1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Test driver to test endpoint functionality
4 *
5 * Copyright (C) 2017 Texas Instruments
6 * Author: Kishon Vijay Abraham I <kishon@ti.com>
7 */
8
9 #include <linux/crc32.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/io.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/pci_ids.h>
16 #include <linux/random.h>
17
18 #include <linux/pci-epc.h>
19 #include <linux/pci-epf.h>
20 #include <linux/pci_regs.h>
21
22 #define IRQ_TYPE_LEGACY 0
23 #define IRQ_TYPE_MSI 1
24 #define IRQ_TYPE_MSIX 2
25
26 #define COMMAND_RAISE_LEGACY_IRQ BIT(0)
27 #define COMMAND_RAISE_MSI_IRQ BIT(1)
28 #define COMMAND_RAISE_MSIX_IRQ BIT(2)
29 #define COMMAND_READ BIT(3)
30 #define COMMAND_WRITE BIT(4)
31 #define COMMAND_COPY BIT(5)
32
33 #define STATUS_READ_SUCCESS BIT(0)
34 #define STATUS_READ_FAIL BIT(1)
35 #define STATUS_WRITE_SUCCESS BIT(2)
36 #define STATUS_WRITE_FAIL BIT(3)
37 #define STATUS_COPY_SUCCESS BIT(4)
38 #define STATUS_COPY_FAIL BIT(5)
39 #define STATUS_IRQ_RAISED BIT(6)
40 #define STATUS_SRC_ADDR_INVALID BIT(7)
41 #define STATUS_DST_ADDR_INVALID BIT(8)
42
43 #define FLAG_USE_DMA BIT(0)
44
45 #define TIMER_RESOLUTION 1
46
47 static struct workqueue_struct *kpcitest_workqueue;
48
49 struct pci_epf_test {
50 void *reg[PCI_STD_NUM_BARS];
51 struct pci_epf *epf;
52 enum pci_barno test_reg_bar;
53 size_t msix_table_offset;
54 struct delayed_work cmd_handler;
55 struct dma_chan *dma_chan_tx;
56 struct dma_chan *dma_chan_rx;
57 struct completion transfer_complete;
58 bool dma_supported;
59 bool dma_private;
60 const struct pci_epc_features *epc_features;
61 };
62
63 struct pci_epf_test_reg {
64 u32 magic;
65 u32 command;
66 u32 status;
67 u64 src_addr;
68 u64 dst_addr;
69 u32 size;
70 u32 checksum;
71 u32 irq_type;
72 u32 irq_number;
73 u32 flags;
74 } __packed;
75
76 static struct pci_epf_header test_header = {
77 .vendorid = PCI_ANY_ID,
78 .deviceid = PCI_ANY_ID,
79 .baseclass_code = PCI_CLASS_OTHERS,
80 .interrupt_pin = PCI_INTERRUPT_INTA,
81 };
82
83 static size_t bar_size[] = { 512, 512, 1024, 16384, 131072, 1048576 };
84
pci_epf_test_dma_callback(void * param)85 static void pci_epf_test_dma_callback(void *param)
86 {
87 struct pci_epf_test *epf_test = param;
88
89 complete(&epf_test->transfer_complete);
90 }
91
92 /**
93 * pci_epf_test_data_transfer() - Function that uses dmaengine API to transfer
94 * data between PCIe EP and remote PCIe RC
95 * @epf_test: the EPF test device that performs the data transfer operation
96 * @dma_dst: The destination address of the data transfer. It can be a physical
97 * address given by pci_epc_mem_alloc_addr or DMA mapping APIs.
98 * @dma_src: The source address of the data transfer. It can be a physical
99 * address given by pci_epc_mem_alloc_addr or DMA mapping APIs.
100 * @len: The size of the data transfer
101 * @dma_remote: remote RC physical address
102 * @dir: DMA transfer direction
103 *
104 * Function that uses dmaengine API to transfer data between PCIe EP and remote
105 * PCIe RC. The source and destination address can be a physical address given
106 * by pci_epc_mem_alloc_addr or the one obtained using DMA mapping APIs.
107 *
108 * The function returns '0' on success and negative value on failure.
109 */
pci_epf_test_data_transfer(struct pci_epf_test * epf_test,dma_addr_t dma_dst,dma_addr_t dma_src,size_t len,dma_addr_t dma_remote,enum dma_transfer_direction dir)110 static int pci_epf_test_data_transfer(struct pci_epf_test *epf_test,
111 dma_addr_t dma_dst, dma_addr_t dma_src,
112 size_t len, dma_addr_t dma_remote,
113 enum dma_transfer_direction dir)
114 {
115 struct dma_chan *chan = (dir == DMA_DEV_TO_MEM) ?
