1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics RDMA host code.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/blk-integrity.h>
17 #include <linux/types.h>
18 #include <linux/list.h>
19 #include <linux/mutex.h>
20 #include <linux/scatterlist.h>
21 #include <linux/nvme.h>
22 #include <asm/unaligned.h>
23
24 #include <rdma/ib_verbs.h>
25 #include <rdma/rdma_cm.h>
26 #include <linux/nvme-rdma.h>
27
28 #include "nvme.h"
29 #include "fabrics.h"
30
31
32 #define NVME_RDMA_CM_TIMEOUT_MS 3000 /* 3 second */
33
34 #define NVME_RDMA_MAX_SEGMENTS 256
35
36 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4
37
38 #define NVME_RDMA_DATA_SGL_SIZE \
39 (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
40 #define NVME_RDMA_METADATA_SGL_SIZE \
41 (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
42
43 struct nvme_rdma_device {
44 struct ib_device *dev;
45 struct ib_pd *pd;
46 struct kref ref;
47 struct list_head entry;
48 unsigned int num_inline_segments;
49 };
50
51 struct nvme_rdma_qe {
52 struct ib_cqe cqe;
53 void *data;
54 u64 dma;
55 };
56
57 struct nvme_rdma_sgl {
58 int nents;
59 struct sg_table sg_table;
60 };
61
62 struct nvme_rdma_queue;
63 struct nvme_rdma_request {
64 struct nvme_request req;
65 struct ib_mr *mr;
66 struct nvme_rdma_qe sqe;
67 union nvme_result result;
68 __le16 status;
69 refcount_t ref;
70 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
71 u32 num_sge;
72 struct ib_reg_wr reg_wr;
73 struct ib_cqe reg_cqe;
74 struct nvme_rdma_queue *queue;
75 struct nvme_rdma_sgl data_sgl;
76 struct nvme_rdma_sgl *metadata_sgl;
77 bool use_sig_mr;
78 };
79
80 enum nvme_rdma_queue_flags {
81 NVME_RDMA_Q_ALLOCATED = 0,
82 NVME_RDMA_Q_LIVE = 1,
83 NVME_RDMA_Q_TR_READY = 2,
84 };
85
86 struct nvme_rdma_queue {
87 struct nvme_rdma_qe *rsp_ring;
88 int queue_size;
89 size_t cmnd_capsule_len;
90 struct nvme_rdma_ctrl *ctrl;
91 struct nvme_rdma_device *device;
92 struct ib_cq *ib_cq;
93 struct ib_qp *qp;
94
95 unsigned long flags;
96 struct rdma_cm_id *cm_id;
97 int cm_error;
98 struct completion cm_done;
99 bool pi_support;
100 int cq_size;
101 struct mutex queue_lock;
102 };
103
104 struct nvme_rdma_ctrl {
105 /* read only in the hot path */
106 struct nvme_rdma_queue *queues;
107
108 /* other member variables */
109 struct blk_mq_tag_set tag_set;
110 struct work_struct err_work;
111
112 struct nvme_rdma_qe async_event_sqe;
113
114 struct delayed_work reconnect_work;
115
116 struct list_head list;
117
118 struct blk_mq_tag_set admin_tag_set;
119 struct nvme_rdma_device *device;
120
121 u32 max_fr_pages;
122
123 struct sockaddr_storage addr;
124 struct sockaddr_storage src_addr;
125
126 struct nvme_ctrl ctrl;
127 bool use_inline_data;
128 u32 io_queues[HCTX_MAX_TYPES];
129 };
130
to_rdma_ctrl(struct nvme_ctrl * ctrl)131 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
132 {
133 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
134 }
135
136 static LIST_HEAD(device_list);
137 static DEFINE_MUTEX(device_list_mutex);
138
139 static LIST_HEAD(nvme_rdma_ctrl_list);
140 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
141
142 /*
143 * Disabling this option makes small I/O goes faster, but is fundamentally
144 * unsafe. With it turned off we will have to register a global rkey that
145 * allows read and write access to all physical memory.
146 */
147 static bool register_always = true;
148 module_param(register_always, bool, 0444);
149 MODULE_PARM_DESC(register_always,
150 "Use memory registration even for contiguous memory regions");
151
152 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
153 struct rdma_cm_event *event);
154 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
155 static void nvme_rdma_complete_rq(struct request *rq);
156
157 static const struct blk_mq_ops nvme_rdma_mq_ops;
158 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
159
nvme_rdma_queue_idx(struct nvme_rdma_queue * queue)160 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
161 {
162 return queue - queue->ctrl->queues;
163 }
164
nvme_rdma_poll_queue(struct nvme_rdma_queue * queue)165 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
166 {
167 return nvme_rdma_queue_idx(queue) >
168 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
169 queue->ctrl->io_queues[HCTX_TYPE_READ];
170 }
171
nvme_rdma_inline_data_size(struct nvme_rdma_queue * queue)172 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
173 {
174 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
175 }
176
nvme_rdma_free_qe(struct ib_device * ibdev,struct nvme_rdma_qe * qe,size_t capsule_size,enum dma_data_direction dir)177 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
178 size_t capsule_size, enum dma_data_direction dir)
179 {
180 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
181 kfree(qe->data);
182 }
183
nvme_rdma_alloc_qe(struct ib_device * ibdev,struct nvme_rdma_qe * qe,size_t capsule_size,enum dma_data_direction dir)184 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
185 size_t capsule_size, enum dma_data_direction dir)
186 {
187 qe->data = kzalloc(capsule_size, GFP_KERNEL);
188 if (!qe->data)
189 return -ENOMEM;
190
191 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
192 if (ib_dma_mapping_error(ibdev, qe->dma)) {
193 kfree(qe->data);
194 qe->data = NULL;
195 return -ENOMEM;
196 }
197
198 return 0;
199 }
200
nvme_rdma_free_ring(struct ib_device * ibdev,struct nvme_rdma_qe * ring,size_t ib_queue_size,size_t capsule_size,enum dma_data_direction dir)201 static void nvme_rdma_free_ring(struct ib_device *ibdev,
202 struct nvme_rdma_qe *ring, size_t ib_queue_size,
203 size_t capsule_size, enum dma_data_direction dir)
204 {
205 int i;
206
207 for (i = 0; i < ib_queue_size; i++)
208 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
209 kfree(ring);
210 }
211
nvme_rdma_alloc_ring(struct ib_device * ibdev,size_t ib_queue_size,size_t capsule_size,enum dma_data_direction dir)212 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
213 size_t ib_queue_size, size_t capsule_size,
214 enum dma_data_direction dir)
215 {
216 struct nvme_rdma_qe *ring;
217 int i;
218
219 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
220 if (!ring)
221 return NULL;
222
223 /*
224 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
225 * lifetime. It's safe, since any chage in the underlying RDMA device
226 * will issue error recovery and queue re-creation.
227 */
228 for (i = 0; i < ib_queue_size; i++) {
229 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
230 goto out_free_ring;
231 }
232
233 return ring;
234
235 out_free_ring:
236 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
237 return NULL;
238 }
239
nvme_rdma_qp_event(struct ib_event * event,void * context)240 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
241 {
242 pr_debug("QP event %s (%d)\n",
243 ib_event_msg(event->event), event->event);
244
245 }
246
nvme_rdma_wait_for_cm(struct nvme_rdma_queue * queue)247 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
248 {
249 int ret;
250
251 ret = wait_for_completion_interruptible(&queue->cm_done);
252 if (ret)
253 return ret;
254 WARN_ON_ONCE(queue->cm_error > 0);
255 return queue->cm_error;
256 }
257
nvme_rdma_create_qp(struct nvme_rdma_queue * queue,const int factor)258 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
259 {
260 struct nvme_rdma_device *dev = queue->device;
261 struct ib_qp_init_attr init_attr;
262 int ret;
263
264 memset(&init_attr, 0, sizeof(init_attr));
265 init_attr.event_handler = nvme_rdma_qp_event;
266 /* +1 for drain */
267 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
268 /* +1 for drain */
269 init_attr.cap.max_recv_wr = queue->queue_size + 1;
270 init_attr.cap.max_recv_sge = 1;
271 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
272 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
273 init_attr.qp_type = IB_QPT_RC;
274 init_attr.send_cq = queue->ib_cq;
275 init_attr.recv_cq = queue->ib_cq;
276 if (queue->pi_support)
277 init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
278 init_attr.qp_context = queue;
279
280 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
281
282 queue->qp = queue->cm_id->qp;
283 return ret;
284 }
285
nvme_rdma_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)286 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
287 struct request *rq, unsigned int hctx_idx)
288 {
289 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
290
291 kfree(req->sqe.data);
292 }
293
nvme_rdma_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)294 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
295 struct request *rq, unsigned int hctx_idx,
296 unsigned int numa_node)
297 {
298 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
299 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
300 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
301 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
302
303 nvme_req(rq)->ctrl = &ctrl->ctrl;
304 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
305 if (!req->sqe.data)
306 return -ENOMEM;
307
308 /* metadata nvme_rdma_sgl struct is located after command's data SGL */
309 if (queue->pi_support)
310 req->metadata_sgl = (void *)nvme_req(rq) +
311 sizeof(struct nvme_rdma_request) +
312 NVME_RDMA_DATA_SGL_SIZE;
313
314 req->queue = queue;
315 nvme_req(rq)->cmd = req->sqe.data;
316
317 return 0;
318 }
319
nvme_rdma_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)320 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
321 unsigned int hctx_idx)
322 {
323 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
324 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
325
326 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
327
328 hctx->driver_data = queue;
329 return 0;
330 }
331
nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)332 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
333 unsigned int hctx_idx)
334 {
335 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
336 struct nvme_rdma_queue *queue = &ctrl->queues[0];
337
338 BUG_ON(hctx_idx != 0);
339
340 hctx->driver_data = queue;
341 return 0;
342 }
343
nvme_rdma_free_dev(struct kref * ref)344 static void nvme_rdma_free_dev(struct kref *ref)
345 {
346 struct nvme_rdma_device *ndev =
347 container_of(ref, struct nvme_rdma_device, ref);
348
349 mutex_lock(&device_list_mutex);
350 list_del(&ndev->entry);
351 mutex_unlock(&device_list_mutex);
352
353 ib_dealloc_pd(ndev->pd);
354 kfree(ndev);
355 }
356
nvme_rdma_dev_put(struct nvme_rdma_device * dev)357 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
358 {
359 kref_put(&dev->ref, nvme_rdma_free_dev);
360 }
361
nvme_rdma_dev_get(struct nvme_rdma_device * dev)362 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
363 {
364 return kref_get_unless_zero(&dev->ref);
365 }
366
367 static struct nvme_rdma_device *
nvme_rdma_find_get_device(struct rdma_cm_id * cm_id)368 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
369 {
370 struct nvme_rdma_device *ndev;
371
372 mutex_lock(&device_list_mutex);
373 list_for_each_entry(ndev, &device_list, entry) {
374 if (ndev->dev->node_guid == cm_id->device->node_guid &&
375 nvme_rdma_dev_get(ndev))
376 goto out_unlock;
377 }
378
379 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
380 if (!ndev)
381 goto out_err;
382
383 ndev->dev = cm_id->device;
384 kref_init(&ndev->ref);
385
386 ndev->pd = ib_alloc_pd(ndev->dev,
387 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
388 if (IS_ERR(ndev->pd))
389 goto out_free_dev;
390
391 if (!(ndev->dev->attrs.device_cap_flags &
392 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
393 dev_err(&ndev->dev->dev,
394 "Memory registrations not supported.\n");
395 goto out_free_pd;
396 }
397
398 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
399 ndev->dev->attrs.max_send_sge - 1);
400 list_add(&ndev->entry, &device_list);
401 out_unlock:
402 mutex_unlock(&device_list_mutex);
403 return ndev;
404
405 out_free_pd:
406 ib_dealloc_pd(ndev->pd);
407 out_free_dev:
408 kfree(ndev);
409 out_err:
410 mutex_unlock(&device_list_mutex);
411 return NULL;
412 }
413
nvme_rdma_free_cq(struct nvme_rdma_queue * queue)414 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
415 {
416 if (nvme_rdma_poll_queue(queue))
417 ib_free_cq(queue->ib_cq);
418 else
419 ib_cq_pool_put(queue->ib_cq, queue->cq_size);
420 }
421
nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue * queue)422 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
423 {
424 struct nvme_rdma_device *dev;
425 struct ib_device *ibdev;
426
427 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
428 return;
429
430 dev = queue->device;
431 ibdev = dev->dev;
432
433 if (queue->pi_support)
434 ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
435 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
436
437 /*
438 * The cm_id object might have been destroyed during RDMA connection
439 * establishment error flow to avoid getting other cma events, thus
440 * the destruction of the QP shouldn't use rdma_cm API.
