1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Perf support for the Statistical Profiling Extension, introduced as
4 * part of ARMv8.2.
5 *
6 * Copyright (C) 2016 ARM Limited
7 *
8 * Author: Will Deacon <will.deacon@arm.com>
9 */
10
11 #define PMUNAME "arm_spe"
12 #define DRVNAME PMUNAME "_pmu"
13 #define pr_fmt(fmt) DRVNAME ": " fmt
14
15 #include <linux/bitfield.h>
16 #include <linux/bitops.h>
17 #include <linux/bug.h>
18 #include <linux/capability.h>
19 #include <linux/cpuhotplug.h>
20 #include <linux/cpumask.h>
21 #include <linux/device.h>
22 #include <linux/errno.h>
23 #include <linux/interrupt.h>
24 #include <linux/irq.h>
25 #include <linux/kernel.h>
26 #include <linux/list.h>
27 #include <linux/module.h>
28 #include <linux/of_address.h>
29 #include <linux/of_device.h>
30 #include <linux/perf_event.h>
31 #include <linux/perf/arm_pmu.h>
32 #include <linux/platform_device.h>
33 #include <linux/printk.h>
34 #include <linux/slab.h>
35 #include <linux/smp.h>
36 #include <linux/vmalloc.h>
37
38 #include <asm/barrier.h>
39 #include <asm/cpufeature.h>
40 #include <asm/mmu.h>
41 #include <asm/sysreg.h>
42
43 /*
44 * Cache if the event is allowed to trace Context information.
45 * This allows us to perform the check, i.e, perfmon_capable(),
46 * in the context of the event owner, once, during the event_init().
47 */
48 #define SPE_PMU_HW_FLAGS_CX 0x00001
49
50 static_assert((PERF_EVENT_FLAG_ARCH & SPE_PMU_HW_FLAGS_CX) == SPE_PMU_HW_FLAGS_CX);
51
set_spe_event_has_cx(struct perf_event * event)52 static void set_spe_event_has_cx(struct perf_event *event)
53 {
54 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable())
55 event->hw.flags |= SPE_PMU_HW_FLAGS_CX;
56 }
57
get_spe_event_has_cx(struct perf_event * event)58 static bool get_spe_event_has_cx(struct perf_event *event)
59 {
60 return !!(event->hw.flags & SPE_PMU_HW_FLAGS_CX);
61 }
62
63 #define ARM_SPE_BUF_PAD_BYTE 0
64
65 struct arm_spe_pmu_buf {
66 int nr_pages;
67 bool snapshot;
68 void *base;
69 };
70
71 struct arm_spe_pmu {
72 struct pmu pmu;
73 struct platform_device *pdev;
74 cpumask_t supported_cpus;
75 struct hlist_node hotplug_node;
76
77 int irq; /* PPI */
78 u16 pmsver;
79 u16 min_period;
80 u16 counter_sz;
81
82 #define SPE_PMU_FEAT_FILT_EVT (1UL << 0)
83 #define SPE_PMU_FEAT_FILT_TYP (1UL << 1)
84 #define SPE_PMU_FEAT_FILT_LAT (1UL << 2)
85 #define SPE_PMU_FEAT_ARCH_INST (1UL << 3)
86 #define SPE_PMU_FEAT_LDS (1UL << 4)
87 #define SPE_PMU_FEAT_ERND (1UL << 5)
88 #define SPE_PMU_FEAT_INV_FILT_EVT (1UL << 6)
89 #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63)
90 u64 features;
91
92 u16 max_record_sz;
93 u16 align;
94 struct perf_output_handle __percpu *handle;
95 };
96
97 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
98
99 /* Convert a free-running index from perf into an SPE buffer offset */
100 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
101
102 /* Keep track of our dynamic hotplug state */
103 static enum cpuhp_state arm_spe_pmu_online;
104
105 enum arm_spe_pmu_buf_fault_action {
106 SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
107 SPE_PMU_BUF_FAULT_ACT_FATAL,
108 SPE_PMU_BUF_FAULT_ACT_OK,
109 };
110
111 /* This sysfs gunk was really good fun to write. */
112 enum arm_spe_pmu_capabilities {
113 SPE_PMU_CAP_ARCH_INST = 0,
114 SPE_PMU_CAP_ERND,
115 SPE_PMU_CAP_FEAT_MAX,
116 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
117 SPE_PMU_CAP_MIN_IVAL,
118 };
119
120 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
121 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
122 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND,
123 };
124
arm_spe_pmu_cap_get(struct arm_spe_pmu * spe_pmu,int cap)125 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
126 {
127 if (cap < SPE_PMU_CAP_FEAT_MAX)
128 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
129
130 switch (cap) {
131 case SPE_PMU_CAP_CNT_SZ:
132 return spe_pmu->counter_sz;
133 case SPE_PMU_CAP_MIN_IVAL:
134 return spe_pmu->min_period;
135 default:
136 WARN(1, "unknown cap %d\n", cap);
137 }
138
139 return 0;
140 }
141
arm_spe_pmu_cap_show(struct device * dev,struct device_attribute * attr,char * buf)142 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
143 struct device_attribute *attr,
144 char *buf)
145 {
146 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
147 struct dev_ext_attribute *ea =
148 container_of(attr, struct dev_ext_attribute, attr);
149 int cap = (long)ea->var;
150
151 return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap));
152 }
153
154 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \
155 &((struct dev_ext_attribute[]) { \
156 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \
157 })[0].attr.attr
158
159 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \
160 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
161
162 static struct attribute *arm_spe_pmu_cap_attr[] = {
163 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
164 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
165 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
166 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
167 NULL,
168 };
169
170 static const struct attribute_group arm_spe_pmu_cap_group = {
171 .name = "caps",
172 .attrs = arm_spe_pmu_cap_attr,
173 };
