1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * intel-tpmi : Driver to enumerate TPMI features and create devices
4 *
5 * Copyright (c) 2023, Intel Corporation.
6 * All Rights Reserved.
7 *
8 * The TPMI (Topology Aware Register and PM Capsule Interface) provides a
9 * flexible, extendable and PCIe enumerable MMIO interface for PM features.
10 *
11 * For example Intel RAPL (Running Average Power Limit) provides a MMIO
12 * interface using TPMI. This has advantage over traditional MSR
13 * (Model Specific Register) interface, where a thread needs to be scheduled
14 * on the target CPU to read or write. Also the RAPL features vary between
15 * CPU models, and hence lot of model specific code. Here TPMI provides an
16 * architectural interface by providing hierarchical tables and fields,
17 * which will not need any model specific implementation.
18 *
19 * The TPMI interface uses a PCI VSEC structure to expose the location of
20 * MMIO region.
21 *
22 * This VSEC structure is present in the PCI configuration space of the
23 * Intel Out-of-Band (OOB) device, which is handled by the Intel VSEC
24 * driver. The Intel VSEC driver parses VSEC structures present in the PCI
25 * configuration space of the given device and creates an auxiliary device
26 * object for each of them. In particular, it creates an auxiliary device
27 * object representing TPMI that can be bound by an auxiliary driver.
28 *
29 * This TPMI driver will bind to the TPMI auxiliary device object created
30 * by the Intel VSEC driver.
31 *
32 * The TPMI specification defines a PFS (PM Feature Structure) table.
33 * This table is present in the TPMI MMIO region. The starting address
34 * of PFS is derived from the tBIR (Bar Indicator Register) and "Address"
35 * field from the VSEC header.
36 *
37 * Each TPMI PM feature has one entry in the PFS with a unique TPMI
38 * ID and its access details. The TPMI driver creates device nodes
39 * for the supported PM features.
40 *
41 * The names of the devices created by the TPMI driver start with the
42 * "intel_vsec.tpmi-" prefix which is followed by a specific name of the
43 * given PM feature (for example, "intel_vsec.tpmi-rapl.0").
44 *
45 * The device nodes are create by using interface "intel_vsec_add_aux()"
46 * provided by the Intel VSEC driver.
47 */
48
49 #include <linux/auxiliary_bus.h>
50 #include <linux/intel_tpmi.h>
51 #include <linux/io.h>
52 #include <linux/module.h>
53 #include <linux/pci.h>
54
55 #include "vsec.h"
56
57 /**
58 * struct intel_tpmi_pfs_entry - TPMI PM Feature Structure (PFS) entry
59 * @tpmi_id: TPMI feature identifier (what the feature is and its data format).
60 * @num_entries: Number of feature interface instances present in the PFS.
61 * This represents the maximum number of Power domains in the SoC.
62 * @entry_size: Interface instance entry size in 32-bit words.
63 * @cap_offset: Offset from the PM_Features base address to the base of the PM VSEC
64 * register bank in KB.
65 * @attribute: Feature attribute: 0=BIOS. 1=OS. 2-3=Reserved.
66 * @reserved: Bits for use in the future.
67 *
68 * Represents one TPMI feature entry data in the PFS retrieved as is
69 * from the hardware.
70 */
71 struct intel_tpmi_pfs_entry {
72 u64 tpmi_id:8;
73 u64 num_entries:8;
74 u64 entry_size:16;
75 u64 cap_offset:16;
76 u64 attribute:2;
77 u64 reserved:14;
78 } __packed;
79
80 /**
81 * struct intel_tpmi_pm_feature - TPMI PM Feature information for a TPMI ID
82 * @pfs_header: PFS header retireved from the hardware.
83 * @vsec_offset: Starting MMIO address for this feature in bytes. Essentially
84 * this offset = "Address" from VSEC header + PFS Capability
85 * offset for this feature entry.
86 *
87 * Represents TPMI instance information for one TPMI ID.
