrs_cq_qp_create(&clt_path->s, &con->c, max_send_sge,
1721 cq_vector, cq_num, max_send_wr,
1722 max_recv_wr, IB_POLL_SOFTIRQ);
1723 /*
1724 * In case of error we do not bother to clean previous allocations,
1725 * since destroy_con_cq_qp() must be called.
1726 */
1727 return err;
1728 }
1729
destroy_con_cq_qp(struct rtrs_clt_con * con)1730 static void destroy_con_cq_qp(struct rtrs_clt_con *con)
1731 {
1732 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1733
1734 /*
1735 * Be careful here: destroy_con_cq_qp() can be called even
1736 * create_con_cq_qp() failed, see comments there.
1737 */
1738 lockdep_assert_held(&con->con_mutex);
1739 rtrs_cq_qp_destroy(&con->c);
1740 if (con->rsp_ius) {
1741 rtrs_iu_free(con->rsp_ius, clt_path->s.dev->ib_dev,
1742 con->queue_num);
1743 con->rsp_ius = NULL;
1744 con->queue_num = 0;
1745 }
1746 if (clt_path->s.dev_ref && !--clt_path->s.dev_ref) {
1747 rtrs_ib_dev_put(clt_path->s.dev);
1748 clt_path->s.dev = NULL;
1749 }
1750 }
1751
stop_cm(struct rtrs_clt_con * con)1752 static void stop_cm(struct rtrs_clt_con *con)
1753 {
1754 rdma_disconnect(con->c.cm_id);
1755 if (con->c.qp)
1756 ib_drain_qp(con->c.qp);
1757 }
1758
destroy_cm(struct rtrs_clt_con * con)1759 static void destroy_cm(struct rtrs_clt_con *con)
1760 {
1761 rdma_destroy_id(con->c.cm_id);
1762 con->c.cm_id = NULL;
1763 }
1764
rtrs_rdma_addr_resolved(struct rtrs_clt_con * con)1765 static int rtrs_rdma_addr_resolved(struct rtrs_clt_con *con)
1766 {
1767 struct rtrs_path *s = con->c.path;
1768 int err;
1769
1770 mutex_lock(&con->con_mutex);
1771 err = create_con_cq_qp(con);
1772 mutex_unlock(&con->con_mutex);
1773 if (err) {
1774 rtrs_err(s, "create_con_cq_qp(), err: %d\n", err);
1775 return err;
1776 }
1777 err = rdma_resolve_route(con->c.cm_id, RTRS_CONNECT_TIMEOUT_MS);
1778 if (err)
1779 rtrs_err(s, "Resolving route failed, err: %d\n", err);
1780
1781 return err;
1782 }
1783
rtrs_rdma_route_resolved(struct rtrs_clt_con * con)1784 static int rtrs_rdma_route_resolved(struct rtrs_clt_con *con)
1785 {
1786 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1787 struct rtrs_clt_sess *clt = clt_path->clt;
1788 struct rtrs_msg_conn_req msg;
1789 struct rdma_conn_param param;
1790
1791 int err;
1792
1793 param = (struct rdma_conn_param) {
1794 .retry_count = 7,
1795 .rnr_retry_count = 7,
1796 .private_data = &msg,
1797 .private_data_len = sizeof(msg),
1798 };
1799
1800 msg = (struct rtrs_msg_conn_req) {
1801 .magic = cpu_to_le16(RTRS_MAGIC),
1802 .version = cpu_to_le16(RTRS_PROTO_VER),
1803 .cid = cpu_to_le16(con->c.cid),
1804 .cid_num = cpu_to_le16(clt_path->s.con_num),
1805 .recon_cnt = cpu_to_le16(clt_path->s.recon_cnt),
1806 };
1807 msg.first_conn = clt_path->for_new_clt ? FIRST_CONN : 0;
1808 uuid_copy(&msg.sess_uuid, &clt_path->s.uuid);
1809 uuid_copy(&msg.paths_uuid, &clt->paths_uuid);
1810
1811 err = rdma_connect_locked(con->c.cm_id, ¶m);
1812 if (err)
1813 rtrs_err(clt, "rdma_connect_locked(): %d\n", err);
1814
1815 return err;
1816 }
1817
rtrs_rdma_conn_established(struct rtrs_clt_con * con,struct rdma_cm_event * ev)1818 static int rtrs_rdma_conn_established(struct rtrs_clt_con *con,
1819 struct rdma_cm_event *ev)
1820 {
1821 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1822 struct rtrs_clt_sess *clt = clt_path->clt;
1823 const struct rtrs_msg_conn_rsp *msg;
1824 u16 version, queue_depth;
1825 int errno;
1826 u8 len;
1827
1828 msg = ev->param.conn.private_data;
1829 len = ev->param.conn.private_data_len;
1830 if (len < sizeof(*msg)) {
1831 rtrs_err(clt, "Invalid RTRS connection response\n");
1832 return -ECONNRESET;
1833 }
1834 if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1835 rtrs_err(clt, "Invalid RTRS magic\n");
1836 return -ECONNRESET;
1837 }
1838 version = le16_to_cpu(msg->version);
1839 if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1840 rtrs_err(clt, "Unsupported major RTRS version: %d, expected %d\n",
1841 version >> 8, RTRS_PROTO_VER_MAJOR);
1842 return -ECONNRESET;
1843 }
1844 errno = le16_to_cpu(msg->errno);
1845 if (errno) {
1846 rtrs_err(clt, "Invalid RTRS message: errno %d\n",
1847 errno);
1848 return -ECONNRESET;
1849 }
1850 if (con->c.cid == 0) {
1851 queue_depth = le16_to_cpu(msg->queue_depth);
1852
1853 if (clt_path->queue_depth > 0 && queue_depth != clt_path->queue_depth) {
1854 rtrs_err(clt, "Error: queue depth changed\n");
1855
1856 /*
1857 * Stop any more reconnection attempts
1858 */
1859 clt_path->reconnect_attempts = -1;
1860 rtrs_err(clt,
1861 "Disabling auto-reconnect. Trigger a manual reconnect after issue is resolved\n");
1862 return -ECONNRESET;
1863 }
1864
1865 if (!clt_path->rbufs) {
1866 clt_path->rbufs = kcalloc(queue_depth,
1867 sizeof(*clt_path->rbufs),
1868 GFP_KERNEL);
1869 if (!clt_path->rbufs)
1870 return -ENOMEM;
1871 }
1872 clt_path->queue_depth = queue_depth;
1873 clt_path->s.signal_interval = min_not_zero(queue_depth,
1874 (unsigned short) SERVICE_CON_QUEUE_DEPTH);
1875 clt_path->max_hdr_size = le32_to_cpu(msg->max_hdr_size);
1876 clt_path->max_io_size = le32_to_cpu(msg->max_io_size);
1877 clt_path->flags = le32_to_cpu(msg->flags);
1878 clt_path->chunk_size = clt_path->max_io_size + clt_path->max_hdr_size;
1879
1880 /*
1881 * Global IO size is always a minimum.
1882 * If while a reconnection server sends us a value a bit
1883 * higher - client does not care and uses cached minimum.
1884 *
1885 * Since we can have several sessions (paths) restablishing
1886 * connections in parallel, use lock.