116 epf_test->dma_chan_tx : epf_test->dma_chan_rx;
117 dma_addr_t dma_local = (dir == DMA_MEM_TO_DEV) ? dma_src : dma_dst;
118 enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
119 struct pci_epf *epf = epf_test->epf;
120 struct dma_async_tx_descriptor *tx;
121 struct dma_slave_config sconf = {};
122 struct device *dev = &epf->dev;
123 dma_cookie_t cookie;
124 int ret;
125
126 if (IS_ERR_OR_NULL(chan)) {
127 dev_err(dev, "Invalid DMA memcpy channel\n");
128 return -EINVAL;
129 }
130
131 if (epf_test->dma_private) {
132 sconf.direction = dir;
133 if (dir == DMA_MEM_TO_DEV)
134 sconf.dst_addr = dma_remote;
135 else
136 sconf.src_addr = dma_remote;
137
138 if (dmaengine_slave_config(chan, &sconf)) {
139 dev_err(dev, "DMA slave config fail\n");
140 return -EIO;
141 }
142 tx = dmaengine_prep_slave_single(chan, dma_local, len, dir,
143 flags);
144 } else {
145 tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len,
146 flags);
147 }
148
149 if (!tx) {
150 dev_err(dev, "Failed to prepare DMA memcpy\n");
151 return -EIO;
152 }
153
154 tx->callback = pci_epf_test_dma_callback;
155 tx->callback_param = epf_test;
156 cookie = tx->tx_submit(tx);
157 reinit_completion(&epf_test->transfer_complete);
158
159 ret = dma_submit_error(cookie);
160 if (ret) {
161 dev_err(dev, "Failed to do DMA tx_submit %d\n", cookie);
162 return -EIO;
163 }
164
165 dma_async_issue_pending(chan);
166 ret = wait_for_completion_interruptible(&epf_test->transfer_complete);
167 if (ret < 0) {
168 dmaengine_terminate_sync(chan);
169 dev_err(dev, "DMA wait_for_completion_timeout\n");
170 return -ETIMEDOUT;
171 }
172
173 return 0;
174 }
175
176 struct epf_dma_filter {
177 struct device *dev;
178 u32 dma_mask;
179 };
180
epf_dma_filter_fn(struct dma_chan * chan,void * node)181 static bool epf_dma_filter_fn(struct dma_chan *chan, void *node)
182 {
183 struct epf_dma_filter *filter = node;
184 struct dma_slave_caps caps;
185
186 memset(&caps, 0, sizeof(caps));
187 dma_get_slave_caps(chan, &caps);
188
189 return chan->device->dev == filter->dev
190 && (filter->dma_mask & caps.directions);
191 }
192
193 /**
194 * pci_epf_test_init_dma_chan() - Function to initialize EPF test DMA channel
195 * @epf_test: the EPF test device that performs data transfer operation
196 *
197 * Function to initialize EPF test DMA channel.
198 */
pci_epf_test_init_dma_chan(struct pci_epf_test * epf_test)199 static int pci_epf_test_init_dma_chan(struct pci_epf_test *epf_test)
200 {
201 struct pci_epf *epf = epf_test->epf;
202 struct device *dev = &epf->dev;
203 struct epf_dma_filter filter;
204 struct dma_chan *dma_chan;
205 dma_cap_mask_t mask;
206 int ret;
207
208 filter.dev = epf->epc->dev.parent;
209 filter.dma_mask = BIT(DMA_DEV_TO_MEM);
210
211 dma_cap_zero(mask);
212 dma_cap_set(DMA_SLAVE, mask);
213 dma_chan = dma_request_channel(mask, epf_dma_filter_fn, &filter);
214 if (!dma_chan) {
215 dev_info(dev, "Failed to get private DMA rx channel. Falling back to generic one\n");
216 goto fail_back_tx;
217 }
218
219 epf_test->dma_chan_rx = dma_chan;
220
221 filter.dma_mask = BIT(DMA_MEM_TO_DEV);
222 dma_chan = dma_request_channel(mask, epf_dma_filter_fn, &filter);
223
224 if (!dma_chan) {
225 dev_info(dev, "Failed to get private DMA tx channel. Falling back to generic one\n");
226 goto fail_back_rx;
227 }
228
229 epf_test->dma_chan_tx = dma_chan;
230 epf_test->dma_private = true;
231
232 init_completion(&epf_test->transfer_complete);
233
234 return 0;
235
236 fail_back_rx:
237 dma_release_channel(epf_test->dma_chan_rx);
238 epf_test->dma_chan_tx = NULL;
239
240 fail_back_tx:
241 dma_cap_zero(mask);
242 dma_cap_set(DMA_MEMCPY, mask);
243
244 dma_chan = dma_request_chan_by_mask(&mask);
245 if (IS_ERR(dma_chan)) {
246 ret = PTR_ERR(dma_chan);
247 if (ret != -EPROBE_DEFER)
248 dev_err(dev, "Failed to get DMA channel\n");
249 return ret;
250 }
251 init_completion(&epf_test->transfer_complete);
252
253 epf_test->dma_chan_tx = epf_test->dma_chan_rx = dma_chan;
254
255 return 0;
256 }
257
258 /**
259 * pci_epf_test_clean_dma_chan() - Function to cleanup EPF test DMA channel
260 * @epf_test: the EPF test device that performs data transfer operation
261 *
262 * Helper to cleanup EPF test DMA channel.