174
175 /* User ABI */
176 #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */
177 #define ATTR_CFG_FLD_ts_enable_LO 0
178 #define ATTR_CFG_FLD_ts_enable_HI 0
179 #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */
180 #define ATTR_CFG_FLD_pa_enable_LO 1
181 #define ATTR_CFG_FLD_pa_enable_HI 1
182 #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */
183 #define ATTR_CFG_FLD_pct_enable_LO 2
184 #define ATTR_CFG_FLD_pct_enable_HI 2
185 #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */
186 #define ATTR_CFG_FLD_jitter_LO 16
187 #define ATTR_CFG_FLD_jitter_HI 16
188 #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */
189 #define ATTR_CFG_FLD_branch_filter_LO 32
190 #define ATTR_CFG_FLD_branch_filter_HI 32
191 #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */
192 #define ATTR_CFG_FLD_load_filter_LO 33
193 #define ATTR_CFG_FLD_load_filter_HI 33
194 #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */
195 #define ATTR_CFG_FLD_store_filter_LO 34
196 #define ATTR_CFG_FLD_store_filter_HI 34
197
198 #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */
199 #define ATTR_CFG_FLD_event_filter_LO 0
200 #define ATTR_CFG_FLD_event_filter_HI 63
201
202 #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */
203 #define ATTR_CFG_FLD_min_latency_LO 0
204 #define ATTR_CFG_FLD_min_latency_HI 11
205
206 #define ATTR_CFG_FLD_inv_event_filter_CFG config3 /* PMSNEVFR_EL1 */
207 #define ATTR_CFG_FLD_inv_event_filter_LO 0
208 #define ATTR_CFG_FLD_inv_event_filter_HI 63
209
210 /* Why does everything I do descend into this? */
211 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
212 (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
213
214 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
215 __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
216
217 #define GEN_PMU_FORMAT_ATTR(name) \
218 PMU_FORMAT_ATTR(name, \
219 _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \
220 ATTR_CFG_FLD_##name##_LO, \
221 ATTR_CFG_FLD_##name##_HI))
222
223 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \
224 ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
225
226 #define ATTR_CFG_GET_FLD(attr, name) \
227 _ATTR_CFG_GET_FLD(attr, \
228 ATTR_CFG_FLD_##name##_CFG, \
229 ATTR_CFG_FLD_##name##_LO, \
230 ATTR_CFG_FLD_##name##_HI)
231
232 GEN_PMU_FORMAT_ATTR(ts_enable);
233 GEN_PMU_FORMAT_ATTR(pa_enable);
234 GEN_PMU_FORMAT_ATTR(pct_enable);
235 GEN_PMU_FORMAT_ATTR(jitter);
236 GEN_PMU_FORMAT_ATTR(branch_filter);
237 GEN_PMU_FORMAT_ATTR(load_filter);
238 GEN_PMU_FORMAT_ATTR(store_filter);
239 GEN_PMU_FORMAT_ATTR(event_filter);
240 GEN_PMU_FORMAT_ATTR(inv_event_filter);
241 GEN_PMU_FORMAT_ATTR(min_latency);
242
243 static struct attribute *arm_spe_pmu_formats_attr[] = {
244 &format_attr_ts_enable.attr,
245 &format_attr_pa_enable.attr,
246 &format_attr_pct_enable.attr,
247 &format_attr_jitter.attr,
248 &format_attr_branch_filter.attr,
249 &format_attr_load_filter.attr,
250 &format_attr_store_filter.attr,
251 &format_attr_event_filter.attr,
252 &format_attr_inv_event_filter.attr,
253 &format_attr_min_latency.attr,
254 NULL,
255 };
256
arm_spe_pmu_format_attr_is_visible(struct kobject * kobj,struct attribute * attr,int unused)257 static umode_t arm_spe_pmu_format_attr_is_visible(struct kobject *kobj,
258 struct attribute *attr,
259 int unused)
260 {
261 struct device *dev = kobj_to_dev(kobj);
262 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
263
264 if (attr == &format_attr_inv_event_filter.attr && !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT))
265 return 0;
266
267 return attr->mode;
268 }
269
270 static const struct attribute_group arm_spe_pmu_format_group = {
271 .name = "format",
272 .is_visible = arm_spe_pmu_format_attr_is_visible,
273 .attrs = arm_spe_pmu_formats_attr,
274 };
275
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)276 static ssize_t cpumask_show(struct device *dev,
277 struct device_attribute *attr, char *buf)
278 {
279 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
280
281 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
282 }
283 static DEVICE_ATTR_RO(cpumask);
284
285 static struct attribute *arm_spe_pmu_attrs[] = {
286 &dev_attr_cpumask.attr,
287 NULL,
288 };
289
290 static const struct attribute_group arm_spe_pmu_group = {
291 .attrs = arm_spe_pmu_attrs,
292 };
293
294 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
295 &arm_spe_pmu_group,
296 &arm_spe_pmu_cap_group,
297 &arm_spe_pmu_format_group,
298 NULL,
299 };
300
301 /* Convert between user ABI and register values */
arm_spe_event_to_pmscr(struct perf_event * event)302 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
303 {
304 struct perf_event_attr *attr = &event->attr;
305 u64 reg = 0;
306
307 reg |= FIELD_PREP(PMSCR_EL1_TS, ATTR_CFG_GET_FLD(attr, ts_enable));
308 reg |= FIELD_PREP(PMSCR_EL1_PA, ATTR_CFG_GET_FLD(attr, pa_enable));
309 reg |= FIELD_PREP(PMSCR_EL1_PCT, ATTR_CFG_GET_FLD(attr, pct_enable));
310
311 if (!attr->exclude_user)
312 reg |= PMSCR_EL1_E0SPE;
313
314 if (!attr->exclude_kernel)
315 reg |= PMSCR_EL1_E1SPE;
316
317 if (get_spe_event_has_cx(event))
318 reg |= PMSCR_EL1_CX;
319
320 return reg;
321 }
322
arm_spe_event_sanitise_period(struct perf_event * event)323 static void arm_spe_event_sanitise_period(struct perf_event *event)
