1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "messages.h"
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "print-tree.h"
16 #include "locking.h"
17 #include "volumes.h"
18 #include "qgroup.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
26
27 static struct kmem_cache *btrfs_path_cachep;
28
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 const struct btrfs_key *ins_key, struct btrfs_path *path,
33 int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 struct extent_buffer *dst,
36 struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 int level, int slot);
42
43 static const struct btrfs_csums {
44 u16 size;
45 const char name[10];
46 const char driver[12];
47 } btrfs_csums[] = {
48 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
49 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
50 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
51 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
52 .driver = "blake2b-256" },
53 };
54
55 /*
56 * The leaf data grows from end-to-front in the node. this returns the address
57 * of the start of the last item, which is the stop of the leaf data stack.
58 */
leaf_data_end(const struct extent_buffer * leaf)59 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
60 {
61 u32 nr = btrfs_header_nritems(leaf);
62
63 if (nr == 0)
64 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
65 return btrfs_item_offset(leaf, nr - 1);
66 }
67
68 /*
69 * Move data in a @leaf (using memmove, safe for overlapping ranges).
70 *
71 * @leaf: leaf that we're doing a memmove on
72 * @dst_offset: item data offset we're moving to
73 * @src_offset: item data offset were' moving from
74 * @len: length of the data we're moving
75 *
76 * Wrapper around memmove_extent_buffer() that takes into account the header on
77 * the leaf. The btrfs_item offset's start directly after the header, so we
78 * have to adjust any offsets to account for the header in the leaf. This
79 * handles that math to simplify the callers.
80 */
memmove_leaf_data(const struct extent_buffer * leaf,unsigned long dst_offset,unsigned long src_offset,unsigned long len)81 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
82 unsigned long dst_offset,
83 unsigned long src_offset,
84 unsigned long len)
85 {
86 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
87 btrfs_item_nr_offset(leaf, 0) + src_offset, len);
88 }
89
90 /*
91 * Copy item data from @src into @dst at the given @offset.
92 *
93 * @dst: destination leaf that we're copying into
94 * @src: source leaf that we're copying from
95 * @dst_offset: item data offset we're copying to
96 * @src_offset: item data offset were' copying from
97 * @len: length of the data we're copying
98 *
99 * Wrapper around copy_extent_buffer() that takes into account the header on
100 * the leaf. The btrfs_item offset's start directly after the header, so we
101 * have to adjust any offsets to account for the header in the leaf. This
102 * handles that math to simplify the callers.
103 */
copy_leaf_data(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)104 static inline void copy_leaf_data(const struct extent_buffer *dst,
105 const struct extent_buffer *src,
106 unsigned long dst_offset,
107 unsigned long src_offset, unsigned long len)
108 {
109 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
110 btrfs_item_nr_offset(src, 0) + src_offset, len);
111 }
112
113 /*
114 * Move items in a @leaf (using memmove).
115 *
116 * @dst: destination leaf for the items
117 * @dst_item: the item nr we're copying into
118 * @src_item: the item nr we're copying from
119 * @nr_items: the number of items to copy
120 *
121 * Wrapper around memmove_extent_buffer() that does the math to get the
122 * appropriate offsets into the leaf from the item numbers.
123 */
memmove_leaf_items(const struct extent_buffer * leaf,int dst_item,int src_item,int nr_items)124 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
125 int dst_item, int src_item, int nr_items)
126 {
127 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
128 btrfs_item_nr_offset(leaf, src_item),
129 nr_items * sizeof(struct btrfs_item));
130 }
131
132 /*
133 * Copy items from @src into @dst at the given @offset.
134 *
135 * @dst: destination leaf for the items
136 * @src: source leaf for the items
137 * @dst_item: the item nr we're copying into
138 * @src_item: the item nr we're copying from
139 * @nr_items: the number of items to copy
140 *
141 * Wrapper around copy_extent_buffer() that does the math to get the
142 * appropriate offsets into the leaf from the item numbers.
143 */
copy_leaf_items(const struct extent_buffer * dst,const struct extent_buffer * src,int dst_item,int src_item,int nr_items)144 static inline void copy_leaf_items(const struct extent_buffer *dst,
145 const struct extent_buffer *src,
146 int dst_item, int src_item, int nr_items)
147 {
148 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
149 btrfs_item_nr_offset(src, src_item),
150 nr_items * sizeof(struct btrfs_item));
151 }
152
btrfs_super_csum_size(const struct btrfs_super_block * s)153 int btrfs_super_csum_size(const struct btrfs_super_block *s)
154 {
155 u16 t = btrfs_super_csum_type(s);
156 /*
157 * csum type is validated at mount time
158 */
159 return btrfs_csums[t].size;
160 }
161
btrfs_super_csum_name(u16 csum_type)162 const char *btrfs_super_csum_name(u16 csum_type)
163 {
164 /* csum type is validated at mount time */
165 return btrfs_csums[csum_type].name;
166 }
167
168 /*
169 * Return driver name if defined, otherwise the name that's also a valid driver
170 * name
171 */
btrfs_super_csum_driver(u16 csum_type)172 const char *btrfs_super_csum_driver(u16 csum_type)
173 {
174 /* csum type is validated at mount time */
175 return btrfs_csums[csum_type].driver[0] ?
176 btrfs_csums[csum_type].driver :
177 btrfs_csums[csum_type].name;
178 }
179
btrfs_get_num_csums(void)180 size_t __attribute_const__ btrfs_get_num_csums(void)
181 {
182 return ARRAY_SIZE(btrfs_csums);
183 }
184
btrfs_alloc_path(void)185 struct btrfs_path *btrfs_alloc_path(void)
186 {
187 might_sleep();
188
189 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
190 }
191
192 /* this also releases the path */
btrfs_free_path(struct btrfs_path * p)193 void btrfs_free_path(struct btrfs_path *p)
194 {
195 if (!p)
196 return;
197 btrfs_release_path(p);
198 kmem_cache_free(btrfs_path_cachep, p);
199 }
200
201 /*
202 * path release drops references on the extent buffers in the path
203 * and it drops any locks held by this path
204 *
205 * It is safe to call this on paths that no locks or extent buffers held.
206 */
btrfs_release_path(struct btrfs_path * p)207 noinline void btrfs_release_path(struct btrfs_path *p)
208 {
209 int i;
210
211 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
212 p->slots[i] = 0;
213 if (!p->nodes[i])
214 continue;
215 if (p->locks[i]) {
216 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
217 p->locks[i] = 0;
218 }
219 free_extent_buffer(p->nodes[i]);
220 p->nodes[i] = NULL;
221 }
222 }
223
224 /*
225 * We want the transaction abort to print stack trace only for errors where the
226 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
227 * caused by external factors.
228 */
abort_should_print_stack(int errno)229 bool __cold abort_should_print_stack(int errno)
230 {
231 switch (errno) {
232 case -EIO:
233 case -EROFS:
234 case -ENOMEM:
235 return false;
236 }
237 return true;
238 }
239
240 /*
241 * safely gets a reference on the root node of a tree. A lock
242 * is not taken, so a concurrent writer may put a different node
243 * at the root of the tree. See btrfs_lock_root_node for the
244 * looping required.
245 *
246 * The extent buffer returned by this has a reference taken, so
247 * it won't disappear. It may stop being the root of the tree
248 * at any time because there are no locks held.
249 */
btrfs_root_node(struct btrfs_root * root)250 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
251 {
252 struct extent_buffer *eb;
253
254 while (1) {
255 rcu_read_lock();
256 eb = rcu_dereference(root->node);
257
258 /*
259 * RCU really hurts here, we could free up the root node because
260 * it was COWed but we may not get the new root node yet so do
261 * the inc_not_zero dance and if it doesn't work then
262 * synchronize_rcu and try again.
263 */
264 if (atomic_inc_not_zero(&eb->refs)) {
265 rcu_read_unlock();
266 break;
267 }
268 rcu_read_unlock();
269 synchronize_rcu();
270 }
271 return eb;
272 }
273
274 /*
275 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
276 * just get put onto a simple dirty list. Transaction walks this list to make
277 * sure they get properly updated on disk.
278 */
add_root_to_dirty_list(struct btrfs_root * root)279 static void add_root_to_dirty_list(struct btrfs_root *root)
280 {
281 struct btrfs_fs_info *fs_info = root->fs_info;
282
283 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
284 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
285 return;
286
287 spin_lock(&fs_info->trans_lock);
288 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
289 /* Want the extent tree to be the last on the list */
290 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
291 list_move_tail(&root->dirty_list,
292 &fs_info->dirty_cowonly_roots);
293 else
294 list_move(&root->dirty_list,
295 &fs_info->dirty_cowonly_roots);
296 }
297 spin_unlock(&fs_info->trans_lock);
298 }
299
300 /*
301 * used by snapshot creation to make a copy of a root for a tree with
302 * a given objectid. The buffer with the new root node is returned in
303 * cow_ret, and this func returns zero on success or a negative error code.
304 */
btrfs_copy_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer ** cow_ret,u64 new_root_objectid)305 int btrfs_copy_root(struct btrfs_trans_handle *trans,
306 struct btrfs_root *root,
307 struct extent_buffer *buf,
308 struct extent_buffer **cow_ret, u64 new_root_objectid)
309 {
310 struct btrfs_fs_info *fs_info = root->fs_info;
311 struct extent_buffer *cow;
312 int ret = 0;
313 int level;
314 struct btrfs_disk_key disk_key;
315
316 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
317 trans->transid != fs_info->running_transaction->transid);
318 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
319 trans->transid != root->last_trans);
320
321 level = btrfs_header_level(buf);
322 if (level == 0)
323 btrfs_item_key(buf, &disk_key, 0);
324 else
325 btrfs_node_key(buf, &disk_key, 0);
326
327 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
328 &disk_key, level, buf->start, 0,
329 BTRFS_NESTING_NEW_ROOT);
330 if (IS_ERR(cow))
331 return PTR_ERR(cow);
332
333 copy_extent_buffer_full(cow, buf);
334 btrfs_set_header_bytenr(cow, cow->start);
335 btrfs_set_header_generation(cow, trans->transid);
336 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
337 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
338 BTRFS_HEADER_FLAG_RELOC);
339 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
340 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
341 else
342 btrfs_set_header_owner(cow, new_root_objectid);
343
344 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
345
346 WARN_ON(btrfs_header_generation(buf) > trans->transid);
347 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
348 ret = btrfs_inc_ref(trans, root, cow, 1);
349 else
350 ret = btrfs_inc_ref(trans, root, cow, 0);
351 if (ret) {
352 btrfs_tree_unlock(cow);
353 free_extent_buffer(cow);
354 btrfs_abort_transaction(trans, ret);
355 return ret;
356 }
357
358 btrfs_mark_buffer_dirty(cow);
359 *cow_ret = cow;
360 return 0;
361 }
362
363 /*
364 * check if the tree block can be shared by multiple trees
365 */
btrfs_block_can_be_shared(struct btrfs_root * root,struct extent_buffer * buf)366 int btrfs_block_can_be_shared(struct btrfs_root *root,
367 struct extent_buffer *buf)
368 {
369 /*
370 * Tree blocks not in shareable trees and tree roots are never shared.
371 * If a block was allocated after the last snapshot and the block was
372 * not allocated by tree relocation, we know the block is not shared.
373 */
374 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
375 buf != root->node && buf != root->commit_root &&
376 (btrfs_header_generation(buf) <=
377 btrfs_root_last_snapshot(&root->root_item) ||
378 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
379 return 1;
380
381 return 0;
382 }
383
update_ref_for_cow(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow,int * last_ref)384 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
385 struct btrfs_root *root,
386 struct extent_buffer *buf,
387 struct extent_buffer *cow,
388 int *last_ref)
389 {
390 struct btrfs_fs_info *fs_info = root->fs_info;
391 u64 refs;
392 u64 owner;
393 u64 flags;
394 u64 new_flags = 0;
395 int ret;
396
397 /*
398 * Backrefs update rules:
399 *
400 * Always use full backrefs for extent pointers in tree block
401 * allocated by tree relocation.
402 *
403 * If a shared tree block is no longer referenced by its owner
404 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
405 * use full backrefs for extent pointers in tree block.
406 *
407 * If a tree block is been relocating
408 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
409 * use full backrefs for extent pointers in tree block.
410 * The reason for this is some operations (such as drop tree)
411 * are only allowed for blocks use full backrefs.
412 */
413
414 if (btrfs_block_can_be_shared(root, buf)) {
415 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
416 btrfs_header_level(buf), 1,
417 &refs, &flags);
418 if (ret)
419 return ret;
420 if (refs == 0) {
421 ret = -EROFS;
422 btrfs_handle_fs_error(fs_info, ret, NULL);
423 return ret;
424 }
425 } else {
426 refs = 1;
427 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
428 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
429 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
430 else
431 flags = 0;
432 }
433
434 owner = btrfs_header_owner(buf);
435 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
436 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
437
438 if (refs > 1) {
439 if ((owner == root->root_key.objectid ||
440 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
441 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
442 ret = btrfs_inc_ref(trans, root, buf, 1);
443 if (ret)
444 return ret;
445
446 if (root->root_key.objectid ==
447 BTRFS_TREE_RELOC_OBJECTID) {
448 ret = btrfs_dec_ref(trans, root, buf, 0);
449 if (ret)
450 return ret;
451 ret = btrfs_inc_ref(trans, root, cow, 1);
452 if (ret)
453 return ret;
454 }
455 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
456 } else {
457
458 if (root->root_key.objectid ==
459 BTRFS_TREE_RELOC_OBJECTID)
460 ret = btrfs_inc_ref(trans, root, cow, 1);
461 else
462 ret = btrfs_inc_ref(trans, root, cow, 0);
463 if (ret)
464 return ret;
465 }
466 if (new_flags != 0) {
467 int level = btrfs_header_level(buf);
468
469 ret = btrfs_set_disk_extent_flags(trans, buf,
470 new_flags, level);
471 if (ret)
472 return ret;
473 }
474 } else {
475 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
476 if (root->root_key.objectid ==
477 BTRFS_TREE_RELOC_OBJECTID)
478 ret = btrfs_inc_ref(trans, root, cow, 1);
479 else
480 ret = btrfs_inc_ref(trans, root, cow, 0);
481 if (ret)
482 return ret;
483 ret = btrfs_dec_ref(trans, root, buf, 1);
484 if (ret)
485 return ret;
486 }
487 btrfs_clear_buffer_dirty(trans, buf);
488 *last_ref = 1;
489 }
490 return 0;
491 }
492
493 /*
494 * does the dirty work in cow of a single block. The parent block (if
495 * supplied) is updated to point to the new cow copy. The new buffer is marked
496 * dirty and returned locked. If you modify the block it needs to be marked
497 * dirty again.