263 */
pci_epf_test_clean_dma_chan(struct pci_epf_test * epf_test)264 static void pci_epf_test_clean_dma_chan(struct pci_epf_test *epf_test)
265 {
266 if (!epf_test->dma_supported)
267 return;
268
269 dma_release_channel(epf_test->dma_chan_tx);
270 if (epf_test->dma_chan_tx == epf_test->dma_chan_rx) {
271 epf_test->dma_chan_tx = NULL;
272 epf_test->dma_chan_rx = NULL;
273 return;
274 }
275
276 dma_release_channel(epf_test->dma_chan_rx);
277 epf_test->dma_chan_rx = NULL;
278
279 return;
280 }
281
pci_epf_test_print_rate(const char * ops,u64 size,struct timespec64 * start,struct timespec64 * end,bool dma)282 static void pci_epf_test_print_rate(const char *ops, u64 size,
283 struct timespec64 *start,
284 struct timespec64 *end, bool dma)
285 {
286 struct timespec64 ts;
287 u64 rate, ns;
288
289 ts = timespec64_sub(*end, *start);
290
291 /* convert both size (stored in 'rate') and time in terms of 'ns' */
292 ns = timespec64_to_ns(&ts);
293 rate = size * NSEC_PER_SEC;
294
295 /* Divide both size (stored in 'rate') and ns by a common factor */
296 while (ns > UINT_MAX) {
297 rate >>= 1;
298 ns >>= 1;
299 }
300
301 if (!ns)
302 return;
303
304 /* calculate the rate */
305 do_div(rate, (uint32_t)ns);
306
307 pr_info("\n%s => Size: %llu bytes\t DMA: %s\t Time: %llu.%09u seconds\t"
308 "Rate: %llu KB/s\n", ops, size, dma ? "YES" : "NO",
309 (u64)ts.tv_sec, (u32)ts.tv_nsec, rate / 1024);
310 }
311
pci_epf_test_copy(struct pci_epf_test * epf_test)312 static int pci_epf_test_copy(struct pci_epf_test *epf_test)
313 {
314 int ret;
315 bool use_dma;
316 void __iomem *src_addr;
317 void __iomem *dst_addr;
318 phys_addr_t src_phys_addr;
319 phys_addr_t dst_phys_addr;
320 struct timespec64 start, end;
321 struct pci_epf *epf = epf_test->epf;
322 struct device *dev = &epf->dev;
323 struct pci_epc *epc = epf->epc;
324 enum pci_barno test_reg_bar = epf_test->test_reg_bar;
325 struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
326
327 src_addr = pci_epc_mem_alloc_addr(epc, &src_phys_addr, reg->size);
328 if (!src_addr) {
329 dev_err(dev, "Failed to allocate source address\n");
330 reg->status = STATUS_SRC_ADDR_INVALID;
331 ret = -ENOMEM;
332 goto err;
333 }
334
335 ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, src_phys_addr,
336 reg->src_addr, reg->size);
337 if (ret) {
338 dev_err(dev, "Failed to map source address\n");
339 reg->status = STATUS_SRC_ADDR_INVALID;
340 goto err_src_addr;
341 }
342
343 dst_addr = pci_epc_mem_alloc_addr(epc, &dst_phys_addr, reg->size);
344 if (!dst_addr) {
345 dev_err(dev, "Failed to allocate destination address\n");
346 reg->status = STATUS_DST_ADDR_INVALID;
347 ret = -ENOMEM;
348 goto err_src_map_addr;
349 }
350
351 ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, dst_phys_addr,
352 reg->dst_addr, reg->size);
353 if (ret) {
354 dev_err(dev, "Failed to map destination address\n");
355 reg->status = STATUS_DST_ADDR_INVALID;
356 goto err_dst_addr;
357 }
358
359 ktime_get_ts64(&start);
360 use_dma = !!(reg->flags & FLAG_USE_DMA);
361 if (use_dma) {
362 if (!epf_test->dma_supported) {
363 dev_err(dev, "Cannot transfer data using DMA\n");
364 ret = -EINVAL;
365 goto err_map_addr;
366 }
367
368 if (epf_test->dma_private) {
369 dev_err(dev, "Cannot transfer data using DMA\n");
370 ret = -EINVAL;
371 goto err_map_addr;
372 }
373
374 ret = pci_epf_test_data_transfer(epf_test, dst_phys_addr,
375 src_phys_addr, reg->size, 0,
376 DMA_MEM_TO_MEM);
377 if (ret)
378 dev_err(dev, "Data transfer failed\n");
379 } else {
380 void *buf;
381
382 buf = kzalloc(reg->size, GFP_KERNEL);