1887 */
1888 mutex_lock(&clt->paths_mutex);
1889 clt->queue_depth = clt_path->queue_depth;
1890 clt->max_io_size = min_not_zero(clt_path->max_io_size,
1891 clt->max_io_size);
1892 mutex_unlock(&clt->paths_mutex);
1893
1894 /*
1895 * Cache the hca_port and hca_name for sysfs
1896 */
1897 clt_path->hca_port = con->c.cm_id->port_num;
1898 scnprintf(clt_path->hca_name, sizeof(clt_path->hca_name),
1899 clt_path->s.dev->ib_dev->name);
1900 clt_path->s.src_addr = con->c.cm_id->route.addr.src_addr;
1901 /* set for_new_clt, to allow future reconnect on any path */
1902 clt_path->for_new_clt = 1;
1903 }
1904
1905 return 0;
1906 }
1907
flag_success_on_conn(struct rtrs_clt_con * con)1908 static inline void flag_success_on_conn(struct rtrs_clt_con *con)
1909 {
1910 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1911
1912 atomic_inc(&clt_path->connected_cnt);
1913 con->cm_err = 1;
1914 }
1915
rtrs_rdma_conn_rejected(struct rtrs_clt_con * con,struct rdma_cm_event * ev)1916 static int rtrs_rdma_conn_rejected(struct rtrs_clt_con *con,
1917 struct rdma_cm_event *ev)
1918 {
1919 struct rtrs_path *s = con->c.path;
1920 const struct rtrs_msg_conn_rsp *msg;
1921 const char *rej_msg;
1922 int status, errno;
1923 u8 data_len;
1924
1925 status = ev->status;
1926 rej_msg = rdma_reject_msg(con->c.cm_id, status);
1927 msg = rdma_consumer_reject_data(con->c.cm_id, ev, &data_len);
1928
1929 if (msg && data_len >= sizeof(*msg)) {
1930 errno = (int16_t)le16_to_cpu(msg->errno);
1931 if (errno == -EBUSY)
1932 rtrs_err(s,
1933 "Previous session is still exists on the server, please reconnect later\n");
1934 else
1935 rtrs_err(s,
1936 "Connect rejected: status %d (%s), rtrs errno %d\n",
1937 status, rej_msg, errno);
1938 } else {
1939 rtrs_err(s,
1940 "Connect rejected but with malformed message: status %d (%s)\n",
1941 status, rej_msg);
1942 }
1943
1944 return -ECONNRESET;
1945 }
1946
rtrs_clt_close_conns(struct rtrs_clt_path * clt_path,bool wait)1947 void rtrs_clt_close_conns(struct rtrs_clt_path *clt_path, bool wait)
1948 {
1949 trace_rtrs_clt_close_conns(clt_path);
1950
1951 if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CLOSING, NULL))
1952 queue_work(rtrs_wq, &clt_path->close_work);
1953 if (wait)
1954 flush_work(&clt_path->close_work);
1955 }
1956
flag_error_on_conn(struct rtrs_clt_con * con,int cm_err)1957 static inline void flag_error_on_conn(struct rtrs_clt_con *con, int cm_err)
1958 {
1959 if (con->cm_err == 1) {
1960 struct rtrs_clt_path *clt_path;
1961
1962 clt_path = to_clt_path(con->c.path);
1963 if (atomic_dec_and_test(&clt_path->connected_cnt))
1964
1965 wake_up(&clt_path->state_wq);
1966 }
1967 con->cm_err = cm_err;
1968 }
1969
rtrs_clt_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * ev)1970 static int rtrs_clt_rdma_cm_handler(struct rdma_cm_id *cm_id,
1971 struct rdma_cm_event *ev)
1972 {
1973 struct rtrs_clt_con *con = cm_id->context;
1974 struct rtrs_path *s = con->c.path;
1975 struct rtrs_clt_path *clt_path = to_clt_path(s);
1976 int cm_err = 0;
1977
1978 switch (ev->event) {
1979 case RDMA_CM_EVENT_ADDR_RESOLVED:
1980 cm_err = rtrs_rdma_addr_resolved(con);
1981 break;
1982 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1983 cm_err = rtrs_rdma_route_resolved(con);
1984 break;
1985 case RDMA_CM_EVENT_ESTABLISHED:
1986 cm_err = rtrs_rdma_conn_established(con, ev);
1987 if (!cm_err) {
1988 /*
1989 * Report success and wake up. Here we abuse state_wq,
1990 * i.e. wake up without state change, but we set cm_err.
1991 */
1992 flag_success_on_conn(con);
1993 wake_up(&clt_path->state_wq);
1994 return 0;
1995 }
1996 break;
1997 case RDMA_CM_EVENT_REJECTED:
1998 cm_err = rtrs_rdma_conn_rejected(con, ev);
1999 break;
2000 case RDMA_CM_EVENT_DISCONNECTED:
2001 /* No message for disconnecting */
2002 cm_err = -ECONNRESET;
2003 break;
2004 case RDMA_CM_EVENT_CONNECT_ERROR:
2005 case RDMA_CM_EVENT_UNREACHABLE:
2006 case RDMA_CM_EVENT_ADDR_CHANGE:
2007 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2008 rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n",
2009 rdma_event_msg(ev->event), ev->status);
2010 cm_err = -ECONNRESET;
2011 break;
2012 case RDMA_CM_EVENT_ADDR_ERROR:
2013 case RDMA_CM_EVENT_ROUTE_ERROR:
2014 rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n",
2015 rdma_event_msg(ev->event), ev->status);
2016 cm_err = -EHOSTUNREACH;
2017 break;
2018 case RDMA_CM_EVENT_DEVICE_REMOVAL:
2019 /*
2020 * Device removal is a special case. Queue close and return 0.
2021 */
2022 rtrs_clt_close_conns(clt_path, false);
2023 return 0;
2024 default:
2025 rtrs_err(s, "Unexpected RDMA CM error (CM event: %s, err: %d)\n",
2026 rdma_event_msg(ev->event), ev->status);
2027 cm_err = -ECONNRESET;
2028 break;
2029 }
2030
2031 if (cm_err) {
2032 /*
2033 * cm error makes sense only on connection establishing,
2034 * in other cases we rely on normal procedure of reconnecting.
2035 */
2036 flag_error_on_conn(con, cm_err);
2037 rtrs_rdma_error_recovery(con);
2038 }
2039
2040 return 0;
2041 }
2042
create_cm(struct rtrs_clt_con * con)2043 static int create_cm(struct rtrs_clt_con *con)
2044 {
2045 struct rtrs_path *s = con->c.path;
2046 struct rtrs_clt_path *clt_path = to_clt_path(s);
2047 struct rdma_cm_id *cm_id;
2048 int err;
2049
2050 cm_id = rdma_create_id(&init_net, rtrs_clt_rdma_cm_handler, con,
2051 clt_path->s.dst_addr.ss_family == AF_IB ?
2052 RDMA_PS_IB : RDMA_PS_TCP, IB_QPT_RC);
2053 if (IS_ERR(cm_id)) {
2054 err = PTR_ERR(cm_id);
2055 rtrs_err(s, "Failed to create CM ID, err: %d\n", err);
2056
2057 return err;
2058 }
2059 con->c.cm_id = cm_id;
2060 con->cm_err = 0;
2061 /* allow the port to be reused */
2062 err = rdma_set_reuseaddr(cm_id, 1);
2063 if (err != 0) {
2064 rtrs_err(s, "Set address reuse failed, err: %d\n", err);
2065 goto destroy_cm;
2066 }
2067 err = rdma_resolve_addr(cm_id, (struct sockaddr *)&clt_path->s.src_addr,
2068 (struct sockaddr *)&clt_path->s.dst_addr,
2069 RTRS_CONNECT_TIMEOUT_MS);
2070 if (err) {
2071 rtrs_err(s, "Failed to resolve address, err: %d\n", err);
2072 goto destroy_cm;
2073 }
2074 /*
2075 * Combine connection status and session events. This is needed
2076 * for waiting two possible cases: cm_err has something meaningful
2077 * or session state was really changed to error by device removal.