324 {
325 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
326 u64 period = event->hw.sample_period;
327 u64 max_period = PMSIRR_EL1_INTERVAL_MASK;
328
329 if (period < spe_pmu->min_period)
330 period = spe_pmu->min_period;
331 else if (period > max_period)
332 period = max_period;
333 else
334 period &= max_period;
335
336 event->hw.sample_period = period;
337 }
338
arm_spe_event_to_pmsirr(struct perf_event * event)339 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
340 {
341 struct perf_event_attr *attr = &event->attr;
342 u64 reg = 0;
343
344 arm_spe_event_sanitise_period(event);
345
346 reg |= FIELD_PREP(PMSIRR_EL1_RND, ATTR_CFG_GET_FLD(attr, jitter));
347 reg |= event->hw.sample_period;
348
349 return reg;
350 }
351
arm_spe_event_to_pmsfcr(struct perf_event * event)352 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
353 {
354 struct perf_event_attr *attr = &event->attr;
355 u64 reg = 0;
356
357 reg |= FIELD_PREP(PMSFCR_EL1_LD, ATTR_CFG_GET_FLD(attr, load_filter));
358 reg |= FIELD_PREP(PMSFCR_EL1_ST, ATTR_CFG_GET_FLD(attr, store_filter));
359 reg |= FIELD_PREP(PMSFCR_EL1_B, ATTR_CFG_GET_FLD(attr, branch_filter));
360
361 if (reg)
362 reg |= PMSFCR_EL1_FT;
363
364 if (ATTR_CFG_GET_FLD(attr, event_filter))
365 reg |= PMSFCR_EL1_FE;
366
367 if (ATTR_CFG_GET_FLD(attr, inv_event_filter))
368 reg |= PMSFCR_EL1_FnE;
369
370 if (ATTR_CFG_GET_FLD(attr, min_latency))
371 reg |= PMSFCR_EL1_FL;
372
373 return reg;
374 }
375
arm_spe_event_to_pmsevfr(struct perf_event * event)376 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
377 {
378 struct perf_event_attr *attr = &event->attr;
379 return ATTR_CFG_GET_FLD(attr, event_filter);
380 }
381
arm_spe_event_to_pmsnevfr(struct perf_event * event)382 static u64 arm_spe_event_to_pmsnevfr(struct perf_event *event)
383 {
384 struct perf_event_attr *attr = &event->attr;
385 return ATTR_CFG_GET_FLD(attr, inv_event_filter);
386 }
387
arm_spe_event_to_pmslatfr(struct perf_event * event)388 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
389 {
390 struct perf_event_attr *attr = &event->attr;
391 return FIELD_PREP(PMSLATFR_EL1_MINLAT, ATTR_CFG_GET_FLD(attr, min_latency));
392 }
393
arm_spe_pmu_pad_buf(struct perf_output_handle * handle,int len)394 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
395 {
396 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
397 u64 head = PERF_IDX2OFF(handle->head, buf);
398
399 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
400 if (!buf->snapshot)
401 perf_aux_output_skip(handle, len);
402 }
403
arm_spe_pmu_next_snapshot_off(struct perf_output_handle * handle)404 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
405 {
406 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
407 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
408 u64 head = PERF_IDX2OFF(handle->head, buf);
409 u64 limit = buf->nr_pages * PAGE_SIZE;
410
411 /*
412 * The trace format isn't parseable in reverse, so clamp
413 * the limit to half of the buffer size in snapshot mode
414 * so that the worst case is half a buffer of records, as
415 * opposed to a single record.
416 */
417 if (head < limit >> 1)
418 limit >>= 1;
419
420 /*
421 * If we're within max_record_sz of the limit, we must
422 * pad, move the head index and recompute the limit.
423 */
424 if (limit - head < spe_pmu->max_record_sz) {
425 arm_spe_pmu_pad_buf(handle, limit - head);
426 handle->head = PERF_IDX2OFF(limit, buf);
427 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
428 }
429
430 return limit;
431 }
432
__arm_spe_pmu_next_off(struct perf_output_handle * handle)433 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
434 {
435 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
436 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
437 const u64 bufsize = buf->nr_pages * PAGE_SIZE;
438 u64 limit = bufsize;
439 u64 head, tail, wakeup;
440
441 /*
442 * The head can be misaligned for two reasons:
443 *
444 * 1. The hardware left PMBPTR pointing to the first byte after
445 * a record when generating a buffer management event.
446 *
447 * 2. We used perf_aux_output_skip to consume handle->size bytes
448 * and CIRC_SPACE was used to compute the size, which always
449 * leaves one entry free.
450 *
451 * Deal with this by padding to the next alignment boundary and
452 * moving the head index. If we run out of buffer space, we'll
453 * reduce handle->size to zero and end up reporting truncation.
454 */
455 head = PERF_IDX2OFF(handle->head, buf);
456 if (!IS_ALIGNED(head, spe_pmu->align)) {
457 unsigned long delta = roundup(head, spe_pmu->align) - head;
458
459 delta = min(delta, handle->size);
460 arm_spe_pmu_pad_buf(handle, delta);
461 head = PERF_IDX2OFF(handle->head, buf);
462 }
463
464 /* If we've run out of free space, then nothing more to do */
465 if (!handle->size)
466 goto no_space;
467
468 /* Compute the tail and wakeup indices now that we've aligned head */
469 tail = PERF_IDX2OFF(handle->head + handle->size, buf);
470 wakeup = PERF_IDX2OFF(handle->wakeup, buf);
471
472 /*
473 * Avoid clobbering unconsumed data. We know we have space, so
474 * if we see head == tail we know that the buffer is empty. If
475 * head > tail, then there's nothing to clobber prior to
476 * wrapping.