383 if (!buf) {
384 ret = -ENOMEM;
385 goto err_map_addr;
386 }
387
388 memcpy_fromio(buf, src_addr, reg->size);
389 memcpy_toio(dst_addr, buf, reg->size);
390 kfree(buf);
391 }
392 ktime_get_ts64(&end);
393 pci_epf_test_print_rate("COPY", reg->size, &start, &end, use_dma);
394
395 err_map_addr:
396 pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, dst_phys_addr);
397
398 err_dst_addr:
399 pci_epc_mem_free_addr(epc, dst_phys_addr, dst_addr, reg->size);
400
401 err_src_map_addr:
402 pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, src_phys_addr);
403
404 err_src_addr:
405 pci_epc_mem_free_addr(epc, src_phys_addr, src_addr, reg->size);
406
407 err:
408 return ret;
409 }
410
pci_epf_test_read(struct pci_epf_test * epf_test)411 static int pci_epf_test_read(struct pci_epf_test *epf_test)
412 {
413 int ret;
414 void __iomem *src_addr;
415 void *buf;
416 u32 crc32;
417 bool use_dma;
418 phys_addr_t phys_addr;
419 phys_addr_t dst_phys_addr;
420 struct timespec64 start, end;
421 struct pci_epf *epf = epf_test->epf;
422 struct device *dev = &epf->dev;
423 struct pci_epc *epc = epf->epc;
424 struct device *dma_dev = epf->epc->dev.parent;
425 enum pci_barno test_reg_bar = epf_test->test_reg_bar;
426 struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
427
428 src_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size);
429 if (!src_addr) {
430 dev_err(dev, "Failed to allocate address\n");
431 reg->status = STATUS_SRC_ADDR_INVALID;
432 ret = -ENOMEM;
433 goto err;
434 }
435
436 ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, phys_addr,
437 reg->src_addr, reg->size);
438 if (ret) {
439 dev_err(dev, "Failed to map address\n");
440 reg->status = STATUS_SRC_ADDR_INVALID;
441 goto err_addr;
442 }
443
444 buf = kzalloc(reg->size, GFP_KERNEL);
445 if (!buf) {
446 ret = -ENOMEM;
447 goto err_map_addr;
448 }
449
450 use_dma = !!(reg->flags & FLAG_USE_DMA);
451 if (use_dma) {
452 if (!epf_test->dma_supported) {
453 dev_err(dev, "Cannot transfer data using DMA\n");
454 ret = -EINVAL;
455 goto err_dma_map;
456 }
457
458 dst_phys_addr = dma_map_single(dma_dev, buf, reg->size,
459 DMA_FROM_DEVICE);
460 if (dma_mapping_error(dma_dev, dst_phys_addr)) {
461 dev_err(dev, "Failed to map destination buffer addr\n");
462 ret = -ENOMEM;
463 goto err_dma_map;
464 }
465
466 ktime_get_ts64(&start);
467 ret = pci_epf_test_data_transfer(epf_test, dst_phys_addr,
468 phys_addr, reg->size,
469 reg->src_addr, DMA_DEV_TO_MEM);
470 if (ret)
471 dev_err(dev, "Data transfer failed\n");
472 ktime_get_ts64(&end);
473
474 dma_unmap_single(dma_dev, dst_phys_addr, reg->size,
475 DMA_FROM_DEVICE);
476 } else {
477 ktime_get_ts64(&start);
478 memcpy_fromio(buf, src_addr, reg->size);
479 ktime_get_ts64(&end);
480 }
481
482 pci_epf_test_print_rate("READ", reg->size, &start, &end, use_dma);
483
484 crc32 = crc32_le(~0, buf, reg->size);
485 if (crc32 != reg->checksum)
486 ret = -EIO;
487
488 err_dma_map:
489 kfree(buf);
490
491 err_map_addr:
492 pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, phys_addr);
493
494 err_addr:
495 pci_epc_mem_free_addr(epc, phys_addr, src_addr, reg->size);
496
497 err:
498 return ret;
499 }
500
pci_epf_test_write(struct pci_epf_test * epf_test)501 static int pci_epf_test_write(struct pci_epf_test *epf_test)
502 {
503 int ret;
504 void __iomem *dst_addr;
505 void *buf;
506 bool use_dma;
507 phys_addr_t phys_addr;
508 phys_addr_t src_phys_addr;
509 struct timespec64 start, end;
510 struct pci_epf *epf = epf_test->epf;
511 struct device *dev = &epf->dev;
512 struct pci_epc *epc = epf->epc;