2078 */
2079 err = wait_event_interruptible_timeout(
2080 clt_path->state_wq,
2081 con->cm_err || clt_path->state != RTRS_CLT_CONNECTING,
2082 msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2083 if (err == 0 || err == -ERESTARTSYS) {
2084 if (err == 0)
2085 err = -ETIMEDOUT;
2086 /* Timedout or interrupted */
2087 goto errr;
2088 }
2089 if (con->cm_err < 0) {
2090 err = con->cm_err;
2091 goto errr;
2092 }
2093 if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTING) {
2094 /* Device removal */
2095 err = -ECONNABORTED;
2096 goto errr;
2097 }
2098
2099 return 0;
2100
2101 errr:
2102 stop_cm(con);
2103 mutex_lock(&con->con_mutex);
2104 destroy_con_cq_qp(con);
2105 mutex_unlock(&con->con_mutex);
2106 destroy_cm:
2107 destroy_cm(con);
2108
2109 return err;
2110 }
2111
rtrs_clt_path_up(struct rtrs_clt_path * clt_path)2112 static void rtrs_clt_path_up(struct rtrs_clt_path *clt_path)
2113 {
2114 struct rtrs_clt_sess *clt = clt_path->clt;
2115 int up;
2116
2117 /*
2118 * We can fire RECONNECTED event only when all paths were
2119 * connected on rtrs_clt_open(), then each was disconnected
2120 * and the first one connected again. That's why this nasty
2121 * game with counter value.
2122 */
2123
2124 mutex_lock(&clt->paths_ev_mutex);
2125 up = ++clt->paths_up;
2126 /*
2127 * Here it is safe to access paths num directly since up counter
2128 * is greater than MAX_PATHS_NUM only while rtrs_clt_open() is
2129 * in progress, thus paths removals are impossible.
2130 */
2131 if (up > MAX_PATHS_NUM && up == MAX_PATHS_NUM + clt->paths_num)
2132 clt->paths_up = clt->paths_num;
2133 else if (up == 1)
2134 clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_RECONNECTED);
2135 mutex_unlock(&clt->paths_ev_mutex);
2136
2137 /* Mark session as established */
2138 clt_path->established = true;
2139 clt_path->reconnect_attempts = 0;
2140 clt_path->stats->reconnects.successful_cnt++;
2141 }
2142
rtrs_clt_path_down(struct rtrs_clt_path * clt_path)2143 static void rtrs_clt_path_down(struct rtrs_clt_path *clt_path)
2144 {
2145 struct rtrs_clt_sess *clt = clt_path->clt;
2146
2147 if (!clt_path->established)
2148 return;
2149
2150 clt_path->established = false;
2151 mutex_lock(&clt->paths_ev_mutex);
2152 WARN_ON(!clt->paths_up);
2153 if (--clt->paths_up == 0)
2154 clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_DISCONNECTED);
2155 mutex_unlock(&clt->paths_ev_mutex);
2156 }
2157
rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_path * clt_path)2158 static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_path *clt_path)
2159 {
2160 struct rtrs_clt_con *con;
2161 unsigned int cid;
2162
2163 WARN_ON(READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTED);
2164
2165 /*
2166 * Possible race with rtrs_clt_open(), when DEVICE_REMOVAL comes
2167 * exactly in between. Start destroying after it finishes.
2168 */
2169 mutex_lock(&clt_path->init_mutex);
2170 mutex_unlock(&clt_path->init_mutex);
2171
2172 /*
2173 * All IO paths must observe !CONNECTED state before we
2174 * free everything.
2175 */
2176 synchronize_rcu();
2177
2178 rtrs_stop_hb(&clt_path->s);
2179
2180 /*
2181 * The order it utterly crucial: firstly disconnect and complete all
2182 * rdma requests with error (thus set in_use=false for requests),
2183 * then fail outstanding requests checking in_use for each, and
2184 * eventually notify upper layer about session disconnection.
2185 */
2186
2187 for (cid = 0; cid < clt_path->s.con_num; cid++) {
2188 if (!clt_path->s.con[cid])
2189 break;
2190 con = to_clt_con(clt_path->s.con[cid]);
2191 stop_cm(con);
2192 }
2193 fail_all_outstanding_reqs(clt_path);
2194 free_path_reqs(clt_path);
2195 rtrs_clt_path_down(clt_path);
2196
2197 /*
2198 * Wait for graceful shutdown, namely when peer side invokes
2199 * rdma_disconnect(). 'connected_cnt' is decremented only on
2200 * CM events, thus if other side had crashed and hb has detected
2201 * something is wrong, here we will stuck for exactly timeout ms,
2202 * since CM does not fire anything. That is fine, we are not in
2203 * hurry.
2204 */
2205 wait_event_timeout(clt_path->state_wq,
2206 !atomic_read(&clt_path->connected_cnt),
2207 msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2208
2209 for (cid = 0; cid < clt_path->s.con_num; cid++) {
2210 if (!clt_path->s.con[cid])
2211 break;
2212 con = to_clt_con(clt_path->s.con[cid]);
2213 mutex_lock(&con->con_mutex);
2214 destroy_con_cq_qp(con);
2215 mutex_unlock(&con->con_mutex);
2216 destroy_cm(con);
2217 destroy_con(con);
2218 }
2219 }
2220
rtrs_clt_remove_path_from_arr(struct rtrs_clt_path * clt_path)2221 static void rtrs_clt_remove_path_from_arr(struct rtrs_clt_path *clt_path)
2222 {
2223 struct rtrs_clt_sess *clt = clt_path->clt;
2224 struct rtrs_clt_path *next;
2225 bool wait_for_grace = false;
2226 int cpu;
2227
2228 mutex_lock(&clt->paths_mutex);
2229 list_del_rcu(&clt_path->s.entry);
2230
2231 /* Make sure everybody observes path removal. */
2232 synchronize_rcu();
2233
2234 /*
2235 * At this point nobody sees @sess in the list, but still we have
2236 * dangling pointer @pcpu_path which _can_ point to @sess. Since
2237 * nobody can observe @sess in the list, we guarantee that IO path
2238 * will not assign @sess to @pcpu_path, i.e. @pcpu_path can be equal
2239 * to @sess, but can never again become @sess.
2240 */
2241
2242 /*
2243 * Decrement paths number only after grace period, because
2244 * caller of do_each_path() must firstly observe list without
2245 * path and only then decremented paths number.
2246 *
2247 * Otherwise there can be the following situation:
2248 * o Two paths exist and IO is coming.
2249 * o One path is removed:
2250 * CPU#0 CPU#1
2251 * do_each_path(): rtrs_clt_remove_path_from_arr():
2252 * path = get_next_path()
2253 * ^^^ list_del_rcu(path)
2254 * [!CONNECTED path] clt->paths_num--
2255 * ^^^^^^^^^
2256 * load clt->paths_num from 2 to 1
2257 * ^^^^^^^^^
2258 * sees 1
2259 *
2260 * path is observed as !CONNECTED, but do_each_path() loop
2261 * ends, because expression i < clt->paths_num is false.
2262 */
2263 clt->paths_num--;
2264
2265 /*
2266 * Get @next connection from current @sess which is going to be
2267 * removed. If @sess is the last element, then @next is NULL.
