1 // SPDX-License-Identifier: GPL-2.0
2
3 #define pr_fmt(fmt) "DMAR-IR: " fmt
4
5 #include <linux/interrupt.h>
6 #include <linux/dmar.h>
7 #include <linux/spinlock.h>
8 #include <linux/slab.h>
9 #include <linux/jiffies.h>
10 #include <linux/hpet.h>
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/acpi.h>
14 #include <linux/irqdomain.h>
15 #include <linux/crash_dump.h>
16 #include <asm/io_apic.h>
17 #include <asm/apic.h>
18 #include <asm/smp.h>
19 #include <asm/cpu.h>
20 #include <asm/irq_remapping.h>
21 #include <asm/pci-direct.h>
22
23 #include "iommu.h"
24 #include "../irq_remapping.h"
25 #include "cap_audit.h"
26
27 enum irq_mode {
28 IRQ_REMAPPING,
29 IRQ_POSTING,
30 };
31
32 struct ioapic_scope {
33 struct intel_iommu *iommu;
34 unsigned int id;
35 unsigned int bus; /* PCI bus number */
36 unsigned int devfn; /* PCI devfn number */
37 };
38
39 struct hpet_scope {
40 struct intel_iommu *iommu;
41 u8 id;
42 unsigned int bus;
43 unsigned int devfn;
44 };
45
46 struct irq_2_iommu {
47 struct intel_iommu *iommu;
48 u16 irte_index;
49 u16 sub_handle;
50 u8 irte_mask;
51 enum irq_mode mode;
52 };
53
54 struct intel_ir_data {
55 struct irq_2_iommu irq_2_iommu;
56 struct irte irte_entry;
57 union {
58 struct msi_msg msi_entry;
59 };
60 };
61
62 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
63 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
64
65 static int __read_mostly eim_mode;
66 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
67 static struct hpet_scope ir_hpet[MAX_HPET_TBS];
68
69 /*
70 * Lock ordering:
71 * ->dmar_global_lock
72 * ->irq_2_ir_lock
73 * ->qi->q_lock
74 * ->iommu->register_lock
75 * Note:
76 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
77 * in single-threaded environment with interrupt disabled, so no need to tabke
78 * the dmar_global_lock.
79 */
80 DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
81 static const struct irq_domain_ops intel_ir_domain_ops;
82
83 static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
84 static int __init parse_ioapics_under_ir(void);
85 static const struct msi_parent_ops dmar_msi_parent_ops, virt_dmar_msi_parent_ops;
86
ir_pre_enabled(struct intel_iommu * iommu)87 static bool ir_pre_enabled(struct intel_iommu *iommu)
88 {
89 return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
90 }
91
clear_ir_pre_enabled(struct intel_iommu * iommu)92 static void clear_ir_pre_enabled(struct intel_iommu *iommu)
93 {
94 iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
95 }
96
init_ir_status(struct intel_iommu * iommu)97 static void init_ir_status(struct intel_iommu *iommu)
98 {
99 u32 gsts;
100
101 gsts = readl(iommu->reg + DMAR_GSTS_REG);
102 if (gsts & DMA_GSTS_IRES)
103 iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
104 }
105
alloc_irte(struct intel_iommu * iommu,struct irq_2_iommu * irq_iommu,u16 count)106 static int alloc_irte(struct intel_iommu *iommu,
107 struct irq_2_iommu *irq_iommu, u16 count)
108 {
109 struct ir_table *table = iommu->ir_table;
110 unsigned int mask = 0;
111 unsigned long flags;
112 int index;
113
114 if (!count || !irq_iommu)
115 return -1;
116
117 if (count > 1) {
118 count = __roundup_pow_of_two(count);
119 mask = ilog2(count);
120 }
121
122 if (mask > ecap_max_handle_mask(iommu->ecap)) {
123 pr_err("Requested mask %x exceeds the max invalidation handle"
124 " mask value %Lx\n", mask,
125 ecap_max_handle_mask(iommu->ecap));
126 return -1;
127 }
128
129 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
130 index = bitmap_find_free_region(table->bitmap,
131 INTR_REMAP_TABLE_ENTRIES, mask);
132 if (index < 0) {
133 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
134 } else {
135 irq_iommu->iommu = iommu;
136 irq_iommu->irte_index = index;
137 irq_iommu->sub_handle = 0;
138 irq_iommu->irte_mask = mask;
139 irq_iommu->mode = IRQ_REMAPPING;
140 }
141 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
142
143 return index;
144 }
145
qi_flush_iec(struct intel_iommu * iommu,int index,int mask)146 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
147 {
148 struct qi_desc desc;
149
150 desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
151 | QI_IEC_SELECTIVE;
152 desc.qw1 = 0;
153 desc.qw2 = 0;
154 desc.qw3 = 0;
155
156 return qi_submit_sync(iommu, &desc, 1, 0);
157 }
158
modify_irte(struct irq_2_iommu * irq_iommu,struct irte * irte_modified)159 static int modify_irte(struct irq_2_iommu *irq_iommu,
160 struct irte *irte_modified)
161 {
162 struct intel_iommu *iommu;
163 unsigned long flags;
164 struct irte *irte;
165 int rc, index;
166
167 if (!irq_iommu)
168 return -1;
169
170 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
171
172 iommu = irq_iommu->iommu;
173
174 index = irq_iommu->irte_index + irq_iommu->sub_handle;
175 irte = &iommu->ir_table->base[index];
176
177 if ((irte->pst == 1) || (irte_modified->pst == 1)) {
178 bool ret;
179
180 ret = cmpxchg_double(&irte->low, &irte->high,
181 irte->low, irte->high,
182 irte_modified->low, irte_modified->high);
183 /*
184 * We use cmpxchg16 to atomically update the 128-bit IRTE,
185 * and it cannot be updated by the hardware or other processors
186 * behind us, so the return value of cmpxchg16 should be the
187 * same as the old value.