441 */
442 ib_destroy_qp(queue->qp);
443 nvme_rdma_free_cq(queue);
444
445 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
446 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
447
448 nvme_rdma_dev_put(dev);
449 }
450
nvme_rdma_get_max_fr_pages(struct ib_device * ibdev,bool pi_support)451 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
452 {
453 u32 max_page_list_len;
454
455 if (pi_support)
456 max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
457 else
458 max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
459
460 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
461 }
462
nvme_rdma_create_cq(struct ib_device * ibdev,struct nvme_rdma_queue * queue)463 static int nvme_rdma_create_cq(struct ib_device *ibdev,
464 struct nvme_rdma_queue *queue)
465 {
466 int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
467 enum ib_poll_context poll_ctx;
468
469 /*
470 * Spread I/O queues completion vectors according their queue index.
471 * Admin queues can always go on completion vector 0.
472 */
473 comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
474
475 /* Polling queues need direct cq polling context */
476 if (nvme_rdma_poll_queue(queue)) {
477 poll_ctx = IB_POLL_DIRECT;
478 queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
479 comp_vector, poll_ctx);
480 } else {
481 poll_ctx = IB_POLL_SOFTIRQ;
482 queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
483 comp_vector, poll_ctx);
484 }
485
486 if (IS_ERR(queue->ib_cq)) {
487 ret = PTR_ERR(queue->ib_cq);
488 return ret;
489 }
490
491 return 0;
492 }
493
nvme_rdma_create_queue_ib(struct nvme_rdma_queue * queue)494 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
495 {
496 struct ib_device *ibdev;
497 const int send_wr_factor = 3; /* MR, SEND, INV */
498 const int cq_factor = send_wr_factor + 1; /* + RECV */
499 int ret, pages_per_mr;
500
501 queue->device = nvme_rdma_find_get_device(queue->cm_id);
502 if (!queue->device) {
503 dev_err(queue->cm_id->device->dev.parent,
504 "no client data found!\n");
505 return -ECONNREFUSED;
506 }
507 ibdev = queue->device->dev;
508
509 /* +1 for ib_stop_cq */
510 queue->cq_size = cq_factor * queue->queue_size + 1;
511
512 ret = nvme_rdma_create_cq(ibdev, queue);
513 if (ret)
514 goto out_put_dev;
515
516 ret = nvme_rdma_create_qp(queue, send_wr_factor);
517 if (ret)
518 goto out_destroy_ib_cq;
519
520 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
521 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
522 if (!queue->rsp_ring) {
523 ret = -ENOMEM;
524 goto out_destroy_qp;
525 }
526
527 /*
528 * Currently we don't use SG_GAPS MR's so if the first entry is
529 * misaligned we'll end up using two entries for a single data page,
530 * so one additional entry is required.
531 */
532 pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
533 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
534 queue->queue_size,
535 IB_MR_TYPE_MEM_REG,
536 pages_per_mr, 0);
537 if (ret) {
538 dev_err(queue->ctrl->ctrl.device,
539 "failed to initialize MR pool sized %d for QID %d\n",
540 queue->queue_size, nvme_rdma_queue_idx(queue));
541 goto out_destroy_ring;
542 }
543
544 if (queue->pi_support) {
545 ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
546 queue->queue_size, IB_MR_TYPE_INTEGRITY,
547 pages_per_mr, pages_per_mr);
548 if (ret) {
549 dev_err(queue->ctrl->ctrl.device,
550 "failed to initialize PI MR pool sized %d for QID %d\n",
551 queue->queue_size, nvme_rdma_queue_idx(queue));
552 goto out_destroy_mr_pool;
553 }
554 }
555
556 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
557
558 return 0;
559
560 out_destroy_mr_pool:
561 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
562 out_destroy_ring:
563 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
564 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
565 out_destroy_qp:
566 rdma_destroy_qp(queue->cm_id);
567 out_destroy_ib_cq:
568 nvme_rdma_free_cq(queue);
569 out_put_dev:
570 nvme_rdma_dev_put(queue->device);
571 return ret;
572 }
573
nvme_rdma_alloc_queue(struct nvme_rdma_ctrl * ctrl,int idx,size_t queue_size)574 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
575 int idx, size_t queue_size)
576 {
577 struct nvme_rdma_queue *queue;
578 struct sockaddr *src_addr = NULL;
579 int ret;
580
581 queue = &ctrl->queues[idx];
582 mutex_init(&queue->queue_lock);
583 queue->ctrl = ctrl;
584 if (idx && ctrl->ctrl.max_integrity_segments)
585 queue->pi_support = true;
586 else
587 queue->pi_support = false;
588 init_completion(&queue->cm_done);
589
590 if (idx > 0)
591 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
592 else
593 queue->cmnd_capsule_len = sizeof(struct nvme_command);
594
595 queue->queue_size = queue_size;
596
597 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
598 RDMA_PS_TCP, IB_QPT_RC);
599 if (IS_ERR(queue->cm_id)) {
600 dev_info(ctrl->ctrl.device,
601 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
602 ret = PTR_ERR(queue->cm_id);
603 goto out_destroy_mutex;
604 }
605
606 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
607 src_addr = (struct sockaddr *)&ctrl->src_addr;
608
609 queue->cm_error = -ETIMEDOUT;
610 ret = rdma_resolve_addr(queue->cm_id, src_addr,
611 (struct sockaddr *)&ctrl->addr,
612 NVME_RDMA_CM_TIMEOUT_MS);
613 if (ret) {
614 dev_info(ctrl->ctrl.device,
615 "rdma_resolve_addr failed (%d).\n", ret);
616 goto out_destroy_cm_id;
617 }
618
619 ret = nvme_rdma_wait_for_cm(queue);
620 if (ret) {
621 dev_info(ctrl->ctrl.device,
622 "rdma connection establishment failed (%d)\n", ret);
623 goto out_destroy_cm_id;
624 }
625
626 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
627
628 return 0;
629
630 out_destroy_cm_id:
631 rdma_destroy_id(queue->cm_id);
632 nvme_rdma_destroy_queue_ib(queue);
633 out_destroy_mutex:
634 mutex_destroy(&queue->queue_lock);
635 return ret;
636 }
637
__nvme_rdma_stop_queue(struct nvme_rdma_queue * queue)638 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
639 {
640 rdma_disconnect(queue->cm_id);
641 ib_drain_qp(queue->qp);
642 }
643
nvme_rdma_stop_queue(struct nvme_rdma_queue * queue)644 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
645 {
646 mutex_lock(&queue->queue_lock);
647 if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
648 __nvme_rdma_stop_queue(queue);
649 mutex_unlock(&queue->queue_lock);
650 }
651
nvme_rdma_free_queue(struct nvme_rdma_queue * queue)652 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
653 {
654 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
655 return;
656
657 rdma_destroy_id(queue->cm_id);
658 nvme_rdma_destroy_queue_ib(queue);
659 mutex_destroy(&queue->queue_lock);
660 }
661
nvme_rdma_free_io_queues(struct nvme_rdma_ctrl * ctrl)662 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
663 {
664 int i;
665
666 for (i = 1; i < ctrl->ctrl.queue_count; i++)
667 nvme_rdma_free_queue(&ctrl->queues[i]);
668 }
669
nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl * ctrl)670 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
671 {
672 int i;
673
674 for (i = 1; i < ctrl->ctrl.queue_count; i++)
675 nvme_rdma_stop_queue(&ctrl->queues[i]);
676 }
677
nvme_rdma_start_queue(struct nvme_rdma_ctrl * ctrl,int idx)678 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
679 {
680 struct nvme_rdma_queue *queue = &ctrl->queues[idx];
681 int ret;
682
683 if (idx)
684 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
685 else
686 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
687
688 if (!ret) {
689 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
690 } else {
691 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
692 __nvme_rdma_stop_queue(queue);
693 dev_info(ctrl->ctrl.device,
694 "failed to connect queue: %d ret=%d\n", idx, ret);
695 }
696 return ret;
697 }
698
nvme_rdma_start_io_queues(struct nvme_rdma_ctrl * ctrl,int first,int last)699 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl,
700 int first, int last)
701 {
702 int i, ret = 0;
703
704 for (i = first; i < last; i++) {
705 ret = nvme_rdma_start_queue(ctrl, i);
706 if (ret)
707 goto out_stop_queues;
708 }
709
710 return 0;
711
712 out_stop_queues:
713 for (i--; i >= first; i--)
714 nvme_rdma_stop_queue(&ctrl->queues[i]);
715 return ret;
716 }
717
nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl * ctrl)718 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
719 {
720 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
721 struct ib_device *ibdev = ctrl->device->dev;
722 unsigned int nr_io_queues, nr_default_queues;
723 unsigned int nr_read_queues, nr_poll_queues;
724 int i, ret;
725
726 nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
727 min(opts->nr_io_queues, num_online_cpus()));
728 nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors,
729 min(opts->nr_write_queues, num_online_cpus()));
730 nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
731 nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
732
733 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
734 if (ret)
735 return ret;
736
737 if (nr_io_queues == 0) {
738 dev_err(ctrl->ctrl.device,
739 "unable to set any I/O queues\n");
740 return -ENOMEM;
741 }
742
743 ctrl->ctrl.queue_count = nr_io_queues + 1;
744 dev_info(ctrl->ctrl.device,
745 "creating %d I/O queues.\n", nr_io_queues);
746
747 if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
748 /*
749 * separate read/write queues
750 * hand out dedicated default queues only after we have
751 * sufficient read queues.