477 */
478 if (head < tail)
479 limit = round_down(tail, PAGE_SIZE);
480
481 /*
482 * Wakeup may be arbitrarily far into the future. If it's not in
483 * the current generation, either we'll wrap before hitting it,
484 * or it's in the past and has been handled already.
485 *
486 * If there's a wakeup before we wrap, arrange to be woken up by
487 * the page boundary following it. Keep the tail boundary if
488 * that's lower.
489 */
490 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
491 limit = min(limit, round_up(wakeup, PAGE_SIZE));
492
493 if (limit > head)
494 return limit;
495
496 arm_spe_pmu_pad_buf(handle, handle->size);
497 no_space:
498 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
499 perf_aux_output_end(handle, 0);
500 return 0;
501 }
502
arm_spe_pmu_next_off(struct perf_output_handle * handle)503 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
504 {
505 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
506 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
507 u64 limit = __arm_spe_pmu_next_off(handle);
508 u64 head = PERF_IDX2OFF(handle->head, buf);
509
510 /*
511 * If the head has come too close to the end of the buffer,
512 * then pad to the end and recompute the limit.
513 */
514 if (limit && (limit - head < spe_pmu->max_record_sz)) {
515 arm_spe_pmu_pad_buf(handle, limit - head);
516 limit = __arm_spe_pmu_next_off(handle);
517 }
518
519 return limit;
520 }
521
arm_spe_perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)522 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
523 struct perf_event *event)
524 {
525 u64 base, limit;
526 struct arm_spe_pmu_buf *buf;
527
528 /* Start a new aux session */
529 buf = perf_aux_output_begin(handle, event);
530 if (!buf) {
531 event->hw.state |= PERF_HES_STOPPED;
532 /*
533 * We still need to clear the limit pointer, since the
534 * profiler might only be disabled by virtue of a fault.
535 */
536 limit = 0;
537 goto out_write_limit;
538 }
539
540 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
541 : arm_spe_pmu_next_off(handle);
542 if (limit)
543 limit |= PMBLIMITR_EL1_E;
544
545 limit += (u64)buf->base;
546 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
547 write_sysreg_s(base, SYS_PMBPTR_EL1);
548
549 out_write_limit:
550 write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
551 }
552
arm_spe_perf_aux_output_end(struct perf_output_handle * handle)553 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
554 {
555 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
556 u64 offset, size;
557
558 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
559 size = offset - PERF_IDX2OFF(handle->head, buf);
560
561 if (buf->snapshot)
562 handle->head = offset;
563
564 perf_aux_output_end(handle, size);
565 }
566
arm_spe_pmu_disable_and_drain_local(void)567 static void arm_spe_pmu_disable_and_drain_local(void)
568 {
569 /* Disable profiling at EL0 and EL1 */
570 write_sysreg_s(0, SYS_PMSCR_EL1);
571 isb();
572
573 /* Drain any buffered data */
574 psb_csync();
575 dsb(nsh);
576
577 /* Disable the profiling buffer */
578 write_sysreg_s(0, SYS_PMBLIMITR_EL1);
579 isb();
580 }
581
582 /* IRQ handling */
583 static enum arm_spe_pmu_buf_fault_action
arm_spe_pmu_buf_get_fault_act(struct perf_output_handle * handle)584 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
585 {
586 const char *err_str;
587 u64 pmbsr;
588 enum arm_spe_pmu_buf_fault_action ret;
589
590 /*
591 * Ensure new profiling data is visible to the CPU and any external
592 * aborts have been resolved.
593 */
594 psb_csync();
595 dsb(nsh);
596
597 /* Ensure hardware updates to PMBPTR_EL1 are visible */
598 isb();
599
600 /* Service required? */
601 pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
602 if (!FIELD_GET(PMBSR_EL1_S, pmbsr))
603 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
604
605 /*
606 * If we've lost data, disable profiling and also set the PARTIAL
607 * flag to indicate that the last record is corrupted.
608 */
609 if (FIELD_GET(PMBSR_EL1_DL, pmbsr))
610 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
611 PERF_AUX_FLAG_PARTIAL);
612
613 /* Report collisions to userspace so that it can up the period */
614 if (FIELD_GET(PMBSR_EL1_COLL, pmbsr))
615 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
616
617 /* We only expect buffer management events */
618 switch (FIELD_GET(PMBSR_EL1_EC, pmbsr)) {
619 case PMBSR_EL1_EC_BUF:
620 /* Handled below */
621 break;
622 case PMBSR_EL1_EC_FAULT_S1:
623 case PMBSR_EL1_EC_FAULT_S2:
624 err_str = "Unexpected buffer fault";
625 goto out_err;
626 default:
627 err_str = "Unknown error code";
628 goto out_err;
629 }
630
631 /* Buffer management event */
632 switch (FIELD_GET(PMBSR_EL1_BUF_BSC_MASK, pmbsr)) {
633 case PMBSR_EL1_BUF_BSC_FULL:
634 ret = SPE_PMU_BUF_FAULT_ACT_OK;
635 goto out_stop;
636 default:
637 err_str = "Unknown buffer status code";
638 }
639
640 out_err:
641 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
642 err_str, smp_processor_id(), pmbsr,
643 read_sysreg_s(SYS_PMBPTR_EL1),
644 read_sysreg_s(SYS_PMBLIMITR_EL1));
645 ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
646
647 out_stop:
648 arm_spe_perf_aux_output_end(handle);
649 return ret;
650 }
651
arm_spe_pmu_irq_handler(int irq,void * dev)652 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
653 {
654 struct perf_output_handle *handle = dev;
655 struct perf_event *event = handle->event;
656 enum arm_spe_pmu_buf_fault_action act;
657
658 if (!perf_get_aux(handle))
659 return IRQ_NONE;
660
661 act = arm_spe_pmu_buf_get_fault_act(handle);
662 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
663 return IRQ_NONE;
664
665 /*
666 * Ensure perf callbacks have completed, which may disable the
667 * profiling buffer in response to a TRUNCATION flag.