188 */
189 WARN_ON(!ret);
190 } else {
191 WRITE_ONCE(irte->low, irte_modified->low);
192 WRITE_ONCE(irte->high, irte_modified->high);
193 }
194 __iommu_flush_cache(iommu, irte, sizeof(*irte));
195
196 rc = qi_flush_iec(iommu, index, 0);
197
198 /* Update iommu mode according to the IRTE mode */
199 irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
200 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
201
202 return rc;
203 }
204
map_hpet_to_iommu(u8 hpet_id)205 static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id)
206 {
207 int i;
208
209 for (i = 0; i < MAX_HPET_TBS; i++) {
210 if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
211 return ir_hpet[i].iommu;
212 }
213 return NULL;
214 }
215
map_ioapic_to_iommu(int apic)216 static struct intel_iommu *map_ioapic_to_iommu(int apic)
217 {
218 int i;
219
220 for (i = 0; i < MAX_IO_APICS; i++) {
221 if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
222 return ir_ioapic[i].iommu;
223 }
224 return NULL;
225 }
226
map_dev_to_ir(struct pci_dev * dev)227 static struct irq_domain *map_dev_to_ir(struct pci_dev *dev)
228 {
229 struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev);
230
231 return drhd ? drhd->iommu->ir_domain : NULL;
232 }
233
clear_entries(struct irq_2_iommu * irq_iommu)234 static int clear_entries(struct irq_2_iommu *irq_iommu)
235 {
236 struct irte *start, *entry, *end;
237 struct intel_iommu *iommu;
238 int index;
239
240 if (irq_iommu->sub_handle)
241 return 0;
242
243 iommu = irq_iommu->iommu;
244 index = irq_iommu->irte_index;
245
246 start = iommu->ir_table->base + index;
247 end = start + (1 << irq_iommu->irte_mask);
248
249 for (entry = start; entry < end; entry++) {
250 WRITE_ONCE(entry->low, 0);
251 WRITE_ONCE(entry->high, 0);
252 }
253 bitmap_release_region(iommu->ir_table->bitmap, index,
254 irq_iommu->irte_mask);
255
256 return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
257 }
258
259 /*
260 * source validation type
261 */
262 #define SVT_NO_VERIFY 0x0 /* no verification is required */
263 #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */
264 #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */
265
266 /*
267 * source-id qualifier
268 */
269 #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */
270 #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore
271 * the third least significant bit
272 */
273 #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore
274 * the second and third least significant bits
275 */
276 #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore
277 * the least three significant bits
278 */
279
280 /*
281 * set SVT, SQ and SID fields of irte to verify
282 * source ids of interrupt requests
283 */
set_irte_sid(struct irte * irte,unsigned int svt,unsigned int sq,unsigned int sid)284 static void set_irte_sid(struct irte *irte, unsigned int svt,
285 unsigned int sq, unsigned int sid)
286 {
287 if (disable_sourceid_checking)
288 svt = SVT_NO_VERIFY;
289 irte->svt = svt;
290 irte->sq = sq;
291 irte->sid = sid;
292 }
293
294 /*
295 * Set an IRTE to match only the bus number. Interrupt requests that reference
296 * this IRTE must have a requester-id whose bus number is between or equal
297 * to the start_bus and end_bus arguments.
298 */
set_irte_verify_bus(struct irte * irte,unsigned int start_bus,unsigned int end_bus)299 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
300 unsigned int end_bus)
301 {
302 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
303 (start_bus << 8) | end_bus);
304 }
305
set_ioapic_sid(struct irte * irte,int apic)306 static int set_ioapic_sid(struct irte *irte, int apic)
307 {
308 int i;
309 u16 sid = 0;
310
311 if (!irte)
312 return -1;
313
314 down_read(&dmar_global_lock);
315 for (i = 0; i < MAX_IO_APICS; i++) {
316 if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
317 sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
318 break;
319 }
320 }
321 up_read(&dmar_global_lock);
322
323 if (sid == 0) {
324 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
325 return -1;
326 }
327
328 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
329
330 return 0;
331 }
332
set_hpet_sid(struct irte * irte,u8 id)333 static int set_hpet_sid(struct irte *irte, u8 id)
334 {
335 int i;
336 u16 sid = 0;
337
338 if (!irte)
339 return -1;
340
341 down_read(&dmar_global_lock);
342 for (i = 0; i < MAX_HPET_TBS; i++) {
343 if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
344 sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
345 break;
346 }
347 }
348 up_read(&dmar_global_lock);
349
350 if (sid == 0) {
351 pr_warn("Failed to set source-id of HPET block (%d)\n", id);
352 return -1;
353 }
354
355 /*
356 * Should really use SQ_ALL_16. Some platforms are broken.
357 * While we figure out the right quirks for these broken platforms, use
358 * SQ_13_IGNORE_3 for now.
359 */
360 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
361
362 return 0;
363 }
364
365 struct set_msi_sid_data {
366 struct pci_dev *pdev;
367 u16 alias;
368 int count;
369 int busmatch_count;
370 };
371
set_msi_sid_cb(struct pci_dev * pdev,u16 alias,void * opaque)372 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
373 {
374 struct set_msi_sid_data *data = opaque;
375
376 if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
377 data->busmatch_count++;
378
379 data->pdev = pdev;
380 data->alias = alias;
381 data->count++;
382
383 return 0;
384 }
385
set_msi_sid(struct irte * irte,struct pci_dev * dev)386 static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
387 {
388 struct set_msi_sid_data data;
389
390 if (!irte || !dev)
391 return -1;
392
393 data.count = 0;
394 data.busmatch_count = 0;
395 pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
396
397 /*
398 * DMA alias provides us with a PCI device and alias. The only case
399 * where the it will return an alias on a different bus than the
400 * device is the case of a PCIe-to-PCI bridge, where the alias is for
401 * the subordinate bus. In this case we can only verify the bus.
402 *
403 * If there are multiple aliases, all with the same bus number,
404 * then all we can do is verify the bus. This is typical in NTB
405 * hardware which use proxy IDs where the device will generate traffic
406 * from multiple devfn numbers on the same bus.