2268 */
2269 rcu_read_lock();
2270 next = rtrs_clt_get_next_path_or_null(&clt->paths_list, clt_path);
2271 rcu_read_unlock();
2272
2273 /*
2274 * @pcpu paths can still point to the path which is going to be
2275 * removed, so change the pointer manually.
2276 */
2277 for_each_possible_cpu(cpu) {
2278 struct rtrs_clt_path __rcu **ppcpu_path;
2279
2280 ppcpu_path = per_cpu_ptr(clt->pcpu_path, cpu);
2281 if (rcu_dereference_protected(*ppcpu_path,
2282 lockdep_is_held(&clt->paths_mutex)) != clt_path)
2283 /*
2284 * synchronize_rcu() was called just after deleting
2285 * entry from the list, thus IO code path cannot
2286 * change pointer back to the pointer which is going
2287 * to be removed, we are safe here.
2288 */
2289 continue;
2290
2291 /*
2292 * We race with IO code path, which also changes pointer,
2293 * thus we have to be careful not to overwrite it.
2294 */
2295 if (try_cmpxchg((struct rtrs_clt_path **)ppcpu_path, &clt_path,
2296 next))
2297 /*
2298 * @ppcpu_path was successfully replaced with @next,
2299 * that means that someone could also pick up the
2300 * @sess and dereferencing it right now, so wait for
2301 * a grace period is required.
2302 */
2303 wait_for_grace = true;
2304 }
2305 if (wait_for_grace)
2306 synchronize_rcu();
2307
2308 mutex_unlock(&clt->paths_mutex);
2309 }
2310
rtrs_clt_add_path_to_arr(struct rtrs_clt_path * clt_path)2311 static void rtrs_clt_add_path_to_arr(struct rtrs_clt_path *clt_path)
2312 {
2313 struct rtrs_clt_sess *clt = clt_path->clt;
2314
2315 mutex_lock(&clt->paths_mutex);
2316 clt->paths_num++;
2317
2318 list_add_tail_rcu(&clt_path->s.entry, &clt->paths_list);
2319 mutex_unlock(&clt->paths_mutex);
2320 }
2321
rtrs_clt_close_work(struct work_struct * work)2322 static void rtrs_clt_close_work(struct work_struct *work)
2323 {
2324 struct rtrs_clt_path *clt_path;
2325
2326 clt_path = container_of(work, struct rtrs_clt_path, close_work);
2327
2328 cancel_work_sync(&clt_path->err_recovery_work);
2329 cancel_delayed_work_sync(&clt_path->reconnect_dwork);
2330 rtrs_clt_stop_and_destroy_conns(clt_path);
2331 rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CLOSED, NULL);
2332 }
2333
init_conns(struct rtrs_clt_path * clt_path)2334 static int init_conns(struct rtrs_clt_path *clt_path)
2335 {
2336 unsigned int cid;
2337 int err;
2338
2339 /*
2340 * On every new session connections increase reconnect counter
2341 * to avoid clashes with previous sessions not yet closed
2342 * sessions on a server side.
2343 */
2344 clt_path->s.recon_cnt++;
2345
2346 /* Establish all RDMA connections */
2347 for (cid = 0; cid < clt_path->s.con_num; cid++) {
2348 err = create_con(clt_path, cid);
2349 if (err)
2350 goto destroy;
2351
2352 err = create_cm(to_clt_con(clt_path->s.con[cid]));
2353 if (err) {
2354 destroy_con(to_clt_con(clt_path->s.con[cid]));
2355 goto destroy;
2356 }
2357 }
2358 err = alloc_path_reqs(clt_path);
2359 if (err)
2360 goto destroy;
2361
2362 rtrs_start_hb(&clt_path->s);
2363
2364 return 0;
2365
2366 destroy:
2367 while (cid--) {
2368 struct rtrs_clt_con *con = to_clt_con(clt_path->s.con[cid]);
2369
2370 stop_cm(con);
2371
2372 mutex_lock(&con->con_mutex);
2373 destroy_con_cq_qp(con);
2374 mutex_unlock(&con->con_mutex);
2375 destroy_cm(con);
2376 destroy_con(con);
2377 }
2378 /*
2379 * If we've never taken async path and got an error, say,
2380 * doing rdma_resolve_addr(), switch to CONNECTION_ERR state
2381 * manually to keep reconnecting.
2382 */
2383 rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING_ERR, NULL);
2384
2385 return err;
2386 }
2387
rtrs_clt_info_req_done(struct ib_cq * cq,struct ib_wc * wc)2388 static void rtrs_clt_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
2389 {
2390 struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
2391 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
2392 struct rtrs_iu *iu;
2393
2394 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2395 rtrs_iu_free(iu, clt_path->s.dev->ib_dev, 1);
2396
2397 if (wc->status != IB_WC_SUCCESS) {
2398 rtrs_err(clt_path->clt, "Path info request send failed: %s\n",
2399 ib_wc_status_msg(wc->status));
2400 rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING_ERR, NULL);
2401 return;
2402 }
2403
2404 rtrs_clt_update_wc_stats(con);
2405 }
2406
process_info_rsp(struct rtrs_clt_path * clt_path,const struct rtrs_msg_info_rsp * msg)2407 static int process_info_rsp(struct rtrs_clt_path *clt_path,
2408 const struct rtrs_msg_info_rsp *msg)
2409 {
2410 unsigned int sg_cnt, total_len;
2411 int i, sgi;
2412
2413 sg_cnt = le16_to_cpu(msg->sg_cnt);
2414 if (!sg_cnt || (clt_path->queue_depth % sg_cnt)) {
2415 rtrs_err(clt_path->clt,
2416 "Incorrect sg_cnt %d, is not multiple\n",
2417 sg_cnt);
2418 return -EINVAL;
2419 }
2420
2421 /*
2422 * Check if IB immediate data size is enough to hold the mem_id and
2423 * the offset inside the memory chunk.