668 */
669 irq_work_run();
670
671 switch (act) {
672 case SPE_PMU_BUF_FAULT_ACT_FATAL:
673 /*
674 * If a fatal exception occurred then leaving the profiling
675 * buffer enabled is a recipe waiting to happen. Since
676 * fatal faults don't always imply truncation, make sure
677 * that the profiling buffer is disabled explicitly before
678 * clearing the syndrome register.
679 */
680 arm_spe_pmu_disable_and_drain_local();
681 break;
682 case SPE_PMU_BUF_FAULT_ACT_OK:
683 /*
684 * We handled the fault (the buffer was full), so resume
685 * profiling as long as we didn't detect truncation.
686 * PMBPTR might be misaligned, but we'll burn that bridge
687 * when we get to it.
688 */
689 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
690 arm_spe_perf_aux_output_begin(handle, event);
691 isb();
692 }
693 break;
694 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
695 /* We've seen you before, but GCC has the memory of a sieve. */
696 break;
697 }
698
699 /* The buffer pointers are now sane, so resume profiling. */
700 write_sysreg_s(0, SYS_PMBSR_EL1);
701 return IRQ_HANDLED;
702 }
703
arm_spe_pmsevfr_res0(u16 pmsver)704 static u64 arm_spe_pmsevfr_res0(u16 pmsver)
705 {
706 switch (pmsver) {
707 case ID_AA64DFR0_EL1_PMSVer_IMP:
708 return PMSEVFR_EL1_RES0_IMP;
709 case ID_AA64DFR0_EL1_PMSVer_V1P1:
710 return PMSEVFR_EL1_RES0_V1P1;
711 case ID_AA64DFR0_EL1_PMSVer_V1P2:
712 /* Return the highest version we support in default */
713 default:
714 return PMSEVFR_EL1_RES0_V1P2;
715 }
716 }
717
718 /* Perf callbacks */
arm_spe_pmu_event_init(struct perf_event * event)719 static int arm_spe_pmu_event_init(struct perf_event *event)
720 {
721 u64 reg;
722 struct perf_event_attr *attr = &event->attr;
723 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
724
725 /* This is, of course, deeply driver-specific */
726 if (attr->type != event->pmu->type)
727 return -ENOENT;
728
729 if (event->cpu >= 0 &&
730 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
731 return -ENOENT;
732
733 if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
734 return -EOPNOTSUPP;
735
736 if (arm_spe_event_to_pmsnevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
737 return -EOPNOTSUPP;
738
739 if (attr->exclude_idle)
740 return -EOPNOTSUPP;
741
742 /*
743 * Feedback-directed frequency throttling doesn't work when we
744 * have a buffer of samples. We'd need to manually count the
745 * samples in the buffer when it fills up and adjust the event
746 * count to reflect that. Instead, just force the user to specify
747 * a sample period.
748 */
749 if (attr->freq)
750 return -EINVAL;
751
752 reg = arm_spe_event_to_pmsfcr(event);
753 if ((FIELD_GET(PMSFCR_EL1_FE, reg)) &&
754 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
755 return -EOPNOTSUPP;
756
757 if ((FIELD_GET(PMSFCR_EL1_FnE, reg)) &&
758 !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT))
759 return -EOPNOTSUPP;
760
761 if ((FIELD_GET(PMSFCR_EL1_FT, reg)) &&
762 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
763 return -EOPNOTSUPP;
764
765 if ((FIELD_GET(PMSFCR_EL1_FL, reg)) &&
766 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
767 return -EOPNOTSUPP;
768
769 set_spe_event_has_cx(event);
770 reg = arm_spe_event_to_pmscr(event);
771 if (!perfmon_capable() &&
772 (reg & (PMSCR_EL1_PA | PMSCR_EL1_PCT)))
773 return -EACCES;
774
775 return 0;
776 }
777
arm_spe_pmu_start(struct perf_event * event,int flags)778 static void arm_spe_pmu_start(struct perf_event *event, int flags)
779 {
780 u64 reg;
781 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
782 struct hw_perf_event *hwc = &event->hw;
783 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
784
785 hwc->state = 0;
786 arm_spe_perf_aux_output_begin(handle, event);
787 if (hwc->state)
788 return;
789
790 reg = arm_spe_event_to_pmsfcr(event);
791 write_sysreg_s(reg, SYS_PMSFCR_EL1);
792
793 reg = arm_spe_event_to_pmsevfr(event);
794 write_sysreg_s(reg, SYS_PMSEVFR_EL1);
795
796 if (spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT) {
797 reg = arm_spe_event_to_pmsnevfr(event);
798 write_sysreg_s(reg, SYS_PMSNEVFR_EL1);
799 }
800
801 reg = arm_spe_event_to_pmslatfr(event);
802 write_sysreg_s(reg, SYS_PMSLATFR_EL1);
803
804 if (flags & PERF_EF_RELOAD) {
805 reg = arm_spe_event_to_pmsirr(event);
806 write_sysreg_s(reg, SYS_PMSIRR_EL1);
807 isb();
808 reg = local64_read(&hwc->period_left);
809 write_sysreg_s(reg, SYS_PMSICR_EL1);
810 }
811
812 reg = arm_spe_event_to_pmscr(event);
813 isb();
814 write_sysreg_s(reg, SYS_PMSCR_EL1);
815 }
816
arm_spe_pmu_stop(struct perf_event * event,int flags)817 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
818 {
819 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
820 struct hw_perf_event *hwc = &event->hw;
821 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
822
823 /* If we're already stopped, then nothing to do */
824 if (hwc->state & PERF_HES_STOPPED)
825 return;
826
827 /* Stop all trace generation */
828 arm_spe_pmu_disable_and_drain_local();
829
830 if (flags & PERF_EF_UPDATE) {
831 /*
832 * If there's a fault pending then ensure we contain it
833 * to this buffer, since we might be on the context-switch
834 * path.