407 *
408 * If the alias device is on a different bus than our source device
409 * then we have a topology based alias, use it.
410 *
411 * Otherwise, the alias is for a device DMA quirk and we cannot
412 * assume that MSI uses the same requester ID. Therefore use the
413 * original device.
414 */
415 if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
416 set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
417 dev->bus->number);
418 else if (data.count >= 2 && data.busmatch_count == data.count)
419 set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
420 else if (data.pdev->bus->number != dev->bus->number)
421 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
422 else
423 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
424 pci_dev_id(dev));
425
426 return 0;
427 }
428
iommu_load_old_irte(struct intel_iommu * iommu)429 static int iommu_load_old_irte(struct intel_iommu *iommu)
430 {
431 struct irte *old_ir_table;
432 phys_addr_t irt_phys;
433 unsigned int i;
434 size_t size;
435 u64 irta;
436
437 /* Check whether the old ir-table has the same size as ours */
438 irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
439 if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
440 != INTR_REMAP_TABLE_REG_SIZE)
441 return -EINVAL;
442
443 irt_phys = irta & VTD_PAGE_MASK;
444 size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
445
446 /* Map the old IR table */
447 old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
448 if (!old_ir_table)
449 return -ENOMEM;
450
451 /* Copy data over */
452 memcpy(iommu->ir_table->base, old_ir_table, size);
453
454 __iommu_flush_cache(iommu, iommu->ir_table->base, size);
455
456 /*
457 * Now check the table for used entries and mark those as
458 * allocated in the bitmap
459 */
460 for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
461 if (iommu->ir_table->base[i].present)
462 bitmap_set(iommu->ir_table->bitmap, i, 1);
463 }
464
465 memunmap(old_ir_table);
466
467 return 0;
468 }
469
470
iommu_set_irq_remapping(struct intel_iommu * iommu,int mode)471 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
472 {
473 unsigned long flags;
474 u64 addr;
475 u32 sts;
476
477 addr = virt_to_phys((void *)iommu->ir_table->base);
478
479 raw_spin_lock_irqsave(&iommu->register_lock, flags);
480
481 dmar_writeq(iommu->reg + DMAR_IRTA_REG,
482 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
483
484 /* Set interrupt-remapping table pointer */
485 writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
486
487 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
488 readl, (sts & DMA_GSTS_IRTPS), sts);
489 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
490
491 /*
492 * Global invalidation of interrupt entry cache to make sure the
493 * hardware uses the new irq remapping table.
494 */
495 if (!cap_esirtps(iommu->cap))
496 qi_global_iec(iommu);
497 }
498
iommu_enable_irq_remapping(struct intel_iommu * iommu)499 static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
500 {
501 unsigned long flags;
502 u32 sts;
503
504 raw_spin_lock_irqsave(&iommu->register_lock, flags);
505
506 /* Enable interrupt-remapping */
507 iommu->gcmd |= DMA_GCMD_IRE;
508 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
509 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
510 readl, (sts & DMA_GSTS_IRES), sts);
511
512 /* Block compatibility-format MSIs */
513 if (sts & DMA_GSTS_CFIS) {
514 iommu->gcmd &= ~DMA_GCMD_CFI;
515 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
516 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
517 readl, !(sts & DMA_GSTS_CFIS), sts);
518 }
519
520 /*
521 * With CFI clear in the Global Command register, we should be
522 * protected from dangerous (i.e. compatibility) interrupts
523 * regardless of x2apic status. Check just to be sure.
524 */
525 if (sts & DMA_GSTS_CFIS)
526 WARN(1, KERN_WARNING
527 "Compatibility-format IRQs enabled despite intr remapping;\n"
528 "you are vulnerable to IRQ injection.\n");
529
530 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
531 }
532
intel_setup_irq_remapping(struct intel_iommu * iommu)533 static int intel_setup_irq_remapping(struct intel_iommu *iommu)
534 {
535 struct ir_table *ir_table;
536 struct fwnode_handle *fn;
537 unsigned long *bitmap;
538 struct page *pages;
539
540 if (iommu->ir_table)
541 return 0;
542
543 ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
544 if (!ir_table)
545 return -ENOMEM;
546
547 pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
548 INTR_REMAP_PAGE_ORDER);
549 if (!pages) {
550 pr_err("IR%d: failed to allocate pages of order %d\n",
551 iommu->seq_id, INTR_REMAP_PAGE_ORDER);
552 goto out_free_table;
553 }
554
555 bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC);
556 if (bitmap == NULL) {
557 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
558 goto out_free_pages;
559 }
560
561 fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
562 if (!fn)
563 goto out_free_bitmap;
564
565 iommu->ir_domain =
566 irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
567 0, INTR_REMAP_TABLE_ENTRIES,
568 fn, &intel_ir_domain_ops,
569 iommu);
570 if (!iommu->ir_domain) {
571 pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
572 goto out_free_fwnode;
573 }
574
575 irq_domain_update_bus_token(iommu->ir_domain, DOMAIN_BUS_DMAR);
576 iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT |
577 IRQ_DOMAIN_FLAG_ISOLATED_MSI;
578
579 if (cap_caching_mode(iommu->cap))
580 iommu->ir_domain->msi_parent_ops = &virt_dmar_msi_parent_ops;
581 else
582 iommu->ir_domain->msi_parent_ops = &dmar_msi_parent_ops;
583
584 ir_table->base = page_address(pages);
585 ir_table->bitmap = bitmap;
586 iommu->ir_table = ir_table;
587
588 /*
589 * If the queued invalidation is already initialized,
590 * shouldn't disable it.
591 */
592 if (!iommu->qi) {
593 /*
594 * Clear previous faults.
