1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of_device.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/reset.h>
29 #include <linux/sched.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/spi-mem.h>
32 #include <linux/timer.h>
33
34 #define CQSPI_NAME "cadence-qspi"
35 #define CQSPI_MAX_CHIPSELECT 16
36
37 /* Quirks */
38 #define CQSPI_NEEDS_WR_DELAY BIT(0)
39 #define CQSPI_DISABLE_DAC_MODE BIT(1)
40 #define CQSPI_SUPPORT_EXTERNAL_DMA BIT(2)
41 #define CQSPI_NO_SUPPORT_WR_COMPLETION BIT(3)
42 #define CQSPI_SLOW_SRAM BIT(4)
43
44 /* Capabilities */
45 #define CQSPI_SUPPORTS_OCTAL BIT(0)
46
47 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
48
49 struct cqspi_st;
50
51 struct cqspi_flash_pdata {
52 struct cqspi_st *cqspi;
53 u32 clk_rate;
54 u32 read_delay;
55 u32 tshsl_ns;
56 u32 tsd2d_ns;
57 u32 tchsh_ns;
58 u32 tslch_ns;
59 u8 cs;
60 };
61
62 struct cqspi_st {
63 struct platform_device *pdev;
64 struct spi_master *master;
65 struct clk *clk;
66 unsigned int sclk;
67
68 void __iomem *iobase;
69 void __iomem *ahb_base;
70 resource_size_t ahb_size;
71 struct completion transfer_complete;
72
73 struct dma_chan *rx_chan;
74 struct completion rx_dma_complete;
75 dma_addr_t mmap_phys_base;
76
77 int current_cs;
78 unsigned long master_ref_clk_hz;
79 bool is_decoded_cs;
80 u32 fifo_depth;
81 u32 fifo_width;
82 u32 num_chipselect;
83 bool rclk_en;
84 u32 trigger_address;
85 u32 wr_delay;
86 bool use_direct_mode;
87 bool use_direct_mode_wr;
88 struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
89 bool use_dma_read;
90 u32 pd_dev_id;
91 bool wr_completion;
92 bool slow_sram;
93 };
94
95 struct cqspi_driver_platdata {
96 u32 hwcaps_mask;
97 u8 quirks;
98 int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
99 u_char *rxbuf, loff_t from_addr, size_t n_rx);
100 u32 (*get_dma_status)(struct cqspi_st *cqspi);
101 };
102
103 /* Operation timeout value */
104 #define CQSPI_TIMEOUT_MS 500
105 #define CQSPI_READ_TIMEOUT_MS 10
106
107 #define CQSPI_DUMMY_CLKS_PER_BYTE 8
108 #define CQSPI_DUMMY_BYTES_MAX 4
109 #define CQSPI_DUMMY_CLKS_MAX 31
110
111 #define CQSPI_STIG_DATA_LEN_MAX 8
112
113 /* Register map */
114 #define CQSPI_REG_CONFIG 0x00
115 #define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
116 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
117 #define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
118 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
119 #define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
120 #define CQSPI_REG_CONFIG_BAUD_LSB 19
121 #define CQSPI_REG_CONFIG_DTR_PROTO BIT(24)
122 #define CQSPI_REG_CONFIG_DUAL_OPCODE BIT(30)
123 #define CQSPI_REG_CONFIG_IDLE_LSB 31
124 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
125 #define CQSPI_REG_CONFIG_BAUD_MASK 0xF
126
127 #define CQSPI_REG_RD_INSTR 0x04
128 #define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
129 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
130 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
131 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
132 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
133 #define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
134 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
135 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
136 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
137 #define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
138
139 #define CQSPI_REG_WR_INSTR 0x08
140 #define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
141 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
142 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
143
144 #define CQSPI_REG_DELAY 0x0C
145 #define CQSPI_REG_DELAY_TSLCH_LSB 0
146 #define CQSPI_REG_DELAY_TCHSH_LSB 8
147 #define CQSPI_REG_DELAY_TSD2D_LSB 16
148 #define CQSPI_REG_DELAY_TSHSL_LSB 24
149 #define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
150 #define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
151 #define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
152 #define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
153
154 #define CQSPI_REG_READCAPTURE 0x10
155 #define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
156 #define CQSPI_REG_READCAPTURE_DELAY_LSB 1
157 #define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
158
159 #define CQSPI_REG_SIZE 0x14
160 #define CQSPI_REG_SIZE_ADDRESS_LSB 0
161 #define CQSPI_REG_SIZE_PAGE_LSB 4
162 #define CQSPI_REG_SIZE_BLOCK_LSB 16
163 #define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
164 #define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
165 #define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
166
167 #define CQSPI_REG_SRAMPARTITION 0x18
168 #define CQSPI_REG_INDIRECTTRIGGER 0x1C
169
170 #define CQSPI_REG_DMA 0x20
171 #define CQSPI_REG_DMA_SINGLE_LSB 0
172 #define CQSPI_REG_DMA_BURST_LSB 8
173 #define CQSPI_REG_DMA_SINGLE_MASK 0xFF
174 #define CQSPI_REG_DMA_BURST_MASK 0xFF
175
176 #define CQSPI_REG_REMAP 0x24
177 #define CQSPI_REG_MODE_BIT 0x28
178
179 #define CQSPI_REG_SDRAMLEVEL 0x2C
180 #define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
181 #define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
182 #define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
183 #define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
184
185 #define CQSPI_REG_WR_COMPLETION_CTRL 0x38
186 #define CQSPI_REG_WR_DISABLE_AUTO_POLL BIT(14)
187
188 #define CQSPI_REG_IRQSTATUS 0x40
189 #define CQSPI_REG_IRQMASK 0x44
190
191 #define CQSPI_REG_INDIRECTRD 0x60
192 #define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
193 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
194 #define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
195
196 #define CQSPI_REG_INDIRECTRDWATERMARK 0x64
197 #define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
198 #define CQSPI_REG_INDIRECTRDBYTES 0x6C
199
200 #define CQSPI_REG_CMDCTRL 0x90
201 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
202 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
203 #define CQSPI_REG_CMDCTRL_DUMMY_LSB 7
204 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
205 #define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
206 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
207 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
208 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
209 #define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
210 #define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
211 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
212 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
213 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
214 #define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F
215
216 #define CQSPI_REG_INDIRECTWR 0x70
217 #define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
218 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
219 #define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
220
221 #define CQSPI_REG_INDIRECTWRWATERMARK 0x74
222 #define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
223 #define CQSPI_REG_INDIRECTWRBYTES 0x7C
224
225 #define CQSPI_REG_INDTRIG_ADDRRANGE 0x80
226
227 #define CQSPI_REG_CMDADDRESS 0x94
228 #define CQSPI_REG_CMDREADDATALOWER 0xA0
229 #define CQSPI_REG_CMDREADDATAUPPER 0xA4
230 #define CQSPI_REG_CMDWRITEDATALOWER 0xA8
231 #define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