2424 */
2425 if ((ilog2(sg_cnt - 1) + 1) + (ilog2(clt_path->chunk_size - 1) + 1) >
2426 MAX_IMM_PAYL_BITS) {
2427 rtrs_err(clt_path->clt,
2428 "RDMA immediate size (%db) not enough to encode %d buffers of size %dB\n",
2429 MAX_IMM_PAYL_BITS, sg_cnt, clt_path->chunk_size);
2430 return -EINVAL;
2431 }
2432 total_len = 0;
2433 for (sgi = 0, i = 0; sgi < sg_cnt && i < clt_path->queue_depth; sgi++) {
2434 const struct rtrs_sg_desc *desc = &msg->desc[sgi];
2435 u32 len, rkey;
2436 u64 addr;
2437
2438 addr = le64_to_cpu(desc->addr);
2439 rkey = le32_to_cpu(desc->key);
2440 len = le32_to_cpu(desc->len);
2441
2442 total_len += len;
2443
2444 if (!len || (len % clt_path->chunk_size)) {
2445 rtrs_err(clt_path->clt, "Incorrect [%d].len %d\n",
2446 sgi,
2447 len);
2448 return -EINVAL;
2449 }
2450 for ( ; len && i < clt_path->queue_depth; i++) {
2451 clt_path->rbufs[i].addr = addr;
2452 clt_path->rbufs[i].rkey = rkey;
2453
2454 len -= clt_path->chunk_size;
2455 addr += clt_path->chunk_size;
2456 }
2457 }
2458 /* Sanity check */
2459 if (sgi != sg_cnt || i != clt_path->queue_depth) {
2460 rtrs_err(clt_path->clt,
2461 "Incorrect sg vector, not fully mapped\n");
2462 return -EINVAL;
2463 }
2464 if (total_len != clt_path->chunk_size * clt_path->queue_depth) {
2465 rtrs_err(clt_path->clt, "Incorrect total_len %d\n", total_len);
2466 return -EINVAL;
2467 }
2468
2469 return 0;
2470 }
2471
rtrs_clt_info_rsp_done(struct ib_cq * cq,struct ib_wc * wc)2472 static void rtrs_clt_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
2473 {
2474 struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
2475 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
2476 struct rtrs_msg_info_rsp *msg;
2477 enum rtrs_clt_state state;
2478 struct rtrs_iu *iu;
2479 size_t rx_sz;
2480 int err;
2481
2482 state = RTRS_CLT_CONNECTING_ERR;
2483
2484 WARN_ON(con->c.cid);
2485 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2486 if (wc->status != IB_WC_SUCCESS) {
2487 rtrs_err(clt_path->clt, "Path info response recv failed: %s\n",
2488 ib_wc_status_msg(wc->status));
2489 goto out;
2490 }
2491 WARN_ON(wc->opcode != IB_WC_RECV);
2492
2493 if (wc->byte_len < sizeof(*msg)) {
2494 rtrs_err(clt_path->clt, "Path info response is malformed: size %d\n",
2495 wc->byte_len);
2496 goto out;
2497 }
2498 ib_dma_sync_single_for_cpu(clt_path->s.dev->ib_dev, iu->dma_addr,
2499 iu->size, DMA_FROM_DEVICE);
2500 msg = iu->buf;
2501 if (le16_to_cpu(msg->type) != RTRS_MSG_INFO_RSP) {
2502 rtrs_err(clt_path->clt, "Path info response is malformed: type %d\n",
2503 le16_to_cpu(msg->type));
2504 goto out;
2505 }
2506 rx_sz = sizeof(*msg);
2507 rx_sz += sizeof(msg->desc[0]) * le16_to_cpu(msg->sg_cnt);
2508 if (wc->byte_len < rx_sz) {
2509 rtrs_err(clt_path->clt, "Path info response is malformed: size %d\n",
2510 wc->byte_len);
2511 goto out;
2512 }
2513 err = process_info_rsp(clt_path, msg);
2514 if (err)
2515 goto out;
2516
2517 err = post_recv_path(clt_path);
2518 if (err)
2519 goto out;
2520
2521 state = RTRS_CLT_CONNECTED;
2522
2523 out:
2524 rtrs_clt_update_wc_stats(con);
2525 rtrs_iu_free(iu, clt_path->s.dev->ib_dev, 1);
2526 rtrs_clt_change_state_get_old(clt_path, state, NULL);
2527 }
2528
rtrs_send_path_info(struct rtrs_clt_path * clt_path)2529 static int rtrs_send_path_info(struct rtrs_clt_path *clt_path)
2530 {
2531 struct rtrs_clt_con *usr_con = to_clt_con(clt_path->s.con[0]);
2532 struct rtrs_msg_info_req *msg;
2533 struct rtrs_iu *tx_iu, *rx_iu;
2534 size_t rx_sz;
2535 int err;
2536
2537 rx_sz = sizeof(struct rtrs_msg_info_rsp);
2538 rx_sz += sizeof(struct rtrs_sg_desc) * clt_path->queue_depth;
2539
2540 tx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), GFP_KERNEL,
2541 clt_path->s.dev->ib_dev, DMA_TO_DEVICE,
2542 rtrs_clt_info_req_done);
2543 rx_iu = rtrs_iu_alloc(1, rx_sz, GFP_KERNEL, clt_path->s.dev->ib_dev,
2544 DMA_FROM_DEVICE, rtrs_clt_info_rsp_done);
2545 if (!tx_iu || !rx_iu) {
2546 err = -ENOMEM;
2547 goto out;
2548 }
2549 /* Prepare for getting info response */
2550 err = rtrs_iu_post_recv(&usr_con->c, rx_iu);
2551 if (err) {
2552 rtrs_err(clt_path->clt, "rtrs_iu_post_recv(), err: %d\n", err);
2553 goto out;
2554 }
2555 rx_iu = NULL;
2556
2557 msg = tx_iu->buf;
2558 msg->type = cpu_to_le16(RTRS_MSG_INFO_REQ);
2559 memcpy(msg->pathname, clt_path->s.sessname, sizeof(msg->pathname));
2560
2561 ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev,
2562 tx_iu->dma_addr,
2563 tx_iu->size, DMA_TO_DEVICE);
2564
2565 /* Send info request */
2566 err = rtrs_iu_post_send(&usr_con->c, tx_iu, sizeof(*msg), NULL);
2567 if (err) {
2568 rtrs_err(clt_path->clt, "rtrs_iu_post_send(), err: %d\n", err);
2569 goto out;
2570 }
2571 tx_iu = NULL;
2572
2573 /* Wait for state change */
2574 wait_event_interruptible_timeout(clt_path->state_wq,
2575 clt_path->state != RTRS_CLT_CONNECTING,
2576 msecs_to_jiffies(
2577 RTRS_CONNECT_TIMEOUT_MS));
2578 if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED) {
2579 if (READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTING_ERR)
2580 err = -ECONNRESET;
2581 else
2582 err = -ETIMEDOUT;
2583 }
2584
2585 out:
2586 if (tx_iu)
2587 rtrs_iu_free(tx_iu, clt_path->s.dev->ib_dev, 1);
2588 if (rx_iu)
2589 rtrs_iu_free(rx_iu, clt_path->s.dev->ib_dev, 1);
2590 if (err)
2591 /* If we've never taken async path because of malloc problems */
2592 rtrs_clt_change_state_get_old(clt_path,
2593 RTRS_CLT_CONNECTING_ERR, NULL);
2594
2595 return err;
2596 }
2597
2598 /**
2599 * init_path() - establishes all path connections and does handshake
2600 * @clt_path: client path.
2601 * In case of error full close or reconnect procedure should be taken,
2602 * because reconnect or close async works can be started.