498 *
499 * search_start -- an allocation hint for the new block
500 *
501 * empty_size -- a hint that you plan on doing more cow. This is the size in
502 * bytes the allocator should try to find free next to the block it returns.
503 * This is just a hint and may be ignored by the allocator.
504 */
__btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,u64 search_start,u64 empty_size,enum btrfs_lock_nesting nest)505 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
506 struct btrfs_root *root,
507 struct extent_buffer *buf,
508 struct extent_buffer *parent, int parent_slot,
509 struct extent_buffer **cow_ret,
510 u64 search_start, u64 empty_size,
511 enum btrfs_lock_nesting nest)
512 {
513 struct btrfs_fs_info *fs_info = root->fs_info;
514 struct btrfs_disk_key disk_key;
515 struct extent_buffer *cow;
516 int level, ret;
517 int last_ref = 0;
518 int unlock_orig = 0;
519 u64 parent_start = 0;
520
521 if (*cow_ret == buf)
522 unlock_orig = 1;
523
524 btrfs_assert_tree_write_locked(buf);
525
526 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
527 trans->transid != fs_info->running_transaction->transid);
528 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
529 trans->transid != root->last_trans);
530
531 level = btrfs_header_level(buf);
532
533 if (level == 0)
534 btrfs_item_key(buf, &disk_key, 0);
535 else
536 btrfs_node_key(buf, &disk_key, 0);
537
538 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
539 parent_start = parent->start;
540
541 cow = btrfs_alloc_tree_block(trans, root, parent_start,
542 root->root_key.objectid, &disk_key, level,
543 search_start, empty_size, nest);
544 if (IS_ERR(cow))
545 return PTR_ERR(cow);
546
547 /* cow is set to blocking by btrfs_init_new_buffer */
548
549 copy_extent_buffer_full(cow, buf);
550 btrfs_set_header_bytenr(cow, cow->start);
551 btrfs_set_header_generation(cow, trans->transid);
552 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
553 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
554 BTRFS_HEADER_FLAG_RELOC);
555 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
556 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
557 else
558 btrfs_set_header_owner(cow, root->root_key.objectid);
559
560 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
561
562 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
563 if (ret) {
564 btrfs_tree_unlock(cow);
565 free_extent_buffer(cow);
566 btrfs_abort_transaction(trans, ret);
567 return ret;
568 }
569
570 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
571 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
572 if (ret) {
573 btrfs_tree_unlock(cow);
574 free_extent_buffer(cow);
575 btrfs_abort_transaction(trans, ret);
576 return ret;
577 }
578 }
579
580 if (buf == root->node) {
581 WARN_ON(parent && parent != buf);
582 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
583 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
584 parent_start = buf->start;
585
586 atomic_inc(&cow->refs);
587 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
588 BUG_ON(ret < 0);
589 rcu_assign_pointer(root->node, cow);
590
591 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
592 parent_start, last_ref);
593 free_extent_buffer(buf);
594 add_root_to_dirty_list(root);
595 } else {
596 WARN_ON(trans->transid != btrfs_header_generation(parent));
597 btrfs_tree_mod_log_insert_key(parent, parent_slot,
598 BTRFS_MOD_LOG_KEY_REPLACE);
599 btrfs_set_node_blockptr(parent, parent_slot,
600 cow->start);
601 btrfs_set_node_ptr_generation(parent, parent_slot,
602 trans->transid);
603 btrfs_mark_buffer_dirty(parent);
604 if (last_ref) {
605 ret = btrfs_tree_mod_log_free_eb(buf);
606 if (ret) {
607 btrfs_tree_unlock(cow);
608 free_extent_buffer(cow);
609 btrfs_abort_transaction(trans, ret);
610 return ret;
611 }
612 }
613 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
614 parent_start, last_ref);
615 }
616 if (unlock_orig)
617 btrfs_tree_unlock(buf);
618 free_extent_buffer_stale(buf);
619 btrfs_mark_buffer_dirty(cow);
620 *cow_ret = cow;
621 return 0;
622 }
623
should_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)624 static inline int should_cow_block(struct btrfs_trans_handle *trans,
625 struct btrfs_root *root,
626 struct extent_buffer *buf)
627 {
628 if (btrfs_is_testing(root->fs_info))
629 return 0;
630
631 /* Ensure we can see the FORCE_COW bit */
632 smp_mb__before_atomic();
633
634 /*
635 * We do not need to cow a block if
636 * 1) this block is not created or changed in this transaction;
637 * 2) this block does not belong to TREE_RELOC tree;
638 * 3) the root is not forced COW.
639 *
640 * What is forced COW:
641 * when we create snapshot during committing the transaction,
642 * after we've finished copying src root, we must COW the shared
643 * block to ensure the metadata consistency.
644 */
645 if (btrfs_header_generation(buf) == trans->transid &&
646 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
647 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
648 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
649 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
650 return 0;
651 return 1;
652 }
653
654 /*
655 * cows a single block, see __btrfs_cow_block for the real work.
656 * This version of it has extra checks so that a block isn't COWed more than
657 * once per transaction, as long as it hasn't been written yet
658 */
btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,enum btrfs_lock_nesting nest)659 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
660 struct btrfs_root *root, struct extent_buffer *buf,
661 struct extent_buffer *parent, int parent_slot,
662 struct extent_buffer **cow_ret,
663 enum btrfs_lock_nesting nest)
664 {
665 struct btrfs_fs_info *fs_info = root->fs_info;
666 u64 search_start;
667 int ret;
668
669 if (test_bit(BTRFS_ROOT_DELETING, &root->state))
670 btrfs_err(fs_info,
671 "COW'ing blocks on a fs root that's being dropped");
672
673 if (trans->transaction != fs_info->running_transaction)
674 WARN(1, KERN_CRIT "trans %llu running %llu\n",
675 trans->transid,
676 fs_info->running_transaction->transid);
677
678 if (trans->transid != fs_info->generation)
679 WARN(1, KERN_CRIT "trans %llu running %llu\n",
680 trans->transid, fs_info->generation);
681
682 if (!should_cow_block(trans, root, buf)) {
683 *cow_ret = buf;
684 return 0;
685 }
686
687 search_start = buf->start & ~((u64)SZ_1G - 1);
688
689 /*
690 * Before CoWing this block for later modification, check if it's
691 * the subtree root and do the delayed subtree trace if needed.
692 *
693 * Also We don't care about the error, as it's handled internally.
694 */
695 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
696 ret = __btrfs_cow_block(trans, root, buf, parent,
697 parent_slot, cow_ret, search_start, 0, nest);
698
699 trace_btrfs_cow_block(root, buf, *cow_ret);
700
701 return ret;
702 }
703 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
704
705 /*
706 * helper function for defrag to decide if two blocks pointed to by a
707 * node are actually close by
708 */
close_blocks(u64 blocknr,u64 other,u32 blocksize)709 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
710 {
711 if (blocknr < other && other - (blocknr + blocksize) < 32768)
712 return 1;
713 if (blocknr > other && blocknr - (other + blocksize) < 32768)
714 return 1;
715 return 0;
716 }
717
718 #ifdef __LITTLE_ENDIAN
719
720 /*
721 * Compare two keys, on little-endian the disk order is same as CPU order and
722 * we can avoid the conversion.
723 */
comp_keys(const struct btrfs_disk_key * disk_key,const struct btrfs_key * k2)724 static int comp_keys(const struct btrfs_disk_key *disk_key,
725 const struct btrfs_key *k2)
726 {
727 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
728
729 return btrfs_comp_cpu_keys(k1, k2);
730 }
731
732 #else
733
734 /*
735 * compare two keys in a memcmp fashion
736 */
comp_keys(const struct btrfs_disk_key * disk,const struct btrfs_key * k2)737 static int comp_keys(const struct btrfs_disk_key *disk,
738 const struct btrfs_key *k2)
739 {
740 struct btrfs_key k1;
741
742 btrfs_disk_key_to_cpu(&k1, disk);
743
744 return btrfs_comp_cpu_keys(&k1, k2);
745 }
746 #endif
747
748 /*
749 * same as comp_keys only with two btrfs_key's
750 */
btrfs_comp_cpu_keys(const struct btrfs_key * k1,const struct btrfs_key * k2)751 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
752 {
753 if (k1->objectid > k2->objectid)
754 return 1;
755 if (k1->objectid < k2->objectid)
756 return -1;
757 if (k1->type > k2->type)
758 return 1;
759 if (k1->type < k2->type)
760 return -1;
761 if (k1->offset > k2->offset)
762 return 1;
763 if (k1->offset < k2->offset)
764 return -1;
765 return 0;
766 }
767
768 /*
769 * this is used by the defrag code to go through all the
770 * leaves pointed to by a node and reallocate them so that
771 * disk order is close to key order
772 */
btrfs_realloc_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * parent,int start_slot,u64 * last_ret,struct btrfs_key * progress)773 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
774 struct btrfs_root *root, struct extent_buffer *parent,
775 int start_slot, u64 *last_ret,
776 struct btrfs_key *progress)
777 {
778 struct btrfs_fs_info *fs_info = root->fs_info;
779 struct extent_buffer *cur;
780 u64 blocknr;
781 u64 search_start = *last_ret;
782 u64 last_block = 0;
783 u64 other;
784 u32 parent_nritems;
785 int end_slot;
786 int i;
787 int err = 0;
788 u32 blocksize;
789 int progress_passed = 0;
790 struct btrfs_disk_key disk_key;
791
792 WARN_ON(trans->transaction != fs_info->running_transaction);
793 WARN_ON(trans->transid != fs_info->generation);
794
795 parent_nritems = btrfs_header_nritems(parent);
796 blocksize = fs_info->nodesize;
797 end_slot = parent_nritems - 1;
798
799 if (parent_nritems <= 1)
800 return 0;
801
802 for (i = start_slot; i <= end_slot; i++) {
803 int close = 1;
804
805 btrfs_node_key(parent, &disk_key, i);
806 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
807 continue;
808
809 progress_passed = 1;
810 blocknr = btrfs_node_blockptr(parent, i);
811 if (last_block == 0)
812 last_block = blocknr;
813
814 if (i > 0) {
815 other = btrfs_node_blockptr(parent, i - 1);
816 close = close_blocks(blocknr, other, blocksize);
817 }
818 if (!close && i < end_slot) {
819 other = btrfs_node_blockptr(parent, i + 1);
820 close = close_blocks(blocknr, other, blocksize);
821 }
822 if (close) {
823 last_block = blocknr;
824 continue;
825 }
826
827 cur = btrfs_read_node_slot(parent, i);
828 if (IS_ERR(cur))
829 return PTR_ERR(cur);
830 if (search_start == 0)
831 search_start = last_block;
832
833 btrfs_tree_lock(cur);
834 err = __btrfs_cow_block(trans, root, cur, parent, i,
835 &cur, search_start,
836 min(16 * blocksize,
837 (end_slot - i) * blocksize),
838 BTRFS_NESTING_COW);
839 if (err) {
840 btrfs_tree_unlock(cur);
841 free_extent_buffer(cur);
842 break;
843 }
844 search_start = cur->start;
845 last_block = cur->start;
846 *last_ret = search_start;
847 btrfs_tree_unlock(cur);
848 free_extent_buffer(cur);
849 }
850 return err;
851 }
852
853 /*
854 * Search for a key in the given extent_buffer.
855 *
856 * The lower boundary for the search is specified by the slot number @first_slot.
857 * Use a value of 0 to search over the whole extent buffer.
858 *
859 * The slot in the extent buffer is returned via @slot. If the key exists in the
860 * extent buffer, then @slot will point to the slot where the key is, otherwise
861 * it points to the slot where you would insert the key.
862 *
863 * Slot may point to the total number of items (i.e. one position beyond the last
864 * key) if the key is bigger than the last key in the extent buffer.
865 */
btrfs_generic_bin_search(struct extent_buffer * eb,int first_slot,const struct btrfs_key * key,int * slot)866 int btrfs_generic_bin_search(struct extent_buffer *eb, int first_slot,
867 const struct btrfs_key *key, int *slot)
868 {
869 unsigned long p;
870 int item_size;
871 /*
872 * Use unsigned types for the low and high slots, so that we get a more
873 * efficient division in the search loop below.
874 */
875 u32 low = first_slot;
876 u32 high = btrfs_header_nritems(eb);
877 int ret;
878 const int key_size = sizeof(struct btrfs_disk_key);
879
880 if (unlikely(low > high)) {
881 btrfs_err(eb->fs_info,
882 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
883 __func__, low, high, eb->start,
884 btrfs_header_owner(eb), btrfs_header_level(eb));
885 return -EINVAL;
886 }
887
888 if (btrfs_header_level(eb) == 0) {
889 p = offsetof(struct btrfs_leaf, items);
890 item_size = sizeof(struct btrfs_item);
891 } else {
892 p = offsetof(struct btrfs_node, ptrs);
893 item_size = sizeof(struct btrfs_key_ptr);
894 }
895
896 while (low < high) {
897 unsigned long oip;
898 unsigned long offset;
899 struct btrfs_disk_key *tmp;
900 struct btrfs_disk_key unaligned;
901 int mid;
902
903 mid = (low + high) / 2;
904 offset = p + mid * item_size;
905 oip = offset_in_page(offset);
906
907 if (oip + key_size <= PAGE_SIZE) {
908 const unsigned long idx = get_eb_page_index(offset);
909 char *kaddr = page_address(eb->pages[idx]);
910
911 oip = get_eb_offset_in_page(eb, offset);
912 tmp = (struct btrfs_disk_key *)(kaddr + oip);
913 } else {
914 read_extent_buffer(eb, &unaligned, offset, key_size);
915 tmp = &unaligned;
916 }
917
918 ret = comp_keys(tmp, key);
919
920 if (ret < 0)
921 low = mid + 1;
922 else if (ret > 0)
923 high = mid;
924 else {
925 *slot = mid;
926 return 0;
927 }
928 }
929 *slot = low;
930 return 1;
931 }
932
root_add_used(struct btrfs_root * root,u32 size)933 static void root_add_used(struct btrfs_root *root, u32 size)
934 {
935 spin_lock(&root->accounting_lock);
936 btrfs_set_root_used(&root->root_item,
937 btrfs_root_used(&root->root_item) + size);
938 spin_unlock(&root->accounting_lock);
939 }
940
root_sub_used(struct btrfs_root * root,u32 size)941 static void root_sub_used(struct btrfs_root *root, u32 size)
942 {
943 spin_lock(&root->accounting_lock);
944 btrfs_set_root_used(&root->root_item,
945 btrfs_root_used(&root->root_item) - size);
946 spin_unlock(&root->accounting_lock);
947 }
948
949 /* given a node and slot number, this reads the blocks it points to. The
950 * extent buffer is returned with a reference taken (but unlocked).