595 */
596 dmar_fault(-1, iommu);
597 dmar_disable_qi(iommu);
598
599 if (dmar_enable_qi(iommu)) {
600 pr_err("Failed to enable queued invalidation\n");
601 goto out_free_ir_domain;
602 }
603 }
604
605 init_ir_status(iommu);
606
607 if (ir_pre_enabled(iommu)) {
608 if (!is_kdump_kernel()) {
609 pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
610 iommu->name);
611 clear_ir_pre_enabled(iommu);
612 iommu_disable_irq_remapping(iommu);
613 } else if (iommu_load_old_irte(iommu))
614 pr_err("Failed to copy IR table for %s from previous kernel\n",
615 iommu->name);
616 else
617 pr_info("Copied IR table for %s from previous kernel\n",
618 iommu->name);
619 }
620
621 iommu_set_irq_remapping(iommu, eim_mode);
622
623 return 0;
624
625 out_free_ir_domain:
626 irq_domain_remove(iommu->ir_domain);
627 iommu->ir_domain = NULL;
628 out_free_fwnode:
629 irq_domain_free_fwnode(fn);
630 out_free_bitmap:
631 bitmap_free(bitmap);
632 out_free_pages:
633 __free_pages(pages, INTR_REMAP_PAGE_ORDER);
634 out_free_table:
635 kfree(ir_table);
636
637 iommu->ir_table = NULL;
638
639 return -ENOMEM;
640 }
641
intel_teardown_irq_remapping(struct intel_iommu * iommu)642 static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
643 {
644 struct fwnode_handle *fn;
645
646 if (iommu && iommu->ir_table) {
647 if (iommu->ir_domain) {
648 fn = iommu->ir_domain->fwnode;
649
650 irq_domain_remove(iommu->ir_domain);
651 irq_domain_free_fwnode(fn);
652 iommu->ir_domain = NULL;
653 }
654 free_pages((unsigned long)iommu->ir_table->base,
655 INTR_REMAP_PAGE_ORDER);
656 bitmap_free(iommu->ir_table->bitmap);
657 kfree(iommu->ir_table);
658 iommu->ir_table = NULL;
659 }
660 }
661
662 /*
663 * Disable Interrupt Remapping.
664 */
iommu_disable_irq_remapping(struct intel_iommu * iommu)665 static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
666 {
667 unsigned long flags;
668 u32 sts;
669
670 if (!ecap_ir_support(iommu->ecap))
671 return;
672
673 /*
674 * global invalidation of interrupt entry cache before disabling
675 * interrupt-remapping.
676 */
677 if (!cap_esirtps(iommu->cap))
678 qi_global_iec(iommu);
679
680 raw_spin_lock_irqsave(&iommu->register_lock, flags);
681
682 sts = readl(iommu->reg + DMAR_GSTS_REG);
683 if (!(sts & DMA_GSTS_IRES))
684 goto end;
685
686 iommu->gcmd &= ~DMA_GCMD_IRE;
687 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
688
689 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
690 readl, !(sts & DMA_GSTS_IRES), sts);
691
692 end:
693 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
694 }
695
dmar_x2apic_optout(void)696 static int __init dmar_x2apic_optout(void)
697 {
698 struct acpi_table_dmar *dmar;
699 dmar = (struct acpi_table_dmar *)dmar_tbl;
700 if (!dmar || no_x2apic_optout)
701 return 0;
702 return dmar->flags & DMAR_X2APIC_OPT_OUT;
703 }
704
intel_cleanup_irq_remapping(void)705 static void __init intel_cleanup_irq_remapping(void)
706 {
707 struct dmar_drhd_unit *drhd;
708 struct intel_iommu *iommu;
709
710 for_each_iommu(iommu, drhd) {
711 if (ecap_ir_support(iommu->ecap)) {
712 iommu_disable_irq_remapping(iommu);
713 intel_teardown_irq_remapping(iommu);
714 }
715 }
716
717 if (x2apic_supported())
718 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
719 }
720
intel_prepare_irq_remapping(void)721 static int __init intel_prepare_irq_remapping(void)
722 {
723 struct dmar_drhd_unit *drhd;
724 struct intel_iommu *iommu;
725 int eim = 0;
726
727 if (irq_remap_broken) {
728 pr_warn("This system BIOS has enabled interrupt remapping\n"
729 "on a chipset that contains an erratum making that\n"
730 "feature unstable. To maintain system stability\n"
731 "interrupt remapping is being disabled. Please\n"
732 "contact your BIOS vendor for an update\n");
733 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
734 return -ENODEV;
735 }
736
737 if (dmar_table_init() < 0)
738 return -ENODEV;
739
740 if (intel_cap_audit(CAP_AUDIT_STATIC_IRQR, NULL))
741 return -ENODEV;
742
743 if (!dmar_ir_support())
744 return -ENODEV;
745
746 if (parse_ioapics_under_ir()) {
747 pr_info("Not enabling interrupt remapping\n");
748 goto error;
749 }
750
751 /* First make sure all IOMMUs support IRQ remapping */
752 for_each_iommu(iommu, drhd)
753 if (!ecap_ir_support(iommu->ecap))
754 goto error;
755
756 /* Detect remapping mode: lapic or x2apic */
757 if (x2apic_supported()) {
758 eim = !dmar_x2apic_optout();
759 if (!eim) {
760 pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
761 pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
762 }
763 }
764
765 for_each_iommu(iommu, drhd) {
766 if (eim && !ecap_eim_support(iommu->ecap)) {
767 pr_info("%s does not support EIM\n", iommu->name);
768 eim = 0;
769 }
770 }
771
772 eim_mode = eim;
773 if (eim)
774 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
775
776 /* Do the initializations early */
777 for_each_iommu(iommu, drhd) {
778 if (intel_setup_irq_remapping(iommu)) {
779 pr_err("Failed to setup irq remapping for %s\n",
780 iommu->name);
781 goto error;
782 }
783 }
784
785 return 0;
786
787 error:
788 intel_cleanup_irq_remapping();
789 return -ENODEV;
790 }
791
792 /*
793 * Set Posted-Interrupts capability.