232
233 #define CQSPI_REG_POLLING_STATUS 0xB0
234 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB 16
235
236 #define CQSPI_REG_OP_EXT_LOWER 0xE0
237 #define CQSPI_REG_OP_EXT_READ_LSB 24
238 #define CQSPI_REG_OP_EXT_WRITE_LSB 16
239 #define CQSPI_REG_OP_EXT_STIG_LSB 0
240
241 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR 0x1000
242
243 #define CQSPI_REG_VERSAL_DMA_DST_ADDR 0x1800
244 #define CQSPI_REG_VERSAL_DMA_DST_SIZE 0x1804
245
246 #define CQSPI_REG_VERSAL_DMA_DST_CTRL 0x180C
247
248 #define CQSPI_REG_VERSAL_DMA_DST_I_STS 0x1814
249 #define CQSPI_REG_VERSAL_DMA_DST_I_EN 0x1818
250 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS 0x181C
251 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK BIT(1)
252
253 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB 0x1828
254
255 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL 0xF43FFA00
256 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL 0x6
257
258 /* Interrupt status bits */
259 #define CQSPI_REG_IRQ_MODE_ERR BIT(0)
260 #define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
261 #define CQSPI_REG_IRQ_IND_COMP BIT(2)
262 #define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
263 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
264 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
265 #define CQSPI_REG_IRQ_WATERMARK BIT(6)
266 #define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
267
268 #define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
269 CQSPI_REG_IRQ_IND_SRAM_FULL | \
270 CQSPI_REG_IRQ_IND_COMP)
271
272 #define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
273 CQSPI_REG_IRQ_WATERMARK | \
274 CQSPI_REG_IRQ_UNDERFLOW)
275
276 #define CQSPI_IRQ_STATUS_MASK 0x1FFFF
277 #define CQSPI_DMA_UNALIGN 0x3
278
279 #define CQSPI_REG_VERSAL_DMA_VAL 0x602
280
cqspi_wait_for_bit(void __iomem * reg,const u32 mask,bool clr)281 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
282 {
283 u32 val;
284
285 return readl_relaxed_poll_timeout(reg, val,
286 (((clr ? ~val : val) & mask) == mask),
287 10, CQSPI_TIMEOUT_MS * 1000);
288 }
289
cqspi_is_idle(struct cqspi_st * cqspi)290 static bool cqspi_is_idle(struct cqspi_st *cqspi)
291 {
292 u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
293
294 return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
295 }
296
cqspi_get_rd_sram_level(struct cqspi_st * cqspi)297 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
298 {
299 u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
300
301 reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
302 return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
303 }
304
cqspi_get_versal_dma_status(struct cqspi_st * cqspi)305 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
306 {
307 u32 dma_status;
308
309 dma_status = readl(cqspi->iobase +
310 CQSPI_REG_VERSAL_DMA_DST_I_STS);
311 writel(dma_status, cqspi->iobase +
312 CQSPI_REG_VERSAL_DMA_DST_I_STS);
313
314 return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
315 }
316
cqspi_irq_handler(int this_irq,void * dev)317 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
318 {
319 struct cqspi_st *cqspi = dev;
320 unsigned int irq_status;
321 struct device *device = &cqspi->pdev->dev;
322 const struct cqspi_driver_platdata *ddata;
323
324 ddata = of_device_get_match_data(device);
325
326 /* Read interrupt status */
327 irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
328
329 /* Clear interrupt */
330 writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
331
332 if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
333 if (ddata->get_dma_status(cqspi)) {
334 complete(&cqspi->transfer_complete);
335 return IRQ_HANDLED;
336 }
337 }
338
339 else if (!cqspi->slow_sram)
340 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
341 else
342 irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
343
344 if (irq_status)
345 complete(&cqspi->transfer_complete);
346
347 return IRQ_HANDLED;
348 }
349
cqspi_calc_rdreg(const struct spi_mem_op * op)350 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
351 {
352 u32 rdreg = 0;
353
354 rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
355 rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
356 rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
357
358 return rdreg;
359 }
360
cqspi_calc_dummy(const struct spi_mem_op * op)361 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
362 {
363 unsigned int dummy_clk;
364
365 if (!op->dummy.nbytes)
366 return 0;
367
368 dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
369 if (op->cmd.dtr)
370 dummy_clk /= 2;
371
372 return dummy_clk;
373 }
374
cqspi_wait_idle(struct cqspi_st * cqspi)375 static int cqspi_wait_idle(struct cqspi_st *cqspi)
376 {
377 const unsigned int poll_idle_retry = 3;
378 unsigned int count = 0;
379 unsigned long timeout;
380
381 timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
382 while (1) {
383 /*
384 * Read few times in succession to ensure the controller
385 * is indeed idle, that is, the bit does not transition
386 * low again.
387 */
388 if (cqspi_is_idle(cqspi))
389 count++;
390 else
391 count = 0;
392
393 if (count >= poll_idle_retry)
394 return 0;
395
396 if (time_after(jiffies, timeout)) {
397 /* Timeout, in busy mode. */
398 dev_err(&cqspi->pdev->dev,
399 "QSPI is still busy after %dms timeout.\n",
400 CQSPI_TIMEOUT_MS);
401 return -ETIMEDOUT;
402 }
403
404 cpu_relax();
405 }
406 }
407
cqspi_exec_flash_cmd(struct cqspi_st * cqspi,unsigned int reg)408 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
409 {
410 void __iomem *reg_base = cqspi->iobase;
411 int ret;
412
413 /* Write the CMDCTRL without start execution. */
414 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
415 /* Start execute */
416 reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
417 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
418
419 /* Polling for completion. */
420 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
421 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
422 if (ret) {
423 dev_err(&cqspi->pdev->dev,
424 "Flash command execution timed out.\n");
425 return ret;
426 }
427
428 /* Polling QSPI idle status. */
429 return cqspi_wait_idle(cqspi);
430 }
431
cqspi_setup_opcode_ext(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op,unsigned int shift)432 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
433 const struct spi_mem_op *op,
434 unsigned int shift)
435 {
436 struct cqspi_st *cqspi = f_pdata->cqspi;
437 void __iomem *reg_base = cqspi->iobase;
438 unsigned int reg;
439 u8 ext;
440
441 if (op->cmd.nbytes != 2)
442 return -EINVAL;
443
444 /* Opcode extension is the LSB. */
445 ext = op->cmd.opcode & 0xff;
446
447 reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
448 reg &= ~(0xff << shift);
449 reg |= ext << shift;
450 writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
451
452 return 0;
453 }
454
cqspi_enable_dtr(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op,unsigned int shift)455 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
456 const struct spi_mem_op *op, unsigned int shift)
457 {
458 struct cqspi_st *cqspi = f_pdata->cqspi;
459 void __iomem *reg_base = cqspi->iobase;
460 unsigned int reg;
461 int ret;
462
463 reg = readl(reg_base + CQSPI_REG_CONFIG);
464
465 /*
466 * We enable dual byte opcode here. The callers have to set up the
467 * extension opcode based on which type of operation it is.