513 struct device *dma_dev = epf->epc->dev.parent;
514 enum pci_barno test_reg_bar = epf_test->test_reg_bar;
515 struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
516
517 dst_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size);
518 if (!dst_addr) {
519 dev_err(dev, "Failed to allocate address\n");
520 reg->status = STATUS_DST_ADDR_INVALID;
521 ret = -ENOMEM;
522 goto err;
523 }
524
525 ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, phys_addr,
526 reg->dst_addr, reg->size);
527 if (ret) {
528 dev_err(dev, "Failed to map address\n");
529 reg->status = STATUS_DST_ADDR_INVALID;
530 goto err_addr;
531 }
532
533 buf = kzalloc(reg->size, GFP_KERNEL);
534 if (!buf) {
535 ret = -ENOMEM;
536 goto err_map_addr;
537 }
538
539 get_random_bytes(buf, reg->size);
540 reg->checksum = crc32_le(~0, buf, reg->size);
541
542 use_dma = !!(reg->flags & FLAG_USE_DMA);
543 if (use_dma) {
544 if (!epf_test->dma_supported) {
545 dev_err(dev, "Cannot transfer data using DMA\n");
546 ret = -EINVAL;
547 goto err_dma_map;
548 }
549
550 src_phys_addr = dma_map_single(dma_dev, buf, reg->size,
551 DMA_TO_DEVICE);
552 if (dma_mapping_error(dma_dev, src_phys_addr)) {
553 dev_err(dev, "Failed to map source buffer addr\n");
554 ret = -ENOMEM;
555 goto err_dma_map;
556 }
557
558 ktime_get_ts64(&start);
559
560 ret = pci_epf_test_data_transfer(epf_test, phys_addr,
561 src_phys_addr, reg->size,
562 reg->dst_addr,
563 DMA_MEM_TO_DEV);
564 if (ret)
565 dev_err(dev, "Data transfer failed\n");
566 ktime_get_ts64(&end);
567
568 dma_unmap_single(dma_dev, src_phys_addr, reg->size,
569 DMA_TO_DEVICE);
570 } else {
571 ktime_get_ts64(&start);
572 memcpy_toio(dst_addr, buf, reg->size);
573 ktime_get_ts64(&end);
574 }
575
576 pci_epf_test_print_rate("WRITE", reg->size, &start, &end, use_dma);
577
578 /*
579 * wait 1ms inorder for the write to complete. Without this delay L3
580 * error in observed in the host system.
581 */
582 usleep_range(1000, 2000);
583
584 err_dma_map:
585 kfree(buf);
586
587 err_map_addr:
588 pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, phys_addr);
589
590 err_addr:
591 pci_epc_mem_free_addr(epc, phys_addr, dst_addr, reg->size);
592
593 err:
594 return ret;
595 }
596
pci_epf_test_raise_irq(struct pci_epf_test * epf_test,u8 irq_type,u16 irq)597 static void pci_epf_test_raise_irq(struct pci_epf_test *epf_test, u8 irq_type,
598 u16 irq)
599 {
600 struct pci_epf *epf = epf_test->epf;
601 struct device *dev = &epf->dev;
602 struct pci_epc *epc = epf->epc;
603 enum pci_barno test_reg_bar = epf_test->test_reg_bar;
604 struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
605
606 reg->status |= STATUS_IRQ_RAISED;
607
608 switch (irq_type) {
609 case IRQ_TYPE_LEGACY:
610 pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no,
611 PCI_EPC_IRQ_LEGACY, 0);
612 break;
613 case IRQ_TYPE_MSI:
614 pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no,
615 PCI_EPC_IRQ_MSI, irq);
616 break;
617 case IRQ_TYPE_MSIX:
618 pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no,
619 PCI_EPC_IRQ_MSIX, irq);
620 break;
621 default:
622 dev_err(dev, "Failed to raise IRQ, unknown type\n");
623 break;
624 }
625 }
626
pci_epf_test_cmd_handler(struct work_struct * work)627 static void pci_epf_test_cmd_handler(struct work_struct *work)
628 {
629 int ret;
630 int count;
631 u32 command;
632 struct pci_epf_test *epf_test = container_of(work, struct pci_epf_test,
633 cmd_handler.work);
634 struct pci_epf *epf = epf_test->epf;
635 struct device *dev = &epf->dev;
636 struct pci_epc *epc = epf->epc;