951 */
btrfs_read_node_slot(struct extent_buffer * parent,int slot)952 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
953 int slot)
954 {
955 int level = btrfs_header_level(parent);
956 struct btrfs_tree_parent_check check = { 0 };
957 struct extent_buffer *eb;
958
959 if (slot < 0 || slot >= btrfs_header_nritems(parent))
960 return ERR_PTR(-ENOENT);
961
962 BUG_ON(level == 0);
963
964 check.level = level - 1;
965 check.transid = btrfs_node_ptr_generation(parent, slot);
966 check.owner_root = btrfs_header_owner(parent);
967 check.has_first_key = true;
968 btrfs_node_key_to_cpu(parent, &check.first_key, slot);
969
970 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
971 &check);
972 if (IS_ERR(eb))
973 return eb;
974 if (!extent_buffer_uptodate(eb)) {
975 free_extent_buffer(eb);
976 return ERR_PTR(-EIO);
977 }
978
979 return eb;
980 }
981
982 /*
983 * node level balancing, used to make sure nodes are in proper order for
984 * item deletion. We balance from the top down, so we have to make sure
985 * that a deletion won't leave an node completely empty later on.
986 */
balance_level(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)987 static noinline int balance_level(struct btrfs_trans_handle *trans,
988 struct btrfs_root *root,
989 struct btrfs_path *path, int level)
990 {
991 struct btrfs_fs_info *fs_info = root->fs_info;
992 struct extent_buffer *right = NULL;
993 struct extent_buffer *mid;
994 struct extent_buffer *left = NULL;
995 struct extent_buffer *parent = NULL;
996 int ret = 0;
997 int wret;
998 int pslot;
999 int orig_slot = path->slots[level];
1000 u64 orig_ptr;
1001
1002 ASSERT(level > 0);
1003
1004 mid = path->nodes[level];
1005
1006 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1007 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1008
1009 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1010
1011 if (level < BTRFS_MAX_LEVEL - 1) {
1012 parent = path->nodes[level + 1];
1013 pslot = path->slots[level + 1];
1014 }
1015
1016 /*
1017 * deal with the case where there is only one pointer in the root
1018 * by promoting the node below to a root
1019 */
1020 if (!parent) {
1021 struct extent_buffer *child;
1022
1023 if (btrfs_header_nritems(mid) != 1)
1024 return 0;
1025
1026 /* promote the child to a root */
1027 child = btrfs_read_node_slot(mid, 0);
1028 if (IS_ERR(child)) {
1029 ret = PTR_ERR(child);
1030 btrfs_handle_fs_error(fs_info, ret, NULL);
1031 goto enospc;
1032 }
1033
1034 btrfs_tree_lock(child);
1035 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1036 BTRFS_NESTING_COW);
1037 if (ret) {
1038 btrfs_tree_unlock(child);
1039 free_extent_buffer(child);
1040 goto enospc;
1041 }
1042
1043 ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
1044 BUG_ON(ret < 0);
1045 rcu_assign_pointer(root->node, child);
1046
1047 add_root_to_dirty_list(root);
1048 btrfs_tree_unlock(child);
1049
1050 path->locks[level] = 0;
1051 path->nodes[level] = NULL;
1052 btrfs_clear_buffer_dirty(trans, mid);
1053 btrfs_tree_unlock(mid);
1054 /* once for the path */
1055 free_extent_buffer(mid);
1056
1057 root_sub_used(root, mid->len);
1058 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1059 /* once for the root ptr */
1060 free_extent_buffer_stale(mid);
1061 return 0;
1062 }
1063 if (btrfs_header_nritems(mid) >
1064 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1065 return 0;
1066
1067 left = btrfs_read_node_slot(parent, pslot - 1);
1068 if (IS_ERR(left))
1069 left = NULL;
1070
1071 if (left) {
1072 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1073 wret = btrfs_cow_block(trans, root, left,
1074 parent, pslot - 1, &left,
1075 BTRFS_NESTING_LEFT_COW);
1076 if (wret) {
1077 ret = wret;
1078 goto enospc;
1079 }
1080 }
1081
1082 right = btrfs_read_node_slot(parent, pslot + 1);
1083 if (IS_ERR(right))
1084 right = NULL;
1085
1086 if (right) {
1087 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1088 wret = btrfs_cow_block(trans, root, right,
1089 parent, pslot + 1, &right,
1090 BTRFS_NESTING_RIGHT_COW);
1091 if (wret) {
1092 ret = wret;
1093 goto enospc;
1094 }
1095 }
1096
1097 /* first, try to make some room in the middle buffer */
1098 if (left) {
1099 orig_slot += btrfs_header_nritems(left);
1100 wret = push_node_left(trans, left, mid, 1);
1101 if (wret < 0)
1102 ret = wret;
1103 }
1104
1105 /*
1106 * then try to empty the right most buffer into the middle
1107 */
1108 if (right) {
1109 wret = push_node_left(trans, mid, right, 1);
1110 if (wret < 0 && wret != -ENOSPC)
1111 ret = wret;
1112 if (btrfs_header_nritems(right) == 0) {
1113 btrfs_clear_buffer_dirty(trans, right);
1114 btrfs_tree_unlock(right);
1115 del_ptr(root, path, level + 1, pslot + 1);
1116 root_sub_used(root, right->len);
1117 btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1118 0, 1);
1119 free_extent_buffer_stale(right);
1120 right = NULL;
1121 } else {
1122 struct btrfs_disk_key right_key;
1123 btrfs_node_key(right, &right_key, 0);
1124 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1125 BTRFS_MOD_LOG_KEY_REPLACE);
1126 BUG_ON(ret < 0);
1127 btrfs_set_node_key(parent, &right_key, pslot + 1);
1128 btrfs_mark_buffer_dirty(parent);
1129 }
1130 }
1131 if (btrfs_header_nritems(mid) == 1) {
1132 /*
1133 * we're not allowed to leave a node with one item in the
1134 * tree during a delete. A deletion from lower in the tree
1135 * could try to delete the only pointer in this node.
1136 * So, pull some keys from the left.
1137 * There has to be a left pointer at this point because
1138 * otherwise we would have pulled some pointers from the
1139 * right
1140 */
1141 if (!left) {
1142 ret = -EROFS;
1143 btrfs_handle_fs_error(fs_info, ret, NULL);
1144 goto enospc;
1145 }
1146 wret = balance_node_right(trans, mid, left);
1147 if (wret < 0) {
1148 ret = wret;
1149 goto enospc;
1150 }
1151 if (wret == 1) {
1152 wret = push_node_left(trans, left, mid, 1);
1153 if (wret < 0)
1154 ret = wret;
1155 }
1156 BUG_ON(wret == 1);
1157 }
1158 if (btrfs_header_nritems(mid) == 0) {
1159 btrfs_clear_buffer_dirty(trans, mid);
1160 btrfs_tree_unlock(mid);
1161 del_ptr(root, path, level + 1, pslot);
1162 root_sub_used(root, mid->len);
1163 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1164 free_extent_buffer_stale(mid);
1165 mid = NULL;
1166 } else {
1167 /* update the parent key to reflect our changes */
1168 struct btrfs_disk_key mid_key;
1169 btrfs_node_key(mid, &mid_key, 0);
1170 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1171 BTRFS_MOD_LOG_KEY_REPLACE);
1172 BUG_ON(ret < 0);
1173 btrfs_set_node_key(parent, &mid_key, pslot);
1174 btrfs_mark_buffer_dirty(parent);
1175 }
1176
1177 /* update the path */
1178 if (left) {
1179 if (btrfs_header_nritems(left) > orig_slot) {
1180 atomic_inc(&left->refs);
1181 /* left was locked after cow */
1182 path->nodes[level] = left;
1183 path->slots[level + 1] -= 1;
1184 path->slots[level] = orig_slot;
1185 if (mid) {
1186 btrfs_tree_unlock(mid);
1187 free_extent_buffer(mid);
1188 }
1189 } else {
1190 orig_slot -= btrfs_header_nritems(left);
1191 path->slots[level] = orig_slot;
1192 }
1193 }
1194 /* double check we haven't messed things up */
1195 if (orig_ptr !=
1196 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1197 BUG();
1198 enospc:
1199 if (right) {
1200 btrfs_tree_unlock(right);
1201 free_extent_buffer(right);
1202 }
1203 if (left) {
1204 if (path->nodes[level] != left)
1205 btrfs_tree_unlock(left);
1206 free_extent_buffer(left);
1207 }
1208 return ret;
1209 }
1210
1211 /* Node balancing for insertion. Here we only split or push nodes around
1212 * when they are completely full. This is also done top down, so we
1213 * have to be pessimistic.
1214 */
push_nodes_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1215 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1216 struct btrfs_root *root,
1217 struct btrfs_path *path, int level)
1218 {
1219 struct btrfs_fs_info *fs_info = root->fs_info;
1220 struct extent_buffer *right = NULL;
1221 struct extent_buffer *mid;
1222 struct extent_buffer *left = NULL;
1223 struct extent_buffer *parent = NULL;
1224 int ret = 0;
1225 int wret;
1226 int pslot;
1227 int orig_slot = path->slots[level];
1228
1229 if (level == 0)
1230 return 1;
1231
1232 mid = path->nodes[level];
1233 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1234
1235 if (level < BTRFS_MAX_LEVEL - 1) {
1236 parent = path->nodes[level + 1];
1237 pslot = path->slots[level + 1];
1238 }
1239
1240 if (!parent)
1241 return 1;
1242
1243 left = btrfs_read_node_slot(parent, pslot - 1);
1244 if (IS_ERR(left))
1245 left = NULL;
1246
1247 /* first, try to make some room in the middle buffer */
1248 if (left) {
1249 u32 left_nr;
1250
1251 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1252
1253 left_nr = btrfs_header_nritems(left);
1254 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1255 wret = 1;
1256 } else {
1257 ret = btrfs_cow_block(trans, root, left, parent,
1258 pslot - 1, &left,
1259 BTRFS_NESTING_LEFT_COW);
1260 if (ret)
1261 wret = 1;
1262 else {
1263 wret = push_node_left(trans, left, mid, 0);
1264 }
1265 }
1266 if (wret < 0)
1267 ret = wret;
1268 if (wret == 0) {
1269 struct btrfs_disk_key disk_key;
1270 orig_slot += left_nr;
1271 btrfs_node_key(mid, &disk_key, 0);
1272 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1273 BTRFS_MOD_LOG_KEY_REPLACE);
1274 BUG_ON(ret < 0);
1275 btrfs_set_node_key(parent, &disk_key, pslot);
1276 btrfs_mark_buffer_dirty(parent);
1277 if (btrfs_header_nritems(left) > orig_slot) {
1278 path->nodes[level] = left;
1279 path->slots[level + 1] -= 1;
1280 path->slots[level] = orig_slot;
1281 btrfs_tree_unlock(mid);
1282 free_extent_buffer(mid);
1283 } else {
1284 orig_slot -=
1285 btrfs_header_nritems(left);
1286 path->slots[level] = orig_slot;
1287 btrfs_tree_unlock(left);
1288 free_extent_buffer(left);
1289 }
1290 return 0;
1291 }
1292 btrfs_tree_unlock(left);
1293 free_extent_buffer(left);
1294 }
1295 right = btrfs_read_node_slot(parent, pslot + 1);
1296 if (IS_ERR(right))
1297 right = NULL;
1298
1299 /*
1300 * then try to empty the right most buffer into the middle
1301 */
1302 if (right) {
1303 u32 right_nr;
1304
1305 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1306
1307 right_nr = btrfs_header_nritems(right);
1308 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1309 wret = 1;
1310 } else {
1311 ret = btrfs_cow_block(trans, root, right,
1312 parent, pslot + 1,
1313 &right, BTRFS_NESTING_RIGHT_COW);
1314 if (ret)
1315 wret = 1;
1316 else {
1317 wret = balance_node_right(trans, right, mid);
1318 }
1319 }
1320 if (wret < 0)
1321 ret = wret;
1322 if (wret == 0) {
1323 struct btrfs_disk_key disk_key;
1324
1325 btrfs_node_key(right, &disk_key, 0);
1326 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1327 BTRFS_MOD_LOG_KEY_REPLACE);
1328 BUG_ON(ret < 0);
1329 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1330 btrfs_mark_buffer_dirty(parent);
1331
1332 if (btrfs_header_nritems(mid) <= orig_slot) {
1333 path->nodes[level] = right;
1334 path->slots[level + 1] += 1;
1335 path->slots[level] = orig_slot -
1336 btrfs_header_nritems(mid);
1337 btrfs_tree_unlock(mid);
1338 free_extent_buffer(mid);
1339 } else {
1340 btrfs_tree_unlock(right);
1341 free_extent_buffer(right);
1342 }
1343 return 0;
1344 }
1345 btrfs_tree_unlock(right);
1346 free_extent_buffer(right);
1347 }
1348 return 1;
1349 }
1350
1351 /*
1352 * readahead one full node of leaves, finding things that are close
1353 * to the block in 'slot', and triggering ra on them.