794 */
set_irq_posting_cap(void)795 static inline void set_irq_posting_cap(void)
796 {
797 struct dmar_drhd_unit *drhd;
798 struct intel_iommu *iommu;
799
800 if (!disable_irq_post) {
801 /*
802 * If IRTE is in posted format, the 'pda' field goes across the
803 * 64-bit boundary, we need use cmpxchg16b to atomically update
804 * it. We only expose posted-interrupt when X86_FEATURE_CX16
805 * is supported. Actually, hardware platforms supporting PI
806 * should have X86_FEATURE_CX16 support, this has been confirmed
807 * with Intel hardware guys.
808 */
809 if (boot_cpu_has(X86_FEATURE_CX16))
810 intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
811
812 for_each_iommu(iommu, drhd)
813 if (!cap_pi_support(iommu->cap)) {
814 intel_irq_remap_ops.capability &=
815 ~(1 << IRQ_POSTING_CAP);
816 break;
817 }
818 }
819 }
820
intel_enable_irq_remapping(void)821 static int __init intel_enable_irq_remapping(void)
822 {
823 struct dmar_drhd_unit *drhd;
824 struct intel_iommu *iommu;
825 bool setup = false;
826
827 /*
828 * Setup Interrupt-remapping for all the DRHD's now.
829 */
830 for_each_iommu(iommu, drhd) {
831 if (!ir_pre_enabled(iommu))
832 iommu_enable_irq_remapping(iommu);
833 setup = true;
834 }
835
836 if (!setup)
837 goto error;
838
839 irq_remapping_enabled = 1;
840
841 set_irq_posting_cap();
842
843 pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
844
845 return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
846
847 error:
848 intel_cleanup_irq_remapping();
849 return -1;
850 }
851
ir_parse_one_hpet_scope(struct acpi_dmar_device_scope * scope,struct intel_iommu * iommu,struct acpi_dmar_hardware_unit * drhd)852 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
853 struct intel_iommu *iommu,
854 struct acpi_dmar_hardware_unit *drhd)
855 {
856 struct acpi_dmar_pci_path *path;
857 u8 bus;
858 int count, free = -1;
859
860 bus = scope->bus;
861 path = (struct acpi_dmar_pci_path *)(scope + 1);
862 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
863 / sizeof(struct acpi_dmar_pci_path);
864
865 while (--count > 0) {
866 /*
867 * Access PCI directly due to the PCI
868 * subsystem isn't initialized yet.
869 */
870 bus = read_pci_config_byte(bus, path->device, path->function,
871 PCI_SECONDARY_BUS);
872 path++;
873 }
874
875 for (count = 0; count < MAX_HPET_TBS; count++) {
876 if (ir_hpet[count].iommu == iommu &&
877 ir_hpet[count].id == scope->enumeration_id)
878 return 0;
879 else if (ir_hpet[count].iommu == NULL && free == -1)
880 free = count;
881 }
882 if (free == -1) {
883 pr_warn("Exceeded Max HPET blocks\n");
884 return -ENOSPC;
885 }
886
887 ir_hpet[free].iommu = iommu;
888 ir_hpet[free].id = scope->enumeration_id;
889 ir_hpet[free].bus = bus;
890 ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
891 pr_info("HPET id %d under DRHD base 0x%Lx\n",
892 scope->enumeration_id, drhd->address);
893
894 return 0;
895 }
896
ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope * scope,struct intel_iommu * iommu,struct acpi_dmar_hardware_unit * drhd)897 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
898 struct intel_iommu *iommu,
899 struct acpi_dmar_hardware_unit *drhd)
900 {
901 struct acpi_dmar_pci_path *path;
902 u8 bus;
903 int count, free = -1;
904
905 bus = scope->bus;
906 path = (struct acpi_dmar_pci_path *)(scope + 1);
907 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
908 / sizeof(struct acpi_dmar_pci_path);
909
910 while (--count > 0) {
911 /*
912 * Access PCI directly due to the PCI
913 * subsystem isn't initialized yet.
914 */
915 bus = read_pci_config_byte(bus, path->device, path->function,
916 PCI_SECONDARY_BUS);
917 path++;
918 }
919
920 for (count = 0; count < MAX_IO_APICS; count++) {
921 if (ir_ioapic[count].iommu == iommu &&
922 ir_ioapic[count].id == scope->enumeration_id)
923 return 0;
924 else if (ir_ioapic[count].iommu == NULL && free == -1)
925 free = count;
926 }
927 if (free == -1) {
928 pr_warn("Exceeded Max IO APICS\n");
929 return -ENOSPC;
930 }
931
932 ir_ioapic[free].bus = bus;
933 ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
934 ir_ioapic[free].iommu = iommu;
935 ir_ioapic[free].id = scope->enumeration_id;
936 pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n",
937 scope->enumeration_id, drhd->address, iommu->seq_id);
938
939 return 0;
940 }
941
ir_parse_ioapic_hpet_scope(struct acpi_dmar_header * header,struct intel_iommu * iommu)942 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
943 struct intel_iommu *iommu)
944 {
945 int ret = 0;
946 struct acpi_dmar_hardware_unit *drhd;
947 struct acpi_dmar_device_scope *scope;
948 void *start, *end;
949
950 drhd = (struct acpi_dmar_hardware_unit *)header;
951 start = (void *)(drhd + 1);
952 end = ((void *)drhd) + header->length;
953
954 while (start < end && ret == 0) {
955 scope = start;
956 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
957 ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
958 else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
959 ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
960 start += scope->length;
961 }
962
963 return ret;
964 }
965
ir_remove_ioapic_hpet_scope(struct intel_iommu * iommu)966 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
967 {
968 int i;
969
970 for (i = 0; i < MAX_HPET_TBS; i++)
971 if (ir_hpet[i].iommu == iommu)
972 ir_hpet[i].iommu = NULL;
973
974 for (i = 0; i < MAX_IO_APICS; i++)
975 if (ir_ioapic[i].iommu == iommu)
976 ir_ioapic[i].iommu = NULL;
977 }
978
979 /*
980 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
981 * hardware unit.