637 enum pci_barno test_reg_bar = epf_test->test_reg_bar;
638 struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
639
640 command = reg->command;
641 if (!command)
642 goto reset_handler;
643
644 reg->command = 0;
645 reg->status = 0;
646
647 if (reg->irq_type > IRQ_TYPE_MSIX) {
648 dev_err(dev, "Failed to detect IRQ type\n");
649 goto reset_handler;
650 }
651
652 if (command & COMMAND_RAISE_LEGACY_IRQ) {
653 reg->status = STATUS_IRQ_RAISED;
654 pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no,
655 PCI_EPC_IRQ_LEGACY, 0);
656 goto reset_handler;
657 }
658
659 if (command & COMMAND_WRITE) {
660 ret = pci_epf_test_write(epf_test);
661 if (ret)
662 reg->status |= STATUS_WRITE_FAIL;
663 else
664 reg->status |= STATUS_WRITE_SUCCESS;
665 pci_epf_test_raise_irq(epf_test, reg->irq_type,
666 reg->irq_number);
667 goto reset_handler;
668 }
669
670 if (command & COMMAND_READ) {
671 ret = pci_epf_test_read(epf_test);
672 if (!ret)
673 reg->status |= STATUS_READ_SUCCESS;
674 else
675 reg->status |= STATUS_READ_FAIL;
676 pci_epf_test_raise_irq(epf_test, reg->irq_type,
677 reg->irq_number);
678 goto reset_handler;
679 }
680
681 if (command & COMMAND_COPY) {
682 ret = pci_epf_test_copy(epf_test);
683 if (!ret)
684 reg->status |= STATUS_COPY_SUCCESS;
685 else
686 reg->status |= STATUS_COPY_FAIL;
687 pci_epf_test_raise_irq(epf_test, reg->irq_type,
688 reg->irq_number);
689 goto reset_handler;
690 }
691
692 if (command & COMMAND_RAISE_MSI_IRQ) {
693 count = pci_epc_get_msi(epc, epf->func_no, epf->vfunc_no);
694 if (reg->irq_number > count || count <= 0)
695 goto reset_handler;
696 reg->status = STATUS_IRQ_RAISED;
697 pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no,
698 PCI_EPC_IRQ_MSI, reg->irq_number);
699 goto reset_handler;
700 }
701
702 if (command & COMMAND_RAISE_MSIX_IRQ) {
703 count = pci_epc_get_msix(epc, epf->func_no, epf->vfunc_no);
704 if (reg->irq_number > count || count <= 0)
705 goto reset_handler;
706 reg->status = STATUS_IRQ_RAISED;
707 pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no,
708 PCI_EPC_IRQ_MSIX, reg->irq_number);
709 goto reset_handler;
710 }
711
712 reset_handler:
713 queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler,
714 msecs_to_jiffies(1));
715 }
716
pci_epf_test_unbind(struct pci_epf * epf)717 static void pci_epf_test_unbind(struct pci_epf *epf)
718 {
719 struct pci_epf_test *epf_test = epf_get_drvdata(epf);
720 struct pci_epc *epc = epf->epc;
721 struct pci_epf_bar *epf_bar;
722 int bar;
723
724 cancel_delayed_work(&epf_test->cmd_handler);
725 pci_epf_test_clean_dma_chan(epf_test);
726 for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
727 epf_bar = &epf->bar[bar];
728
729 if (epf_test->reg[bar]) {
730 pci_epc_clear_bar(epc, epf->func_no, epf->vfunc_no,
731 epf_bar);
732 pci_epf_free_space(epf, epf_test->reg[bar], bar,
733 PRIMARY_INTERFACE);
734 }
735 }
736 }
737
pci_epf_test_set_bar(struct pci_epf * epf)738 static int pci_epf_test_set_bar(struct pci_epf *epf)
739 {
740 int bar, add;
741 int ret;
742 struct pci_epf_bar *epf_bar;
743 struct pci_epc *epc = epf->epc;
744 struct device *dev = &epf->dev;
745 struct pci_epf_test *epf_test = epf_get_drvdata(epf);
746 enum pci_barno test_reg_bar = epf_test->test_reg_bar;
747 const struct pci_epc_features *epc_features;
748
749 epc_features = epf_test->epc_features;
750
751 for (bar = 0; bar < PCI_STD_NUM_BARS; bar += add) {
752 epf_bar = &epf->bar[bar];
753 /*
754 * pci_epc_set_bar() sets PCI_BASE_ADDRESS_MEM_TYPE_64
755 * if the specific implementation required a 64-bit BAR,
756 * even if we only requested a 32-bit BAR.