835 */
836 if (perf_get_aux(handle)) {
837 enum arm_spe_pmu_buf_fault_action act;
838
839 act = arm_spe_pmu_buf_get_fault_act(handle);
840 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
841 arm_spe_perf_aux_output_end(handle);
842 else
843 write_sysreg_s(0, SYS_PMBSR_EL1);
844 }
845
846 /*
847 * This may also contain ECOUNT, but nobody else should
848 * be looking at period_left, since we forbid frequency
849 * based sampling.
850 */
851 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
852 hwc->state |= PERF_HES_UPTODATE;
853 }
854
855 hwc->state |= PERF_HES_STOPPED;
856 }
857
arm_spe_pmu_add(struct perf_event * event,int flags)858 static int arm_spe_pmu_add(struct perf_event *event, int flags)
859 {
860 int ret = 0;
861 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
862 struct hw_perf_event *hwc = &event->hw;
863 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
864
865 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
866 return -ENOENT;
867
868 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
869
870 if (flags & PERF_EF_START) {
871 arm_spe_pmu_start(event, PERF_EF_RELOAD);
872 if (hwc->state & PERF_HES_STOPPED)
873 ret = -EINVAL;
874 }
875
876 return ret;
877 }
878
arm_spe_pmu_del(struct perf_event * event,int flags)879 static void arm_spe_pmu_del(struct perf_event *event, int flags)
880 {
881 arm_spe_pmu_stop(event, PERF_EF_UPDATE);
882 }
883
arm_spe_pmu_read(struct perf_event * event)884 static void arm_spe_pmu_read(struct perf_event *event)
885 {
886 }
887
arm_spe_pmu_setup_aux(struct perf_event * event,void ** pages,int nr_pages,bool snapshot)888 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
889 int nr_pages, bool snapshot)
890 {
891 int i, cpu = event->cpu;
892 struct page **pglist;
893 struct arm_spe_pmu_buf *buf;
894
895 /* We need at least two pages for this to work. */
896 if (nr_pages < 2)
897 return NULL;
898
899 /*
900 * We require an even number of pages for snapshot mode, so that
901 * we can effectively treat the buffer as consisting of two equal
902 * parts and give userspace a fighting chance of getting some
903 * useful data out of it.
904 */
905 if (snapshot && (nr_pages & 1))
906 return NULL;
907
908 if (cpu == -1)
909 cpu = raw_smp_processor_id();
910
911 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
912 if (!buf)
913 return NULL;
914
915 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
916 if (!pglist)
917 goto out_free_buf;
918
919 for (i = 0; i < nr_pages; ++i)
920 pglist[i] = virt_to_page(pages[i]);
921
922 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
923 if (!buf->base)
924 goto out_free_pglist;
925
926 buf->nr_pages = nr_pages;
927 buf->snapshot = snapshot;
928
929 kfree(pglist);
930 return buf;
931
932 out_free_pglist:
933 kfree(pglist);
934 out_free_buf:
935 kfree(buf);
936 return NULL;
937 }
938
arm_spe_pmu_free_aux(void * aux)939 static void arm_spe_pmu_free_aux(void *aux)
940 {
941 struct arm_spe_pmu_buf *buf = aux;
942
943 vunmap(buf->base);
944 kfree(buf);
945 }
946
947 /* Initialisation and teardown functions */
arm_spe_pmu_perf_init(struct arm_spe_pmu * spe_pmu)948 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
949 {
950 static atomic_t pmu_idx = ATOMIC_INIT(-1);
951
952 int idx;
953 char *name;
954 struct device *dev = &spe_pmu->pdev->dev;
955
956 spe_pmu->pmu = (struct pmu) {
957 .module = THIS_MODULE,
958 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
959 .attr_groups = arm_spe_pmu_attr_groups,
960 /*
961 * We hitch a ride on the software context here, so that
962 * we can support per-task profiling (which is not possible
963 * with the invalid context as it doesn't get sched callbacks).
964 * This requires that userspace either uses a dummy event for
965 * perf_event_open, since the aux buffer is not setup until
966 * a subsequent mmap, or creates the profiling event in a
967 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
968 * once the buffer has been created.