1354 */
reada_for_search(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int level,int slot,u64 objectid)1355 static void reada_for_search(struct btrfs_fs_info *fs_info,
1356 struct btrfs_path *path,
1357 int level, int slot, u64 objectid)
1358 {
1359 struct extent_buffer *node;
1360 struct btrfs_disk_key disk_key;
1361 u32 nritems;
1362 u64 search;
1363 u64 target;
1364 u64 nread = 0;
1365 u64 nread_max;
1366 u32 nr;
1367 u32 blocksize;
1368 u32 nscan = 0;
1369
1370 if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1371 return;
1372
1373 if (!path->nodes[level])
1374 return;
1375
1376 node = path->nodes[level];
1377
1378 /*
1379 * Since the time between visiting leaves is much shorter than the time
1380 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1381 * much IO at once (possibly random).
1382 */
1383 if (path->reada == READA_FORWARD_ALWAYS) {
1384 if (level > 1)
1385 nread_max = node->fs_info->nodesize;
1386 else
1387 nread_max = SZ_128K;
1388 } else {
1389 nread_max = SZ_64K;
1390 }
1391
1392 search = btrfs_node_blockptr(node, slot);
1393 blocksize = fs_info->nodesize;
1394 if (path->reada != READA_FORWARD_ALWAYS) {
1395 struct extent_buffer *eb;
1396
1397 eb = find_extent_buffer(fs_info, search);
1398 if (eb) {
1399 free_extent_buffer(eb);
1400 return;
1401 }
1402 }
1403
1404 target = search;
1405
1406 nritems = btrfs_header_nritems(node);
1407 nr = slot;
1408
1409 while (1) {
1410 if (path->reada == READA_BACK) {
1411 if (nr == 0)
1412 break;
1413 nr--;
1414 } else if (path->reada == READA_FORWARD ||
1415 path->reada == READA_FORWARD_ALWAYS) {
1416 nr++;
1417 if (nr >= nritems)
1418 break;
1419 }
1420 if (path->reada == READA_BACK && objectid) {
1421 btrfs_node_key(node, &disk_key, nr);
1422 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1423 break;
1424 }
1425 search = btrfs_node_blockptr(node, nr);
1426 if (path->reada == READA_FORWARD_ALWAYS ||
1427 (search <= target && target - search <= 65536) ||
1428 (search > target && search - target <= 65536)) {
1429 btrfs_readahead_node_child(node, nr);
1430 nread += blocksize;
1431 }
1432 nscan++;
1433 if (nread > nread_max || nscan > 32)
1434 break;
1435 }
1436 }
1437
reada_for_balance(struct btrfs_path * path,int level)1438 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1439 {
1440 struct extent_buffer *parent;
1441 int slot;
1442 int nritems;
1443
1444 parent = path->nodes[level + 1];
1445 if (!parent)
1446 return;
1447
1448 nritems = btrfs_header_nritems(parent);
1449 slot = path->slots[level + 1];
1450
1451 if (slot > 0)
1452 btrfs_readahead_node_child(parent, slot - 1);
1453 if (slot + 1 < nritems)
1454 btrfs_readahead_node_child(parent, slot + 1);
1455 }
1456
1457
1458 /*
1459 * when we walk down the tree, it is usually safe to unlock the higher layers
1460 * in the tree. The exceptions are when our path goes through slot 0, because
1461 * operations on the tree might require changing key pointers higher up in the
1462 * tree.
1463 *
1464 * callers might also have set path->keep_locks, which tells this code to keep
1465 * the lock if the path points to the last slot in the block. This is part of
1466 * walking through the tree, and selecting the next slot in the higher block.
1467 *
1468 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1469 * if lowest_unlock is 1, level 0 won't be unlocked
1470 */
unlock_up(struct btrfs_path * path,int level,int lowest_unlock,int min_write_lock_level,int * write_lock_level)1471 static noinline void unlock_up(struct btrfs_path *path, int level,
1472 int lowest_unlock, int min_write_lock_level,
1473 int *write_lock_level)
1474 {
1475 int i;
1476 int skip_level = level;
1477 bool check_skip = true;
1478
1479 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1480 if (!path->nodes[i])
1481 break;
1482 if (!path->locks[i])
1483 break;
1484
1485 if (check_skip) {
1486 if (path->slots[i] == 0) {
1487 skip_level = i + 1;
1488 continue;
1489 }
1490
1491 if (path->keep_locks) {
1492 u32 nritems;
1493
1494 nritems = btrfs_header_nritems(path->nodes[i]);
1495 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1496 skip_level = i + 1;
1497 continue;
1498 }
1499 }
1500 }
1501
1502 if (i >= lowest_unlock && i > skip_level) {
1503 check_skip = false;
1504 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1505 path->locks[i] = 0;
1506 if (write_lock_level &&
1507 i > min_write_lock_level &&
1508 i <= *write_lock_level) {
1509 *write_lock_level = i - 1;
1510 }
1511 }
1512 }
1513 }
1514
1515 /*
1516 * Helper function for btrfs_search_slot() and other functions that do a search
1517 * on a btree. The goal is to find a tree block in the cache (the radix tree at
1518 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1519 * its pages from disk.
1520 *
1521 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1522 * whole btree search, starting again from the current root node.
1523 */
1524 static int
read_block_for_search(struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer ** eb_ret,int level,int slot,const struct btrfs_key * key)1525 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1526 struct extent_buffer **eb_ret, int level, int slot,
1527 const struct btrfs_key *key)
1528 {
1529 struct btrfs_fs_info *fs_info = root->fs_info;
1530 struct btrfs_tree_parent_check check = { 0 };
1531 u64 blocknr;
1532 u64 gen;
1533 struct extent_buffer *tmp;
1534 int ret;
1535 int parent_level;
1536 bool unlock_up;
1537
1538 unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1539 blocknr = btrfs_node_blockptr(*eb_ret, slot);
1540 gen = btrfs_node_ptr_generation(*eb_ret, slot);
1541 parent_level = btrfs_header_level(*eb_ret);
1542 btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1543 check.has_first_key = true;
1544 check.level = parent_level - 1;
1545 check.transid = gen;
1546 check.owner_root = root->root_key.objectid;
1547
1548 /*
1549 * If we need to read an extent buffer from disk and we are holding locks
1550 * on upper level nodes, we unlock all the upper nodes before reading the
1551 * extent buffer, and then return -EAGAIN to the caller as it needs to
1552 * restart the search. We don't release the lock on the current level
1553 * because we need to walk this node to figure out which blocks to read.
1554 */
1555 tmp = find_extent_buffer(fs_info, blocknr);
1556 if (tmp) {
1557 if (p->reada == READA_FORWARD_ALWAYS)
1558 reada_for_search(fs_info, p, level, slot, key->objectid);
1559
1560 /* first we do an atomic uptodate check */
1561 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1562 /*
1563 * Do extra check for first_key, eb can be stale due to
1564 * being cached, read from scrub, or have multiple
1565 * parents (shared tree blocks).
1566 */
1567 if (btrfs_verify_level_key(tmp,
1568 parent_level - 1, &check.first_key, gen)) {
1569 free_extent_buffer(tmp);
1570 return -EUCLEAN;
1571 }
1572 *eb_ret = tmp;
1573 return 0;
1574 }
1575
1576 if (p->nowait) {
1577 free_extent_buffer(tmp);
1578 return -EAGAIN;
1579 }
1580
1581 if (unlock_up)
1582 btrfs_unlock_up_safe(p, level + 1);
1583
1584 /* now we're allowed to do a blocking uptodate check */
1585 ret = btrfs_read_extent_buffer(tmp, &check);
1586 if (ret) {
1587 free_extent_buffer(tmp);
1588 btrfs_release_path(p);
1589 return -EIO;
1590 }
1591 if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1592 free_extent_buffer(tmp);
1593 btrfs_release_path(p);
1594 return -EUCLEAN;
1595 }
1596
1597 if (unlock_up)
1598 ret = -EAGAIN;
1599
1600 goto out;
1601 } else if (p->nowait) {
1602 return -EAGAIN;
1603 }
1604
1605 if (unlock_up) {
1606 btrfs_unlock_up_safe(p, level + 1);
1607 ret = -EAGAIN;
1608 } else {
1609 ret = 0;
1610 }
1611
1612 if (p->reada != READA_NONE)
1613 reada_for_search(fs_info, p, level, slot, key->objectid);
1614
1615 tmp = read_tree_block(fs_info, blocknr, &check);
1616 if (IS_ERR(tmp)) {
1617 btrfs_release_path(p);
1618 return PTR_ERR(tmp);
1619 }
1620 /*
1621 * If the read above didn't mark this buffer up to date,
1622 * it will never end up being up to date. Set ret to EIO now
1623 * and give up so that our caller doesn't loop forever
1624 * on our EAGAINs.
1625 */
1626 if (!extent_buffer_uptodate(tmp))
1627 ret = -EIO;
1628
1629 out:
1630 if (ret == 0) {
1631 *eb_ret = tmp;
1632 } else {
1633 free_extent_buffer(tmp);
1634 btrfs_release_path(p);
1635 }
1636
1637 return ret;
1638 }
1639
1640 /*
1641 * helper function for btrfs_search_slot. This does all of the checks
1642 * for node-level blocks and does any balancing required based on
1643 * the ins_len.
1644 *
1645 * If no extra work was required, zero is returned. If we had to
1646 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1647 * start over
1648 */
1649 static int
setup_nodes_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer * b,int level,int ins_len,int * write_lock_level)1650 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1651 struct btrfs_root *root, struct btrfs_path *p,
1652 struct extent_buffer *b, int level, int ins_len,
1653 int *write_lock_level)
1654 {
1655 struct btrfs_fs_info *fs_info = root->fs_info;
1656 int ret = 0;
1657
1658 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1659 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1660
1661 if (*write_lock_level < level + 1) {
1662 *write_lock_level = level + 1;
1663 btrfs_release_path(p);
1664 return -EAGAIN;
1665 }
1666
1667 reada_for_balance(p, level);
1668 ret = split_node(trans, root, p, level);
1669
1670 b = p->nodes[level];
1671 } else if (ins_len < 0 && btrfs_header_nritems(b) <
1672 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1673
1674 if (*write_lock_level < level + 1) {
1675 *write_lock_level = level + 1;
1676 btrfs_release_path(p);
1677 return -EAGAIN;
1678 }
1679
1680 reada_for_balance(p, level);
1681 ret = balance_level(trans, root, p, level);
1682 if (ret)
1683 return ret;
1684
1685 b = p->nodes[level];
1686 if (!b) {
1687 btrfs_release_path(p);
1688 return -EAGAIN;
1689 }
1690 BUG_ON(btrfs_header_nritems(b) == 1);
1691 }
1692 return ret;
1693 }
1694
btrfs_find_item(struct btrfs_root * fs_root,struct btrfs_path * path,u64 iobjectid,u64 ioff,u8 key_type,struct btrfs_key * found_key)1695 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1696 u64 iobjectid, u64 ioff, u8 key_type,
1697 struct btrfs_key *found_key)
1698 {
1699 int ret;
1700 struct btrfs_key key;
1701 struct extent_buffer *eb;
1702
1703 ASSERT(path);
1704 ASSERT(found_key);
1705
1706 key.type = key_type;
1707 key.objectid = iobjectid;
1708 key.offset = ioff;
1709
1710 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1711 if (ret < 0)
1712 return ret;
1713
1714 eb = path->nodes[0];
1715 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1716 ret = btrfs_next_leaf(fs_root, path);
1717 if (ret)
1718 return ret;
1719 eb = path->nodes[0];
1720 }
1721
1722 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1723 if (found_key->type != key.type ||
1724 found_key->objectid != key.objectid)
1725 return 1;
1726
1727 return 0;
1728 }
1729
btrfs_search_slot_get_root(struct btrfs_root * root,struct btrfs_path * p,int write_lock_level)1730 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1731 struct btrfs_path *p,
1732 int write_lock_level)
1733 {
1734 struct extent_buffer *b;
1735 int root_lock = 0;
1736 int level = 0;
1737
1738 if (p->search_commit_root) {
1739 b = root->commit_root;
1740 atomic_inc(&b->refs);
1741 level = btrfs_header_level(b);
1742 /*
1743 * Ensure that all callers have set skip_locking when
1744 * p->search_commit_root = 1.
1745 */
1746 ASSERT(p->skip_locking == 1);
1747
1748 goto out;
1749 }
1750
1751 if (p->skip_locking) {
1752 b = btrfs_root_node(root);
1753 level = btrfs_header_level(b);
1754 goto out;
1755 }
1756
1757 /* We try very hard to do read locks on the root */
1758 root_lock = BTRFS_READ_LOCK;
1759
1760 /*
1761 * If the level is set to maximum, we can skip trying to get the read
1762 * lock.
1763 */
1764 if (write_lock_level < BTRFS_MAX_LEVEL) {
1765 /*
1766 * We don't know the level of the root node until we actually
1767 * have it read locked
1768 */
1769 if (p->nowait) {
1770 b = btrfs_try_read_lock_root_node(root);
1771 if (IS_ERR(b))
1772 return b;
1773 } else {
1774 b = btrfs_read_lock_root_node(root);
1775 }
1776 level = btrfs_header_level(b);
1777 if (level > write_lock_level)
1778 goto out;
1779
1780 /* Whoops, must trade for write lock */
1781 btrfs_tree_read_unlock(b);
1782 free_extent_buffer(b);
1783 }
1784
1785 b = btrfs_lock_root_node(root);
1786 root_lock = BTRFS_WRITE_LOCK;
1787
1788 /* The level might have changed, check again */
1789 level = btrfs_header_level(b);
1790
1791 out:
1792 /*
1793 * The root may have failed to write out at some point, and thus is no
1794 * longer valid, return an error in this case.
1795 */
1796 if (!extent_buffer_uptodate(b)) {
1797 if (root_lock)
1798 btrfs_tree_unlock_rw(b, root_lock);
1799 free_extent_buffer(b);
1800 return ERR_PTR(-EIO);
1801 }
1802
1803 p->nodes[level] = b;
1804 if (!p->skip_locking)
1805 p->locks[level] = root_lock;
1806 /*
1807 * Callers are responsible for dropping b's references.
1808 */
1809 return b;
1810 }
1811
1812 /*
1813 * Replace the extent buffer at the lowest level of the path with a cloned
1814 * version. The purpose is to be able to use it safely, after releasing the
1815 * commit root semaphore, even if relocation is happening in parallel, the
1816 * transaction used for relocation is committed and the extent buffer is
1817 * reallocated in the next transaction.