982 */
parse_ioapics_under_ir(void)983 static int __init parse_ioapics_under_ir(void)
984 {
985 struct dmar_drhd_unit *drhd;
986 struct intel_iommu *iommu;
987 bool ir_supported = false;
988 int ioapic_idx;
989
990 for_each_iommu(iommu, drhd) {
991 int ret;
992
993 if (!ecap_ir_support(iommu->ecap))
994 continue;
995
996 ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
997 if (ret)
998 return ret;
999
1000 ir_supported = true;
1001 }
1002
1003 if (!ir_supported)
1004 return -ENODEV;
1005
1006 for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
1007 int ioapic_id = mpc_ioapic_id(ioapic_idx);
1008 if (!map_ioapic_to_iommu(ioapic_id)) {
1009 pr_err(FW_BUG "ioapic %d has no mapping iommu, "
1010 "interrupt remapping will be disabled\n",
1011 ioapic_id);
1012 return -1;
1013 }
1014 }
1015
1016 return 0;
1017 }
1018
ir_dev_scope_init(void)1019 static int __init ir_dev_scope_init(void)
1020 {
1021 int ret;
1022
1023 if (!irq_remapping_enabled)
1024 return 0;
1025
1026 down_write(&dmar_global_lock);
1027 ret = dmar_dev_scope_init();
1028 up_write(&dmar_global_lock);
1029
1030 return ret;
1031 }
1032 rootfs_initcall(ir_dev_scope_init);
1033
disable_irq_remapping(void)1034 static void disable_irq_remapping(void)
1035 {
1036 struct dmar_drhd_unit *drhd;
1037 struct intel_iommu *iommu = NULL;
1038
1039 /*
1040 * Disable Interrupt-remapping for all the DRHD's now.
1041 */
1042 for_each_iommu(iommu, drhd) {
1043 if (!ecap_ir_support(iommu->ecap))
1044 continue;
1045
1046 iommu_disable_irq_remapping(iommu);
1047 }
1048
1049 /*
1050 * Clear Posted-Interrupts capability.
1051 */
1052 if (!disable_irq_post)
1053 intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1054 }
1055
reenable_irq_remapping(int eim)1056 static int reenable_irq_remapping(int eim)
1057 {
1058 struct dmar_drhd_unit *drhd;
1059 bool setup = false;
1060 struct intel_iommu *iommu = NULL;
1061
1062 for_each_iommu(iommu, drhd)
1063 if (iommu->qi)
1064 dmar_reenable_qi(iommu);
1065
1066 /*
1067 * Setup Interrupt-remapping for all the DRHD's now.
1068 */
1069 for_each_iommu(iommu, drhd) {
1070 if (!ecap_ir_support(iommu->ecap))
1071 continue;
1072
1073 /* Set up interrupt remapping for iommu.*/
1074 iommu_set_irq_remapping(iommu, eim);
1075 iommu_enable_irq_remapping(iommu);
1076 setup = true;
1077 }
1078
1079 if (!setup)
1080 goto error;
1081
1082 set_irq_posting_cap();
1083
1084 return 0;
1085
1086 error:
1087 /*
1088 * handle error condition gracefully here!
1089 */
1090 return -1;
1091 }
1092
1093 /*
1094 * Store the MSI remapping domain pointer in the device if enabled.
1095 *
1096 * This is called from dmar_pci_bus_add_dev() so it works even when DMA
1097 * remapping is disabled. Only update the pointer if the device is not
1098 * already handled by a non default PCI/MSI interrupt domain. This protects
1099 * e.g. VMD devices.
1100 */
intel_irq_remap_add_device(struct dmar_pci_notify_info * info)1101 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info)
1102 {
1103 if (!irq_remapping_enabled || !pci_dev_has_default_msi_parent_domain(info->dev))
1104 return;
1105
1106 dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev));
1107 }
1108
prepare_irte(struct irte * irte,int vector,unsigned int dest)1109 static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1110 {
1111 memset(irte, 0, sizeof(*irte));
1112
1113 irte->present = 1;
1114 irte->dst_mode = apic->dest_mode_logical;
1115 /*
1116 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1117 * actual level or edge trigger will be setup in the IO-APIC
1118 * RTE. This will help simplify level triggered irq migration.
1119 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1120 * irq migration in the presence of interrupt-remapping.
1121 */
1122 irte->trigger_mode = 0;
1123 irte->dlvry_mode = apic->delivery_mode;
1124 irte->vector = vector;
1125 irte->dest_id = IRTE_DEST(dest);
1126 irte->redir_hint = 1;
1127 }
1128
1129 struct irq_remap_ops intel_irq_remap_ops = {
1130 .prepare = intel_prepare_irq_remapping,
1131 .enable = intel_enable_irq_remapping,
1132 .disable = disable_irq_remapping,
1133 .reenable = reenable_irq_remapping,
1134 .enable_faulting = enable_drhd_fault_handling,
1135 };
1136
intel_ir_reconfigure_irte(struct irq_data * irqd,bool force)1137 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
1138 {
1139 struct intel_ir_data *ir_data = irqd->chip_data;
1140 struct irte *irte = &ir_data->irte_entry;
1141 struct irq_cfg *cfg = irqd_cfg(irqd);
1142
1143 /*
1144 * Atomically updates the IRTE with the new destination, vector
1145 * and flushes the interrupt entry cache.
1146 */
1147 irte->vector = cfg->vector;
1148 irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1149
1150 /* Update the hardware only if the interrupt is in remapped mode. */
1151 if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1152 modify_irte(&ir_data->irq_2_iommu, irte);
1153 }
1154
1155 /*
1156 * Migrate the IO-APIC irq in the presence of intr-remapping.
1157 *
1158 * For both level and edge triggered, irq migration is a simple atomic
1159 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1160 *
1161 * For level triggered, we eliminate the io-apic RTE modification (with the
1162 * updated vector information), by using a virtual vector (io-apic pin number).
1163 * Real vector that is used for interrupting cpu will be coming from
1164 * the interrupt-remapping table entry.
1165 *
1166 * As the migration is a simple atomic update of IRTE, the same mechanism
1167 * is used to migrate MSI irq's in the presence of interrupt-remapping.