969 */
970 .task_ctx_nr = perf_sw_context,
971 .event_init = arm_spe_pmu_event_init,
972 .add = arm_spe_pmu_add,
973 .del = arm_spe_pmu_del,
974 .start = arm_spe_pmu_start,
975 .stop = arm_spe_pmu_stop,
976 .read = arm_spe_pmu_read,
977 .setup_aux = arm_spe_pmu_setup_aux,
978 .free_aux = arm_spe_pmu_free_aux,
979 };
980
981 idx = atomic_inc_return(&pmu_idx);
982 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
983 if (!name) {
984 dev_err(dev, "failed to allocate name for pmu %d\n", idx);
985 return -ENOMEM;
986 }
987
988 return perf_pmu_register(&spe_pmu->pmu, name, -1);
989 }
990
arm_spe_pmu_perf_destroy(struct arm_spe_pmu * spe_pmu)991 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
992 {
993 perf_pmu_unregister(&spe_pmu->pmu);
994 }
995
__arm_spe_pmu_dev_probe(void * info)996 static void __arm_spe_pmu_dev_probe(void *info)
997 {
998 int fld;
999 u64 reg;
1000 struct arm_spe_pmu *spe_pmu = info;
1001 struct device *dev = &spe_pmu->pdev->dev;
1002
1003 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
1004 ID_AA64DFR0_EL1_PMSVer_SHIFT);
1005 if (!fld) {
1006 dev_err(dev,
1007 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
1008 fld, smp_processor_id());
1009 return;
1010 }
1011 spe_pmu->pmsver = (u16)fld;
1012
1013 /* Read PMBIDR first to determine whether or not we have access */
1014 reg = read_sysreg_s(SYS_PMBIDR_EL1);
1015 if (FIELD_GET(PMBIDR_EL1_P, reg)) {
1016 dev_err(dev,
1017 "profiling buffer owned by higher exception level\n");
1018 return;
1019 }
1020
1021 /* Minimum alignment. If it's out-of-range, then fail the probe */
1022 fld = FIELD_GET(PMBIDR_EL1_ALIGN, reg);
1023 spe_pmu->align = 1 << fld;
1024 if (spe_pmu->align > SZ_2K) {
1025 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
1026 fld, smp_processor_id());
1027 return;
1028 }
1029
1030 /* It's now safe to read PMSIDR and figure out what we've got */
1031 reg = read_sysreg_s(SYS_PMSIDR_EL1);
1032 if (FIELD_GET(PMSIDR_EL1_FE, reg))
1033 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
1034
1035 if (FIELD_GET(PMSIDR_EL1_FnE, reg))
1036 spe_pmu->features |= SPE_PMU_FEAT_INV_FILT_EVT;
1037
1038 if (FIELD_GET(PMSIDR_EL1_FT, reg))
1039 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
1040
1041 if (FIELD_GET(PMSIDR_EL1_FL, reg))
1042 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
1043
1044 if (FIELD_GET(PMSIDR_EL1_ARCHINST, reg))
1045 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
1046
1047 if (FIELD_GET(PMSIDR_EL1_LDS, reg))
1048 spe_pmu->features |= SPE_PMU_FEAT_LDS;
1049
1050 if (FIELD_GET(PMSIDR_EL1_ERND, reg))
1051 spe_pmu->features |= SPE_PMU_FEAT_ERND;
1052
1053 /* This field has a spaced out encoding, so just use a look-up */
1054 fld = FIELD_GET(PMSIDR_EL1_INTERVAL, reg);
1055 switch (fld) {
1056 case PMSIDR_EL1_INTERVAL_256:
1057 spe_pmu->min_period = 256;
1058 break;
1059 case PMSIDR_EL1_INTERVAL_512:
1060 spe_pmu->min_period = 512;
1061 break;
1062 case PMSIDR_EL1_INTERVAL_768:
1063 spe_pmu->min_period = 768;
1064 break;
1065 case PMSIDR_EL1_INTERVAL_1024:
1066 spe_pmu->min_period = 1024;
1067 break;
1068 case PMSIDR_EL1_INTERVAL_1536:
1069 spe_pmu->min_period = 1536;
1070 break;
1071 case PMSIDR_EL1_INTERVAL_2048:
1072 spe_pmu->min_period = 2048;
1073 break;
1074 case PMSIDR_EL1_INTERVAL_3072:
1075 spe_pmu->min_period = 3072;
1076 break;
1077 default:
1078 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1079 fld);
1080 fallthrough;
1081 case PMSIDR_EL1_INTERVAL_4096:
1082 spe_pmu->min_period = 4096;
1083 }
1084
1085 /* Maximum record size. If it's out-of-range, then fail the probe */
1086 fld = FIELD_GET(PMSIDR_EL1_MAXSIZE, reg);
1087 spe_pmu->max_record_sz = 1 << fld;
1088 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1089 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1090 fld, smp_processor_id());
1091 return;
1092 }
1093
1094 fld = FIELD_GET(PMSIDR_EL1_COUNTSIZE, reg);
1095 switch (fld) {
1096 default:
1097 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1098 fld);
1099 fallthrough;
1100 case PMSIDR_EL1_COUNTSIZE_12_BIT_SAT:
1101 spe_pmu->counter_sz = 12;
1102 break;
1103 case PMSIDR_EL1_COUNTSIZE_16_BIT_SAT:
1104 spe_pmu->counter_sz = 16;
1105 }
1106
1107 dev_info(dev,
1108 "probed SPEv1.%d for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1109 spe_pmu->pmsver - 1, cpumask_pr_args(&spe_pmu->supported_cpus),
1110 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1111
1112 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1113 }
1114
__arm_spe_pmu_reset_local(void)1115 static void __arm_spe_pmu_reset_local(void)
1116 {
1117 /*
1118 * This is probably overkill, as we have no idea where we're
1119 * draining any buffered data to...