2603 */
init_path(struct rtrs_clt_path * clt_path)2604 static int init_path(struct rtrs_clt_path *clt_path)
2605 {
2606 int err;
2607 char str[NAME_MAX];
2608 struct rtrs_addr path = {
2609 .src = &clt_path->s.src_addr,
2610 .dst = &clt_path->s.dst_addr,
2611 };
2612
2613 rtrs_addr_to_str(&path, str, sizeof(str));
2614
2615 mutex_lock(&clt_path->init_mutex);
2616 err = init_conns(clt_path);
2617 if (err) {
2618 rtrs_err(clt_path->clt,
2619 "init_conns() failed: err=%d path=%s [%s:%u]\n", err,
2620 str, clt_path->hca_name, clt_path->hca_port);
2621 goto out;
2622 }
2623 err = rtrs_send_path_info(clt_path);
2624 if (err) {
2625 rtrs_err(clt_path->clt,
2626 "rtrs_send_path_info() failed: err=%d path=%s [%s:%u]\n",
2627 err, str, clt_path->hca_name, clt_path->hca_port);
2628 goto out;
2629 }
2630 rtrs_clt_path_up(clt_path);
2631 out:
2632 mutex_unlock(&clt_path->init_mutex);
2633
2634 return err;
2635 }
2636
rtrs_clt_reconnect_work(struct work_struct * work)2637 static void rtrs_clt_reconnect_work(struct work_struct *work)
2638 {
2639 struct rtrs_clt_path *clt_path;
2640 struct rtrs_clt_sess *clt;
2641 int err;
2642
2643 clt_path = container_of(to_delayed_work(work), struct rtrs_clt_path,
2644 reconnect_dwork);
2645 clt = clt_path->clt;
2646
2647 trace_rtrs_clt_reconnect_work(clt_path);
2648
2649 if (READ_ONCE(clt_path->state) != RTRS_CLT_RECONNECTING)
2650 return;
2651
2652 if (clt_path->reconnect_attempts >= clt->max_reconnect_attempts) {
2653 /* Close a path completely if max attempts is reached */
2654 rtrs_clt_close_conns(clt_path, false);
2655 return;
2656 }
2657 clt_path->reconnect_attempts++;
2658
2659 msleep(RTRS_RECONNECT_BACKOFF);
2660 if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING, NULL)) {
2661 err = init_path(clt_path);
2662 if (err)
2663 goto reconnect_again;
2664 }
2665
2666 return;
2667
2668 reconnect_again:
2669 if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_RECONNECTING, NULL)) {
2670 clt_path->stats->reconnects.fail_cnt++;
2671 queue_work(rtrs_wq, &clt_path->err_recovery_work);
2672 }
2673 }
2674
rtrs_clt_dev_release(struct device * dev)2675 static void rtrs_clt_dev_release(struct device *dev)
2676 {
2677 struct rtrs_clt_sess *clt = container_of(dev, struct rtrs_clt_sess,
2678 dev);
2679
2680 mutex_destroy(&clt->paths_ev_mutex);
2681 mutex_destroy(&clt->paths_mutex);
2682 kfree(clt);
2683 }
2684
alloc_clt(const char * sessname,size_t paths_num,u16 port,size_t pdu_sz,void * priv,void (* link_ev)(void * priv,enum rtrs_clt_link_ev ev),unsigned int reconnect_delay_sec,unsigned int max_reconnect_attempts)2685 static struct rtrs_clt_sess *alloc_clt(const char *sessname, size_t paths_num,
2686 u16 port, size_t pdu_sz, void *priv,
2687 void (*link_ev)(void *priv,
2688 enum rtrs_clt_link_ev ev),
2689 unsigned int reconnect_delay_sec,
2690 unsigned int max_reconnect_attempts)
2691 {
2692 struct rtrs_clt_sess *clt;
2693 int err;
2694
2695 if (!paths_num || paths_num > MAX_PATHS_NUM)
2696 return ERR_PTR(-EINVAL);
2697
2698 if (strlen(sessname) >= sizeof(clt->sessname))
2699 return ERR_PTR(-EINVAL);
2700
2701 clt = kzalloc(sizeof(*clt), GFP_KERNEL);
2702 if (!clt)
2703 return ERR_PTR(-ENOMEM);
2704
2705 clt->pcpu_path = alloc_percpu(typeof(*clt->pcpu_path));
2706 if (!clt->pcpu_path) {
2707 kfree(clt);
2708 return ERR_PTR(-ENOMEM);
2709 }
2710
2711 clt->dev.class = rtrs_clt_dev_class;
2712 clt->dev.release = rtrs_clt_dev_release;
2713 uuid_gen(&clt->paths_uuid);
2714 INIT_LIST_HEAD_RCU(&clt->paths_list);
2715 clt->paths_num = paths_num;
2716 clt->paths_up = MAX_PATHS_NUM;
2717 clt->port = port;
2718 clt->pdu_sz = pdu_sz;
2719 clt->max_segments = RTRS_MAX_SEGMENTS;
2720 clt->reconnect_delay_sec = reconnect_delay_sec;
2721 clt->max_reconnect_attempts = max_reconnect_attempts;
2722 clt->priv = priv;
2723 clt->link_ev = link_ev;
2724 clt->mp_policy = MP_POLICY_MIN_INFLIGHT;
2725 strscpy(clt->sessname, sessname, sizeof(clt->sessname));
2726 init_waitqueue_head(&clt->permits_wait);
2727 mutex_init(&clt->paths_ev_mutex);
2728 mutex_init(&clt->paths_mutex);
2729 device_initialize(&clt->dev);
2730
2731 err = dev_set_name(&clt->dev, "%s", sessname);
2732 if (err)
2733 goto err_put;
2734
2735 /*
2736 * Suppress user space notification until
2737 * sysfs files are created
2738 */
2739 dev_set_uevent_suppress(&clt->dev, true);
2740 err = device_add(&clt->dev);
2741 if (err)
2742 goto err_put;
2743
2744 clt->kobj_paths = kobject_create_and_add("paths", &clt->dev.kobj);
2745 if (!clt->kobj_paths) {
2746 err = -ENOMEM;
2747 goto err_del;
2748 }
2749 err = rtrs_clt_create_sysfs_root_files(clt);
2750 if (err) {
2751 kobject_del(clt->kobj_paths);
2752 kobject_put(clt->kobj_paths);
2753 goto err_del;
2754 }
2755 dev_set_uevent_suppress(&clt->dev, false);
2756 kobject_uevent(&clt->dev.kobj, KOBJ_ADD);
2757
2758 return clt;
2759 err_del:
2760 device_del(&clt->dev);
2761 err_put:
2762 free_percpu(clt->pcpu_path);
2763 put_device(&clt->dev);
2764 return ERR_PTR(err);
2765 }
2766
free_clt(struct rtrs_clt_sess * clt)2767 static void free_clt(struct rtrs_clt_sess *clt)
2768 {
2769 free_percpu(clt->pcpu_path);
2770
2771 /*
2772 * release callback will free clt and destroy mutexes in last put
2773 */
2774 device_unregister(&clt->dev);
2775 }
2776
2777 /**
2778 * rtrs_clt_open() - Open a path to an RTRS server
2779 * @ops: holds the link event callback and the private pointer.
2780 * @pathname: name of the path to an RTRS server
2781 * @paths: Paths to be established defined by their src and dst addresses
2782 * @paths_num: Number of elements in the @paths array
2783 * @port: port to be used by the RTRS session
2784 * @pdu_sz: Size of extra payload which can be accessed after permit allocation.
2785 * @reconnect_delay_sec: time between reconnect tries
2786 * @max_reconnect_attempts: Number of times to reconnect on error before giving
2787 * up, 0 for * disabled, -1 for forever
2788 * @nr_poll_queues: number of polling mode connection using IB_POLL_DIRECT flag
2789 *
2790 * Starts session establishment with the rtrs_server. The function can block
2791 * up to ~2000ms before it returns.
2792 *
2793 * Return a valid pointer on success otherwise PTR_ERR.