88 */
89 struct intel_tpmi_pm_feature {
90 struct intel_tpmi_pfs_entry pfs_header;
91 unsigned int vsec_offset;
92 };
93
94 /**
95 * struct intel_tpmi_info - TPMI information for all IDs in an instance
96 * @tpmi_features: Pointer to a list of TPMI feature instances
97 * @vsec_dev: Pointer to intel_vsec_device structure for this TPMI device
98 * @feature_count: Number of TPMI of TPMI instances pointed by tpmi_features
99 * @pfs_start: Start of PFS offset for the TPMI instances in this device
100 * @plat_info: Stores platform info which can be used by the client drivers
101 *
102 * Stores the information for all TPMI devices enumerated from a single PCI device.
103 */
104 struct intel_tpmi_info {
105 struct intel_tpmi_pm_feature *tpmi_features;
106 struct intel_vsec_device *vsec_dev;
107 int feature_count;
108 u64 pfs_start;
109 struct intel_tpmi_plat_info plat_info;
110 };
111
112 /**
113 * struct tpmi_info_header - CPU package ID to PCI device mapping information
114 * @fn: PCI function number
115 * @dev: PCI device number
116 * @bus: PCI bus number
117 * @pkg: CPU Package id
118 * @reserved: Reserved for future use
119 * @lock: When set to 1 the register is locked and becomes read-only
120 * until next reset. Not for use by the OS driver.
121 *
122 * The structure to read hardware provided mapping information.
123 */
124 struct tpmi_info_header {
125 u64 fn:3;
126 u64 dev:5;
127 u64 bus:8;
128 u64 pkg:8;
129 u64 reserved:39;
130 u64 lock:1;
131 } __packed;
132
133 /*
134 * List of supported TMPI IDs.
135 * Some TMPI IDs are not used by Linux, so the numbers are not consecutive.
136 */
137 enum intel_tpmi_id {
138 TPMI_ID_RAPL = 0, /* Running Average Power Limit */
139 TPMI_ID_PEM = 1, /* Power and Perf excursion Monitor */
140 TPMI_ID_UNCORE = 2, /* Uncore Frequency Scaling */
141 TPMI_ID_SST = 5, /* Speed Select Technology */
142 TPMI_INFO_ID = 0x81, /* Special ID for PCI BDF and Package ID information */
143 };
144
145 /* Used during auxbus device creation */
146 static DEFINE_IDA(intel_vsec_tpmi_ida);
147
tpmi_get_platform_data(struct auxiliary_device * auxdev)148 struct intel_tpmi_plat_info *tpmi_get_platform_data(struct auxiliary_device *auxdev)
149 {
150 struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev);
151
152 return vsec_dev->priv_data;
153 }
154 EXPORT_SYMBOL_NS_GPL(tpmi_get_platform_data, INTEL_TPMI);
155
tpmi_get_resource_count(struct auxiliary_device * auxdev)156 int tpmi_get_resource_count(struct auxiliary_device *auxdev)
157 {
158 struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev);
159
160 if (vsec_dev)
161 return vsec_dev->num_resources;
162
163 return 0;
164 }
165 EXPORT_SYMBOL_NS_GPL(tpmi_get_resource_count, INTEL_TPMI);
166
tpmi_get_resource_at_index(struct auxiliary_device * auxdev,int index)167 struct resource *tpmi_get_resource_at_index(struct auxiliary_device *auxdev, int index)
168 {
169 struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev);
170
171 if (vsec_dev && index < vsec_dev->num_resources)
172 return &vsec_dev->resource[index];
173
174 return NULL;
175 }