468 */
469 if (op->cmd.dtr) {
470 reg |= CQSPI_REG_CONFIG_DTR_PROTO;
471 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
472
473 /* Set up command opcode extension. */
474 ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
475 if (ret)
476 return ret;
477 } else {
478 reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
479 reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
480 }
481
482 writel(reg, reg_base + CQSPI_REG_CONFIG);
483
484 return cqspi_wait_idle(cqspi);
485 }
486
cqspi_command_read(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)487 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
488 const struct spi_mem_op *op)
489 {
490 struct cqspi_st *cqspi = f_pdata->cqspi;
491 void __iomem *reg_base = cqspi->iobase;
492 u8 *rxbuf = op->data.buf.in;
493 u8 opcode;
494 size_t n_rx = op->data.nbytes;
495 unsigned int rdreg;
496 unsigned int reg;
497 unsigned int dummy_clk;
498 size_t read_len;
499 int status;
500
501 status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
502 if (status)
503 return status;
504
505 if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
506 dev_err(&cqspi->pdev->dev,
507 "Invalid input argument, len %zu rxbuf 0x%p\n",
508 n_rx, rxbuf);
509 return -EINVAL;
510 }
511
512 if (op->cmd.dtr)
513 opcode = op->cmd.opcode >> 8;
514 else
515 opcode = op->cmd.opcode;
516
517 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
518
519 rdreg = cqspi_calc_rdreg(op);
520 writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
521
522 dummy_clk = cqspi_calc_dummy(op);
523 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
524 return -EOPNOTSUPP;
525
526 if (dummy_clk)
527 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
528 << CQSPI_REG_CMDCTRL_DUMMY_LSB;
529
530 reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
531
532 /* 0 means 1 byte. */
533 reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
534 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
535
536 /* setup ADDR BIT field */
537 if (op->addr.nbytes) {
538 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
539 reg |= ((op->addr.nbytes - 1) &
540 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
541 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
542
543 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
544 }
545
546 status = cqspi_exec_flash_cmd(cqspi, reg);
547 if (status)
548 return status;
549
550 reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
551
552 /* Put the read value into rx_buf */
553 read_len = (n_rx > 4) ? 4 : n_rx;
554 memcpy(rxbuf, ®, read_len);
555 rxbuf += read_len;
556
557 if (n_rx > 4) {
558 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
559
560 read_len = n_rx - read_len;
561 memcpy(rxbuf, ®, read_len);
562 }
563
564 /* Reset CMD_CTRL Reg once command read completes */
565 writel(0, reg_base + CQSPI_REG_CMDCTRL);
566
567 return 0;
568 }
569
cqspi_command_write(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)570 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
571 const struct spi_mem_op *op)
572 {
573 struct cqspi_st *cqspi = f_pdata->cqspi;
574 void __iomem *reg_base = cqspi->iobase;
575 u8 opcode;
576 const u8 *txbuf = op->data.buf.out;
577 size_t n_tx = op->data.nbytes;
578 unsigned int reg;
579 unsigned int data;
580 size_t write_len;
581 int ret;
582
583 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
584 if (ret)
585 return ret;
586
587 if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
588 dev_err(&cqspi->pdev->dev,
589 "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
590 n_tx, txbuf);
591 return -EINVAL;
592 }
593
594 reg = cqspi_calc_rdreg(op);
595 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
596
597 if (op->cmd.dtr)
598 opcode = op->cmd.opcode >> 8;
599 else
600 opcode = op->cmd.opcode;
601
602 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
603
604 if (op->addr.nbytes) {
605 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
606 reg |= ((op->addr.nbytes - 1) &
607 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
608 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
609
610 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
611 }
612
613 if (n_tx) {
614 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
615 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
616 << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
617 data = 0;
618 write_len = (n_tx > 4) ? 4 : n_tx;
619 memcpy(&data, txbuf, write_len);
620 txbuf += write_len;
621 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
622
623 if (n_tx > 4) {
624 data = 0;
625 write_len = n_tx - 4;
626 memcpy(&data, txbuf, write_len);
627 writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
628 }
629 }
630
631 ret = cqspi_exec_flash_cmd(cqspi, reg);
632
633 /* Reset CMD_CTRL Reg once command write completes */
634 writel(0, reg_base + CQSPI_REG_CMDCTRL);
635
636 return ret;
637 }
638
cqspi_read_setup(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)639 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
640 const struct spi_mem_op *op)
641 {
642 struct cqspi_st *cqspi = f_pdata->cqspi;
643 void __iomem *reg_base = cqspi->iobase;
644 unsigned int dummy_clk = 0;
645 unsigned int reg;
646 int ret;
647 u8 opcode;
648
649 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
650 if (ret)
651 return ret;
652
653 if (op->cmd.dtr)
654 opcode = op->cmd.opcode >> 8;
655 else
656 opcode = op->cmd.opcode;
657
658 reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
659 reg |= cqspi_calc_rdreg(op);
660
661 /* Setup dummy clock cycles */
662 dummy_clk = cqspi_calc_dummy(op);
663
664 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
665 return -EOPNOTSUPP;
666
667 if (dummy_clk)
668 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
669 << CQSPI_REG_RD_INSTR_DUMMY_LSB;
670
671 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
672
673 /* Set address width */
674 reg = readl(reg_base + CQSPI_REG_SIZE);
675 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
676 reg |= (op->addr.nbytes - 1);
677 writel(reg, reg_base + CQSPI_REG_SIZE);
678 return 0;
679 }
680
cqspi_indirect_read_execute(struct cqspi_flash_pdata * f_pdata,u8 * rxbuf,loff_t from_addr,const size_t n_rx)681 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
682 u8 *rxbuf, loff_t from_addr,
683 const size_t n_rx)
684 {
685 struct cqspi_st *cqspi = f_pdata->cqspi;
686 struct device *dev = &cqspi->pdev->dev;
687 void __iomem *reg_base = cqspi->iobase;
688 void __iomem *ahb_base = cqspi->ahb_base;
689 unsigned int remaining = n_rx;
690 unsigned int mod_bytes = n_rx % 4;
691 unsigned int bytes_to_read = 0;
692 u8 *rxbuf_end = rxbuf + n_rx;
693 int ret = 0;
694
695 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
696 writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
697
698 /* Clear all interrupts. */
699 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
700
701 /*
702 * On SoCFPGA platform reading the SRAM is slow due to
703 * hardware limitation and causing read interrupt storm to CPU,
704 * so enabling only watermark interrupt to disable all read
705 * interrupts later as we want to run "bytes to read" loop with
706 * all the read interrupts disabled for max performance.
707 */
708
709 if (!cqspi->slow_sram)
710 writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
711 else
712 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
713
714 reinit_completion(&cqspi->transfer_complete);
715 writel(CQSPI_REG_INDIRECTRD_START_MASK,
716 reg_base + CQSPI_REG_INDIRECTRD);
717
718 while (remaining > 0) {
719 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
720 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
721 ret = -ETIMEDOUT;
722
723 /*
724 * Disable all read interrupts until
725 * we are out of "bytes to read"
726 */
727 if (cqspi->slow_sram)
728 writel(0x0, reg_base + CQSPI_REG_IRQMASK);
729
730 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
731
732 if (ret && bytes_to_read == 0) {
733 dev_err(dev, "Indirect read timeout, no bytes\n");
734 goto failrd;
735 }
736
737 while (bytes_to_read != 0) {
738 unsigned int word_remain = round_down(remaining, 4);
739
740 bytes_to_read *= cqspi->fifo_width;
741 bytes_to_read = bytes_to_read > remaining ?