2794 */
rtrs_clt_open(struct rtrs_clt_ops * ops,const char * pathname,const struct rtrs_addr * paths,size_t paths_num,u16 port,size_t pdu_sz,u8 reconnect_delay_sec,s16 max_reconnect_attempts,u32 nr_poll_queues)2795 struct rtrs_clt_sess *rtrs_clt_open(struct rtrs_clt_ops *ops,
2796 const char *pathname,
2797 const struct rtrs_addr *paths,
2798 size_t paths_num, u16 port,
2799 size_t pdu_sz, u8 reconnect_delay_sec,
2800 s16 max_reconnect_attempts, u32 nr_poll_queues)
2801 {
2802 struct rtrs_clt_path *clt_path, *tmp;
2803 struct rtrs_clt_sess *clt;
2804 int err, i;
2805
2806 if (strchr(pathname, '/') || strchr(pathname, '.')) {
2807 pr_err("pathname cannot contain / and .\n");
2808 err = -EINVAL;
2809 goto out;
2810 }
2811
2812 clt = alloc_clt(pathname, paths_num, port, pdu_sz, ops->priv,
2813 ops->link_ev,
2814 reconnect_delay_sec,
2815 max_reconnect_attempts);
2816 if (IS_ERR(clt)) {
2817 err = PTR_ERR(clt);
2818 goto out;
2819 }
2820 for (i = 0; i < paths_num; i++) {
2821 struct rtrs_clt_path *clt_path;
2822
2823 clt_path = alloc_path(clt, &paths[i], nr_cpu_ids,
2824 nr_poll_queues);
2825 if (IS_ERR(clt_path)) {
2826 err = PTR_ERR(clt_path);
2827 goto close_all_path;
2828 }
2829 if (!i)
2830 clt_path->for_new_clt = 1;
2831 list_add_tail_rcu(&clt_path->s.entry, &clt->paths_list);
2832
2833 err = init_path(clt_path);
2834 if (err) {
2835 list_del_rcu(&clt_path->s.entry);
2836 rtrs_clt_close_conns(clt_path, true);
2837 free_percpu(clt_path->stats->pcpu_stats);
2838 kfree(clt_path->stats);
2839 free_path(clt_path);
2840 goto close_all_path;
2841 }
2842
2843 err = rtrs_clt_create_path_files(clt_path);
2844 if (err) {
2845 list_del_rcu(&clt_path->s.entry);
2846 rtrs_clt_close_conns(clt_path, true);
2847 free_percpu(clt_path->stats->pcpu_stats);
2848 kfree(clt_path->stats);
2849 free_path(clt_path);
2850 goto close_all_path;
2851 }
2852 }
2853 err = alloc_permits(clt);
2854 if (err)
2855 goto close_all_path;
2856
2857 return clt;
2858
2859 close_all_path:
2860 list_for_each_entry_safe(clt_path, tmp, &clt->paths_list, s.entry) {
2861 rtrs_clt_destroy_path_files(clt_path, NULL);
2862 rtrs_clt_close_conns(clt_path, true);
2863 kobject_put(&clt_path->kobj);
2864 }
2865 rtrs_clt_destroy_sysfs_root(clt);
2866 free_clt(clt);
2867
2868 out:
2869 return ERR_PTR(err);
2870 }
2871 EXPORT_SYMBOL(rtrs_clt_open);
2872
2873 /**
2874 * rtrs_clt_close() - Close a path
2875 * @clt: Session handle. Session is freed upon return.
2876 */
rtrs_clt_close(struct rtrs_clt_sess * clt)2877 void rtrs_clt_close(struct rtrs_clt_sess *clt)
2878 {
2879 struct rtrs_clt_path *clt_path, *tmp;
2880
2881 /* Firstly forbid sysfs access */
2882 rtrs_clt_destroy_sysfs_root(clt);
2883
2884 /* Now it is safe to iterate over all paths without locks */
2885 list_for_each_entry_safe(clt_path, tmp, &clt->paths_list, s.entry) {
2886 rtrs_clt_close_conns(clt_path, true);
2887 rtrs_clt_destroy_path_files(clt_path, NULL);
2888 kobject_put(&clt_path->kobj);
2889 }
2890 free_permits(clt);
2891 free_clt(clt);
2892 }
2893 EXPORT_SYMBOL(rtrs_clt_close);
2894
rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_path * clt_path)2895 int rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_path *clt_path)
2896 {
2897 enum rtrs_clt_state old_state;
2898 int err = -EBUSY;
2899 bool changed;
2900
2901 changed = rtrs_clt_change_state_get_old(clt_path,
2902 RTRS_CLT_RECONNECTING,
2903 &old_state);
2904 if (changed) {
2905 clt_path->reconnect_attempts = 0;
2906 rtrs_clt_stop_and_destroy_conns(clt_path);
2907 queue_delayed_work(rtrs_wq, &clt_path->reconnect_dwork, 0);
2908 }
2909 if (changed || old_state == RTRS_CLT_RECONNECTING) {
2910 /*
2911 * flush_delayed_work() queues pending work for immediate
2912 * execution, so do the flush if we have queued something
2913 * right now or work is pending.
2914 */
2915 flush_delayed_work(&clt_path->reconnect_dwork);
2916 err = (READ_ONCE(clt_path->state) ==
2917 RTRS_CLT_CONNECTED ? 0 : -ENOTCONN);
2918 }
2919
2920 return err;
2921 }
2922
rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_path * clt_path,const struct attribute * sysfs_self)2923 int rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_path *clt_path,
2924 const struct attribute *sysfs_self)
2925 {
2926 enum rtrs_clt_state old_state;
2927 bool changed;
2928
2929 /*
2930 * Continue stopping path till state was changed to DEAD or
2931 * state was observed as DEAD:
2932 * 1. State was changed to DEAD - we were fast and nobody
2933 * invoked rtrs_clt_reconnect(), which can again start
2934 * reconnecting.
2935 * 2. State was observed as DEAD - we have someone in parallel
2936 * removing the path.
2937 */
2938 do {
2939 rtrs_clt_close_conns(clt_path, true);
2940 changed = rtrs_clt_change_state_get_old(clt_path,
2941 RTRS_CLT_DEAD,
2942 &old_state);
2943 } while (!changed && old_state != RTRS_CLT_DEAD);
2944
2945 if (changed) {
2946 rtrs_clt_remove_path_from_arr(clt_path);
2947 rtrs_clt_destroy_path_files(clt_path, sysfs_self);
2948 kobject_put(&clt_path->kobj);
2949 }
2950
2951 return 0;
2952 }
2953
rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt_sess * clt,int value)2954 void rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt_sess *clt, int value)
2955 {
2956 clt->max_reconnect_attempts = (unsigned int)value;
2957 }
2958
rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt_sess * clt)2959 int rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt_sess *clt)
2960 {
2961 return (int)clt->max_reconnect_attempts;
2962 }
2963
2964 /**
2965 * rtrs_clt_request() - Request data transfer to/from server via RDMA.
2966 *
2967 * @dir: READ/WRITE
2968 * @ops: callback function to be called as confirmation, and the pointer.
2969 * @clt: Session
2970 * @permit: Preallocated permit
2971 * @vec: Message that is sent to server together with the request.
2972 * Sum of len of all @vec elements limited to <= IO_MSG_SIZE.
2973 * Since the msg is copied internally it can be allocated on stack.
2974 * @nr: Number of elements in @vec.
2975 * @data_len: length of data sent to/from server
2976 * @sg: Pages to be sent/received to/from server.
2977 * @sg_cnt: Number of elements in the @sg
2978 *
2979 * Return:
2980 * 0: Success
2981 * <0: Error
2982 *
2983 * On dir=READ rtrs client will request a data transfer from Server to client.
2984 * The data that the server will respond with will be stored in @sg when
2985 * the user receives an %RTRS_CLT_RDMA_EV_RDMA_REQUEST_WRITE_COMPL event.
2986 * On dir=WRITE rtrs client will rdma write data in sg to server side.