1120 */
1121 arm_spe_pmu_disable_and_drain_local();
1122
1123 /* Reset the buffer base pointer */
1124 write_sysreg_s(0, SYS_PMBPTR_EL1);
1125 isb();
1126
1127 /* Clear any pending management interrupts */
1128 write_sysreg_s(0, SYS_PMBSR_EL1);
1129 isb();
1130 }
1131
__arm_spe_pmu_setup_one(void * info)1132 static void __arm_spe_pmu_setup_one(void *info)
1133 {
1134 struct arm_spe_pmu *spe_pmu = info;
1135
1136 __arm_spe_pmu_reset_local();
1137 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1138 }
1139
__arm_spe_pmu_stop_one(void * info)1140 static void __arm_spe_pmu_stop_one(void *info)
1141 {
1142 struct arm_spe_pmu *spe_pmu = info;
1143
1144 disable_percpu_irq(spe_pmu->irq);
1145 __arm_spe_pmu_reset_local();
1146 }
1147
arm_spe_pmu_cpu_startup(unsigned int cpu,struct hlist_node * node)1148 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1149 {
1150 struct arm_spe_pmu *spe_pmu;
1151
1152 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1153 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1154 return 0;
1155
1156 __arm_spe_pmu_setup_one(spe_pmu);
1157 return 0;
1158 }
1159
arm_spe_pmu_cpu_teardown(unsigned int cpu,struct hlist_node * node)1160 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1161 {
1162 struct arm_spe_pmu *spe_pmu;
1163
1164 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1165 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1166 return 0;
1167
1168 __arm_spe_pmu_stop_one(spe_pmu);
1169 return 0;
1170 }
1171
arm_spe_pmu_dev_init(struct arm_spe_pmu * spe_pmu)1172 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1173 {
1174 int ret;
1175 cpumask_t *mask = &spe_pmu->supported_cpus;
1176
1177 /* Make sure we probe the hardware on a relevant CPU */
1178 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1);
1179 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1180 return -ENXIO;
1181
1182 /* Request our PPIs (note that the IRQ is still disabled) */
1183 ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1184 spe_pmu->handle);
1185 if (ret)
1186 return ret;
1187
1188 /*
1189 * Register our hotplug notifier now so we don't miss any events.
1190 * This will enable the IRQ for any supported CPUs that are already
1191 * up.
1192 */
1193 ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1194 &spe_pmu->hotplug_node);
1195 if (ret)
1196 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1197
1198 return ret;
1199 }
1200
arm_spe_pmu_dev_teardown(struct arm_spe_pmu * spe_pmu)1201 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1202 {
1203 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1204 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1205 }
1206
1207 /* Driver and device probing */
arm_spe_pmu_irq_probe(struct arm_spe_pmu * spe_pmu)1208 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1209 {
1210 struct platform_device *pdev = spe_pmu->pdev;
1211 int irq = platform_get_irq(pdev, 0);
1212
1213 if (irq < 0)
1214 return -ENXIO;
1215
1216 if (!irq_is_percpu(irq)) {
1217 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1218 return -EINVAL;
1219 }
1220
1221 if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1222 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1223 return -EINVAL;
1224 }
1225
1226 spe_pmu->irq = irq;
1227 return 0;
1228 }
1229
1230 static const struct of_device_id arm_spe_pmu_of_match[] = {
1231 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1232 { /* Sentinel */ },
1233 };
1234 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1235
1236 static const struct platform_device_id arm_spe_match[] = {
1237 { ARMV8_SPE_PDEV_NAME, 0},
1238 { }
1239 };
1240 MODULE_DEVICE_TABLE(platform, arm_spe_match);
1241
arm_spe_pmu_device_probe(struct platform_device * pdev)1242 static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1243 {
1244 int ret;
1245 struct arm_spe_pmu *spe_pmu;
1246 struct device *dev = &pdev->dev;
1247
1248 /*
1249 * If kernelspace is unmapped when running at EL0, then the SPE
1250 * buffer will fault and prematurely terminate the AUX session.
1251 */
1252 if (arm64_kernel_unmapped_at_el0()) {
1253 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1254 return -EPERM;
1255 }
1256
1257 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1258 if (!spe_pmu)
1259 return -ENOMEM;
1260
1261 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1262 if (!spe_pmu->handle)
1263 return -ENOMEM;
1264
1265 spe_pmu->pdev = pdev;
1266 platform_set_drvdata(pdev, spe_pmu);
1267
1268 ret = arm_spe_pmu_irq_probe(spe_pmu);
1269 if (ret)
1270 goto out_free_handle;
1271
1272 ret = arm_spe_pmu_dev_init(spe_pmu);
1273 if (ret)
1274 goto out_free_handle;
1275
1276 ret = arm_spe_pmu_perf_init(spe_pmu);
1277 if (ret)
1278 goto out_teardown_dev;
1279
1280 return 0;
1281
1282 out_teardown_dev:
1283 arm_spe_pmu_dev_teardown(spe_pmu);
1284 out_free_handle:
1285 free_percpu(spe_pmu->handle);
1286 return ret;
1287 }
1288
arm_spe_pmu_device_remove(struct platform_device * pdev)1289 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1290 {
1291 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1292
1293 arm_spe_pmu_perf_destroy(spe_pmu);
1294 arm_spe_pmu_dev_teardown(spe_pmu);
1295 free_percpu(spe_pmu->handle);
1296 return 0;
1297 }
1298
1299 static struct platform_driver arm_spe_pmu_driver = {
1300 .id_table = arm_spe_match,
1301 .driver = {
1302 .name = DRVNAME,
1303 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1304 .suppress_bind_attrs = true,
1305 },
1306 .probe = arm_spe_pmu_device_probe,
1307 .remove = arm_spe_pmu_device_remove,
1308 };
1309
arm_spe_pmu_init(void)1310 static int __init arm_spe_pmu_init(void)
1311 {
1312 int ret;
1313
1314 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1315 arm_spe_pmu_cpu_startup,
1316 arm_spe_pmu_cpu_teardown);
1317 if (ret < 0)
1318 return ret;
1319 arm_spe_pmu_online = ret;
1320
1321 ret = platform_driver_register(&arm_spe_pmu_driver);
1322 if (ret)
1323 cpuhp_remove_multi_state(arm_spe_pmu_online);
1324
1325 return ret;
1326 }
1327
arm_spe_pmu_exit(void)1328 static void __exit arm_spe_pmu_exit(void)
1329 {
1330 platform_driver_unregister(&arm_spe_pmu_driver);
1331 cpuhp_remove_multi_state(arm_spe_pmu_online);
1332 }
1333
1334 module_init(arm_spe_pmu_init);
1335 module_exit(arm_spe_pmu_exit);
1336
1337 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1338 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1339 MODULE_LICENSE("GPL v2");
1340