1168 */
1169 static int
intel_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)1170 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1171 bool force)
1172 {
1173 struct irq_data *parent = data->parent_data;
1174 struct irq_cfg *cfg = irqd_cfg(data);
1175 int ret;
1176
1177 ret = parent->chip->irq_set_affinity(parent, mask, force);
1178 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1179 return ret;
1180
1181 intel_ir_reconfigure_irte(data, false);
1182 /*
1183 * After this point, all the interrupts will start arriving
1184 * at the new destination. So, time to cleanup the previous
1185 * vector allocation.
1186 */
1187 send_cleanup_vector(cfg);
1188
1189 return IRQ_SET_MASK_OK_DONE;
1190 }
1191
intel_ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)1192 static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1193 struct msi_msg *msg)
1194 {
1195 struct intel_ir_data *ir_data = irq_data->chip_data;
1196
1197 *msg = ir_data->msi_entry;
1198 }
1199
intel_ir_set_vcpu_affinity(struct irq_data * data,void * info)1200 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1201 {
1202 struct intel_ir_data *ir_data = data->chip_data;
1203 struct vcpu_data *vcpu_pi_info = info;
1204
1205 /* stop posting interrupts, back to remapping mode */
1206 if (!vcpu_pi_info) {
1207 modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1208 } else {
1209 struct irte irte_pi;
1210
1211 /*
1212 * We are not caching the posted interrupt entry. We
1213 * copy the data from the remapped entry and modify
1214 * the fields which are relevant for posted mode. The
1215 * cached remapped entry is used for switching back to
1216 * remapped mode.
1217 */
1218 memset(&irte_pi, 0, sizeof(irte_pi));
1219 dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1220
1221 /* Update the posted mode fields */
1222 irte_pi.p_pst = 1;
1223 irte_pi.p_urgent = 0;
1224 irte_pi.p_vector = vcpu_pi_info->vector;
1225 irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1226 (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1227 irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1228 ~(-1UL << PDA_HIGH_BIT);
1229
1230 modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1231 }
1232
1233 return 0;
1234 }
1235
1236 static struct irq_chip intel_ir_chip = {
1237 .name = "INTEL-IR",
1238 .irq_ack = apic_ack_irq,
1239 .irq_set_affinity = intel_ir_set_affinity,
1240 .irq_compose_msi_msg = intel_ir_compose_msi_msg,
1241 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity,
1242 };
1243
fill_msi_msg(struct msi_msg * msg,u32 index,u32 subhandle)1244 static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle)
1245 {
1246 memset(msg, 0, sizeof(*msg));
1247
1248 msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW;
1249 msg->arch_addr_lo.dmar_subhandle_valid = true;
1250 msg->arch_addr_lo.dmar_format = true;
1251 msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF;
1252 msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000);
1253
1254 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
1255
1256 msg->arch_data.dmar_subhandle = subhandle;
1257 }
1258
intel_irq_remapping_prepare_irte(struct intel_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int index,int sub_handle)1259 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1260 struct irq_cfg *irq_cfg,
1261 struct irq_alloc_info *info,
1262 int index, int sub_handle)
1263 {
1264 struct irte *irte = &data->irte_entry;
1265
1266 prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1267
1268 switch (info->type) {
1269 case X86_IRQ_ALLOC_TYPE_IOAPIC:
1270 /* Set source-id of interrupt request */
1271 set_ioapic_sid(irte, info->devid);
1272 apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1273 info->devid, irte->present, irte->fpd,
1274 irte->dst_mode, irte->redir_hint,
1275 irte->trigger_mode, irte->dlvry_mode,
1276 irte->avail, irte->vector, irte->dest_id,
1277 irte->sid, irte->sq, irte->svt);
1278 sub_handle = info->ioapic.pin;
1279 break;
1280 case X86_IRQ_ALLOC_TYPE_HPET:
1281 set_hpet_sid(irte, info->devid);
1282 break;
1283 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
1284 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
1285 set_msi_sid(irte,
1286 pci_real_dma_dev(msi_desc_to_pci_dev(info->desc)));
1287 break;
1288 default:
1289 BUG_ON(1);
1290 break;
1291 }
1292 fill_msi_msg(&data->msi_entry, index, sub_handle);
1293 }
1294
intel_free_irq_resources(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1295 static void intel_free_irq_resources(struct irq_domain *domain,
1296 unsigned int virq, unsigned int nr_irqs)
1297 {
1298 struct irq_data *irq_data;
1299 struct intel_ir_data *data;
1300 struct irq_2_iommu *irq_iommu;
1301 unsigned long flags;
1302 int i;
1303 for (i = 0; i < nr_irqs; i++) {
1304 irq_data = irq_domain_get_irq_data(domain, virq + i);
1305 if (irq_data && irq_data->chip_data) {
1306 data = irq_data->chip_data;
1307 irq_iommu = &data->irq_2_iommu;
1308 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1309 clear_entries(irq_iommu);
1310 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1311 irq_domain_reset_irq_data(irq_data);
1312 kfree(data);
1313 }
1314 }
1315 }
1316
intel_irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1317 static int intel_irq_remapping_alloc(struct irq_domain *domain,
1318 unsigned int virq, unsigned int nr_irqs,
1319 void *arg)
1320 {
1321 struct intel_iommu *iommu = domain->host_data;
1322 struct irq_alloc_info *info = arg;
1323 struct intel_ir_data *data, *ird;
1324 struct irq_data *irq_data;
1325 struct irq_cfg *irq_cfg;
1326 int i, ret, index;
1327
1328 if (!info || !iommu)
1329 return -EINVAL;
1330 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
1331 return -EINVAL;