2987 */
rtrs_clt_request(int dir,struct rtrs_clt_req_ops * ops,struct rtrs_clt_sess * clt,struct rtrs_permit * permit,const struct kvec * vec,size_t nr,size_t data_len,struct scatterlist * sg,unsigned int sg_cnt)2988 int rtrs_clt_request(int dir, struct rtrs_clt_req_ops *ops,
2989 struct rtrs_clt_sess *clt, struct rtrs_permit *permit,
2990 const struct kvec *vec, size_t nr, size_t data_len,
2991 struct scatterlist *sg, unsigned int sg_cnt)
2992 {
2993 struct rtrs_clt_io_req *req;
2994 struct rtrs_clt_path *clt_path;
2995
2996 enum dma_data_direction dma_dir;
2997 int err = -ECONNABORTED, i;
2998 size_t usr_len, hdr_len;
2999 struct path_it it;
3000
3001 /* Get kvec length */
3002 for (i = 0, usr_len = 0; i < nr; i++)
3003 usr_len += vec[i].iov_len;
3004
3005 if (dir == READ) {
3006 hdr_len = sizeof(struct rtrs_msg_rdma_read) +
3007 sg_cnt * sizeof(struct rtrs_sg_desc);
3008 dma_dir = DMA_FROM_DEVICE;
3009 } else {
3010 hdr_len = sizeof(struct rtrs_msg_rdma_write);
3011 dma_dir = DMA_TO_DEVICE;
3012 }
3013
3014 rcu_read_lock();
3015 for (path_it_init(&it, clt);
3016 (clt_path = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
3017 if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
3018 continue;
3019
3020 if (usr_len + hdr_len > clt_path->max_hdr_size) {
3021 rtrs_wrn_rl(clt_path->clt,
3022 "%s request failed, user message size is %zu and header length %zu, but max size is %u\n",
3023 dir == READ ? "Read" : "Write",
3024 usr_len, hdr_len, clt_path->max_hdr_size);
3025 err = -EMSGSIZE;
3026 break;
3027 }
3028 req = rtrs_clt_get_req(clt_path, ops->conf_fn, permit, ops->priv,
3029 vec, usr_len, sg, sg_cnt, data_len,
3030 dma_dir);
3031 if (dir == READ)
3032 err = rtrs_clt_read_req(req);
3033 else
3034 err = rtrs_clt_write_req(req);
3035 if (err) {
3036 req->in_use = false;
3037 continue;
3038 }
3039 /* Success path */
3040 break;
3041 }
3042 path_it_deinit(&it);
3043 rcu_read_unlock();
3044
3045 return err;
3046 }
3047 EXPORT_SYMBOL(rtrs_clt_request);
3048
rtrs_clt_rdma_cq_direct(struct rtrs_clt_sess * clt,unsigned int index)3049 int rtrs_clt_rdma_cq_direct(struct rtrs_clt_sess *clt, unsigned int index)
3050 {
3051 /* If no path, return -1 for block layer not to try again */
3052 int cnt = -1;
3053 struct rtrs_con *con;
3054 struct rtrs_clt_path *clt_path;
3055 struct path_it it;
3056
3057 rcu_read_lock();
3058 for (path_it_init(&it, clt);
3059 (clt_path = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
3060 if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
3061 continue;
3062
3063 con = clt_path->s.con[index + 1];
3064 cnt = ib_process_cq_direct(con->cq, -1);
3065 if (cnt)
3066 break;
3067 }
3068 path_it_deinit(&it);
3069 rcu_read_unlock();
3070
3071 return cnt;
3072 }
3073 EXPORT_SYMBOL(rtrs_clt_rdma_cq_direct);
3074
3075 /**
3076 * rtrs_clt_query() - queries RTRS session attributes
3077 *@clt: session pointer
3078 *@attr: query results for session attributes.
3079 * Returns:
3080 * 0 on success
3081 * -ECOMM no connection to the server
3082 */
rtrs_clt_query(struct rtrs_clt_sess * clt,struct rtrs_attrs * attr)3083 int rtrs_clt_query(struct rtrs_clt_sess *clt, struct rtrs_attrs *attr)
3084 {
3085 if (!rtrs_clt_is_connected(clt))
3086 return -ECOMM;
3087
3088 attr->queue_depth = clt->queue_depth;
3089 attr->max_segments = clt->max_segments;
3090 /* Cap max_io_size to min of remote buffer size and the fr pages */
3091 attr->max_io_size = min_t(int, clt->max_io_size,
3092 clt->max_segments * SZ_4K);
3093
3094 return 0;
3095 }
3096 EXPORT_SYMBOL(rtrs_clt_query);
3097
rtrs_clt_create_path_from_sysfs(struct rtrs_clt_sess * clt,struct rtrs_addr * addr)3098 int rtrs_clt_create_path_from_sysfs(struct rtrs_clt_sess *clt,
3099 struct rtrs_addr *addr)
3100 {
3101 struct rtrs_clt_path *clt_path;
3102 int err;
3103
3104 clt_path = alloc_path(clt, addr, nr_cpu_ids, 0);
3105 if (IS_ERR(clt_path))
3106 return PTR_ERR(clt_path);
3107
3108 mutex_lock(&clt->paths_mutex);
3109 if (clt->paths_num == 0) {
3110 /*
3111 * When all the paths are removed for a session,
3112 * the addition of the first path is like a new session for
3113 * the storage server
3114 */
3115 clt_path->for_new_clt = 1;
3116 }
3117
3118 mutex_unlock(&clt->paths_mutex);
3119
3120 /*
3121 * It is totally safe to add path in CONNECTING state: coming
3122 * IO will never grab it. Also it is very important to add
3123 * path before init, since init fires LINK_CONNECTED event.
3124 */
3125 rtrs_clt_add_path_to_arr(clt_path);
3126
3127 err = init_path(clt_path);
3128 if (err)
3129 goto close_path;
3130
3131 err = rtrs_clt_create_path_files(clt_path);
3132 if (err)
3133 goto close_path;
3134
3135 return 0;
3136
3137 close_path:
3138 rtrs_clt_remove_path_from_arr(clt_path);
3139 rtrs_clt_close_conns(clt_path, true);
3140 free_percpu(clt_path->stats->pcpu_stats);
3141 kfree(clt_path->stats);
3142 free_path(clt_path);
3143
3144 return err;
3145 }
3146
rtrs_clt_ib_dev_init(struct rtrs_ib_dev * dev)3147 static int rtrs_clt_ib_dev_init(struct rtrs_ib_dev *dev)
3148 {
3149 if (!(dev->ib_dev->attrs.device_cap_flags &
3150 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
3151 pr_err("Memory registrations not supported.\n");
3152 return -ENOTSUPP;
3153 }
3154
3155 return 0;
3156 }
3157
3158 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops = {
3159 .init = rtrs_clt_ib_dev_init
3160 };
3161
rtrs_client_init(void)3162 static int __init rtrs_client_init(void)
3163 {
3164 rtrs_rdma_dev_pd_init(0, &dev_pd);
3165
3166 rtrs_clt_dev_class = class_create(THIS_MODULE, "rtrs-client");
3167 if (IS_ERR(rtrs_clt_dev_class)) {
3168 pr_err("Failed to create rtrs-client dev class\n");
3169 return PTR_ERR(rtrs_clt_dev_class);
3170 }
3171 rtrs_wq = alloc_workqueue("rtrs_client_wq", 0, 0);
3172 if (!rtrs_wq) {
3173 class_destroy(rtrs_clt_dev_class);
3174 return -ENOMEM;
3175 }
3176
3177 return 0;
3178 }
3179
rtrs_client_exit(void)3180 static void __exit rtrs_client_exit(void)
3181 {
3182 destroy_workqueue(rtrs_wq);
3183 class_destroy(rtrs_clt_dev_class);
3184 rtrs_rdma_dev_pd_deinit(&dev_pd);
3185 }
3186
3187 module_init(rtrs_client_init);
3188 module_exit(rtrs_client_exit);
3189