752 */
753 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
754 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
755 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
756 min(nr_default_queues, nr_io_queues);
757 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
758 } else {
759 /*
760 * shared read/write queues
761 * either no write queues were requested, or we don't have
762 * sufficient queue count to have dedicated default queues.
763 */
764 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
765 min(nr_read_queues, nr_io_queues);
766 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
767 }
768
769 if (opts->nr_poll_queues && nr_io_queues) {
770 /* map dedicated poll queues only if we have queues left */
771 ctrl->io_queues[HCTX_TYPE_POLL] =
772 min(nr_poll_queues, nr_io_queues);
773 }
774
775 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
776 ret = nvme_rdma_alloc_queue(ctrl, i,
777 ctrl->ctrl.sqsize + 1);
778 if (ret)
779 goto out_free_queues;
780 }
781
782 return 0;
783
784 out_free_queues:
785 for (i--; i >= 1; i--)
786 nvme_rdma_free_queue(&ctrl->queues[i]);
787
788 return ret;
789 }
790
nvme_rdma_alloc_tag_set(struct nvme_ctrl * ctrl)791 static int nvme_rdma_alloc_tag_set(struct nvme_ctrl *ctrl)
792 {
793 unsigned int cmd_size = sizeof(struct nvme_rdma_request) +
794 NVME_RDMA_DATA_SGL_SIZE;
795
796 if (ctrl->max_integrity_segments)
797 cmd_size += sizeof(struct nvme_rdma_sgl) +
798 NVME_RDMA_METADATA_SGL_SIZE;
799
800 return nvme_alloc_io_tag_set(ctrl, &to_rdma_ctrl(ctrl)->tag_set,
801 &nvme_rdma_mq_ops,
802 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
803 cmd_size);
804 }
805
nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl * ctrl)806 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
807 {
808 if (ctrl->async_event_sqe.data) {
809 cancel_work_sync(&ctrl->ctrl.async_event_work);
810 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
811 sizeof(struct nvme_command), DMA_TO_DEVICE);
812 ctrl->async_event_sqe.data = NULL;
813 }
814 nvme_rdma_free_queue(&ctrl->queues[0]);
815 }
816
nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl * ctrl,bool new)817 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
818 bool new)
819 {
820 bool pi_capable = false;
821 int error;
822
823 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
824 if (error)
825 return error;
826
827 ctrl->device = ctrl->queues[0].device;
828 ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
829
830 /* T10-PI support */
831 if (ctrl->device->dev->attrs.kernel_cap_flags &
832 IBK_INTEGRITY_HANDOVER)
833 pi_capable = true;
834
835 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
836 pi_capable);
837
838 /*
839 * Bind the async event SQE DMA mapping to the admin queue lifetime.
840 * It's safe, since any chage in the underlying RDMA device will issue
841 * error recovery and queue re-creation.
842 */
843 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
844 sizeof(struct nvme_command), DMA_TO_DEVICE);
845 if (error)
846 goto out_free_queue;
847
848 if (new) {
849 error = nvme_alloc_admin_tag_set(&ctrl->ctrl,
850 &ctrl->admin_tag_set, &nvme_rdma_admin_mq_ops,
851 sizeof(struct nvme_rdma_request) +
852 NVME_RDMA_DATA_SGL_SIZE);
853 if (error)
854 goto out_free_async_qe;
855
856 }
857
858 error = nvme_rdma_start_queue(ctrl, 0);
859 if (error)
860 goto out_remove_admin_tag_set;
861
862 error = nvme_enable_ctrl(&ctrl->ctrl);
863 if (error)
864 goto out_stop_queue;
865
866 ctrl->ctrl.max_segments = ctrl->max_fr_pages;
867 ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
868 if (pi_capable)
869 ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
870 else
871 ctrl->ctrl.max_integrity_segments = 0;
872
873 nvme_unquiesce_admin_queue(&ctrl->ctrl);
874
875 error = nvme_init_ctrl_finish(&ctrl->ctrl, false);
876 if (error)
877 goto out_quiesce_queue;
878
879 return 0;
880
881 out_quiesce_queue:
882 nvme_quiesce_admin_queue(&ctrl->ctrl);
883 blk_sync_queue(ctrl->ctrl.admin_q);
884 out_stop_queue:
885 nvme_rdma_stop_queue(&ctrl->queues[0]);
886 nvme_cancel_admin_tagset(&ctrl->ctrl);
887 out_remove_admin_tag_set:
888 if (new)
889 nvme_remove_admin_tag_set(&ctrl->ctrl);
890 out_free_async_qe:
891 if (ctrl->async_event_sqe.data) {
892 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
893 sizeof(struct nvme_command), DMA_TO_DEVICE);
894 ctrl->async_event_sqe.data = NULL;
895 }
896 out_free_queue:
897 nvme_rdma_free_queue(&ctrl->queues[0]);
898 return error;
899 }
900
nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl * ctrl,bool new)901 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
902 {
903 int ret, nr_queues;
904
905 ret = nvme_rdma_alloc_io_queues(ctrl);
906 if (ret)
907 return ret;
908
909 if (new) {
910 ret = nvme_rdma_alloc_tag_set(&ctrl->ctrl);
911 if (ret)
912 goto out_free_io_queues;
913 }
914
915 /*
916 * Only start IO queues for which we have allocated the tagset
917 * and limitted it to the available queues. On reconnects, the
918 * queue number might have changed.
919 */
920 nr_queues = min(ctrl->tag_set.nr_hw_queues + 1, ctrl->ctrl.queue_count);
921 ret = nvme_rdma_start_io_queues(ctrl, 1, nr_queues);
922 if (ret)
923 goto out_cleanup_tagset;
924
925 if (!new) {
926 nvme_unquiesce_io_queues(&ctrl->ctrl);
927 if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
928 /*
929 * If we timed out waiting for freeze we are likely to
930 * be stuck. Fail the controller initialization just
931 * to be safe.
932 */
933 ret = -ENODEV;
934 goto out_wait_freeze_timed_out;
935 }
936 blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
937 ctrl->ctrl.queue_count - 1);
938 nvme_unfreeze(&ctrl->ctrl);
939 }
940
941 /*
942 * If the number of queues has increased (reconnect case)
943 * start all new queues now.