1332
1333 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1334 if (ret < 0)
1335 return ret;
1336
1337 ret = -ENOMEM;
1338 data = kzalloc(sizeof(*data), GFP_KERNEL);
1339 if (!data)
1340 goto out_free_parent;
1341
1342 down_read(&dmar_global_lock);
1343 index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1344 up_read(&dmar_global_lock);
1345 if (index < 0) {
1346 pr_warn("Failed to allocate IRTE\n");
1347 kfree(data);
1348 goto out_free_parent;
1349 }
1350
1351 for (i = 0; i < nr_irqs; i++) {
1352 irq_data = irq_domain_get_irq_data(domain, virq + i);
1353 irq_cfg = irqd_cfg(irq_data);
1354 if (!irq_data || !irq_cfg) {
1355 if (!i)
1356 kfree(data);
1357 ret = -EINVAL;
1358 goto out_free_data;
1359 }
1360
1361 if (i > 0) {
1362 ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1363 if (!ird)
1364 goto out_free_data;
1365 /* Initialize the common data */
1366 ird->irq_2_iommu = data->irq_2_iommu;
1367 ird->irq_2_iommu.sub_handle = i;
1368 } else {
1369 ird = data;
1370 }
1371
1372 irq_data->hwirq = (index << 16) + i;
1373 irq_data->chip_data = ird;
1374 irq_data->chip = &intel_ir_chip;
1375 intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1376 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
1377 }
1378 return 0;
1379
1380 out_free_data:
1381 intel_free_irq_resources(domain, virq, i);
1382 out_free_parent:
1383 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1384 return ret;
1385 }
1386
intel_irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1387 static void intel_irq_remapping_free(struct irq_domain *domain,
1388 unsigned int virq, unsigned int nr_irqs)
1389 {
1390 intel_free_irq_resources(domain, virq, nr_irqs);
1391 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1392 }
1393
intel_irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)1394 static int intel_irq_remapping_activate(struct irq_domain *domain,
1395 struct irq_data *irq_data, bool reserve)
1396 {
1397 intel_ir_reconfigure_irte(irq_data, true);
1398 return 0;
1399 }
1400
intel_irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)1401 static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1402 struct irq_data *irq_data)
1403 {
1404 struct intel_ir_data *data = irq_data->chip_data;
1405 struct irte entry;
1406
1407 memset(&entry, 0, sizeof(entry));
1408 modify_irte(&data->irq_2_iommu, &entry);
1409 }
1410
intel_irq_remapping_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)1411 static int intel_irq_remapping_select(struct irq_domain *d,
1412 struct irq_fwspec *fwspec,
1413 enum irq_domain_bus_token bus_token)
1414 {
1415 struct intel_iommu *iommu = NULL;
1416
1417 if (x86_fwspec_is_ioapic(fwspec))
1418 iommu = map_ioapic_to_iommu(fwspec->param[0]);
1419 else if (x86_fwspec_is_hpet(fwspec))
1420 iommu = map_hpet_to_iommu(fwspec->param[0]);
1421
1422 return iommu && d == iommu->ir_domain;
1423 }
1424
1425 static const struct irq_domain_ops intel_ir_domain_ops = {
1426 .select = intel_irq_remapping_select,
1427 .alloc = intel_irq_remapping_alloc,
1428 .free = intel_irq_remapping_free,
1429 .activate = intel_irq_remapping_activate,
1430 .deactivate = intel_irq_remapping_deactivate,
1431 };
1432
1433 static const struct msi_parent_ops dmar_msi_parent_ops = {
1434 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED |
1435 MSI_FLAG_MULTI_PCI_MSI |
1436 MSI_FLAG_PCI_IMS,
1437 .prefix = "IR-",
1438 .init_dev_msi_info = msi_parent_init_dev_msi_info,
1439 };
1440
1441 static const struct msi_parent_ops virt_dmar_msi_parent_ops = {
1442 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED |
1443 MSI_FLAG_MULTI_PCI_MSI,
1444 .prefix = "vIR-",
1445 .init_dev_msi_info = msi_parent_init_dev_msi_info,
1446 };
1447
1448 /*
1449 * Support of Interrupt Remapping Unit Hotplug
1450 */
dmar_ir_add(struct dmar_drhd_unit * dmaru,struct intel_iommu * iommu)1451 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1452 {
1453 int ret;
1454 int eim = x2apic_enabled();
1455
1456 ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_IRQR, iommu);
1457 if (ret)
1458 return ret;
1459
1460 if (eim && !ecap_eim_support(iommu->ecap)) {
1461 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1462 iommu->reg_phys, iommu->ecap);
1463 return -ENODEV;
1464 }
1465
1466 if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1467 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1468 iommu->reg_phys);
1469 return -ENODEV;
1470 }
1471
1472 /* TODO: check all IOAPICs are covered by IOMMU */
1473
1474 /* Setup Interrupt-remapping now. */
1475 ret = intel_setup_irq_remapping(iommu);
1476 if (ret) {
1477 pr_err("Failed to setup irq remapping for %s\n",
1478 iommu->name);
1479 intel_teardown_irq_remapping(iommu);
1480 ir_remove_ioapic_hpet_scope(iommu);
1481 } else {
1482 iommu_enable_irq_remapping(iommu);
1483 }
1484
1485 return ret;
1486 }
1487
dmar_ir_hotplug(struct dmar_drhd_unit * dmaru,bool insert)1488 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1489 {
1490 int ret = 0;
1491 struct intel_iommu *iommu = dmaru->iommu;
1492
1493 if (!irq_remapping_enabled)
1494 return 0;
1495 if (iommu == NULL)
1496 return -EINVAL;
1497 if (!ecap_ir_support(iommu->ecap))
1498 return 0;
1499 if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1500 !cap_pi_support(iommu->cap))
1501 return -EBUSY;
1502
1503 if (insert) {
1504 if (!iommu->ir_table)
1505 ret = dmar_ir_add(dmaru, iommu);
1506 } else {
1507 if (iommu->ir_table) {
1508 if (!bitmap_empty(iommu->ir_table->bitmap,
1509 INTR_REMAP_TABLE_ENTRIES)) {
1510 ret = -EBUSY;
1511 } else {
1512 iommu_disable_irq_remapping(iommu);
1513 intel_teardown_irq_remapping(iommu);
1514 ir_remove_ioapic_hpet_scope(iommu);
1515 }
1516 }
1517 }
1518
1519 return ret;
1520 }
1521