757 */
758 add = (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ? 2 : 1;
759
760 if (!!(epc_features->reserved_bar & (1 << bar)))
761 continue;
762
763 ret = pci_epc_set_bar(epc, epf->func_no, epf->vfunc_no,
764 epf_bar);
765 if (ret) {
766 pci_epf_free_space(epf, epf_test->reg[bar], bar,
767 PRIMARY_INTERFACE);
768 dev_err(dev, "Failed to set BAR%d\n", bar);
769 if (bar == test_reg_bar)
770 return ret;
771 }
772 }
773
774 return 0;
775 }
776
pci_epf_test_core_init(struct pci_epf * epf)777 static int pci_epf_test_core_init(struct pci_epf *epf)
778 {
779 struct pci_epf_test *epf_test = epf_get_drvdata(epf);
780 struct pci_epf_header *header = epf->header;
781 const struct pci_epc_features *epc_features;
782 struct pci_epc *epc = epf->epc;
783 struct device *dev = &epf->dev;
784 bool msix_capable = false;
785 bool msi_capable = true;
786 int ret;
787
788 epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no);
789 if (epc_features) {
790 msix_capable = epc_features->msix_capable;
791 msi_capable = epc_features->msi_capable;
792 }
793
794 if (epf->vfunc_no <= 1) {
795 ret = pci_epc_write_header(epc, epf->func_no, epf->vfunc_no, header);
796 if (ret) {
797 dev_err(dev, "Configuration header write failed\n");
798 return ret;
799 }
800 }
801
802 ret = pci_epf_test_set_bar(epf);
803 if (ret)
804 return ret;
805
806 if (msi_capable) {
807 ret = pci_epc_set_msi(epc, epf->func_no, epf->vfunc_no,
808 epf->msi_interrupts);
809 if (ret) {
810 dev_err(dev, "MSI configuration failed\n");
811 return ret;
812 }
813 }
814
815 if (msix_capable) {
816 ret = pci_epc_set_msix(epc, epf->func_no, epf->vfunc_no,
817 epf->msix_interrupts,
818 epf_test->test_reg_bar,
819 epf_test->msix_table_offset);
820 if (ret) {
821 dev_err(dev, "MSI-X configuration failed\n");
822 return ret;
823 }
824 }
825
826 return 0;
827 }
828
pci_epf_test_link_up(struct pci_epf * epf)829 static int pci_epf_test_link_up(struct pci_epf *epf)
830 {
831 struct pci_epf_test *epf_test = epf_get_drvdata(epf);
832
833 queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler,
834 msecs_to_jiffies(1));
835
836 return 0;
837 }
838
839 static const struct pci_epc_event_ops pci_epf_test_event_ops = {
840 .core_init = pci_epf_test_core_init,
841 .link_up = pci_epf_test_link_up,
842 };
843
pci_epf_test_alloc_space(struct pci_epf * epf)844 static int pci_epf_test_alloc_space(struct pci_epf *epf)
845 {
846 struct pci_epf_test *epf_test = epf_get_drvdata(epf);
847 struct device *dev = &epf->dev;
848 struct pci_epf_bar *epf_bar;
849 size_t msix_table_size = 0;
850 size_t test_reg_bar_size;
851 size_t pba_size = 0;
852 bool msix_capable;
853 void *base;
854 int bar, add;
855 enum pci_barno test_reg_bar = epf_test->test_reg_bar;
856 const struct pci_epc_features *epc_features;
857 size_t test_reg_size;
858
859 epc_features = epf_test->epc_features;
860
861 test_reg_bar_size = ALIGN(sizeof(struct pci_epf_test_reg), 128);
862
863 msix_capable = epc_features->msix_capable;
864 if (msix_capable) {
865 msix_table_size = PCI_MSIX_ENTRY_SIZE * epf->msix_interrupts;
866 epf_test->msix_table_offset = test_reg_bar_size;
867 /* Align to QWORD or 8 Bytes */
868 pba_size = ALIGN(DIV_ROUND_UP(epf->msix_interrupts, 8), 8);
869 }
870 test_reg_size = test_reg_bar_size + msix_table_size + pba_size;
871
872 if (epc_features->bar_fixed_size[test_reg_bar]) {
873 if (test_reg_size > bar_size[test_reg_bar])
874 return -ENOMEM;
875 test_reg_size = bar_size[test_reg_bar];
876 }
877
878 base = pci_epf_alloc_space(epf, test_reg_size, test_reg_bar,
879 epc_features->align, PRIMARY_INTERFACE);
880 if (!base) {
881 dev_err(dev, "Failed to allocated register space\n");
882 return -ENOMEM;
883 }
884 epf_test->reg[test_reg_bar] = base;
885
886 for (bar = 0; bar < PCI_STD_NUM_BARS; bar += add) {
887 epf_bar = &epf->bar[bar];
888 add = (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ? 2 : 1;
889
890 if (bar == test_reg_bar)
891 continue;
892
893 if (!!(epc_features->reserved_bar & (1 << bar)))
894 continue;
895
896 base = pci_epf_alloc_space(epf, bar_size[bar], bar,
897 epc_features->align,
898 PRIMARY_INTERFACE);
899 if (!base)