176 EXPORT_SYMBOL_NS_GPL(tpmi_get_resource_at_index, INTEL_TPMI);
177
intel_tpmi_name(enum intel_tpmi_id id)178 static const char *intel_tpmi_name(enum intel_tpmi_id id)
179 {
180 switch (id) {
181 case TPMI_ID_RAPL:
182 return "rapl";
183 case TPMI_ID_PEM:
184 return "pem";
185 case TPMI_ID_UNCORE:
186 return "uncore";
187 case TPMI_ID_SST:
188 return "sst";
189 default:
190 return NULL;
191 }
192 }
193
194 /* String Length for tpmi-"feature_name(upto 8 bytes)" */
195 #define TPMI_FEATURE_NAME_LEN 14
196
tpmi_create_device(struct intel_tpmi_info * tpmi_info,struct intel_tpmi_pm_feature * pfs,u64 pfs_start)197 static int tpmi_create_device(struct intel_tpmi_info *tpmi_info,
198 struct intel_tpmi_pm_feature *pfs,
199 u64 pfs_start)
200 {
201 struct intel_vsec_device *vsec_dev = tpmi_info->vsec_dev;
202 char feature_id_name[TPMI_FEATURE_NAME_LEN];
203 struct intel_vsec_device *feature_vsec_dev;
204 struct resource *res, *tmp;
205 const char *name;
206 int ret, i;
207
208 name = intel_tpmi_name(pfs->pfs_header.tpmi_id);
209 if (!name)
210 return -EOPNOTSUPP;
211
212 res = kcalloc(pfs->pfs_header.num_entries, sizeof(*res), GFP_KERNEL);
213 if (!res)
214 return -ENOMEM;
215
216 feature_vsec_dev = kzalloc(sizeof(*feature_vsec_dev), GFP_KERNEL);
217 if (!feature_vsec_dev) {
218 ret = -ENOMEM;
219 goto free_res;
220 }
221
222 snprintf(feature_id_name, sizeof(feature_id_name), "tpmi-%s", name);
223
224 for (i = 0, tmp = res; i < pfs->pfs_header.num_entries; i++, tmp++) {
225 u64 entry_size_bytes = pfs->pfs_header.entry_size * 4;
226
227 tmp->start = pfs->vsec_offset + entry_size_bytes * i;
228 tmp->end = tmp->start + entry_size_bytes - 1;
229 tmp->flags = IORESOURCE_MEM;
230 }
231
232 feature_vsec_dev->pcidev = vsec_dev->pcidev;
233 feature_vsec_dev->resource = res;
234 feature_vsec_dev->num_resources = pfs->pfs_header.num_entries;
235 feature_vsec_dev->priv_data = &tpmi_info->plat_info;
236 feature_vsec_dev->priv_data_size = sizeof(tpmi_info->plat_info);
237 feature_vsec_dev->ida = &intel_vsec_tpmi_ida;
238
239 /*
240 * intel_vsec_add_aux() is resource managed, no explicit
241 * delete is required on error or on module unload.
242 * feature_vsec_dev memory is also freed as part of device
243 * delete.
244 */
245 ret = intel_vsec_add_aux(vsec_dev->pcidev, &vsec_dev->auxdev.dev,
246 feature_vsec_dev, feature_id_name);
247 if (ret)
248 goto free_res;
249
250 return 0;
251
252 free_res:
253 kfree(res);
254
255 return ret;
256 }
257
tpmi_create_devices(struct intel_tpmi_info * tpmi_info)258 static int tpmi_create_devices(struct intel_tpmi_info *tpmi_info)
259 {
260 struct intel_vsec_device *vsec_dev = tpmi_info->vsec_dev;
261 int ret, i;
262
263 for (i = 0; i < vsec_dev->num_resources; i++) {
264 ret = tpmi_create_device(tpmi_info, &tpmi_info->tpmi_features[i],
265 tpmi_info->pfs_start);
266 /*
267 * Fail, if the supported features fails to create device,
268 * otherwise, continue. Even if one device failed to create,
269 * fail the loading of driver. Since intel_vsec_add_aux()
270 * is resource managed, no clean up is required for the
271 * successfully created devices.