944 */
945 ret = nvme_rdma_start_io_queues(ctrl, nr_queues,
946 ctrl->tag_set.nr_hw_queues + 1);
947 if (ret)
948 goto out_wait_freeze_timed_out;
949
950 return 0;
951
952 out_wait_freeze_timed_out:
953 nvme_quiesce_io_queues(&ctrl->ctrl);
954 nvme_sync_io_queues(&ctrl->ctrl);
955 nvme_rdma_stop_io_queues(ctrl);
956 out_cleanup_tagset:
957 nvme_cancel_tagset(&ctrl->ctrl);
958 if (new)
959 nvme_remove_io_tag_set(&ctrl->ctrl);
960 out_free_io_queues:
961 nvme_rdma_free_io_queues(ctrl);
962 return ret;
963 }
964
nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl * ctrl,bool remove)965 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
966 bool remove)
967 {
968 nvme_quiesce_admin_queue(&ctrl->ctrl);
969 blk_sync_queue(ctrl->ctrl.admin_q);
970 nvme_rdma_stop_queue(&ctrl->queues[0]);
971 nvme_cancel_admin_tagset(&ctrl->ctrl);
972 if (remove) {
973 nvme_unquiesce_admin_queue(&ctrl->ctrl);
974 nvme_remove_admin_tag_set(&ctrl->ctrl);
975 }
976 nvme_rdma_destroy_admin_queue(ctrl);
977 }
978
nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl * ctrl,bool remove)979 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
980 bool remove)
981 {
982 if (ctrl->ctrl.queue_count > 1) {
983 nvme_start_freeze(&ctrl->ctrl);
984 nvme_quiesce_io_queues(&ctrl->ctrl);
985 nvme_sync_io_queues(&ctrl->ctrl);
986 nvme_rdma_stop_io_queues(ctrl);
987 nvme_cancel_tagset(&ctrl->ctrl);
988 if (remove) {
989 nvme_unquiesce_io_queues(&ctrl->ctrl);
990 nvme_remove_io_tag_set(&ctrl->ctrl);
991 }
992 nvme_rdma_free_io_queues(ctrl);
993 }
994 }
995
nvme_rdma_stop_ctrl(struct nvme_ctrl * nctrl)996 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
997 {
998 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
999
1000 flush_work(&ctrl->err_work);
1001 cancel_delayed_work_sync(&ctrl->reconnect_work);
1002 }
1003
nvme_rdma_free_ctrl(struct nvme_ctrl * nctrl)1004 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
1005 {
1006 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1007
1008 if (list_empty(&ctrl->list))
1009 goto free_ctrl;
1010
1011 mutex_lock(&nvme_rdma_ctrl_mutex);
1012 list_del(&ctrl->list);
1013 mutex_unlock(&nvme_rdma_ctrl_mutex);
1014
1015 nvmf_free_options(nctrl->opts);
1016 free_ctrl:
1017 kfree(ctrl->queues);
1018 kfree(ctrl);
1019 }
1020
nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl * ctrl)1021 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1022 {
1023 /* If we are resetting/deleting then do nothing */
1024 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1025 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1026 ctrl->ctrl.state == NVME_CTRL_LIVE);
1027 return;
1028 }
1029
1030 if (nvmf_should_reconnect(&ctrl->ctrl)) {
1031 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1032 ctrl->ctrl.opts->reconnect_delay);
1033 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1034 ctrl->ctrl.opts->reconnect_delay * HZ);
1035 } else {
1036 nvme_delete_ctrl(&ctrl->ctrl);
1037 }
1038 }
1039
nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl * ctrl,bool new)1040 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1041 {
1042 int ret;
1043 bool changed;
1044
1045 ret = nvme_rdma_configure_admin_queue(ctrl, new);
1046 if (ret)
1047 return ret;
1048
1049 if (ctrl->ctrl.icdoff) {
1050 ret = -EOPNOTSUPP;
1051 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1052 goto destroy_admin;
1053 }
1054
1055 if (!(ctrl->ctrl.sgls & (1 << 2))) {
1056 ret = -EOPNOTSUPP;
1057 dev_err(ctrl->ctrl.device,
1058 "Mandatory keyed sgls are not supported!\n");
1059 goto destroy_admin;
1060 }
1061
1062 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1063 dev_warn(ctrl->ctrl.device,
1064 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1065 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1066 }
1067
1068 if (ctrl->ctrl.sqsize + 1 > NVME_RDMA_MAX_QUEUE_SIZE) {
1069 dev_warn(ctrl->ctrl.device,
1070 "ctrl sqsize %u > max queue size %u, clamping down\n",
1071 ctrl->ctrl.sqsize + 1, NVME_RDMA_MAX_QUEUE_SIZE);
1072 ctrl->ctrl.sqsize = NVME_RDMA_MAX_QUEUE_SIZE - 1;
1073 }
1074
1075 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1076 dev_warn(ctrl->ctrl.device,
1077 "sqsize %u > ctrl maxcmd %u, clamping down\n",
1078 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1079 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1080 }
1081
1082 if (ctrl->ctrl.sgls & (1 << 20))
1083 ctrl->use_inline_data = true;
1084
1085 if (ctrl->ctrl.queue_count > 1) {
1086 ret = nvme_rdma_configure_io_queues(ctrl, new);
1087 if (ret)
1088 goto destroy_admin;
1089 }
1090
1091 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1092 if (!changed) {
1093 /*
1094 * state change failure is ok if we started ctrl delete,
1095 * unless we're during creation of a new controller to
1096 * avoid races with teardown flow.
1097 */
1098 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1099 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1100 WARN_ON_ONCE(new);
1101 ret = -EINVAL;
1102 goto destroy_io;
1103 }
1104
1105 nvme_start_ctrl(&ctrl->ctrl);
1106 return 0;
1107
1108 destroy_io:
1109 if (ctrl->ctrl.queue_count > 1) {
1110 nvme_quiesce_io_queues(&ctrl->ctrl);
1111 nvme_sync_io_queues(&ctrl->ctrl);
1112 nvme_rdma_stop_io_queues(ctrl);
1113 nvme_cancel_tagset(&ctrl->ctrl);
1114 if (new)
1115 nvme_remove_io_tag_set(&ctrl->ctrl);
1116 nvme_rdma_free_io_queues(ctrl);
1117 }
1118 destroy_admin:
1119 nvme_quiesce_admin_queue(&ctrl->ctrl);
1120 blk_sync_queue(ctrl->ctrl.admin_q);
1121 nvme_rdma_stop_queue(&ctrl->queues[0]);
1122 nvme_cancel_admin_tagset(&ctrl->ctrl);
1123 if (new)
1124 nvme_remove_admin_tag_set(&ctrl->ctrl);
1125 nvme_rdma_destroy_admin_queue(ctrl);
1126 return ret;
1127 }
1128
nvme_rdma_reconnect_ctrl_work(struct work_struct * work)1129 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1130 {
1131 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1132 struct nvme_rdma_ctrl, reconnect_work);
1133
1134 ++ctrl->ctrl.nr_reconnects;
1135
1136 if (nvme_rdma_setup_ctrl(ctrl, false))
1137 goto requeue;
1138
1139 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1140 ctrl->ctrl.nr_reconnects);
1141
1142 ctrl->ctrl.nr_reconnects = 0;
1143
1144 return;
1145
1146 requeue:
1147 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1148 ctrl->ctrl.nr_reconnects);
1149 nvme_rdma_reconnect_or_remove(ctrl);
1150 }
1151
nvme_rdma_error_recovery_work(struct work_struct * work)1152 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1153 {
1154 struct nvme_rdma_ctrl *ctrl = container_of(work,
1155 struct nvme_rdma_ctrl, err_work);
1156
1157 nvme_stop_keep_alive(&ctrl->ctrl);
1158 flush_work(&ctrl->ctrl.async_event_work);
1159 nvme_rdma_teardown_io_queues(ctrl, false);
1160 nvme_unquiesce_io_queues(&ctrl->ctrl);
1161 nvme_rdma_teardown_admin_queue(ctrl, false);
1162 nvme_unquiesce_admin_queue(&ctrl->ctrl);
1163 nvme_auth_stop(&ctrl->ctrl);
1164
1165 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1166 /* state change failure is ok if we started ctrl delete */
1167 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1168 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1169 return;
1170 }
1171
1172 nvme_rdma_reconnect_or_remove(ctrl);
1173 }
1174
nvme_rdma_error_recovery(struct nvme_rdma_ctrl * ctrl)1175 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1176 {
1177 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1178 return;
1179
1180 dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1181 queue_work(nvme_reset_wq, &ctrl->err_work);
1182 }
1183
nvme_rdma_end_request(struct nvme_rdma_request * req)1184 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1185 {
1186 struct request *rq = blk_mq_rq_from_pdu(req);
1187
1188 if (!refcount_dec_and_test(&req->ref))
1189 return;
1190 if (!nvme_try_complete_req(rq, req->status, req->result))
1191 nvme_rdma_complete_rq(rq);
1192 }
1193
nvme_rdma_wr_error(struct ib_cq * cq,struct ib_wc * wc,const char * op)1194 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1195 const char *op)
1196 {
1197 struct nvme_rdma_queue *queue = wc->qp->qp_context;
1198 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1199
1200 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1201 dev_info(ctrl->ctrl.device,
1202 "%s for CQE 0x%p failed with status %s (%d)\n",
1203 op, wc->wr_cqe,
1204 ib_wc_status_msg(wc->status), wc->status);
1205 nvme_rdma_error_recovery(ctrl);
1206 }
1207
nvme_rdma_memreg_done(struct ib_cq * cq,struct ib_wc * wc)1208 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1209 {
1210 if (unlikely(wc->status != IB_WC_SUCCESS))
1211 nvme_rdma_wr_error(cq, wc, "MEMREG");
1212 }
1213
nvme_rdma_inv_rkey_done(struct ib_cq * cq,struct ib_wc * wc)1214 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1215 {
1216 struct nvme_rdma_request *req =
1217 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1218
1219 if (unlikely(wc->status != IB_WC_SUCCESS))
1220 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1221 else
1222 nvme_rdma_end_request(req);
1223 }
1224
nvme_rdma_inv_rkey(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req)1225 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1226 struct nvme_rdma_request *req)
1227 {
1228 struct ib_send_wr wr = {
1229 .opcode = IB_WR_LOCAL_INV,
1230 .next = NULL,
1231 .num_sge = 0,
1232 .send_flags = IB_SEND_SIGNALED,
1233 .ex.invalidate_rkey = req->mr->rkey,
1234 };
1235
1236 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1237 wr.wr_cqe = &req->reg_cqe;
1238
1239 return ib_post_send(queue->qp, &wr, NULL);
1240 }
1241
nvme_rdma_dma_unmap_req(struct ib_device * ibdev,struct request * rq)1242 static void nvme_rdma_dma_unmap_req(struct ib_device *ibdev, struct request *rq)
1243 {
1244 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1245
1246 if (blk_integrity_rq(rq)) {
1247 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1248 req->metadata_sgl->nents, rq_dma_dir(rq));
1249 sg_free_table_chained(&req->metadata_sgl->sg_table,
1250 NVME_INLINE_METADATA_SG_CNT);
1251 }
1252
1253 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1254 rq_dma_dir(rq));
1255 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1256 }
1257
nvme_rdma_unmap_data(struct nvme_rdma_queue * queue,struct request * rq)1258 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1259 struct request *rq)
1260 {
1261 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1262 struct nvme_rdma_device *dev = queue->device;
1263 struct ib_device *ibdev = dev->dev;
1264 struct list_head *pool = &queue->qp->rdma_mrs;
1265
1266 if (!blk_rq_nr_phys_segments(rq))
1267 return;
1268
1269 if (req->use_sig_mr)
1270 pool = &queue->qp->sig_mrs;
1271
1272 if (req->mr) {
1273 ib_mr_pool_put(queue->qp, pool, req->mr);
1274 req->mr = NULL;
1275 }
1276
1277 nvme_rdma_dma_unmap_req(ibdev, rq);
1278 }
1279
nvme_rdma_set_sg_null(struct nvme_command * c)1280 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1281 {
1282 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1283
1284 sg->addr = 0;
1285 put_unaligned_le24(0, sg->length);
1286 put_unaligned_le32(0, sg->key);
1287 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1288 return 0;
1289 }
1290
nvme_rdma_map_sg_inline(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count)1291 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1292 struct nvme_rdma_request *req, struct nvme_command *c,
1293 int count)
1294 {
1295 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1296 struct ib_sge *sge = &req->sge[1];
1297 struct scatterlist *sgl;
1298 u32 len = 0;
1299 int i;
1300
1301 for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1302 sge->addr = sg_dma_address(sgl);
1303 sge->length = sg_dma_len(sgl);
1304 sge->lkey = queue->device->pd->local_dma_lkey;
1305 len += sge->length;
1306 sge++;
1307 }
1308
1309 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1310 sg->length = cpu_to_le32(len);
1311 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1312
1313 req->num_sge += count;
1314 return 0;
1315 }
1316
nvme_rdma_map_sg_single(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c)1317 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1318 struct nvme_rdma_request *req, struct nvme_command *c)
1319 {
1320 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1321
1322 sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1323 put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1324 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1325 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1326 return 0;
1327 }
1328
nvme_rdma_map_sg_fr(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count)1329 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1330 struct nvme_rdma_request *req, struct nvme_command *c,
1331 int count)
1332 {
1333 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1334 int nr;
1335
1336 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1337 if (WARN_ON_ONCE(!req->mr))
1338 return -EAGAIN;
1339
1340 /*
1341 * Align the MR to a 4K page size to match the ctrl page size and
1342 * the block virtual boundary.