1818 *
1819 * This is used in a context where the caller does not prevent transaction
1820 * commits from happening, either by holding a transaction handle or holding
1821 * some lock, while it's doing searches through a commit root.
1822 * At the moment it's only used for send operations.
1823 */
finish_need_commit_sem_search(struct btrfs_path * path)1824 static int finish_need_commit_sem_search(struct btrfs_path *path)
1825 {
1826 const int i = path->lowest_level;
1827 const int slot = path->slots[i];
1828 struct extent_buffer *lowest = path->nodes[i];
1829 struct extent_buffer *clone;
1830
1831 ASSERT(path->need_commit_sem);
1832
1833 if (!lowest)
1834 return 0;
1835
1836 lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1837
1838 clone = btrfs_clone_extent_buffer(lowest);
1839 if (!clone)
1840 return -ENOMEM;
1841
1842 btrfs_release_path(path);
1843 path->nodes[i] = clone;
1844 path->slots[i] = slot;
1845
1846 return 0;
1847 }
1848
search_for_key_slot(struct extent_buffer * eb,int search_low_slot,const struct btrfs_key * key,int prev_cmp,int * slot)1849 static inline int search_for_key_slot(struct extent_buffer *eb,
1850 int search_low_slot,
1851 const struct btrfs_key *key,
1852 int prev_cmp,
1853 int *slot)
1854 {
1855 /*
1856 * If a previous call to btrfs_bin_search() on a parent node returned an
1857 * exact match (prev_cmp == 0), we can safely assume the target key will
1858 * always be at slot 0 on lower levels, since each key pointer
1859 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1860 * subtree it points to. Thus we can skip searching lower levels.
1861 */
1862 if (prev_cmp == 0) {
1863 *slot = 0;
1864 return 0;
1865 }
1866
1867 return btrfs_generic_bin_search(eb, search_low_slot, key, slot);
1868 }
1869
search_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * path,int ins_len,int prev_cmp)1870 static int search_leaf(struct btrfs_trans_handle *trans,
1871 struct btrfs_root *root,
1872 const struct btrfs_key *key,
1873 struct btrfs_path *path,
1874 int ins_len,
1875 int prev_cmp)
1876 {
1877 struct extent_buffer *leaf = path->nodes[0];
1878 int leaf_free_space = -1;
1879 int search_low_slot = 0;
1880 int ret;
1881 bool do_bin_search = true;
1882
1883 /*
1884 * If we are doing an insertion, the leaf has enough free space and the
1885 * destination slot for the key is not slot 0, then we can unlock our
1886 * write lock on the parent, and any other upper nodes, before doing the
1887 * binary search on the leaf (with search_for_key_slot()), allowing other
1888 * tasks to lock the parent and any other upper nodes.
1889 */
1890 if (ins_len > 0) {
1891 /*
1892 * Cache the leaf free space, since we will need it later and it
1893 * will not change until then.
1894 */
1895 leaf_free_space = btrfs_leaf_free_space(leaf);
1896
1897 /*
1898 * !path->locks[1] means we have a single node tree, the leaf is
1899 * the root of the tree.
1900 */
1901 if (path->locks[1] && leaf_free_space >= ins_len) {
1902 struct btrfs_disk_key first_key;
1903
1904 ASSERT(btrfs_header_nritems(leaf) > 0);
1905 btrfs_item_key(leaf, &first_key, 0);
1906
1907 /*
1908 * Doing the extra comparison with the first key is cheap,
1909 * taking into account that the first key is very likely
1910 * already in a cache line because it immediately follows
1911 * the extent buffer's header and we have recently accessed
1912 * the header's level field.
1913 */
1914 ret = comp_keys(&first_key, key);
1915 if (ret < 0) {
1916 /*
1917 * The first key is smaller than the key we want
1918 * to insert, so we are safe to unlock all upper
1919 * nodes and we have to do the binary search.
1920 *
1921 * We do use btrfs_unlock_up_safe() and not
1922 * unlock_up() because the later does not unlock
1923 * nodes with a slot of 0 - we can safely unlock
1924 * any node even if its slot is 0 since in this
1925 * case the key does not end up at slot 0 of the
1926 * leaf and there's no need to split the leaf.
1927 */
1928 btrfs_unlock_up_safe(path, 1);
1929 search_low_slot = 1;
1930 } else {
1931 /*
1932 * The first key is >= then the key we want to
1933 * insert, so we can skip the binary search as
1934 * the target key will be at slot 0.
1935 *
1936 * We can not unlock upper nodes when the key is
1937 * less than the first key, because we will need
1938 * to update the key at slot 0 of the parent node
1939 * and possibly of other upper nodes too.
1940 * If the key matches the first key, then we can
1941 * unlock all the upper nodes, using
1942 * btrfs_unlock_up_safe() instead of unlock_up()
1943 * as stated above.
1944 */
1945 if (ret == 0)
1946 btrfs_unlock_up_safe(path, 1);
1947 /*
1948 * ret is already 0 or 1, matching the result of
1949 * a btrfs_bin_search() call, so there is no need
1950 * to adjust it.
1951 */
1952 do_bin_search = false;
1953 path->slots[0] = 0;
1954 }
1955 }
1956 }
1957
1958 if (do_bin_search) {
1959 ret = search_for_key_slot(leaf, search_low_slot, key,
1960 prev_cmp, &path->slots[0]);
1961 if (ret < 0)
1962 return ret;
1963 }
1964
1965 if (ins_len > 0) {
1966 /*
1967 * Item key already exists. In this case, if we are allowed to
1968 * insert the item (for example, in dir_item case, item key
1969 * collision is allowed), it will be merged with the original
1970 * item. Only the item size grows, no new btrfs item will be
1971 * added. If search_for_extension is not set, ins_len already
1972 * accounts the size btrfs_item, deduct it here so leaf space
1973 * check will be correct.
1974 */
1975 if (ret == 0 && !path->search_for_extension) {
1976 ASSERT(ins_len >= sizeof(struct btrfs_item));
1977 ins_len -= sizeof(struct btrfs_item);
1978 }
1979
1980 ASSERT(leaf_free_space >= 0);
1981
1982 if (leaf_free_space < ins_len) {
1983 int err;
1984
1985 err = split_leaf(trans, root, key, path, ins_len,
1986 (ret == 0));
1987 ASSERT(err <= 0);
1988 if (WARN_ON(err > 0))
1989 err = -EUCLEAN;
1990 if (err)
1991 ret = err;
1992 }
1993 }
1994
1995 return ret;
1996 }
1997
1998 /*
1999 * btrfs_search_slot - look for a key in a tree and perform necessary
2000 * modifications to preserve tree invariants.
2001 *
2002 * @trans: Handle of transaction, used when modifying the tree
2003 * @p: Holds all btree nodes along the search path
2004 * @root: The root node of the tree
2005 * @key: The key we are looking for
2006 * @ins_len: Indicates purpose of search:
2007 * >0 for inserts it's size of item inserted (*)
2008 * <0 for deletions
2009 * 0 for plain searches, not modifying the tree
2010 *
2011 * (*) If size of item inserted doesn't include
2012 * sizeof(struct btrfs_item), then p->search_for_extension must
2013 * be set.
2014 * @cow: boolean should CoW operations be performed. Must always be 1
2015 * when modifying the tree.
2016 *
2017 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2018 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2019 *
2020 * If @key is found, 0 is returned and you can find the item in the leaf level
2021 * of the path (level 0)
2022 *
2023 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2024 * points to the slot where it should be inserted
2025 *
2026 * If an error is encountered while searching the tree a negative error number
2027 * is returned
2028 */
btrfs_search_slot(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int ins_len,int cow)2029 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2030 const struct btrfs_key *key, struct btrfs_path *p,
2031 int ins_len, int cow)
2032 {
2033 struct btrfs_fs_info *fs_info = root->fs_info;
2034 struct extent_buffer *b;
2035 int slot;
2036 int ret;
2037 int err;
2038 int level;
2039 int lowest_unlock = 1;
2040 /* everything at write_lock_level or lower must be write locked */
2041 int write_lock_level = 0;
2042 u8 lowest_level = 0;
2043 int min_write_lock_level;
2044 int prev_cmp;
2045
2046 might_sleep();
2047
2048 lowest_level = p->lowest_level;
2049 WARN_ON(lowest_level && ins_len > 0);
2050 WARN_ON(p->nodes[0] != NULL);
2051 BUG_ON(!cow && ins_len);
2052
2053 /*
2054 * For now only allow nowait for read only operations. There's no
2055 * strict reason why we can't, we just only need it for reads so it's
2056 * only implemented for reads.
2057 */
2058 ASSERT(!p->nowait || !cow);
2059
2060 if (ins_len < 0) {
2061 lowest_unlock = 2;
2062
2063 /* when we are removing items, we might have to go up to level
2064 * two as we update tree pointers Make sure we keep write
2065 * for those levels as well
2066 */
2067 write_lock_level = 2;
2068 } else if (ins_len > 0) {
2069 /*
2070 * for inserting items, make sure we have a write lock on
2071 * level 1 so we can update keys
2072 */
2073 write_lock_level = 1;
2074 }
2075
2076 if (!cow)
2077 write_lock_level = -1;
2078
2079 if (cow && (p->keep_locks || p->lowest_level))
2080 write_lock_level = BTRFS_MAX_LEVEL;
2081
2082 min_write_lock_level = write_lock_level;
2083
2084 if (p->need_commit_sem) {
2085 ASSERT(p->search_commit_root);
2086 if (p->nowait) {
2087 if (!down_read_trylock(&fs_info->commit_root_sem))
2088 return -EAGAIN;
2089 } else {
2090 down_read(&fs_info->commit_root_sem);
2091 }
2092 }
2093
2094 again:
2095 prev_cmp = -1;
2096 b = btrfs_search_slot_get_root(root, p, write_lock_level);
2097 if (IS_ERR(b)) {
2098 ret = PTR_ERR(b);
2099 goto done;
2100 }
2101
2102 while (b) {
2103 int dec = 0;
2104
2105 level = btrfs_header_level(b);
2106
2107 if (cow) {
2108 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2109
2110 /*
2111 * if we don't really need to cow this block
2112 * then we don't want to set the path blocking,
2113 * so we test it here
2114 */
2115 if (!should_cow_block(trans, root, b))
2116 goto cow_done;
2117
2118 /*
2119 * must have write locks on this node and the
2120 * parent
2121 */
2122 if (level > write_lock_level ||
2123 (level + 1 > write_lock_level &&
2124 level + 1 < BTRFS_MAX_LEVEL &&
2125 p->nodes[level + 1])) {
2126 write_lock_level = level + 1;
2127 btrfs_release_path(p);
2128 goto again;
2129 }
2130
2131 if (last_level)
2132 err = btrfs_cow_block(trans, root, b, NULL, 0,
2133 &b,
2134 BTRFS_NESTING_COW);
2135 else
2136 err = btrfs_cow_block(trans, root, b,
2137 p->nodes[level + 1],
2138 p->slots[level + 1], &b,
2139 BTRFS_NESTING_COW);
2140 if (err) {
2141 ret = err;
2142 goto done;
2143 }
2144 }
2145 cow_done:
2146 p->nodes[level] = b;
2147
2148 /*
2149 * we have a lock on b and as long as we aren't changing
2150 * the tree, there is no way to for the items in b to change.
2151 * It is safe to drop the lock on our parent before we
2152 * go through the expensive btree search on b.
2153 *
2154 * If we're inserting or deleting (ins_len != 0), then we might
2155 * be changing slot zero, which may require changing the parent.
2156 * So, we can't drop the lock until after we know which slot
2157 * we're operating on.
2158 */
2159 if (!ins_len && !p->keep_locks) {
2160 int u = level + 1;
2161
2162 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2163 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2164 p->locks[u] = 0;
2165 }
2166 }
2167
2168 if (level == 0) {
2169 if (ins_len > 0)
2170 ASSERT(write_lock_level >= 1);
2171
2172 ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2173 if (!p->search_for_split)
2174 unlock_up(p, level, lowest_unlock,
2175 min_write_lock_level, NULL);
2176 goto done;
2177 }
2178
2179 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2180 if (ret < 0)
2181 goto done;
2182 prev_cmp = ret;
2183
2184 if (ret && slot > 0) {
2185 dec = 1;
2186 slot--;
2187 }
2188 p->slots[level] = slot;
2189 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2190 &write_lock_level);
2191 if (err == -EAGAIN)
2192 goto again;
2193 if (err) {
2194 ret = err;
2195 goto done;
2196 }
2197 b = p->nodes[level];
2198 slot = p->slots[level];
2199
2200 /*
2201 * Slot 0 is special, if we change the key we have to update
2202 * the parent pointer which means we must have a write lock on
2203 * the parent
2204 */
2205 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2206 write_lock_level = level + 1;
2207 btrfs_release_path(p);
2208 goto again;
2209 }
2210
2211 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2212 &write_lock_level);
2213
2214 if (level == lowest_level) {
2215 if (dec)
2216 p->slots[level]++;
2217 goto done;
2218 }
2219
2220 err = read_block_for_search(root, p, &b, level, slot, key);
2221 if (err == -EAGAIN)
2222 goto again;
2223 if (err) {
2224 ret = err;
2225 goto done;
2226 }
2227
2228 if (!p->skip_locking) {
2229 level = btrfs_header_level(b);
2230
2231 btrfs_maybe_reset_lockdep_class(root, b);
2232
2233 if (level <= write_lock_level) {
2234 btrfs_tree_lock(b);
2235 p->locks[level] = BTRFS_WRITE_LOCK;
2236 } else {
2237 if (p->nowait) {
2238 if (!btrfs_try_tree_read_lock(b)) {
2239 free_extent_buffer(b);
2240 ret = -EAGAIN;
2241 goto done;
2242 }
2243 } else {
2244 btrfs_tree_read_lock(b);
2245 }
2246 p->locks[level] = BTRFS_READ_LOCK;
2247 }
2248 p->nodes[level] = b;
2249 }
2250 }
2251 ret = 1;
2252 done:
2253 if (ret < 0 && !p->skip_release_on_error)
2254 btrfs_release_path(p);
2255
2256 if (p->need_commit_sem) {
2257 int ret2;
2258
2259 ret2 = finish_need_commit_sem_search(p);
2260 up_read(&fs_info->commit_root_sem);
2261 if (ret2)
2262 ret = ret2;
2263 }
2264
2265 return ret;
2266 }
2267 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2268
2269 /*
2270 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2271 * current state of the tree together with the operations recorded in the tree
2272 * modification log to search for the key in a previous version of this tree, as
2273 * denoted by the time_seq parameter.