272 */
273 if (ret && ret != -EOPNOTSUPP)
274 return ret;
275 }
276
277 return 0;
278 }
279
280 #define TPMI_INFO_BUS_INFO_OFFSET 0x08
281
tpmi_process_info(struct intel_tpmi_info * tpmi_info,struct intel_tpmi_pm_feature * pfs)282 static int tpmi_process_info(struct intel_tpmi_info *tpmi_info,
283 struct intel_tpmi_pm_feature *pfs)
284 {
285 struct tpmi_info_header header;
286 void __iomem *info_mem;
287
288 info_mem = ioremap(pfs->vsec_offset + TPMI_INFO_BUS_INFO_OFFSET,
289 pfs->pfs_header.entry_size * 4 - TPMI_INFO_BUS_INFO_OFFSET);
290 if (!info_mem)
291 return -ENOMEM;
292
293 memcpy_fromio(&header, info_mem, sizeof(header));
294
295 tpmi_info->plat_info.package_id = header.pkg;
296 tpmi_info->plat_info.bus_number = header.bus;
297 tpmi_info->plat_info.device_number = header.dev;
298 tpmi_info->plat_info.function_number = header.fn;
299
300 iounmap(info_mem);
301
302 return 0;
303 }
304
tpmi_fetch_pfs_header(struct intel_tpmi_pm_feature * pfs,u64 start,int size)305 static int tpmi_fetch_pfs_header(struct intel_tpmi_pm_feature *pfs, u64 start, int size)
306 {
307 void __iomem *pfs_mem;
308
309 pfs_mem = ioremap(start, size);
310 if (!pfs_mem)
311 return -ENOMEM;
312
313 memcpy_fromio(&pfs->pfs_header, pfs_mem, sizeof(pfs->pfs_header));
314
315 iounmap(pfs_mem);
316
317 return 0;
318 }
319
intel_vsec_tpmi_init(struct auxiliary_device * auxdev)320 static int intel_vsec_tpmi_init(struct auxiliary_device *auxdev)
321 {
322 struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev);
323 struct pci_dev *pci_dev = vsec_dev->pcidev;
324 struct intel_tpmi_info *tpmi_info;
325 u64 pfs_start = 0;
326 int i;
327
328 tpmi_info = devm_kzalloc(&auxdev->dev, sizeof(*tpmi_info), GFP_KERNEL);
329 if (!tpmi_info)
330 return -ENOMEM;
331
332 tpmi_info->vsec_dev = vsec_dev;
333 tpmi_info->feature_count = vsec_dev->num_resources;
334 tpmi_info->plat_info.bus_number = pci_dev->bus->number;
335
336 tpmi_info->tpmi_features = devm_kcalloc(&auxdev->dev, vsec_dev->num_resources,
337 sizeof(*tpmi_info->tpmi_features),
338 GFP_KERNEL);
339 if (!tpmi_info->tpmi_features)
340 return -ENOMEM;
341
342 for (i = 0; i < vsec_dev->num_resources; i++) {
343 struct intel_tpmi_pm_feature *pfs;
344 struct resource *res;
345 u64 res_start;
346 int size, ret;
347
348 pfs = &tpmi_info->tpmi_features[i];
349
350 res = &vsec_dev->resource[i];
351 if (!res)
352 continue;
353
354 res_start = res->start;
355 size = resource_size(res);
356 if (size < 0)
357 continue;
358
359 ret = tpmi_fetch_pfs_header(pfs, res_start, size);
360 if (ret)
361 continue;
362
363 if (!pfs_start)
364 pfs_start = res_start;
365
366 pfs->pfs_header.cap_offset *= 1024;
367
368 pfs->vsec_offset = pfs_start + pfs->pfs_header.cap_offset;
369
370 /*
371 * Process TPMI_INFO to get PCI device to CPU package ID.
372 * Device nodes for TPMI features are not created in this
373 * for loop. So, the mapping information will be available
374 * when actual device nodes created outside this
375 * loop via tpmi_create_devices().
376 */
377 if (pfs->pfs_header.tpmi_id == TPMI_INFO_ID)
378 tpmi_process_info(tpmi_info, pfs);
379 }
380
381 tpmi_info->pfs_start = pfs_start;
382
383 auxiliary_set_drvdata(auxdev, tpmi_info);
384
385 return tpmi_create_devices(tpmi_info);
386 }
387
tpmi_probe(struct auxiliary_device * auxdev,const struct auxiliary_device_id * id)388 static int tpmi_probe(struct auxiliary_device *auxdev,
389 const struct auxiliary_device_id *id)
390 {
391 return intel_vsec_tpmi_init(auxdev);
392 }
393
394 /*
395 * Remove callback is not needed currently as there is no
396 * cleanup required. All memory allocs are device managed. All
397 * devices created by this modules are also device managed.
398 */
399
400 static const struct auxiliary_device_id tpmi_id_table[] = {
401 { .name = "intel_vsec.tpmi" },
402 {}
403 };
404 MODULE_DEVICE_TABLE(auxiliary, tpmi_id_table);
405
406 static struct auxiliary_driver tpmi_aux_driver = {
407 .id_table = tpmi_id_table,
408 .probe = tpmi_probe,
409 };
410
411 module_auxiliary_driver(tpmi_aux_driver);
412
413 MODULE_IMPORT_NS(INTEL_VSEC);
414 MODULE_DESCRIPTION("Intel TPMI enumeration module");
415 MODULE_LICENSE("GPL");
416