742 remaining : bytes_to_read;
743 bytes_to_read = round_down(bytes_to_read, 4);
744 /* Read 4 byte word chunks then single bytes */
745 if (bytes_to_read) {
746 ioread32_rep(ahb_base, rxbuf,
747 (bytes_to_read / 4));
748 } else if (!word_remain && mod_bytes) {
749 unsigned int temp = ioread32(ahb_base);
750
751 bytes_to_read = mod_bytes;
752 memcpy(rxbuf, &temp, min((unsigned int)
753 (rxbuf_end - rxbuf),
754 bytes_to_read));
755 }
756 rxbuf += bytes_to_read;
757 remaining -= bytes_to_read;
758 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
759 }
760
761 if (remaining > 0) {
762 reinit_completion(&cqspi->transfer_complete);
763 if (cqspi->slow_sram)
764 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
765 }
766 }
767
768 /* Check indirect done status */
769 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
770 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
771 if (ret) {
772 dev_err(dev, "Indirect read completion error (%i)\n", ret);
773 goto failrd;
774 }
775
776 /* Disable interrupt */
777 writel(0, reg_base + CQSPI_REG_IRQMASK);
778
779 /* Clear indirect completion status */
780 writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
781
782 return 0;
783
784 failrd:
785 /* Disable interrupt */
786 writel(0, reg_base + CQSPI_REG_IRQMASK);
787
788 /* Cancel the indirect read */
789 writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
790 reg_base + CQSPI_REG_INDIRECTRD);
791 return ret;
792 }
793
cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata * f_pdata,u_char * rxbuf,loff_t from_addr,size_t n_rx)794 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
795 u_char *rxbuf, loff_t from_addr,
796 size_t n_rx)
797 {
798 struct cqspi_st *cqspi = f_pdata->cqspi;
799 struct device *dev = &cqspi->pdev->dev;
800 void __iomem *reg_base = cqspi->iobase;
801 u32 reg, bytes_to_dma;
802 loff_t addr = from_addr;
803 void *buf = rxbuf;
804 dma_addr_t dma_addr;
805 u8 bytes_rem;
806 int ret = 0;
807
808 bytes_rem = n_rx % 4;
809 bytes_to_dma = (n_rx - bytes_rem);
810
811 if (!bytes_to_dma)
812 goto nondmard;
813
814 ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
815 if (ret)
816 return ret;
817
818 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
819 reg |= CQSPI_REG_CONFIG_DMA_MASK;
820 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
821
822 dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
823 if (dma_mapping_error(dev, dma_addr)) {
824 dev_err(dev, "dma mapping failed\n");
825 return -ENOMEM;
826 }
827
828 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
829 writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
830 writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
831 reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
832
833 /* Clear all interrupts. */
834 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
835
836 /* Enable DMA done interrupt */
837 writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
838 reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
839
840 /* Default DMA periph configuration */
841 writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
842
843 /* Configure DMA Dst address */
844 writel(lower_32_bits(dma_addr),
845 reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
846 writel(upper_32_bits(dma_addr),
847 reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
848
849 /* Configure DMA Src address */
850 writel(cqspi->trigger_address, reg_base +
851 CQSPI_REG_VERSAL_DMA_SRC_ADDR);
852
853 /* Set DMA destination size */
854 writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
855
856 /* Set DMA destination control */
857 writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
858 reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
859
860 writel(CQSPI_REG_INDIRECTRD_START_MASK,
861 reg_base + CQSPI_REG_INDIRECTRD);
862
863 reinit_completion(&cqspi->transfer_complete);
864
865 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
866 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS))) {
867 ret = -ETIMEDOUT;
868 goto failrd;
869 }
870
871 /* Disable DMA interrupt */
872 writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
873
874 /* Clear indirect completion status */
875 writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
876 cqspi->iobase + CQSPI_REG_INDIRECTRD);
877 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
878
879 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
880 reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
881 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
882
883 ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
884 PM_OSPI_MUX_SEL_LINEAR);
885 if (ret)
886 return ret;
887
888 nondmard:
889 if (bytes_rem) {
890 addr += bytes_to_dma;
891 buf += bytes_to_dma;
892 ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
893 bytes_rem);
894 if (ret)
895 return ret;
896 }
897
898 return 0;
899
900 failrd:
901 /* Disable DMA interrupt */
902 writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
903
904 /* Cancel the indirect read */
905 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
906 reg_base + CQSPI_REG_INDIRECTRD);
907
908 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
909
910 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
911 reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
912 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
913
914 zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
915
916 return ret;
917 }
918
cqspi_write_setup(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)919 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
920 const struct spi_mem_op *op)
921 {
922 unsigned int reg;
923 int ret;
924 struct cqspi_st *cqspi = f_pdata->cqspi;
925 void __iomem *reg_base = cqspi->iobase;
926 u8 opcode;
927
928 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
929 if (ret)
930 return ret;
931
932 if (op->cmd.dtr)
933 opcode = op->cmd.opcode >> 8;
934 else
935 opcode = op->cmd.opcode;
936
937 /* Set opcode. */
938 reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
939 reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
940 reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
941 writel(reg, reg_base + CQSPI_REG_WR_INSTR);
942 reg = cqspi_calc_rdreg(op);
943 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
944
945 /*
946 * SPI NAND flashes require the address of the status register to be
947 * passed in the Read SR command. Also, some SPI NOR flashes like the
948 * cypress Semper flash expect a 4-byte dummy address in the Read SR
949 * command in DTR mode.
950 *
951 * But this controller does not support address phase in the Read SR
952 * command when doing auto-HW polling. So, disable write completion
953 * polling on the controller's side. spinand and spi-nor will take
954 * care of polling the status register.
955 */
956 if (cqspi->wr_completion) {
957 reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
958 reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
959 writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
960 /*
961 * DAC mode require auto polling as flash needs to be polled
962 * for write completion in case of bubble in SPI transaction
963 * due to slow CPU/DMA master.
964 */
965 cqspi->use_direct_mode_wr = false;
966 }
967
968 reg = readl(reg_base + CQSPI_REG_SIZE);
969 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
970 reg |= (op->addr.nbytes - 1);
971 writel(reg, reg_base + CQSPI_REG_SIZE);
972 return 0;
973 }
974
cqspi_indirect_write_execute(struct cqspi_flash_pdata * f_pdata,loff_t to_addr,const u8 * txbuf,const size_t n_tx)975 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
976 loff_t to_addr, const u8 *txbuf,
977 const size_t n_tx)
978 {
979 struct cqspi_st *cqspi = f_pdata->cqspi;
980 struct device *dev = &cqspi->pdev->dev;
981 void __iomem *reg_base = cqspi->iobase;
982 unsigned int remaining = n_tx;
983 unsigned int write_bytes;
984 int ret;
985
986 writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
987 writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
988
989 /* Clear all interrupts. */
990 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
991
992 writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
993
994 reinit_completion(&cqspi->transfer_complete);
995 writel(CQSPI_REG_INDIRECTWR_START_MASK,
996 reg_base + CQSPI_REG_INDIRECTWR);
997 /*
998 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
999 * Controller programming sequence, couple of cycles of
1000 * QSPI_REF_CLK delay is required for the above bit to
1001 * be internally synchronized by the QSPI module. Provide 5
1002 * cycles of delay.