1343 */
1344 nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1345 SZ_4K);
1346 if (unlikely(nr < count)) {
1347 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1348 req->mr = NULL;
1349 if (nr < 0)
1350 return nr;
1351 return -EINVAL;
1352 }
1353
1354 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1355
1356 req->reg_cqe.done = nvme_rdma_memreg_done;
1357 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1358 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1359 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1360 req->reg_wr.wr.num_sge = 0;
1361 req->reg_wr.mr = req->mr;
1362 req->reg_wr.key = req->mr->rkey;
1363 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1364 IB_ACCESS_REMOTE_READ |
1365 IB_ACCESS_REMOTE_WRITE;
1366
1367 sg->addr = cpu_to_le64(req->mr->iova);
1368 put_unaligned_le24(req->mr->length, sg->length);
1369 put_unaligned_le32(req->mr->rkey, sg->key);
1370 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1371 NVME_SGL_FMT_INVALIDATE;
1372
1373 return 0;
1374 }
1375
nvme_rdma_set_sig_domain(struct blk_integrity * bi,struct nvme_command * cmd,struct ib_sig_domain * domain,u16 control,u8 pi_type)1376 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1377 struct nvme_command *cmd, struct ib_sig_domain *domain,
1378 u16 control, u8 pi_type)
1379 {
1380 domain->sig_type = IB_SIG_TYPE_T10_DIF;
1381 domain->sig.dif.bg_type = IB_T10DIF_CRC;
1382 domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1383 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1384 if (control & NVME_RW_PRINFO_PRCHK_REF)
1385 domain->sig.dif.ref_remap = true;
1386
1387 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1388 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1389 domain->sig.dif.app_escape = true;
1390 if (pi_type == NVME_NS_DPS_PI_TYPE3)
1391 domain->sig.dif.ref_escape = true;
1392 }
1393
nvme_rdma_set_sig_attrs(struct blk_integrity * bi,struct nvme_command * cmd,struct ib_sig_attrs * sig_attrs,u8 pi_type)1394 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1395 struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1396 u8 pi_type)
1397 {
1398 u16 control = le16_to_cpu(cmd->rw.control);
1399
1400 memset(sig_attrs, 0, sizeof(*sig_attrs));
1401 if (control & NVME_RW_PRINFO_PRACT) {
1402 /* for WRITE_INSERT/READ_STRIP no memory domain */
1403 sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1404 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1405 pi_type);
1406 /* Clear the PRACT bit since HCA will generate/verify the PI */
1407 control &= ~NVME_RW_PRINFO_PRACT;
1408 cmd->rw.control = cpu_to_le16(control);
1409 } else {
1410 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1411 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1412 pi_type);
1413 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1414 pi_type);
1415 }
1416 }
1417
nvme_rdma_set_prot_checks(struct nvme_command * cmd,u8 * mask)1418 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1419 {
1420 *mask = 0;
1421 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1422 *mask |= IB_SIG_CHECK_REFTAG;
1423 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1424 *mask |= IB_SIG_CHECK_GUARD;
1425 }
1426
nvme_rdma_sig_done(struct ib_cq * cq,struct ib_wc * wc)1427 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1428 {
1429 if (unlikely(wc->status != IB_WC_SUCCESS))
1430 nvme_rdma_wr_error(cq, wc, "SIG");
1431 }
1432
nvme_rdma_map_sg_pi(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count,int pi_count)1433 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1434 struct nvme_rdma_request *req, struct nvme_command *c,
1435 int count, int pi_count)
1436 {
1437 struct nvme_rdma_sgl *sgl = &req->data_sgl;
1438 struct ib_reg_wr *wr = &req->reg_wr;
1439 struct request *rq = blk_mq_rq_from_pdu(req);
1440 struct nvme_ns *ns = rq->q->queuedata;
1441 struct bio *bio = rq->bio;
1442 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1443 int nr;
1444
1445 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1446 if (WARN_ON_ONCE(!req->mr))
1447 return -EAGAIN;
1448
1449 nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1450 req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1451 SZ_4K);
1452 if (unlikely(nr))
1453 goto mr_put;
1454
1455 nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_bdev->bd_disk), c,
1456 req->mr->sig_attrs, ns->pi_type);
1457 nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1458
1459 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1460
1461 req->reg_cqe.done = nvme_rdma_sig_done;
1462 memset(wr, 0, sizeof(*wr));
1463 wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1464 wr->wr.wr_cqe = &req->reg_cqe;
1465 wr->wr.num_sge = 0;
1466 wr->wr.send_flags = 0;
1467 wr->mr = req->mr;
1468 wr->key = req->mr->rkey;
1469 wr->access = IB_ACCESS_LOCAL_WRITE |
1470 IB_ACCESS_REMOTE_READ |
1471 IB_ACCESS_REMOTE_WRITE;
1472
1473 sg->addr = cpu_to_le64(req->mr->iova);
1474 put_unaligned_le24(req->mr->length, sg->length);
1475 put_unaligned_le32(req->mr->rkey, sg->key);
1476 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1477
1478 return 0;
1479
1480 mr_put:
1481 ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1482 req->mr = NULL;
1483 if (nr < 0)
1484 return nr;
1485 return -EINVAL;
1486 }
1487
nvme_rdma_dma_map_req(struct ib_device * ibdev,struct request * rq,int * count,int * pi_count)1488 static int nvme_rdma_dma_map_req(struct ib_device *ibdev, struct request *rq,
1489 int *count, int *pi_count)
1490 {
1491 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1492 int ret;
1493
1494 req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1495 ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1496 blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1497 NVME_INLINE_SG_CNT);
1498 if (ret)
1499 return -ENOMEM;
1500
1501 req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1502 req->data_sgl.sg_table.sgl);
1503
1504 *count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1505 req->data_sgl.nents, rq_dma_dir(rq));
1506 if (unlikely(*count <= 0)) {
1507 ret = -EIO;
1508 goto out_free_table;
1509 }
1510
1511 if (blk_integrity_rq(rq)) {
1512 req->metadata_sgl->sg_table.sgl =
1513 (struct scatterlist *)(req->metadata_sgl + 1);
1514 ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1515 blk_rq_count_integrity_sg(rq->q, rq->bio),
1516 req->metadata_sgl->sg_table.sgl,
1517 NVME_INLINE_METADATA_SG_CNT);
1518 if (unlikely(ret)) {
1519 ret = -ENOMEM;
1520 goto out_unmap_sg;
1521 }
1522
1523 req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1524 rq->bio, req->metadata_sgl->sg_table.sgl);
1525 *pi_count = ib_dma_map_sg(ibdev,
1526 req->metadata_sgl->sg_table.sgl,
1527 req->metadata_sgl->nents,
1528 rq_dma_dir(rq));
1529 if (unlikely(*pi_count <= 0)) {
1530 ret = -EIO;
1531 goto out_free_pi_table;
1532 }
1533 }
1534
1535 return 0;
1536
1537 out_free_pi_table:
1538 sg_free_table_chained(&req->metadata_sgl->sg_table,
1539 NVME_INLINE_METADATA_SG_CNT);
1540 out_unmap_sg:
1541 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1542 rq_dma_dir(rq));
1543 out_free_table:
1544 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1545 return ret;
1546 }
1547
nvme_rdma_map_data(struct nvme_rdma_queue * queue,struct request * rq,struct nvme_command * c)1548 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1549 struct request *rq, struct nvme_command *c)
1550 {
1551 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1552 struct nvme_rdma_device *dev = queue->device;
1553 struct ib_device *ibdev = dev->dev;
1554 int pi_count = 0;
1555 int count, ret;
1556
1557 req->num_sge = 1;
1558 refcount_set(&req->ref, 2); /* send and recv completions */
1559
1560 c->common.flags |= NVME_CMD_SGL_METABUF;
1561
1562 if (!blk_rq_nr_phys_segments(rq))
1563 return nvme_rdma_set_sg_null(c);
1564
1565 ret = nvme_rdma_dma_map_req(ibdev, rq, &count, &pi_count);
1566 if (unlikely(ret))
1567 return ret;
1568
1569 if (req->use_sig_mr) {
1570 ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1571 goto out;
1572 }
1573
1574 if (count <= dev->num_inline_segments) {
1575 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1576 queue->ctrl->use_inline_data &&
1577 blk_rq_payload_bytes(rq) <=
1578 nvme_rdma_inline_data_size(queue)) {
1579 ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1580 goto out;
1581 }
1582
1583 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1584 ret = nvme_rdma_map_sg_single(queue, req, c);
1585 goto out;
1586 }
1587 }
1588
1589 ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1590 out:
1591 if (unlikely(ret))
1592 goto out_dma_unmap_req;
1593
1594 return 0;
1595
1596 out_dma_unmap_req:
1597 nvme_rdma_dma_unmap_req(ibdev, rq);
1598 return ret;
1599 }
1600
nvme_rdma_send_done(struct ib_cq * cq,struct ib_wc * wc)1601 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1602 {
1603 struct nvme_rdma_qe *qe =
1604 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1605 struct nvme_rdma_request *req =