2274 *
2275 * Naturally, there is no support for insert, delete or cow operations.
2276 *
2277 * The resulting path and return value will be set up as if we called
2278 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2279 */
btrfs_search_old_slot(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,u64 time_seq)2280 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2281 struct btrfs_path *p, u64 time_seq)
2282 {
2283 struct btrfs_fs_info *fs_info = root->fs_info;
2284 struct extent_buffer *b;
2285 int slot;
2286 int ret;
2287 int err;
2288 int level;
2289 int lowest_unlock = 1;
2290 u8 lowest_level = 0;
2291
2292 lowest_level = p->lowest_level;
2293 WARN_ON(p->nodes[0] != NULL);
2294 ASSERT(!p->nowait);
2295
2296 if (p->search_commit_root) {
2297 BUG_ON(time_seq);
2298 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2299 }
2300
2301 again:
2302 b = btrfs_get_old_root(root, time_seq);
2303 if (!b) {
2304 ret = -EIO;
2305 goto done;
2306 }
2307 level = btrfs_header_level(b);
2308 p->locks[level] = BTRFS_READ_LOCK;
2309
2310 while (b) {
2311 int dec = 0;
2312
2313 level = btrfs_header_level(b);
2314 p->nodes[level] = b;
2315
2316 /*
2317 * we have a lock on b and as long as we aren't changing
2318 * the tree, there is no way to for the items in b to change.
2319 * It is safe to drop the lock on our parent before we
2320 * go through the expensive btree search on b.
2321 */
2322 btrfs_unlock_up_safe(p, level + 1);
2323
2324 ret = btrfs_bin_search(b, key, &slot);
2325 if (ret < 0)
2326 goto done;
2327
2328 if (level == 0) {
2329 p->slots[level] = slot;
2330 unlock_up(p, level, lowest_unlock, 0, NULL);
2331 goto done;
2332 }
2333
2334 if (ret && slot > 0) {
2335 dec = 1;
2336 slot--;
2337 }
2338 p->slots[level] = slot;
2339 unlock_up(p, level, lowest_unlock, 0, NULL);
2340
2341 if (level == lowest_level) {
2342 if (dec)
2343 p->slots[level]++;
2344 goto done;
2345 }
2346
2347 err = read_block_for_search(root, p, &b, level, slot, key);
2348 if (err == -EAGAIN)
2349 goto again;
2350 if (err) {
2351 ret = err;
2352 goto done;
2353 }
2354
2355 level = btrfs_header_level(b);
2356 btrfs_tree_read_lock(b);
2357 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2358 if (!b) {
2359 ret = -ENOMEM;
2360 goto done;
2361 }
2362 p->locks[level] = BTRFS_READ_LOCK;
2363 p->nodes[level] = b;
2364 }
2365 ret = 1;
2366 done:
2367 if (ret < 0)
2368 btrfs_release_path(p);
2369
2370 return ret;
2371 }
2372
2373 /*
2374 * helper to use instead of search slot if no exact match is needed but
2375 * instead the next or previous item should be returned.
2376 * When find_higher is true, the next higher item is returned, the next lower
2377 * otherwise.
2378 * When return_any and find_higher are both true, and no higher item is found,
2379 * return the next lower instead.
2380 * When return_any is true and find_higher is false, and no lower item is found,
2381 * return the next higher instead.
2382 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2383 * < 0 on error
2384 */
btrfs_search_slot_for_read(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int find_higher,int return_any)2385 int btrfs_search_slot_for_read(struct btrfs_root *root,
2386 const struct btrfs_key *key,
2387 struct btrfs_path *p, int find_higher,
2388 int return_any)
2389 {
2390 int ret;
2391 struct extent_buffer *leaf;
2392
2393 again:
2394 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2395 if (ret <= 0)
2396 return ret;
2397 /*
2398 * a return value of 1 means the path is at the position where the
2399 * item should be inserted. Normally this is the next bigger item,
2400 * but in case the previous item is the last in a leaf, path points
2401 * to the first free slot in the previous leaf, i.e. at an invalid
2402 * item.
2403 */
2404 leaf = p->nodes[0];
2405
2406 if (find_higher) {
2407 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2408 ret = btrfs_next_leaf(root, p);
2409 if (ret <= 0)
2410 return ret;
2411 if (!return_any)
2412 return 1;
2413 /*
2414 * no higher item found, return the next
2415 * lower instead
2416 */
2417 return_any = 0;
2418 find_higher = 0;
2419 btrfs_release_path(p);
2420 goto again;
2421 }
2422 } else {
2423 if (p->slots[0] == 0) {
2424 ret = btrfs_prev_leaf(root, p);
2425 if (ret < 0)
2426 return ret;
2427 if (!ret) {
2428 leaf = p->nodes[0];
2429 if (p->slots[0] == btrfs_header_nritems(leaf))
2430 p->slots[0]--;
2431 return 0;
2432 }
2433 if (!return_any)
2434 return 1;
2435 /*
2436 * no lower item found, return the next
2437 * higher instead
2438 */
2439 return_any = 0;
2440 find_higher = 1;
2441 btrfs_release_path(p);
2442 goto again;
2443 } else {
2444 --p->slots[0];
2445 }
2446 }
2447 return 0;
2448 }
2449
2450 /*
2451 * Execute search and call btrfs_previous_item to traverse backwards if the item
2452 * was not found.
2453 *
2454 * Return 0 if found, 1 if not found and < 0 if error.
2455 */
btrfs_search_backwards(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * path)2456 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2457 struct btrfs_path *path)
2458 {
2459 int ret;
2460
2461 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2462 if (ret > 0)
2463 ret = btrfs_previous_item(root, path, key->objectid, key->type);
2464
2465 if (ret == 0)
2466 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2467
2468 return ret;
2469 }
2470
2471 /*
2472 * Search for a valid slot for the given path.
2473 *
2474 * @root: The root node of the tree.
2475 * @key: Will contain a valid item if found.
2476 * @path: The starting point to validate the slot.
2477 *
2478 * Return: 0 if the item is valid
2479 * 1 if not found
2480 * <0 if error.
2481 */
btrfs_get_next_valid_item(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * path)2482 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2483 struct btrfs_path *path)
2484 {
2485 while (1) {
2486 int ret;
2487 const int slot = path->slots[0];
2488 const struct extent_buffer *leaf = path->nodes[0];
2489
2490 /* This is where we start walking the path. */
2491 if (slot >= btrfs_header_nritems(leaf)) {
2492 /*
2493 * If we've reached the last slot in this leaf we need
2494 * to go to the next leaf and reset the path.
2495 */
2496 ret = btrfs_next_leaf(root, path);
2497 if (ret)
2498 return ret;
2499 continue;
2500 }
2501 /* Store the found, valid item in @key. */
2502 btrfs_item_key_to_cpu(leaf, key, slot);
2503 break;
2504 }
2505 return 0;
2506 }
2507
2508 /*
2509 * adjust the pointers going up the tree, starting at level
2510 * making sure the right key of each node is points to 'key'.
2511 * This is used after shifting pointers to the left, so it stops
2512 * fixing up pointers when a given leaf/node is not in slot 0 of the
2513 * higher levels
2514 *
2515 */
fixup_low_keys(struct btrfs_path * path,struct btrfs_disk_key * key,int level)2516 static void fixup_low_keys(struct btrfs_path *path,
2517 struct btrfs_disk_key *key, int level)
2518 {
2519 int i;
2520 struct extent_buffer *t;
2521 int ret;
2522
2523 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2524 int tslot = path->slots[i];
2525
2526 if (!path->nodes[i])
2527 break;
2528 t = path->nodes[i];
2529 ret = btrfs_tree_mod_log_insert_key(t, tslot,
2530 BTRFS_MOD_LOG_KEY_REPLACE);
2531 BUG_ON(ret < 0);
2532 btrfs_set_node_key(t, key, tslot);
2533 btrfs_mark_buffer_dirty(path->nodes[i]);
2534 if (tslot != 0)
2535 break;
2536 }
2537 }
2538
2539 /*
2540 * update item key.
2541 *
2542 * This function isn't completely safe. It's the caller's responsibility
2543 * that the new key won't break the order
2544 */
btrfs_set_item_key_safe(struct btrfs_fs_info * fs_info,struct btrfs_path * path,const struct btrfs_key * new_key)2545 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2546 struct btrfs_path *path,
2547 const struct btrfs_key *new_key)
2548 {
2549 struct btrfs_disk_key disk_key;
2550 struct extent_buffer *eb;
2551 int slot;
2552
2553 eb = path->nodes[0];
2554 slot = path->slots[0];
2555 if (slot > 0) {
2556 btrfs_item_key(eb, &disk_key, slot - 1);
2557 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2558 btrfs_crit(fs_info,
2559 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2560 slot, btrfs_disk_key_objectid(&disk_key),
2561 btrfs_disk_key_type(&disk_key),
2562 btrfs_disk_key_offset(&disk_key),
2563 new_key->objectid, new_key->type,
2564 new_key->offset);
2565 btrfs_print_leaf(eb);
2566 BUG();
2567 }
2568 }
2569 if (slot < btrfs_header_nritems(eb) - 1) {
2570 btrfs_item_key(eb, &disk_key, slot + 1);
2571 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2572 btrfs_crit(fs_info,
2573 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2574 slot, btrfs_disk_key_objectid(&disk_key),
2575 btrfs_disk_key_type(&disk_key),
2576 btrfs_disk_key_offset(&disk_key),
2577 new_key->objectid, new_key->type,
2578 new_key->offset);
2579 btrfs_print_leaf(eb);
2580 BUG();
2581 }
2582 }
2583
2584 btrfs_cpu_key_to_disk(&disk_key, new_key);
2585 btrfs_set_item_key(eb, &disk_key, slot);
2586 btrfs_mark_buffer_dirty(eb);
2587 if (slot == 0)
2588 fixup_low_keys(path, &disk_key, 1);
2589 }
2590
2591 /*
2592 * Check key order of two sibling extent buffers.
2593 *
2594 * Return true if something is wrong.
2595 * Return false if everything is fine.
2596 *
2597 * Tree-checker only works inside one tree block, thus the following
2598 * corruption can not be detected by tree-checker:
2599 *
2600 * Leaf @left | Leaf @right
2601 * --------------------------------------------------------------
2602 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 |
2603 *
2604 * Key f6 in leaf @left itself is valid, but not valid when the next
2605 * key in leaf @right is 7.
2606 * This can only be checked at tree block merge time.
2607 * And since tree checker has ensured all key order in each tree block
2608 * is correct, we only need to bother the last key of @left and the first
2609 * key of @right.
2610 */
check_sibling_keys(struct extent_buffer * left,struct extent_buffer * right)2611 static bool check_sibling_keys(struct extent_buffer *left,
2612 struct extent_buffer *right)
2613 {
2614 struct btrfs_key left_last;
2615 struct btrfs_key right_first;
2616 int level = btrfs_header_level(left);
2617 int nr_left = btrfs_header_nritems(left);
2618 int nr_right = btrfs_header_nritems(right);
2619
2620 /* No key to check in one of the tree blocks */
2621 if (!nr_left || !nr_right)
2622 return false;
2623
2624 if (level) {
2625 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2626 btrfs_node_key_to_cpu(right, &right_first, 0);
2627 } else {
2628 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2629 btrfs_item_key_to_cpu(right, &right_first, 0);
2630 }
2631
2632 if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2633 btrfs_crit(left->fs_info,
2634 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2635 left_last.objectid, left_last.type,
2636 left_last.offset, right_first.objectid,
2637 right_first.type, right_first.offset);
2638 return true;
2639 }
2640 return false;
2641 }
2642
2643 /*
2644 * try to push data from one node into the next node left in the
2645 * tree.
2646 *
2647 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2648 * error, and > 0 if there was no room in the left hand block.
2649 */
push_node_left(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src,int empty)2650 static int push_node_left(struct btrfs_trans_handle *trans,
2651 struct extent_buffer *dst,
2652 struct extent_buffer *src, int empty)
2653 {
2654 struct btrfs_fs_info *fs_info = trans->fs_info;
2655 int push_items = 0;
2656 int src_nritems;
2657 int dst_nritems;
2658 int ret = 0;
2659
2660 src_nritems = btrfs_header_nritems(src);
2661 dst_nritems = btrfs_header_nritems(dst);
2662 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2663 WARN_ON(btrfs_header_generation(src) != trans->transid);
2664 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2665
2666 if (!empty && src_nritems <= 8)
2667 return 1;
2668
2669 if (push_items <= 0)
2670 return 1;
2671
2672 if (empty) {
2673 push_items = min(src_nritems, push_items);
2674 if (push_items < src_nritems) {
2675 /* leave at least 8 pointers in the node if
2676 * we aren't going to empty it
2677 */
2678 if (src_nritems - push_items < 8) {
2679 if (push_items <= 8)
2680 return 1;
2681 push_items -= 8;
2682 }
2683 }
2684 } else
2685 push_items = min(src_nritems - 8, push_items);
2686
2687 /* dst is the left eb, src is the middle eb */
2688 if (check_sibling_keys(dst, src)) {
2689 ret = -EUCLEAN;
2690 btrfs_abort_transaction(trans, ret);
2691 return ret;
2692 }
2693 ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2694 if (ret) {
2695 btrfs_abort_transaction(trans, ret);
2696 return ret;
2697 }
2698 copy_extent_buffer(dst, src,
2699 btrfs_node_key_ptr_offset(dst, dst_nritems),
2700 btrfs_node_key_ptr_offset(src, 0),
2701 push_items * sizeof(struct btrfs_key_ptr));
2702
2703 if (push_items < src_nritems) {
2704 /*
2705 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2706 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2707 */
2708 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2709 btrfs_node_key_ptr_offset(src, push_items),
2710 (src_nritems - push_items) *
2711 sizeof(struct btrfs_key_ptr));
2712 }
2713 btrfs_set_header_nritems(src, src_nritems - push_items);
2714 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2715 btrfs_mark_buffer_dirty(src);
2716 btrfs_mark_buffer_dirty(dst);
2717
2718 return ret;
2719 }
2720
2721 /*
2722 * try to push data from one node into the next node right in the
2723 * tree.