1003 */
1004 if (cqspi->wr_delay)
1005 ndelay(cqspi->wr_delay);
1006
1007 while (remaining > 0) {
1008 size_t write_words, mod_bytes;
1009
1010 write_bytes = remaining;
1011 write_words = write_bytes / 4;
1012 mod_bytes = write_bytes % 4;
1013 /* Write 4 bytes at a time then single bytes. */
1014 if (write_words) {
1015 iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1016 txbuf += (write_words * 4);
1017 }
1018 if (mod_bytes) {
1019 unsigned int temp = 0xFFFFFFFF;
1020
1021 memcpy(&temp, txbuf, mod_bytes);
1022 iowrite32(temp, cqspi->ahb_base);
1023 txbuf += mod_bytes;
1024 }
1025
1026 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1027 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1028 dev_err(dev, "Indirect write timeout\n");
1029 ret = -ETIMEDOUT;
1030 goto failwr;
1031 }
1032
1033 remaining -= write_bytes;
1034
1035 if (remaining > 0)
1036 reinit_completion(&cqspi->transfer_complete);
1037 }
1038
1039 /* Check indirect done status */
1040 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1041 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1042 if (ret) {
1043 dev_err(dev, "Indirect write completion error (%i)\n", ret);
1044 goto failwr;
1045 }
1046
1047 /* Disable interrupt. */
1048 writel(0, reg_base + CQSPI_REG_IRQMASK);
1049
1050 /* Clear indirect completion status */
1051 writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1052
1053 cqspi_wait_idle(cqspi);
1054
1055 return 0;
1056
1057 failwr:
1058 /* Disable interrupt. */
1059 writel(0, reg_base + CQSPI_REG_IRQMASK);
1060
1061 /* Cancel the indirect write */
1062 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1063 reg_base + CQSPI_REG_INDIRECTWR);
1064 return ret;
1065 }
1066
cqspi_chipselect(struct cqspi_flash_pdata * f_pdata)1067 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1068 {
1069 struct cqspi_st *cqspi = f_pdata->cqspi;
1070 void __iomem *reg_base = cqspi->iobase;
1071 unsigned int chip_select = f_pdata->cs;
1072 unsigned int reg;
1073
1074 reg = readl(reg_base + CQSPI_REG_CONFIG);
1075 if (cqspi->is_decoded_cs) {
1076 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1077 } else {
1078 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1079
1080 /* Convert CS if without decoder.
1081 * CS0 to 4b'1110
1082 * CS1 to 4b'1101
1083 * CS2 to 4b'1011
1084 * CS3 to 4b'0111
1085 */
1086 chip_select = 0xF & ~(1 << chip_select);
1087 }
1088
1089 reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1090 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1091 reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1092 << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1093 writel(reg, reg_base + CQSPI_REG_CONFIG);
1094 }
1095
calculate_ticks_for_ns(const unsigned int ref_clk_hz,const unsigned int ns_val)1096 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1097 const unsigned int ns_val)
1098 {
1099 unsigned int ticks;
1100
1101 ticks = ref_clk_hz / 1000; /* kHz */
1102 ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1103
1104 return ticks;
1105 }
1106
cqspi_delay(struct cqspi_flash_pdata * f_pdata)1107 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1108 {
1109 struct cqspi_st *cqspi = f_pdata->cqspi;
1110 void __iomem *iobase = cqspi->iobase;
1111 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1112 unsigned int tshsl, tchsh, tslch, tsd2d;
1113 unsigned int reg;
1114 unsigned int tsclk;
1115
1116 /* calculate the number of ref ticks for one sclk tick */
1117 tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1118
1119 tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1120 /* this particular value must be at least one sclk */
1121 if (tshsl < tsclk)
1122 tshsl = tsclk;
1123
1124 tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1125 tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1126 tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1127
1128 reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1129 << CQSPI_REG_DELAY_TSHSL_LSB;
1130 reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1131 << CQSPI_REG_DELAY_TCHSH_LSB;
1132 reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1133 << CQSPI_REG_DELAY_TSLCH_LSB;
1134 reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1135 << CQSPI_REG_DELAY_TSD2D_LSB;
1136 writel(reg, iobase + CQSPI_REG_DELAY);
1137 }
1138
cqspi_config_baudrate_div(struct cqspi_st * cqspi)1139 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1140 {
1141 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1142 void __iomem *reg_base = cqspi->iobase;
1143 u32 reg, div;
1144
1145 /* Recalculate the baudrate divisor based on QSPI specification. */
1146 div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1147
1148 /* Maximum baud divisor */
1149 if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1150 div = CQSPI_REG_CONFIG_BAUD_MASK;
1151 dev_warn(&cqspi->pdev->dev,
1152 "Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1153 cqspi->sclk, ref_clk_hz/((div+1)*2));
1154 }
1155
1156 reg = readl(reg_base + CQSPI_REG_CONFIG);
1157 reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1158 reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1159 writel(reg, reg_base + CQSPI_REG_CONFIG);
1160 }
1161
cqspi_readdata_capture(struct cqspi_st * cqspi,const bool bypass,const unsigned int delay)1162 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1163 const bool bypass,
1164 const unsigned int delay)
1165 {
1166 void __iomem *reg_base = cqspi->iobase;
1167 unsigned int reg;
1168
1169 reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1170
1171 if (bypass)
1172 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1173 else
1174 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1175
1176 reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1177 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1178
1179 reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1180 << CQSPI_REG_READCAPTURE_DELAY_LSB;
1181
1182 writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1183 }
1184
cqspi_controller_enable(struct cqspi_st * cqspi,bool enable)1185 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
1186 {
1187 void __iomem *reg_base = cqspi->iobase;
1188 unsigned int reg;
1189
1190 reg = readl(reg_base + CQSPI_REG_CONFIG);
1191
1192 if (enable)
1193 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
1194 else
1195 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
1196
1197 writel(reg, reg_base + CQSPI_REG_CONFIG);
1198 }
1199
cqspi_configure(struct cqspi_flash_pdata * f_pdata,unsigned long sclk)1200 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1201 unsigned long sclk)
1202 {
1203 struct cqspi_st *cqspi = f_pdata->cqspi;
1204 int switch_cs = (cqspi->current_cs != f_pdata->cs);
1205 int switch_ck = (cqspi->sclk != sclk);
1206
1207 if (switch_cs || switch_ck)
1208 cqspi_controller_enable(cqspi, 0);
1209
1210 /* Switch chip select. */
1211 if (switch_cs) {
1212 cqspi->current_cs = f_pdata->cs;
1213 cqspi_chipselect(f_pdata);
1214 }
1215
1216 /* Setup baudrate divisor and delays */
1217 if (switch_ck) {
1218 cqspi->sclk = sclk;
1219 cqspi_config_baudrate_div(cqspi);
1220 cqspi_delay(f_pdata);
1221 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1222 f_pdata->read_delay);
1223 }
1224
1225 if (switch_cs || switch_ck)
1226 cqspi_controller_enable(cqspi, 1);
1227 }
1228
cqspi_write(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1229 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1230 const struct spi_mem_op *op)
1231 {
1232 struct cqspi_st *cqspi = f_pdata->cqspi;
1233 loff_t to = op->addr.val;
1234 size_t len = op->data.nbytes;
1235 const u_char *buf = op->data.buf.out;
1236 int ret;
1237
1238 ret = cqspi_write_setup(f_pdata, op);
1239 if (ret)
1240 return ret;
1241
1242 /*
1243 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1244 * address (all 0s) with the read status register command in DTR mode.