900 dev_err(dev, "Failed to allocate space for BAR%d\n",
901 bar);
902 epf_test->reg[bar] = base;
903 }
904
905 return 0;
906 }
907
pci_epf_configure_bar(struct pci_epf * epf,const struct pci_epc_features * epc_features)908 static void pci_epf_configure_bar(struct pci_epf *epf,
909 const struct pci_epc_features *epc_features)
910 {
911 struct pci_epf_bar *epf_bar;
912 bool bar_fixed_64bit;
913 int i;
914
915 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
916 epf_bar = &epf->bar[i];
917 bar_fixed_64bit = !!(epc_features->bar_fixed_64bit & (1 << i));
918 if (bar_fixed_64bit)
919 epf_bar->flags |= PCI_BASE_ADDRESS_MEM_TYPE_64;
920 if (epc_features->bar_fixed_size[i])
921 bar_size[i] = epc_features->bar_fixed_size[i];
922 }
923 }
924
pci_epf_test_bind(struct pci_epf * epf)925 static int pci_epf_test_bind(struct pci_epf *epf)
926 {
927 int ret;
928 struct pci_epf_test *epf_test = epf_get_drvdata(epf);
929 const struct pci_epc_features *epc_features;
930 enum pci_barno test_reg_bar = BAR_0;
931 struct pci_epc *epc = epf->epc;
932 bool linkup_notifier = false;
933 bool core_init_notifier = false;
934
935 if (WARN_ON_ONCE(!epc))
936 return -EINVAL;
937
938 epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no);
939 if (!epc_features) {
940 dev_err(&epf->dev, "epc_features not implemented\n");
941 return -EOPNOTSUPP;
942 }
943
944 linkup_notifier = epc_features->linkup_notifier;
945 core_init_notifier = epc_features->core_init_notifier;
946 test_reg_bar = pci_epc_get_first_free_bar(epc_features);
947 if (test_reg_bar < 0)
948 return -EINVAL;
949 pci_epf_configure_bar(epf, epc_features);
950
951 epf_test->test_reg_bar = test_reg_bar;
952 epf_test->epc_features = epc_features;
953
954 ret = pci_epf_test_alloc_space(epf);
955 if (ret)
956 return ret;
957
958 if (!core_init_notifier) {
959 ret = pci_epf_test_core_init(epf);
960 if (ret)
961 return ret;
962 }
963
964 epf_test->dma_supported = true;
965
966 ret = pci_epf_test_init_dma_chan(epf_test);
967 if (ret)
968 epf_test->dma_supported = false;
969
970 if (!linkup_notifier && !core_init_notifier)
971 queue_work(kpcitest_workqueue, &epf_test->cmd_handler.work);
972
973 return 0;
974 }
975
976 static const struct pci_epf_device_id pci_epf_test_ids[] = {
977 {
978 .name = "pci_epf_test",
979 },
980 {},
981 };
982
pci_epf_test_probe(struct pci_epf * epf)983 static int pci_epf_test_probe(struct pci_epf *epf)
984 {
985 struct pci_epf_test *epf_test;
986 struct device *dev = &epf->dev;
987
988 epf_test = devm_kzalloc(dev, sizeof(*epf_test), GFP_KERNEL);
989 if (!epf_test)
990 return -ENOMEM;
991
992 epf->header = &test_header;
993 epf_test->epf = epf;
994
995 INIT_DELAYED_WORK(&epf_test->cmd_handler, pci_epf_test_cmd_handler);
996
997 epf->event_ops = &pci_epf_test_event_ops;
998
999 epf_set_drvdata(epf, epf_test);
1000 return 0;
1001 }
1002
1003 static struct pci_epf_ops ops = {
1004 .unbind = pci_epf_test_unbind,
1005 .bind = pci_epf_test_bind,
1006 };
1007
1008 static struct pci_epf_driver test_driver = {
1009 .driver.name = "pci_epf_test",
1010 .probe = pci_epf_test_probe,
1011 .id_table = pci_epf_test_ids,
1012 .ops = &ops,
1013 .owner = THIS_MODULE,
1014 };
1015
pci_epf_test_init(void)1016 static int __init pci_epf_test_init(void)
1017 {
1018 int ret;
1019
1020 kpcitest_workqueue = alloc_workqueue("kpcitest",
1021 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1022 if (!kpcitest_workqueue) {
1023 pr_err("Failed to allocate the kpcitest work queue\n");
1024 return -ENOMEM;
1025 }
1026
1027 ret = pci_epf_register_driver(&test_driver);
1028 if (ret) {
1029 destroy_workqueue(kpcitest_workqueue);
1030 pr_err("Failed to register pci epf test driver --> %d\n", ret);
1031 return ret;
1032 }
1033
1034 return 0;
1035 }
1036 module_init(pci_epf_test_init);
1037
pci_epf_test_exit(void)1038 static void __exit pci_epf_test_exit(void)
1039 {
1040 if (kpcitest_workqueue)
1041 destroy_workqueue(kpcitest_workqueue);
1042 pci_epf_unregister_driver(&test_driver);
1043 }
1044 module_exit(pci_epf_test_exit);
1045
1046 MODULE_DESCRIPTION("PCI EPF TEST DRIVER");
1047 MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
1048 MODULE_LICENSE("GPL v2");
1049