2724 *
2725 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2726 * error, and > 0 if there was no room in the right hand block.
2727 *
2728 * this will only push up to 1/2 the contents of the left node over
2729 */
balance_node_right(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src)2730 static int balance_node_right(struct btrfs_trans_handle *trans,
2731 struct extent_buffer *dst,
2732 struct extent_buffer *src)
2733 {
2734 struct btrfs_fs_info *fs_info = trans->fs_info;
2735 int push_items = 0;
2736 int max_push;
2737 int src_nritems;
2738 int dst_nritems;
2739 int ret = 0;
2740
2741 WARN_ON(btrfs_header_generation(src) != trans->transid);
2742 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2743
2744 src_nritems = btrfs_header_nritems(src);
2745 dst_nritems = btrfs_header_nritems(dst);
2746 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2747 if (push_items <= 0)
2748 return 1;
2749
2750 if (src_nritems < 4)
2751 return 1;
2752
2753 max_push = src_nritems / 2 + 1;
2754 /* don't try to empty the node */
2755 if (max_push >= src_nritems)
2756 return 1;
2757
2758 if (max_push < push_items)
2759 push_items = max_push;
2760
2761 /* dst is the right eb, src is the middle eb */
2762 if (check_sibling_keys(src, dst)) {
2763 ret = -EUCLEAN;
2764 btrfs_abort_transaction(trans, ret);
2765 return ret;
2766 }
2767 ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2768 BUG_ON(ret < 0);
2769 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2770 btrfs_node_key_ptr_offset(dst, 0),
2771 (dst_nritems) *
2772 sizeof(struct btrfs_key_ptr));
2773
2774 ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2775 push_items);
2776 if (ret) {
2777 btrfs_abort_transaction(trans, ret);
2778 return ret;
2779 }
2780 copy_extent_buffer(dst, src,
2781 btrfs_node_key_ptr_offset(dst, 0),
2782 btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2783 push_items * sizeof(struct btrfs_key_ptr));
2784
2785 btrfs_set_header_nritems(src, src_nritems - push_items);
2786 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2787
2788 btrfs_mark_buffer_dirty(src);
2789 btrfs_mark_buffer_dirty(dst);
2790
2791 return ret;
2792 }
2793
2794 /*
2795 * helper function to insert a new root level in the tree.
2796 * A new node is allocated, and a single item is inserted to
2797 * point to the existing root
2798 *
2799 * returns zero on success or < 0 on failure.
2800 */
insert_new_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2801 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2802 struct btrfs_root *root,
2803 struct btrfs_path *path, int level)
2804 {
2805 struct btrfs_fs_info *fs_info = root->fs_info;
2806 u64 lower_gen;
2807 struct extent_buffer *lower;
2808 struct extent_buffer *c;
2809 struct extent_buffer *old;
2810 struct btrfs_disk_key lower_key;
2811 int ret;
2812
2813 BUG_ON(path->nodes[level]);
2814 BUG_ON(path->nodes[level-1] != root->node);
2815
2816 lower = path->nodes[level-1];
2817 if (level == 1)
2818 btrfs_item_key(lower, &lower_key, 0);
2819 else
2820 btrfs_node_key(lower, &lower_key, 0);
2821
2822 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2823 &lower_key, level, root->node->start, 0,
2824 BTRFS_NESTING_NEW_ROOT);
2825 if (IS_ERR(c))
2826 return PTR_ERR(c);
2827
2828 root_add_used(root, fs_info->nodesize);
2829
2830 btrfs_set_header_nritems(c, 1);
2831 btrfs_set_node_key(c, &lower_key, 0);
2832 btrfs_set_node_blockptr(c, 0, lower->start);
2833 lower_gen = btrfs_header_generation(lower);
2834 WARN_ON(lower_gen != trans->transid);
2835
2836 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2837
2838 btrfs_mark_buffer_dirty(c);
2839
2840 old = root->node;
2841 ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2842 BUG_ON(ret < 0);
2843 rcu_assign_pointer(root->node, c);
2844
2845 /* the super has an extra ref to root->node */
2846 free_extent_buffer(old);
2847
2848 add_root_to_dirty_list(root);
2849 atomic_inc(&c->refs);
2850 path->nodes[level] = c;
2851 path->locks[level] = BTRFS_WRITE_LOCK;
2852 path->slots[level] = 0;
2853 return 0;
2854 }
2855
2856 /*
2857 * worker function to insert a single pointer in a node.
2858 * the node should have enough room for the pointer already
2859 *
2860 * slot and level indicate where you want the key to go, and
2861 * blocknr is the block the key points to.
2862 */
insert_ptr(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_disk_key * key,u64 bytenr,int slot,int level)2863 static void insert_ptr(struct btrfs_trans_handle *trans,
2864 struct btrfs_path *path,
2865 struct btrfs_disk_key *key, u64 bytenr,
2866 int slot, int level)
2867 {
2868 struct extent_buffer *lower;
2869 int nritems;
2870 int ret;
2871
2872 BUG_ON(!path->nodes[level]);
2873 btrfs_assert_tree_write_locked(path->nodes[level]);
2874 lower = path->nodes[level];
2875 nritems = btrfs_header_nritems(lower);
2876 BUG_ON(slot > nritems);
2877 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2878 if (slot != nritems) {
2879 if (level) {
2880 ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2881 slot, nritems - slot);
2882 BUG_ON(ret < 0);
2883 }
2884 memmove_extent_buffer(lower,
2885 btrfs_node_key_ptr_offset(lower, slot + 1),
2886 btrfs_node_key_ptr_offset(lower, slot),
2887 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2888 }
2889 if (level) {
2890 ret = btrfs_tree_mod_log_insert_key(lower, slot,
2891 BTRFS_MOD_LOG_KEY_ADD);
2892 BUG_ON(ret < 0);
2893 }
2894 btrfs_set_node_key(lower, key, slot);
2895 btrfs_set_node_blockptr(lower, slot, bytenr);
2896 WARN_ON(trans->transid == 0);
2897 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2898 btrfs_set_header_nritems(lower, nritems + 1);
2899 btrfs_mark_buffer_dirty(lower);
2900 }
2901
2902 /*
2903 * split the node at the specified level in path in two.
2904 * The path is corrected to point to the appropriate node after the split
2905 *
2906 * Before splitting this tries to make some room in the node by pushing
2907 * left and right, if either one works, it returns right away.
2908 *
2909 * returns 0 on success and < 0 on failure
2910 */
split_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2911 static noinline int split_node(struct btrfs_trans_handle *trans,
2912 struct btrfs_root *root,
2913 struct btrfs_path *path, int level)
2914 {
2915 struct btrfs_fs_info *fs_info = root->fs_info;
2916 struct extent_buffer *c;
2917 struct extent_buffer *split;
2918 struct btrfs_disk_key disk_key;
2919 int mid;
2920 int ret;
2921 u32 c_nritems;
2922
2923 c = path->nodes[level];
2924 WARN_ON(btrfs_header_generation(c) != trans->transid);
2925 if (c == root->node) {
2926 /*
2927 * trying to split the root, lets make a new one
2928 *
2929 * tree mod log: We don't log_removal old root in
2930 * insert_new_root, because that root buffer will be kept as a
2931 * normal node. We are going to log removal of half of the
2932 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2933 * holding a tree lock on the buffer, which is why we cannot
2934 * race with other tree_mod_log users.
2935 */
2936 ret = insert_new_root(trans, root, path, level + 1);
2937 if (ret)
2938 return ret;
2939 } else {
2940 ret = push_nodes_for_insert(trans, root, path, level);
2941 c = path->nodes[level];
2942 if (!ret && btrfs_header_nritems(c) <
2943 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2944 return 0;
2945 if (ret < 0)
2946 return ret;
2947 }
2948
2949 c_nritems = btrfs_header_nritems(c);
2950 mid = (c_nritems + 1) / 2;
2951 btrfs_node_key(c, &disk_key, mid);
2952
2953 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2954 &disk_key, level, c->start, 0,
2955 BTRFS_NESTING_SPLIT);
2956 if (IS_ERR(split))
2957 return PTR_ERR(split);
2958
2959 root_add_used(root, fs_info->nodesize);
2960 ASSERT(btrfs_header_level(c) == level);
2961
2962 ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2963 if (ret) {
2964 btrfs_abort_transaction(trans, ret);
2965 return ret;
2966 }
2967 copy_extent_buffer(split, c,
2968 btrfs_node_key_ptr_offset(split, 0),
2969 btrfs_node_key_ptr_offset(c, mid),
2970 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2971 btrfs_set_header_nritems(split, c_nritems - mid);
2972 btrfs_set_header_nritems(c, mid);
2973
2974 btrfs_mark_buffer_dirty(c);
2975 btrfs_mark_buffer_dirty(split);
2976
2977 insert_ptr(trans, path, &disk_key, split->start,
2978 path->slots[level + 1] + 1, level + 1);
2979
2980 if (path->slots[level] >= mid) {
2981 path->slots[level] -= mid;
2982 btrfs_tree_unlock(c);
2983 free_extent_buffer(c);
2984 path->nodes[level] = split;
2985 path->slots[level + 1] += 1;
2986 } else {
2987 btrfs_tree_unlock(split);
2988 free_extent_buffer(split);
2989 }
2990 return 0;
2991 }
2992
2993 /*
2994 * how many bytes are required to store the items in a leaf. start
2995 * and nr indicate which items in the leaf to check. This totals up the
2996 * space used both by the item structs and the item data
2997 */
leaf_space_used(struct extent_buffer * l,int start,int nr)2998 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2999 {
3000 int data_len;
3001 int nritems = btrfs_header_nritems(l);
3002 int end = min(nritems, start + nr) - 1;
3003
3004 if (!nr)
3005 return 0;
3006 data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3007 data_len = data_len - btrfs_item_offset(l, end);
3008 data_len += sizeof(struct btrfs_item) * nr;
3009 WARN_ON(data_len < 0);
3010 return data_len;
3011 }
3012
3013 /*
3014 * The space between the end of the leaf items and
3015 * the start of the leaf data. IOW, how much room
3016 * the leaf has left for both items and data
3017 */
btrfs_leaf_free_space(struct extent_buffer * leaf)3018 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3019 {
3020 struct btrfs_fs_info *fs_info = leaf->fs_info;
3021 int nritems = btrfs_header_nritems(leaf);
3022 int ret;
3023
3024 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3025 if (ret < 0) {
3026 btrfs_crit(fs_info,
3027 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3028 ret,
3029 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3030 leaf_space_used(leaf, 0, nritems), nritems);
3031 }
3032 return ret;
3033 }
3034
3035 /*
3036 * min slot controls the lowest index we're willing to push to the
3037 * right. We'll push up to and including min_slot, but no lower
3038 */
__push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * right,int free_space,u32 left_nritems,u32 min_slot)3039 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3040 struct btrfs_path *path,
3041 int data_size, int empty,
3042 struct extent_buffer *right,
3043 int free_space, u32 left_nritems,
3044 u32 min_slot)
3045 {
3046 struct btrfs_fs_info *fs_info = right->fs_info;
3047 struct extent_buffer *left = path->nodes[0];
3048 struct extent_buffer *upper = path->nodes[1];
3049 struct btrfs_map_token token;
3050 struct btrfs_disk_key disk_key;
3051 int slot;
3052 u32 i;
3053 int push_space = 0;
3054 int push_items = 0;
3055 u32 nr;
3056 u32 right_nritems;
3057 u32 data_end;
3058 u32 this_item_size;
3059
3060 if (empty)
3061 nr = 0;
3062 else
3063 nr = max_t(u32, 1, min_slot);
3064
3065 if (path->slots[0] >= left_nritems)
3066 push_space += data_size;
3067
3068 slot = path->slots[1];
3069 i = left_nritems - 1;
3070 while (i >= nr) {
3071 if (!empty && push_items > 0) {
3072 if (path->slots[0] > i)
3073 break;
3074 if (path->slots[0] == i) {
3075 int space = btrfs_leaf_free_space(left);
3076
3077 if (space + push_space * 2 > free_space)
3078 break;
3079 }
3080 }
3081
3082 if (path->slots[0] == i)
3083 push_space += data_size;
3084
3085 this_item_size = btrfs_item_size(left, i);
3086 if (this_item_size + sizeof(struct btrfs_item) +
3087 push_space > free_space)
3088 break;
3089
3090 push_items++;
3091 push_space += this_item_size + sizeof(struct btrfs_item);
3092 if (i == 0)
3093 break;
3094 i--;
3095 }
3096
3097 if (push_items == 0)
3098 goto out_unlock;
3099
3100 WARN_ON(!empty && push_items == left_nritems);
3101
3102 /* push left to right */
3103 right_nritems = btrfs_header_nritems(right);
3104
3105 push_space = btrfs_item_data_end(left, left_nritems - push_items);
3106 push_space -= leaf_data_end(left);
3107
3108 /* make room in the right data area */
3109 data_end = leaf_data_end(right);
3110 memmove_leaf_data(right, data_end - push_space, data_end,
3111 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3112
3113 /* copy from the left data area */
3114 copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3115 leaf_data_end(left), push_space);
3116
3117 memmove_leaf_items(right, push_items, 0, right_nritems);
3118
3119 /* copy the items from left to right */
3120 copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3121
3122 /* update the item pointers */
3123 btrfs_init_map_token(&token, right);
3124 right_nritems += push_items;
3125 btrfs_set_header_nritems(right, right_nritems);
3126 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3127 for (i = 0; i < right_nritems; i++) {
3128 push_space -= btrfs_token_item_size(&token, i);
3129 btrfs_set_token_item_offset(&token, i, push_space);
3130 }
3131
3132 left_nritems -= push_items;
3133 btrfs_set_header_nritems(left, left_nritems);
3134
3135 if (left_nritems)
3136 btrfs_mark_buffer_dirty(left);
3137 else
3138 btrfs_clear_buffer_dirty(trans, left);
3139
3140 btrfs_mark_buffer_dirty(right);
3141
3142 btrfs_item_key(right, &disk_key, 0);
3143 btrfs_set_node_key(upper, &disk_key, slot + 1);
3144 btrfs_mark_buffer_dirty(upper);
3145
3146 /* then fixup the leaf pointer in the path */
3147 if (path->slots[0] >= left_nritems) {
3148 path->slots[0] -= left_nritems;
3149 if (btrfs_header_nritems(path->nodes[0]) == 0)
3150 btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3151 btrfs_tree_unlock(path->nodes[0]);
3152 free_extent_buffer(path->nodes[0]);
3153 path->nodes[0] = right;
3154 path->slots[1] += 1;
3155 } else {
3156 btrfs_tree_unlock(right);
3157 free_extent_buffer(right);
3158 }
3159 return 0;
3160
3161 out_unlock:
3162 btrfs_tree_unlock(right);
3163 free_extent_buffer(right);
3164 return 1;
3165 }
3166
3167 /*
3168 * push some data in the path leaf to the right, trying to free up at
3169 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3170 *
3171 * returns 1 if the push failed because the other node didn't have enough
3172 * room, 0 if everything worked out and < 0 if there were major errors.