1245 * But this controller does not support sending dummy address bytes to
1246 * the flash when it is polling the write completion register in DTR
1247 * mode. So, we can not use direct mode when in DTR mode for writing
1248 * data.
1249 */
1250 if (!op->cmd.dtr && cqspi->use_direct_mode &&
1251 cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1252 memcpy_toio(cqspi->ahb_base + to, buf, len);
1253 return cqspi_wait_idle(cqspi);
1254 }
1255
1256 return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1257 }
1258
cqspi_rx_dma_callback(void * param)1259 static void cqspi_rx_dma_callback(void *param)
1260 {
1261 struct cqspi_st *cqspi = param;
1262
1263 complete(&cqspi->rx_dma_complete);
1264 }
1265
cqspi_direct_read_execute(struct cqspi_flash_pdata * f_pdata,u_char * buf,loff_t from,size_t len)1266 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1267 u_char *buf, loff_t from, size_t len)
1268 {
1269 struct cqspi_st *cqspi = f_pdata->cqspi;
1270 struct device *dev = &cqspi->pdev->dev;
1271 enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1272 dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1273 int ret = 0;
1274 struct dma_async_tx_descriptor *tx;
1275 dma_cookie_t cookie;
1276 dma_addr_t dma_dst;
1277 struct device *ddev;
1278
1279 if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1280 memcpy_fromio(buf, cqspi->ahb_base + from, len);
1281 return 0;
1282 }
1283
1284 ddev = cqspi->rx_chan->device->dev;
1285 dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1286 if (dma_mapping_error(ddev, dma_dst)) {
1287 dev_err(dev, "dma mapping failed\n");
1288 return -ENOMEM;
1289 }
1290 tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1291 len, flags);
1292 if (!tx) {
1293 dev_err(dev, "device_prep_dma_memcpy error\n");
1294 ret = -EIO;
1295 goto err_unmap;
1296 }
1297
1298 tx->callback = cqspi_rx_dma_callback;
1299 tx->callback_param = cqspi;
1300 cookie = tx->tx_submit(tx);
1301 reinit_completion(&cqspi->rx_dma_complete);
1302
1303 ret = dma_submit_error(cookie);
1304 if (ret) {
1305 dev_err(dev, "dma_submit_error %d\n", cookie);
1306 ret = -EIO;
1307 goto err_unmap;
1308 }
1309
1310 dma_async_issue_pending(cqspi->rx_chan);
1311 if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1312 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1313 dmaengine_terminate_sync(cqspi->rx_chan);
1314 dev_err(dev, "DMA wait_for_completion_timeout\n");
1315 ret = -ETIMEDOUT;
1316 goto err_unmap;
1317 }
1318
1319 err_unmap:
1320 dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1321
1322 return ret;
1323 }
1324
cqspi_read(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1325 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1326 const struct spi_mem_op *op)
1327 {
1328 struct cqspi_st *cqspi = f_pdata->cqspi;
1329 struct device *dev = &cqspi->pdev->dev;
1330 const struct cqspi_driver_platdata *ddata;
1331 loff_t from = op->addr.val;
1332 size_t len = op->data.nbytes;
1333 u_char *buf = op->data.buf.in;
1334 u64 dma_align = (u64)(uintptr_t)buf;
1335 int ret;
1336
1337 ddata = of_device_get_match_data(dev);
1338
1339 ret = cqspi_read_setup(f_pdata, op);
1340 if (ret)
1341 return ret;
1342
1343 if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1344 return cqspi_direct_read_execute(f_pdata, buf, from, len);
1345
1346 if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1347 virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1348 return ddata->indirect_read_dma(f_pdata, buf, from, len);
1349
1350 return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1351 }
1352
cqspi_mem_process(struct spi_mem * mem,const struct spi_mem_op * op)1353 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1354 {
1355 struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1356 struct cqspi_flash_pdata *f_pdata;
1357
1358 f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
1359 cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1360
1361 if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1362 /*
1363 * Performing reads in DAC mode forces to read minimum 4 bytes
1364 * which is unsupported on some flash devices during register
1365 * reads, prefer STIG mode for such small reads.
1366 */
1367 if (!op->addr.nbytes ||
1368 op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX)
1369 return cqspi_command_read(f_pdata, op);
1370
1371 return cqspi_read(f_pdata, op);
1372 }
1373
1374 if (!op->addr.nbytes || !op->data.buf.out)
1375 return cqspi_command_write(f_pdata, op);
1376
1377 return cqspi_write(f_pdata, op);
1378 }
1379
cqspi_exec_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)1380 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1381 {
1382 int ret;
1383
1384 ret = cqspi_mem_process(mem, op);
1385 if (ret)
1386 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1387
1388 return ret;
1389 }
1390
cqspi_supports_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)1391 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1392 const struct spi_mem_op *op)
1393 {
1394 bool all_true, all_false;
1395
1396 /*
1397 * op->dummy.dtr is required for converting nbytes into ncycles.
1398 * Also, don't check the dtr field of the op phase having zero nbytes.