1606 container_of(qe, struct nvme_rdma_request, sqe);
1607
1608 if (unlikely(wc->status != IB_WC_SUCCESS))
1609 nvme_rdma_wr_error(cq, wc, "SEND");
1610 else
1611 nvme_rdma_end_request(req);
1612 }
1613
nvme_rdma_post_send(struct nvme_rdma_queue * queue,struct nvme_rdma_qe * qe,struct ib_sge * sge,u32 num_sge,struct ib_send_wr * first)1614 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1615 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1616 struct ib_send_wr *first)
1617 {
1618 struct ib_send_wr wr;
1619 int ret;
1620
1621 sge->addr = qe->dma;
1622 sge->length = sizeof(struct nvme_command);
1623 sge->lkey = queue->device->pd->local_dma_lkey;
1624
1625 wr.next = NULL;
1626 wr.wr_cqe = &qe->cqe;
1627 wr.sg_list = sge;
1628 wr.num_sge = num_sge;
1629 wr.opcode = IB_WR_SEND;
1630 wr.send_flags = IB_SEND_SIGNALED;
1631
1632 if (first)
1633 first->next = ≀
1634 else
1635 first = ≀
1636
1637 ret = ib_post_send(queue->qp, first, NULL);
1638 if (unlikely(ret)) {
1639 dev_err(queue->ctrl->ctrl.device,
1640 "%s failed with error code %d\n", __func__, ret);
1641 }
1642 return ret;
1643 }
1644
nvme_rdma_post_recv(struct nvme_rdma_queue * queue,struct nvme_rdma_qe * qe)1645 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1646 struct nvme_rdma_qe *qe)
1647 {
1648 struct ib_recv_wr wr;
1649 struct ib_sge list;
1650 int ret;
1651
1652 list.addr = qe->dma;
1653 list.length = sizeof(struct nvme_completion);
1654 list.lkey = queue->device->pd->local_dma_lkey;
1655
1656 qe->cqe.done = nvme_rdma_recv_done;
1657
1658 wr.next = NULL;
1659 wr.wr_cqe = &qe->cqe;
1660 wr.sg_list = &list;
1661 wr.num_sge = 1;
1662
1663 ret = ib_post_recv(queue->qp, &wr, NULL);
1664 if (unlikely(ret)) {
1665 dev_err(queue->ctrl->ctrl.device,
1666 "%s failed with error code %d\n", __func__, ret);
1667 }
1668 return ret;
1669 }
1670
nvme_rdma_tagset(struct nvme_rdma_queue * queue)1671 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1672 {
1673 u32 queue_idx = nvme_rdma_queue_idx(queue);
1674
1675 if (queue_idx == 0)
1676 return queue->ctrl->admin_tag_set.tags[queue_idx];
1677 return queue->ctrl->tag_set.tags[queue_idx - 1];
1678 }
1679
nvme_rdma_async_done(struct ib_cq * cq,struct ib_wc * wc)1680 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1681 {
1682 if (unlikely(wc->status != IB_WC_SUCCESS))
1683 nvme_rdma_wr_error(cq, wc, "ASYNC");
1684 }
1685
nvme_rdma_submit_async_event(struct nvme_ctrl * arg)1686 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1687 {
1688 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1689 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1690 struct ib_device *dev = queue->device->dev;
1691 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1692 struct nvme_command *cmd = sqe->data;
1693 struct ib_sge sge;
1694 int ret;
1695
1696 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1697
1698 memset(cmd, 0, sizeof(*cmd));
1699 cmd->common.opcode = nvme_admin_async_event;
1700 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1701 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1702 nvme_rdma_set_sg_null(cmd);
1703
1704 sqe->cqe.done = nvme_rdma_async_done;
1705
1706 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1707 DMA_TO_DEVICE);
1708
1709 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1710 WARN_ON_ONCE(ret);
1711 }
1712
nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue * queue,struct nvme_completion * cqe,struct ib_wc * wc)1713 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1714 struct nvme_completion *cqe, struct ib_wc *wc)
1715 {
1716 struct request *rq;
1717 struct nvme_rdma_request *req;
1718
1719 rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1720 if (!rq) {
1721 dev_err(queue->ctrl->ctrl.device,
1722 "got bad command_id %#x on QP %#x\n",
1723 cqe->command_id, queue->qp->qp_num);
1724 nvme_rdma_error_recovery(queue->ctrl);
1725 return;
1726 }
1727 req = blk_mq_rq_to_pdu(rq);
1728
1729 req->status = cqe->status;
1730 req->result = cqe->result;
1731
1732 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1733 if (unlikely(!req->mr ||
1734 wc->ex.invalidate_rkey != req->mr->rkey)) {
1735 dev_err(queue->ctrl->ctrl.device,
1736 "Bogus remote invalidation for rkey %#x\n",
1737 req->mr ? req->mr->rkey : 0);
1738 nvme_rdma_error_recovery(queue->ctrl);
1739 }
1740 } else if (req->mr) {
1741 int ret;
1742
1743 ret = nvme_rdma_inv_rkey(queue, req);
1744 if (unlikely(ret < 0)) {
1745 dev_err(queue->ctrl->ctrl.device,
1746 "Queueing INV WR for rkey %#x failed (%d)\n",
1747 req->mr->rkey, ret);
1748 nvme_rdma_error_recovery(queue->ctrl);
1749 }
1750 /* the local invalidation completion will end the request */
1751 return;
1752 }
1753
1754 nvme_rdma_end_request(req);
1755 }
1756
nvme_rdma_recv_done(struct ib_cq * cq,struct ib_wc * wc)1757 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1758 {
1759 struct nvme_rdma_qe *qe =
1760 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1761 struct nvme_rdma_queue *queue = wc->qp->qp_context;
1762 struct ib_device *ibdev = queue->device->dev;
1763 struct nvme_completion *cqe = qe->data;
1764 const size_t len = sizeof(struct nvme_completion);
1765
1766 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1767 nvme_rdma_wr_error(cq, wc, "RECV");
1768 return;
1769 }
1770
1771 /* sanity checking for received data length */
1772 if (unlikely(wc->byte_len < len)) {
1773 dev_err(queue->ctrl->ctrl.device,
1774 "Unexpected nvme completion length(%d)\n", wc->byte_len);
1775 nvme_rdma_error_recovery(queue->ctrl);
1776 return;
1777 }
1778
1779 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1780 /*
1781 * AEN requests are special as they don't time out and can
1782 * survive any kind of queue freeze and often don't respond to
1783 * aborts. We don't even bother to allocate a struct request
1784 * for them but rather special case them here.
1785 */
1786 if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1787 cqe->command_id)))
1788 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1789 &cqe->result);
1790 else
1791 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1792 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1793
1794 nvme_rdma_post_recv(queue, qe);
1795 }
1796
nvme_rdma_conn_established(struct nvme_rdma_queue * queue)1797 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1798 {
1799 int ret, i;
1800
1801 for (i = 0; i < queue->queue_size; i++) {
1802 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1803 if (ret)
1804 return ret;
1805 }
1806
1807 return 0;
1808 }
1809
nvme_rdma_conn_rejected(struct nvme_rdma_queue * queue,struct rdma_cm_event * ev)1810 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1811 struct rdma_cm_event *ev)
1812 {
1813 struct rdma_cm_id *cm_id = queue->cm_id;
1814 int status = ev->status;
1815 const char *rej_msg;
1816 const struct nvme_rdma_cm_rej *rej_data;
1817 u8 rej_data_len;
1818
1819 rej_msg = rdma_reject_msg(cm_id, status);
1820 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1821
1822 if (rej_data && rej_data_len >= sizeof(u16)) {
1823 u16 sts = le16_to_cpu(rej_data->sts);
1824
1825 dev_err(queue->ctrl->ctrl.device,
1826 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1827 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1828 } else {
1829 dev_err(queue->ctrl->ctrl.device,
1830 "Connect rejected: status %d (%s).\n", status, rej_msg);
1831 }
1832
1833 return -ECONNRESET;
1834 }
1835
nvme_rdma_addr_resolved(struct nvme_rdma_queue * queue)1836 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1837 {
1838 struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1839 int ret;
1840
1841 ret = nvme_rdma_create_queue_ib(queue);
1842 if (ret)
1843 return ret;
1844
1845 if (ctrl->opts->tos >= 0)
1846 rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1847 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CM_TIMEOUT_MS);
1848 if (ret) {
1849 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1850 queue->cm_error);
1851 goto out_destroy_queue;
1852 }
1853
1854 return 0;
1855
1856 out_destroy_queue:
1857 nvme_rdma_destroy_queue_ib(queue);
1858 return ret;
1859 }
1860
nvme_rdma_route_resolved(struct nvme_rdma_queue * queue)1861 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1862 {
1863 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1864 struct rdma_conn_param param = { };
1865 struct nvme_rdma_cm_req priv = { };
1866 int ret;
1867
1868 param.qp_num = queue->qp->qp_num;
1869 param.flow_control = 1;
1870
1871 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1872 /* maximum retry count */
1873 param.retry_count = 7;
1874 param.rnr_retry_count = 7;
1875 param.private_data = &priv;
1876 param.private_data_len = sizeof(priv);
1877
1878 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1879 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1880 /*
1881 * set the admin queue depth to the minimum size
1882 * specified by the Fabrics standard.