1399 */
1400 all_true = op->cmd.dtr &&
1401 (!op->addr.nbytes || op->addr.dtr) &&
1402 (!op->dummy.nbytes || op->dummy.dtr) &&
1403 (!op->data.nbytes || op->data.dtr);
1404
1405 all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1406 !op->data.dtr;
1407
1408 if (all_true) {
1409 /* Right now we only support 8-8-8 DTR mode. */
1410 if (op->cmd.nbytes && op->cmd.buswidth != 8)
1411 return false;
1412 if (op->addr.nbytes && op->addr.buswidth != 8)
1413 return false;
1414 if (op->data.nbytes && op->data.buswidth != 8)
1415 return false;
1416 } else if (!all_false) {
1417 /* Mixed DTR modes are not supported. */
1418 return false;
1419 }
1420
1421 return spi_mem_default_supports_op(mem, op);
1422 }
1423
cqspi_of_get_flash_pdata(struct platform_device * pdev,struct cqspi_flash_pdata * f_pdata,struct device_node * np)1424 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1425 struct cqspi_flash_pdata *f_pdata,
1426 struct device_node *np)
1427 {
1428 if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1429 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1430 return -ENXIO;
1431 }
1432
1433 if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1434 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1435 return -ENXIO;
1436 }
1437
1438 if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1439 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1440 return -ENXIO;
1441 }
1442
1443 if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1444 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1445 return -ENXIO;
1446 }
1447
1448 if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1449 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1450 return -ENXIO;
1451 }
1452
1453 if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1454 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1455 return -ENXIO;
1456 }
1457
1458 return 0;
1459 }
1460
cqspi_of_get_pdata(struct cqspi_st * cqspi)1461 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1462 {
1463 struct device *dev = &cqspi->pdev->dev;
1464 struct device_node *np = dev->of_node;
1465 u32 id[2];
1466
1467 cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1468
1469 if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1470 dev_err(dev, "couldn't determine fifo-depth\n");
1471 return -ENXIO;
1472 }
1473
1474 if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1475 dev_err(dev, "couldn't determine fifo-width\n");
1476 return -ENXIO;
1477 }
1478
1479 if (of_property_read_u32(np, "cdns,trigger-address",
1480 &cqspi->trigger_address)) {
1481 dev_err(dev, "couldn't determine trigger-address\n");
1482 return -ENXIO;
1483 }
1484
1485 if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1486 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1487
1488 cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1489
1490 if (!of_property_read_u32_array(np, "power-domains", id,
1491 ARRAY_SIZE(id)))
1492 cqspi->pd_dev_id = id[1];
1493
1494 return 0;
1495 }
1496
cqspi_controller_init(struct cqspi_st * cqspi)1497 static void cqspi_controller_init(struct cqspi_st *cqspi)
1498 {
1499 u32 reg;
1500
1501 cqspi_controller_enable(cqspi, 0);
1502
1503 /* Configure the remap address register, no remap */
1504 writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1505
1506 /* Disable all interrupts. */
1507 writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1508
1509 /* Configure the SRAM split to 1:1 . */
1510 writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1511
1512 /* Load indirect trigger address. */
1513 writel(cqspi->trigger_address,
1514 cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1515
1516 /* Program read watermark -- 1/2 of the FIFO. */
1517 writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1518 cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1519 /* Program write watermark -- 1/8 of the FIFO. */
1520 writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1521 cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1522
1523 /* Disable direct access controller */
1524 if (!cqspi->use_direct_mode) {
1525 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1526 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1527 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1528 }
1529
1530 /* Enable DMA interface */
1531 if (cqspi->use_dma_read) {
1532 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1533 reg |= CQSPI_REG_CONFIG_DMA_MASK;
1534 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1535 }
1536
1537 cqspi_controller_enable(cqspi, 1);
1538 }
1539
cqspi_request_mmap_dma(struct cqspi_st * cqspi)1540 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1541 {
1542 dma_cap_mask_t mask;
1543
1544 dma_cap_zero(mask);
1545 dma_cap_set(DMA_MEMCPY, mask);
1546
1547 cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1548 if (IS_ERR(cqspi->rx_chan)) {
1549 int ret = PTR_ERR(cqspi->rx_chan);
1550
1551 cqspi->rx_chan = NULL;
1552 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1553 }
1554 init_completion(&cqspi->rx_dma_complete);
1555
1556 return 0;
1557 }
1558
cqspi_get_name(struct spi_mem * mem)1559 static const char *cqspi_get_name(struct spi_mem *mem)
1560 {
1561 struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1562 struct device *dev = &cqspi->pdev->dev;
1563
1564 return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1565 }
1566
1567 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1568 .exec_op = cqspi_exec_mem_op,
1569 .get_name = cqspi_get_name,
1570 .supports_op = cqspi_supports_mem_op,
1571 };
1572
1573 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1574 .dtr = true,
1575 };
1576
cqspi_setup_flash(struct cqspi_st * cqspi)1577 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1578 {
1579 struct platform_device *pdev = cqspi->pdev;
1580 struct device *dev = &pdev->dev;
1581 struct device_node *np = dev->of_node;
1582 struct cqspi_flash_pdata *f_pdata;
1583 unsigned int cs;
1584 int ret;
1585
1586 /* Get flash device data */
1587 for_each_available_child_of_node(dev->of_node, np) {
1588 ret = of_property_read_u32(np, "reg", &cs);
1589 if (ret) {
1590 dev_err(dev, "Couldn't determine chip select.\n");
1591 of_node_put(np);
1592 return ret;
1593 }
1594
1595 if (cs >= CQSPI_MAX_CHIPSELECT) {
1596 dev_err(dev, "Chip select %d out of range.\n", cs);
1597 of_node_put(np);
1598 return -EINVAL;
1599 }
1600
1601 f_pdata = &cqspi->f_pdata[cs];
1602 f_pdata->cqspi = cqspi;
1603 f_pdata->cs = cs;
1604
1605 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1606 if (ret) {
1607 of_node_put(np);
1608 return ret;
1609 }
1610 }
1611
1612 return 0;
1613 }
1614
cqspi_probe(struct platform_device * pdev)1615 static int cqspi_probe(struct platform_device *pdev)
1616 {
1617 const struct cqspi_driver_platdata *ddata;
1618 struct reset_control *rstc, *rstc_ocp;
1619 struct device *dev = &pdev->dev;
1620 struct spi_master *master;
1621 struct resource *res_ahb;
1622 struct cqspi_st *cqspi;
1623 int ret;
1624 int irq;
1625
1626 master = devm_spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1627 if (!master) {
1628 dev_err(&pdev->dev, "spi_alloc_master failed\n");
1629 return -ENOMEM;
1630 }
1631 master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1632 master->mem_ops = &cqspi_mem_ops;
1633 master->mem_caps = &cqspi_mem_caps;
1634 master->dev.of_node = pdev->dev.of_node;
1635
1636 cqspi = spi_master_get_devdata(master);
1637
1638 cqspi->pdev = pdev;
1639 cqspi->master = master;
1640 platform_set_drvdata(pdev, cqspi);
1641
1642 /* Obtain configuration from OF. */
1643 ret = cqspi_of_get_pdata(cqspi);
1644 if (ret) {
1645 dev_err(dev, "Cannot get mandatory OF data.\n");
1646 return -ENODEV;
1647 }
1648
1649 /* Obtain QSPI clock. */
1650 cqspi->clk = devm_clk_get(dev, NULL);
1651 if (IS_ERR(cqspi->clk)) {
1652 dev_err(dev, "Cannot claim QSPI clock.\n");
1653 ret = PTR_ERR(cqspi->clk);
1654 return ret;
1655 }
1656
1657 /* Obtain and remap controller address. */
1658 cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1659 if (IS_ERR(cqspi->iobase)) {
1660 dev_err(dev, "Cannot remap controller address.\n");
1661 ret = PTR_ERR(cqspi->iobase);
1662 return ret;
1663 }
1664
1665 /* Obtain and remap AHB address. */
1666 cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1667 if (IS_ERR(cqspi->ahb_base)) {
1668 dev_err(dev, "Cannot remap AHB address.\n");
1669 ret = PTR_ERR(cqspi->ahb_base);
1670 return ret;
1671 }
1672 cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1673 cqspi->ahb_size = resource_size(res_ahb);
1674
1675 init_completion(&cqspi->transfer_complete);
1676
1677 /* Obtain IRQ line. */
1678 irq = platform_get_irq(pdev, 0);
1679 if (irq < 0)
1680 return -ENXIO;
1681
1682 pm_runtime_enable(dev);
1683 ret = pm_runtime_resume_and_get(dev);
1684 if (ret < 0)
1685 goto probe_pm_failed;
1686
1687 ret = clk_prepare_enable(cqspi->clk);
1688 if (ret) {
1689 dev_err(dev, "Cannot enable QSPI clock.\n");
1690 goto probe_clk_failed;
1691 }
1692
1693 /* Obtain QSPI reset control */
1694 rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1695 if (IS_ERR(rstc)) {
1696 ret = PTR_ERR(rstc);
1697 dev_err(dev, "Cannot get QSPI reset.\n");
1698 goto probe_reset_failed;
1699 }
1700
1701 rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1702 if (IS_ERR(rstc_ocp)) {
1703 ret = PTR_ERR(rstc_ocp);
1704 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1705 goto probe_reset_failed;
1706 }
1707
1708 reset_control_assert(rstc);
1709 reset_control_deassert(rstc);
1710
1711 reset_control_assert(rstc_ocp);
1712 reset_control_deassert(rstc_ocp);
1713
1714 cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1715 master->max_speed_hz = cqspi->master_ref_clk_hz;
1716
1717 /* write completion is supported by default */
1718 cqspi->wr_completion = true;
1719
1720 ddata = of_device_get_match_data(dev);
1721 if (ddata) {
1722 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1723 cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1724 cqspi->master_ref_clk_hz);
1725 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1726 master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1727 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1728 cqspi->use_direct_mode = true;
1729 cqspi->use_direct_mode_wr = true;
1730 }
1731 if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1732 cqspi->use_dma_read = true;
1733 if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1734 cqspi->wr_completion = false;
1735 if (ddata->quirks & CQSPI_SLOW_SRAM)
1736 cqspi->slow_sram = true;
1737
1738 if (of_device_is_compatible(pdev->dev.of_node,
1739 "xlnx,versal-ospi-1.0"))
1740 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1741 }
1742
1743 ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1744 pdev->name, cqspi);
1745 if (ret) {
1746 dev_err(dev, "Cannot request IRQ.\n");
1747 goto probe_reset_failed;
1748 }
1749
1750 cqspi_wait_idle(cqspi);
1751 cqspi_controller_init(cqspi);
1752 cqspi->current_cs = -1;
1753 cqspi->sclk = 0;
1754
1755 master->num_chipselect = cqspi->num_chipselect;
1756
1757 ret = cqspi_setup_flash(cqspi);
1758 if (ret) {
1759 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1760 goto probe_setup_failed;
1761 }
1762
1763 if (cqspi->use_direct_mode) {
1764 ret = cqspi_request_mmap_dma(cqspi);
1765 if (ret == -EPROBE_DEFER)
1766 goto probe_setup_failed;
1767 }
1768
1769 ret = spi_register_master(master);
1770 if (ret) {
1771 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1772 goto probe_setup_failed;
1773 }
1774
1775 return 0;
1776 probe_setup_failed:
1777 cqspi_controller_enable(cqspi, 0);
1778 probe_reset_failed:
1779 clk_disable_unprepare(cqspi->clk);
1780 probe_clk_failed:
1781 pm_runtime_put_sync(dev);
1782 probe_pm_failed:
1783 pm_runtime_disable(dev);
1784 return ret;
1785 }
1786
cqspi_remove(struct platform_device * pdev)1787 static int cqspi_remove(struct platform_device *pdev)
1788 {
1789 struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1790
1791 spi_unregister_master(cqspi->master);
1792 cqspi_controller_enable(cqspi, 0);
1793
1794 if (cqspi->rx_chan)
1795 dma_release_channel(cqspi->rx_chan);
1796
1797 clk_disable_unprepare(cqspi->clk);
1798
1799 pm_runtime_put_sync(&pdev->dev);
1800 pm_runtime_disable(&pdev->dev);
1801
1802 return 0;
1803 }
1804
1805 #ifdef CONFIG_PM_SLEEP
cqspi_suspend(struct device * dev)1806 static int cqspi_suspend(struct device *dev)
1807 {
1808 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1809
1810 cqspi_controller_enable(cqspi, 0);
1811 return 0;
1812 }
1813
cqspi_resume(struct device * dev)1814 static int cqspi_resume(struct device *dev)
1815 {
1816 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1817
1818 cqspi_controller_enable(cqspi, 1);
1819 return 0;
1820 }
1821
1822 static const struct dev_pm_ops cqspi__dev_pm_ops = {
1823 .suspend = cqspi_suspend,
1824 .resume = cqspi_resume,
1825 };
1826
1827 #define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops)
1828 #else
1829 #define CQSPI_DEV_PM_OPS NULL
1830 #endif
1831
1832 static const struct cqspi_driver_platdata cdns_qspi = {
1833 .quirks = CQSPI_DISABLE_DAC_MODE,
1834 };
1835
1836 static const struct cqspi_driver_platdata k2g_qspi = {
1837 .quirks = CQSPI_NEEDS_WR_DELAY,
1838 };
1839
1840 static const struct cqspi_driver_platdata am654_ospi = {
1841 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1842 .quirks = CQSPI_NEEDS_WR_DELAY,
1843 };
1844
1845 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1846 .quirks = CQSPI_DISABLE_DAC_MODE,
1847 };
1848
1849 static const struct cqspi_driver_platdata socfpga_qspi = {
1850 .quirks = CQSPI_DISABLE_DAC_MODE
1851 | CQSPI_NO_SUPPORT_WR_COMPLETION
1852 | CQSPI_SLOW_SRAM,
1853 };
1854
1855 static const struct cqspi_driver_platdata versal_ospi = {
1856 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1857 .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
1858 .indirect_read_dma = cqspi_versal_indirect_read_dma,
1859 .get_dma_status = cqspi_get_versal_dma_status,
1860 };
1861
1862 static const struct of_device_id cqspi_dt_ids[] = {
1863 {
1864 .compatible = "cdns,qspi-nor",
1865 .data = &cdns_qspi,
1866 },
1867 {
1868 .compatible = "ti,k2g-qspi",
1869 .data = &k2g_qspi,
1870 },
1871 {
1872 .compatible = "ti,am654-ospi",
1873 .data = &am654_ospi,
1874 },
1875 {
1876 .compatible = "intel,lgm-qspi",
1877 .data = &intel_lgm_qspi,
1878 },
1879 {
1880 .compatible = "xlnx,versal-ospi-1.0",
1881 .data = &versal_ospi,
1882 },
1883 {
1884 .compatible = "intel,socfpga-qspi",
1885 .data = &socfpga_qspi,
1886 },
1887 { /* end of table */ }
1888 };
1889
1890 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1891
1892 static struct platform_driver cqspi_platform_driver = {
1893 .probe = cqspi_probe,
1894 .remove = cqspi_remove,
1895 .driver = {
1896 .name = CQSPI_NAME,
1897 .pm = CQSPI_DEV_PM_OPS,
1898 .of_match_table = cqspi_dt_ids,
1899 },
1900 };
1901
1902 module_platform_driver(cqspi_platform_driver);
1903
1904 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1905 MODULE_LICENSE("GPL v2");
1906 MODULE_ALIAS("platform:" CQSPI_NAME);
1907 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1908 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1909 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1910 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
1911 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
1912