1883 */
1884 if (priv.qid == 0) {
1885 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1886 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1887 } else {
1888 /*
1889 * current interpretation of the fabrics spec
1890 * is at minimum you make hrqsize sqsize+1, or a
1891 * 1's based representation of sqsize.
1892 */
1893 priv.hrqsize = cpu_to_le16(queue->queue_size);
1894 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1895 }
1896
1897 ret = rdma_connect_locked(queue->cm_id, ¶m);
1898 if (ret) {
1899 dev_err(ctrl->ctrl.device,
1900 "rdma_connect_locked failed (%d).\n", ret);
1901 return ret;
1902 }
1903
1904 return 0;
1905 }
1906
nvme_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * ev)1907 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1908 struct rdma_cm_event *ev)
1909 {
1910 struct nvme_rdma_queue *queue = cm_id->context;
1911 int cm_error = 0;
1912
1913 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1914 rdma_event_msg(ev->event), ev->event,
1915 ev->status, cm_id);
1916
1917 switch (ev->event) {
1918 case RDMA_CM_EVENT_ADDR_RESOLVED:
1919 cm_error = nvme_rdma_addr_resolved(queue);
1920 break;
1921 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1922 cm_error = nvme_rdma_route_resolved(queue);
1923 break;
1924 case RDMA_CM_EVENT_ESTABLISHED:
1925 queue->cm_error = nvme_rdma_conn_established(queue);
1926 /* complete cm_done regardless of success/failure */
1927 complete(&queue->cm_done);
1928 return 0;
1929 case RDMA_CM_EVENT_REJECTED:
1930 cm_error = nvme_rdma_conn_rejected(queue, ev);
1931 break;
1932 case RDMA_CM_EVENT_ROUTE_ERROR:
1933 case RDMA_CM_EVENT_CONNECT_ERROR:
1934 case RDMA_CM_EVENT_UNREACHABLE:
1935 case RDMA_CM_EVENT_ADDR_ERROR:
1936 dev_dbg(queue->ctrl->ctrl.device,
1937 "CM error event %d\n", ev->event);
1938 cm_error = -ECONNRESET;
1939 break;
1940 case RDMA_CM_EVENT_DISCONNECTED:
1941 case RDMA_CM_EVENT_ADDR_CHANGE:
1942 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1943 dev_dbg(queue->ctrl->ctrl.device,
1944 "disconnect received - connection closed\n");
1945 nvme_rdma_error_recovery(queue->ctrl);
1946 break;
1947 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1948 /* device removal is handled via the ib_client API */
1949 break;
1950 default:
1951 dev_err(queue->ctrl->ctrl.device,
1952 "Unexpected RDMA CM event (%d)\n", ev->event);
1953 nvme_rdma_error_recovery(queue->ctrl);
1954 break;
1955 }
1956
1957 if (cm_error) {
1958 queue->cm_error = cm_error;
1959 complete(&queue->cm_done);
1960 }
1961
1962 return 0;
1963 }
1964
nvme_rdma_complete_timed_out(struct request * rq)1965 static void nvme_rdma_complete_timed_out(struct request *rq)
1966 {
1967 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1968 struct nvme_rdma_queue *queue = req->queue;
1969
1970 nvme_rdma_stop_queue(queue);
1971 nvmf_complete_timed_out_request(rq);
1972 }
1973
nvme_rdma_timeout(struct request * rq)1974 static enum blk_eh_timer_return nvme_rdma_timeout(struct request *rq)
1975 {
1976 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1977 struct nvme_rdma_queue *queue = req->queue;
1978 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1979
1980 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1981 rq->tag, nvme_rdma_queue_idx(queue));
1982
1983 if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1984 /*
1985 * If we are resetting, connecting or deleting we should
1986 * complete immediately because we may block controller
1987 * teardown or setup sequence
1988 * - ctrl disable/shutdown fabrics requests
1989 * - connect requests
1990 * - initialization admin requests
1991 * - I/O requests that entered after unquiescing and
1992 * the controller stopped responding
1993 *
1994 * All other requests should be cancelled by the error
1995 * recovery work, so it's fine that we fail it here.
1996 */
1997 nvme_rdma_complete_timed_out(rq);
1998 return BLK_EH_DONE;
1999 }
2000
2001 /*
2002 * LIVE state should trigger the normal error recovery which will
2003 * handle completing this request.
2004 */
2005 nvme_rdma_error_recovery(ctrl);
2006 return BLK_EH_RESET_TIMER;
2007 }
2008
nvme_rdma_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2009 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
2010 const struct blk_mq_queue_data *bd)
2011 {
2012 struct nvme_ns *ns = hctx->queue->queuedata;
2013 struct nvme_rdma_queue *queue = hctx->driver_data;
2014 struct request *rq = bd->rq;
2015 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2016 struct nvme_rdma_qe *sqe = &req->sqe;
2017 struct nvme_command *c = nvme_req(rq)->cmd;
2018 struct ib_device *dev;
2019 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2020 blk_status_t ret;
2021 int err;
2022
2023 WARN_ON_ONCE(rq->tag < 0);
2024
2025 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2026 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2027
2028 dev = queue->device->dev;
2029
2030 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2031 sizeof(struct nvme_command),
2032 DMA_TO_DEVICE);
2033 err = ib_dma_mapping_error(dev, req->sqe.dma);
2034 if (unlikely(err))
2035 return BLK_STS_RESOURCE;
2036
2037 ib_dma_sync_single_for_cpu(dev, sqe->dma,
2038 sizeof(struct nvme_command), DMA_TO_DEVICE);
2039
2040 ret = nvme_setup_cmd(ns, rq);
2041 if (ret)
2042 goto unmap_qe;
2043
2044 nvme_start_request(rq);
2045
2046 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2047 queue->pi_support &&
2048 (c->common.opcode == nvme_cmd_write ||
2049 c->common.opcode == nvme_cmd_read) &&
2050 nvme_ns_has_pi(ns))
2051 req->use_sig_mr = true;
2052 else
2053 req->use_sig_mr = false;
2054
2055 err = nvme_rdma_map_data(queue, rq, c);
2056 if (unlikely(err < 0)) {
2057 dev_err(queue->ctrl->ctrl.device,
2058 "Failed to map data (%d)\n", err);
2059 goto err;
2060 }
2061
2062 sqe->cqe.done = nvme_rdma_send_done;
2063
2064 ib_dma_sync_single_for_device(dev, sqe->dma,
2065 sizeof(struct nvme_command), DMA_TO_DEVICE);
2066
2067 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2068 req->mr ? &req->reg_wr.wr : NULL);
2069 if (unlikely(err))
2070 goto err_unmap;
2071
2072 return BLK_STS_OK;
2073
2074 err_unmap:
2075 nvme_rdma_unmap_data(queue, rq);
2076 err:
2077 if (err == -EIO)
2078 ret = nvme_host_path_error(rq);
2079 else if (err == -ENOMEM || err == -EAGAIN)
2080 ret = BLK_STS_RESOURCE;
2081 else
2082 ret = BLK_STS_IOERR;
2083 nvme_cleanup_cmd(rq);
2084 unmap_qe:
2085 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2086 DMA_TO_DEVICE);
2087 return ret;
2088 }
2089
nvme_rdma_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)2090 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2091 {
2092 struct nvme_rdma_queue *queue = hctx->driver_data;
2093
2094 return ib_process_cq_direct(queue->ib_cq, -1);
2095 }
2096
nvme_rdma_check_pi_status(struct nvme_rdma_request * req)2097 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2098 {
2099 struct request *rq = blk_mq_rq_from_pdu(req);
2100 struct ib_mr_status mr_status;
2101 int ret;
2102
2103 ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2104 if (ret) {
2105 pr_err("ib_check_mr_status failed, ret %d\n", ret);
2106 nvme_req(rq)->status = NVME_SC_INVALID_PI;
2107 return;
2108 }
2109
2110 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2111 switch (mr_status.sig_err.err_type) {
2112 case IB_SIG_BAD_GUARD:
2113 nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2114 break;
2115 case IB_SIG_BAD_REFTAG:
2116 nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2117 break;
2118 case IB_SIG_BAD_APPTAG:
2119 nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2120 break;
2121 }
2122 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2123 mr_status.sig_err.err_type, mr_status.sig_err.expected,
2124 mr_status.sig_err.actual);
2125 }
2126 }
2127
nvme_rdma_complete_rq(struct request * rq)2128 static void nvme_rdma_complete_rq(struct request *rq)
2129 {
2130 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2131 struct nvme_rdma_queue *queue = req->queue;
2132 struct ib_device *ibdev = queue->device->dev;
2133
2134 if (req->use_sig_mr)
2135 nvme_rdma_check_pi_status(req);
2136
2137 nvme_rdma_unmap_data(queue, rq);
2138 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2139 DMA_TO_DEVICE);
2140 nvme_complete_rq(rq);
2141 }
2142
nvme_rdma_map_queues(struct blk_mq_tag_set * set)2143 static void nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2144 {
2145 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
2146 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2147
2148 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2149 /* separate read/write queues */
2150 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2151 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2152 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2153 set->map[HCTX_TYPE_READ].nr_queues =
2154 ctrl->io_queues[HCTX_TYPE_READ];
2155 set->map[HCTX_TYPE_READ].queue_offset =
2156 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2157 } else {
2158 /* shared read/write queues */
2159 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2160 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2161 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2162 set->map[HCTX_TYPE_READ].nr_queues =
2163 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2164 set->map[HCTX_TYPE_READ].queue_offset = 0;
2165 }
2166 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
2167 ctrl->device->dev, 0);
2168 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
2169 ctrl->device->dev, 0);
2170
2171 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2172 /* map dedicated poll queues only if we have queues left */
2173 set->map[HCTX_TYPE_POLL].nr_queues =
2174 ctrl->io_queues[HCTX_TYPE_POLL];
2175 set->map[HCTX_TYPE_POLL].queue_offset =
2176 ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2177 ctrl->io_queues[HCTX_TYPE_READ];
2178 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2179 }
2180
2181 dev_info(ctrl->ctrl.device,
2182 "mapped %d/%d/%d default/read/poll queues.\n",
2183 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2184 ctrl->io_queues[HCTX_TYPE_READ],
2185 ctrl->io_queues[HCTX_TYPE_POLL]);
2186 }
2187
2188 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2189 .queue_rq = nvme_rdma_queue_rq,
2190 .complete = nvme_rdma_complete_rq,
2191 .init_request = nvme_rdma_init_request,
2192 .exit_request = nvme_rdma_exit_request,
2193 .init_hctx = nvme_rdma_init_hctx,
2194 .timeout = nvme_rdma_timeout,
2195 .map_queues = nvme_rdma_map_queues,
2196 .poll = nvme_rdma_poll,
2197 };
2198
2199 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2200 .queue_rq = nvme_rdma_queue_rq,
2201 .complete = nvme_rdma_complete_rq,
2202 .init_request = nvme_rdma_init_request,
2203 .exit_request = nvme_rdma_exit_request,
2204 .init_hctx = nvme_rdma_init_admin_hctx,
2205 .timeout = nvme_rdma_timeout,
2206 };
2207
nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl * ctrl,bool shutdown)2208 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2209 {
2210 nvme_rdma_teardown_io_queues(ctrl, shutdown);
2211 nvme_quiesce_admin_queue(&ctrl->ctrl);
2212 nvme_disable_ctrl(&ctrl->ctrl, shutdown);
2213 nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2214 }
2215
nvme_rdma_delete_ctrl(struct nvme_ctrl * ctrl)2216 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2217 {
2218 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2219 }
2220
nvme_rdma_reset_ctrl_work(struct work_struct * work)2221 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2222 {
2223 struct nvme_rdma_ctrl *ctrl =
2224 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2225
2226 nvme_stop_ctrl(&ctrl->ctrl);
2227 nvme_rdma_shutdown_ctrl(ctrl, false);
2228
2229 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2230 /* state change failure should never happen */
2231 WARN_ON_ONCE(1);
2232 return;
2233 }
2234
2235 if (nvme_rdma_setup_ctrl(ctrl, false))
2236 goto out_fail;
2237
2238 return;
2239
2240 out_fail:
2241 ++ctrl->ctrl.nr_reconnects;
2242 nvme_rdma_reconnect_or_remove(ctrl);
2243 }
2244
2245 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2246 .name = "rdma",
2247 .module = THIS_MODULE,
2248 .flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2249 .reg_read32 = nvmf_reg_read32,
2250 .reg_read64 = nvmf_reg_read64,
2251 .reg_write32 = nvmf_reg_write32,
2252 .free_ctrl = nvme_rdma_free_ctrl,
2253 .submit_async_event = nvme_rdma_submit_async_event,
2254 .delete_ctrl = nvme_rdma_delete_ctrl,
2255 .get_address = nvmf_get_address,
2256 .stop_ctrl = nvme_rdma_stop_ctrl,
2257 };
2258
2259 /*
2260 * Fails a connection request if it matches an existing controller
2261 * (association) with the same tuple:
2262 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2263 *
2264 * if local address is not specified in the request, it will match an
2265 * existing controller with all the other parameters the same and no
2266 * local port address specified as well.
2267 *
2268 * The ports don't need to be compared as they are intrinsically
2269 * already matched by the port pointers supplied.
2270 */
2271 static bool
nvme_rdma_existing_controller(struct nvmf_ctrl_options * opts)2272 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2273 {
2274 struct nvme_rdma_ctrl *ctrl;
2275 bool found = false;
2276
2277 mutex_lock(&nvme_rdma_ctrl_mutex);
2278 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2279 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2280 if (found)
2281 break;
2282 }
2283 mutex_unlock(&nvme_rdma_ctrl_mutex);
2284
2285 return found;
2286 }
2287
nvme_rdma_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2288 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2289 struct nvmf_ctrl_options *opts)
2290 {
2291 struct nvme_rdma_ctrl *ctrl;
2292 int ret;
2293 bool changed;
2294
2295 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2296 if (!ctrl)
2297 return ERR_PTR(-ENOMEM);
2298 ctrl->ctrl.opts = opts;
2299 INIT_LIST_HEAD(&ctrl->list);
2300
2301 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2302 opts->trsvcid =
2303 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2304 if (!opts->trsvcid) {
2305 ret = -ENOMEM;
2306 goto out_free_ctrl;
2307 }
2308 opts->mask |= NVMF_OPT_TRSVCID;
2309 }
2310
2311 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2312 opts->traddr, opts->trsvcid, &ctrl->addr);
2313 if (ret) {
2314 pr_err("malformed address passed: %s:%s\n",
2315 opts->traddr, opts->trsvcid);
2316 goto out_free_ctrl;
2317 }
2318
2319 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2320 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2321 opts->host_traddr, NULL, &ctrl->src_addr);
2322 if (ret) {
2323 pr_err("malformed src address passed: %s\n",
2324 opts->host_traddr);
2325 goto out_free_ctrl;
2326 }
2327 }
2328
2329 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2330 ret = -EALREADY;
2331 goto out_free_ctrl;
2332 }
2333
2334 INIT_DELAYED_WORK(&ctrl->reconnect_work,
2335 nvme_rdma_reconnect_ctrl_work);
2336 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2337 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2338
2339 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2340 opts->nr_poll_queues + 1;
2341 ctrl->ctrl.sqsize = opts->queue_size - 1;
2342 ctrl->ctrl.kato = opts->kato;
2343
2344 ret = -ENOMEM;
2345 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2346 GFP_KERNEL);
2347 if (!ctrl->queues)
2348 goto out_free_ctrl;
2349
2350 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2351 0 /* no quirks, we're perfect! */);
2352 if (ret)
2353 goto out_kfree_queues;
2354
2355 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2356 WARN_ON_ONCE(!changed);
2357
2358 ret = nvme_rdma_setup_ctrl(ctrl, true);
2359 if (ret)
2360 goto out_uninit_ctrl;
2361
2362 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2363 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2364
2365 mutex_lock(&nvme_rdma_ctrl_mutex);
2366 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2367 mutex_unlock(&nvme_rdma_ctrl_mutex);
2368
2369 return &ctrl->ctrl;
2370
2371 out_uninit_ctrl:
2372 nvme_uninit_ctrl(&ctrl->ctrl);
2373 nvme_put_ctrl(&ctrl->ctrl);
2374 if (ret > 0)
2375 ret = -EIO;
2376 return ERR_PTR(ret);
2377 out_kfree_queues:
2378 kfree(ctrl->queues);
2379 out_free_ctrl:
2380 kfree(ctrl);
2381 return ERR_PTR(ret);
2382 }
2383
2384 static struct nvmf_transport_ops nvme_rdma_transport = {
2385 .name = "rdma",
2386 .module = THIS_MODULE,
2387 .required_opts = NVMF_OPT_TRADDR,
2388 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2389 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2390 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2391 NVMF_OPT_TOS,
2392 .create_ctrl = nvme_rdma_create_ctrl,
2393 };
2394
nvme_rdma_remove_one(struct ib_device * ib_device,void * client_data)2395 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2396 {
2397 struct nvme_rdma_ctrl *ctrl;
2398 struct nvme_rdma_device *ndev;
2399 bool found = false;
2400
2401 mutex_lock(&device_list_mutex);
2402 list_for_each_entry(ndev, &device_list, entry) {
2403 if (ndev->dev == ib_device) {
2404 found = true;
2405 break;
2406 }
2407 }
2408 mutex_unlock(&device_list_mutex);
2409
2410 if (!found)
2411 return;
2412
2413 /* Delete all controllers using this device */
2414 mutex_lock(&nvme_rdma_ctrl_mutex);
2415 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2416 if (ctrl->device->dev != ib_device)
2417 continue;
2418 nvme_delete_ctrl(&ctrl->ctrl);
2419 }
2420 mutex_unlock(&nvme_rdma_ctrl_mutex);
2421
2422 flush_workqueue(nvme_delete_wq);
2423 }
2424
2425 static struct ib_client nvme_rdma_ib_client = {
2426 .name = "nvme_rdma",
2427 .remove = nvme_rdma_remove_one
2428 };
2429
nvme_rdma_init_module(void)2430 static int __init nvme_rdma_init_module(void)
2431 {
2432 int ret;
2433
2434 ret = ib_register_client(&nvme_rdma_ib_client);
2435 if (ret)
2436 return ret;
2437
2438 ret = nvmf_register_transport(&nvme_rdma_transport);
2439 if (ret)
2440 goto err_unreg_client;
2441
2442 return 0;
2443
2444 err_unreg_client:
2445 ib_unregister_client(&nvme_rdma_ib_client);
2446 return ret;
2447 }
2448
nvme_rdma_cleanup_module(void)2449 static void __exit nvme_rdma_cleanup_module(void)
2450 {
2451 struct nvme_rdma_ctrl *ctrl;
2452
2453 nvmf_unregister_transport(&nvme_rdma_transport);
2454 ib_unregister_client(&nvme_rdma_ib_client);
2455
2456 mutex_lock(&nvme_rdma_ctrl_mutex);
2457 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2458 nvme_delete_ctrl(&ctrl->ctrl);
2459 mutex_unlock(&nvme_rdma_ctrl_mutex);
2460 flush_workqueue(nvme_delete_wq);
2461 }
2462
2463 module_init(nvme_rdma_init_module);
2464 module_exit(nvme_rdma_cleanup_module);
2465
2466 MODULE_LICENSE("GPL v2");
2467