3173 *
3174 * this will push starting from min_slot to the end of the leaf. It won't
3175 * push any slot lower than min_slot
3176 */
push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 min_slot)3177 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3178 *root, struct btrfs_path *path,
3179 int min_data_size, int data_size,
3180 int empty, u32 min_slot)
3181 {
3182 struct extent_buffer *left = path->nodes[0];
3183 struct extent_buffer *right;
3184 struct extent_buffer *upper;
3185 int slot;
3186 int free_space;
3187 u32 left_nritems;
3188 int ret;
3189
3190 if (!path->nodes[1])
3191 return 1;
3192
3193 slot = path->slots[1];
3194 upper = path->nodes[1];
3195 if (slot >= btrfs_header_nritems(upper) - 1)
3196 return 1;
3197
3198 btrfs_assert_tree_write_locked(path->nodes[1]);
3199
3200 right = btrfs_read_node_slot(upper, slot + 1);
3201 /*
3202 * slot + 1 is not valid or we fail to read the right node,
3203 * no big deal, just return.
3204 */
3205 if (IS_ERR(right))
3206 return 1;
3207
3208 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3209
3210 free_space = btrfs_leaf_free_space(right);
3211 if (free_space < data_size)
3212 goto out_unlock;
3213
3214 ret = btrfs_cow_block(trans, root, right, upper,
3215 slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3216 if (ret)
3217 goto out_unlock;
3218
3219 left_nritems = btrfs_header_nritems(left);
3220 if (left_nritems == 0)
3221 goto out_unlock;
3222
3223 if (check_sibling_keys(left, right)) {
3224 ret = -EUCLEAN;
3225 btrfs_tree_unlock(right);
3226 free_extent_buffer(right);
3227 return ret;
3228 }
3229 if (path->slots[0] == left_nritems && !empty) {
3230 /* Key greater than all keys in the leaf, right neighbor has
3231 * enough room for it and we're not emptying our leaf to delete
3232 * it, therefore use right neighbor to insert the new item and
3233 * no need to touch/dirty our left leaf. */
3234 btrfs_tree_unlock(left);
3235 free_extent_buffer(left);
3236 path->nodes[0] = right;
3237 path->slots[0] = 0;
3238 path->slots[1]++;
3239 return 0;
3240 }
3241
3242 return __push_leaf_right(trans, path, min_data_size, empty, right,
3243 free_space, left_nritems, min_slot);
3244 out_unlock:
3245 btrfs_tree_unlock(right);
3246 free_extent_buffer(right);
3247 return 1;
3248 }
3249
3250 /*
3251 * push some data in the path leaf to the left, trying to free up at
3252 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3253 *
3254 * max_slot can put a limit on how far into the leaf we'll push items. The
3255 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3256 * items
3257 */
__push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * left,int free_space,u32 right_nritems,u32 max_slot)3258 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3259 struct btrfs_path *path, int data_size,
3260 int empty, struct extent_buffer *left,
3261 int free_space, u32 right_nritems,
3262 u32 max_slot)
3263 {
3264 struct btrfs_fs_info *fs_info = left->fs_info;
3265 struct btrfs_disk_key disk_key;
3266 struct extent_buffer *right = path->nodes[0];
3267 int i;
3268 int push_space = 0;
3269 int push_items = 0;
3270 u32 old_left_nritems;
3271 u32 nr;
3272 int ret = 0;
3273 u32 this_item_size;
3274 u32 old_left_item_size;
3275 struct btrfs_map_token token;
3276
3277 if (empty)
3278 nr = min(right_nritems, max_slot);
3279 else
3280 nr = min(right_nritems - 1, max_slot);
3281
3282 for (i = 0; i < nr; i++) {
3283 if (!empty && push_items > 0) {
3284 if (path->slots[0] < i)
3285 break;
3286 if (path->slots[0] == i) {
3287 int space = btrfs_leaf_free_space(right);
3288
3289 if (space + push_space * 2 > free_space)
3290 break;
3291 }
3292 }
3293
3294 if (path->slots[0] == i)
3295 push_space += data_size;
3296
3297 this_item_size = btrfs_item_size(right, i);
3298 if (this_item_size + sizeof(struct btrfs_item) + push_space >
3299 free_space)
3300 break;
3301
3302 push_items++;
3303 push_space += this_item_size + sizeof(struct btrfs_item);
3304 }
3305
3306 if (push_items == 0) {
3307 ret = 1;
3308 goto out;
3309 }
3310 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3311
3312 /* push data from right to left */
3313 copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3314
3315 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3316 btrfs_item_offset(right, push_items - 1);
3317
3318 copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3319 btrfs_item_offset(right, push_items - 1), push_space);
3320 old_left_nritems = btrfs_header_nritems(left);
3321 BUG_ON(old_left_nritems <= 0);
3322
3323 btrfs_init_map_token(&token, left);
3324 old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3325 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3326 u32 ioff;
3327
3328 ioff = btrfs_token_item_offset(&token, i);
3329 btrfs_set_token_item_offset(&token, i,
3330 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3331 }
3332 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3333
3334 /* fixup right node */
3335 if (push_items > right_nritems)
3336 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3337 right_nritems);
3338
3339 if (push_items < right_nritems) {
3340 push_space = btrfs_item_offset(right, push_items - 1) -
3341 leaf_data_end(right);
3342 memmove_leaf_data(right,
3343 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3344 leaf_data_end(right), push_space);
3345
3346 memmove_leaf_items(right, 0, push_items,
3347 btrfs_header_nritems(right) - push_items);
3348 }
3349
3350 btrfs_init_map_token(&token, right);
3351 right_nritems -= push_items;
3352 btrfs_set_header_nritems(right, right_nritems);
3353 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3354 for (i = 0; i < right_nritems; i++) {
3355 push_space = push_space - btrfs_token_item_size(&token, i);
3356 btrfs_set_token_item_offset(&token, i, push_space);
3357 }
3358
3359 btrfs_mark_buffer_dirty(left);
3360 if (right_nritems)
3361 btrfs_mark_buffer_dirty(right);
3362 else
3363 btrfs_clear_buffer_dirty(trans, right);
3364
3365 btrfs_item_key(right, &disk_key, 0);
3366 fixup_low_keys(path, &disk_key, 1);
3367
3368 /* then fixup the leaf pointer in the path */
3369 if (path->slots[0] < push_items) {
3370 path->slots[0] += old_left_nritems;
3371 btrfs_tree_unlock(path->nodes[0]);
3372 free_extent_buffer(path->nodes[0]);
3373 path->nodes[0] = left;
3374 path->slots[1] -= 1;
3375 } else {
3376 btrfs_tree_unlock(left);
3377 free_extent_buffer(left);
3378 path->slots[0] -= push_items;
3379 }
3380 BUG_ON(path->slots[0] < 0);
3381 return ret;
3382 out:
3383 btrfs_tree_unlock(left);
3384 free_extent_buffer(left);
3385 return ret;
3386 }
3387
3388 /*
3389 * push some data in the path leaf to the left, trying to free up at
3390 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3391 *
3392 * max_slot can put a limit on how far into the leaf we'll push items. The
3393 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3394 * items
3395 */
push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 max_slot)3396 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3397 *root, struct btrfs_path *path, int min_data_size,
3398 int data_size, int empty, u32 max_slot)
3399 {
3400 struct extent_buffer *right = path->nodes[0];
3401 struct extent_buffer *left;
3402 int slot;
3403 int free_space;
3404 u32 right_nritems;
3405 int ret = 0;
3406
3407 slot = path->slots[1];
3408 if (slot == 0)
3409 return 1;
3410 if (!path->nodes[1])
3411 return 1;
3412
3413 right_nritems = btrfs_header_nritems(right);
3414 if (right_nritems == 0)
3415 return 1;
3416
3417 btrfs_assert_tree_write_locked(path->nodes[1]);
3418
3419 left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3420 /*
3421 * slot - 1 is not valid or we fail to read the left node,
3422 * no big deal, just return.
3423 */
3424 if (IS_ERR(left))
3425 return 1;
3426
3427 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3428
3429 free_space = btrfs_leaf_free_space(left);
3430 if (free_space < data_size) {
3431 ret = 1;
3432 goto out;
3433 }
3434
3435 ret = btrfs_cow_block(trans, root, left,
3436 path->nodes[1], slot - 1, &left,
3437 BTRFS_NESTING_LEFT_COW);
3438 if (ret) {
3439 /* we hit -ENOSPC, but it isn't fatal here */
3440 if (ret == -ENOSPC)
3441 ret = 1;
3442 goto out;
3443 }
3444
3445 if (check_sibling_keys(left, right)) {
3446 ret = -EUCLEAN;
3447 goto out;
3448 }
3449 return __push_leaf_left(trans, path, min_data_size, empty, left,
3450 free_space, right_nritems, max_slot);
3451 out:
3452 btrfs_tree_unlock(left);
3453 free_extent_buffer(left);
3454 return ret;
3455 }
3456
3457 /*
3458 * split the path's leaf in two, making sure there is at least data_size
3459 * available for the resulting leaf level of the path.
3460 */
copy_for_split(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct extent_buffer * l,struct extent_buffer * right,int slot,int mid,int nritems)3461 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3462 struct btrfs_path *path,
3463 struct extent_buffer *l,
3464 struct extent_buffer *right,
3465 int slot, int mid, int nritems)
3466 {
3467 struct btrfs_fs_info *fs_info = trans->fs_info;
3468 int data_copy_size;
3469 int rt_data_off;
3470 int i;
3471 struct btrfs_disk_key disk_key;
3472 struct btrfs_map_token token;
3473
3474 nritems = nritems - mid;
3475 btrfs_set_header_nritems(right, nritems);
3476 data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3477
3478 copy_leaf_items(right, l, 0, mid, nritems);
3479
3480 copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3481 leaf_data_end(l), data_copy_size);
3482
3483 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3484
3485 btrfs_init_map_token(&token, right);
3486 for (i = 0; i < nritems; i++) {
3487 u32 ioff;
3488
3489 ioff = btrfs_token_item_offset(&token, i);
3490 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3491 }
3492
3493 btrfs_set_header_nritems(l, mid);
3494 btrfs_item_key(right, &disk_key, 0);
3495 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3496
3497 btrfs_mark_buffer_dirty(right);
3498 btrfs_mark_buffer_dirty(l);
3499 BUG_ON(path->slots[0] != slot);
3500
3501 if (mid <= slot) {
3502 btrfs_tree_unlock(path->nodes[0]);
3503 free_extent_buffer(path->nodes[0]);
3504 path->nodes[0] = right;
3505 path->slots[0] -= mid;
3506 path->slots[1] += 1;
3507 } else {
3508 btrfs_tree_unlock(right);
3509 free_extent_buffer(right);
3510 }
3511
3512 BUG_ON(path->slots[0] < 0);
3513 }
3514
3515 /*
3516 * double splits happen when we need to insert a big item in the middle
3517 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3518 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3519 * A B C
3520 *
3521 * We avoid this by trying to push the items on either side of our target
3522 * into the adjacent leaves. If all goes well we can avoid the double split
3523 * completely.
3524 */
push_for_double_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size)3525 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3526 struct btrfs_root *root,
3527 struct btrfs_path *path,
3528 int data_size)
3529 {
3530 int ret;
3531 int progress = 0;
3532 int slot;
3533 u32 nritems;
3534 int space_needed = data_size;
3535
3536 slot = path->slots[0];
3537 if (slot < btrfs_header_nritems(path->nodes[0]))
3538 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3539
3540 /*
3541 * try to push all the items after our slot into the
3542 * right leaf
3543 */
3544 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3545 if (ret < 0)
3546 return ret;
3547
3548 if (ret == 0)
3549 progress++;
3550
3551 nritems = btrfs_header_nritems(path->nodes[0]);
3552 /*
3553 * our goal is to get our slot at the start or end of a leaf. If
3554 * we've done so we're done
3555 */
3556 if (path->slots[0] == 0 || path->slots[0] == nritems)
3557 return 0;
3558
3559 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3560 return 0;
3561
3562 /* try to push all the items before our slot into the next leaf */
3563 slot = path->slots[0];
3564 space_needed = data_size;
3565 if (slot > 0)
3566 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3567 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3568 if (ret < 0)
3569 return ret;
3570
3571 if (ret == 0)
3572 progress++;
3573
3574 if (progress)
3575 return 0;
3576 return 1;
3577 }
3578
3579 /*
3580 * split the path's leaf in two, making sure there is at least data_size
3581 * available for the resulting leaf level of the path.
3582 *
3583 * returns 0 if all went well and < 0 on failure.
3584 */
split_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * ins_key,struct btrfs_path * path,int data_size,int extend)3585 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3586 struct btrfs_root *root,
3587 const struct btrfs_key *ins_key,
3588 struct btrfs_path *path, int data_size,
3589 int extend)
3590 {
3591 struct btrfs_disk_key disk_key;
3592 struct extent_buffer *l;
3593 u32 nritems;
3594 int mid;
3595 int slot;
3596 struct extent_buffer *right;
3597 struct btrfs_fs_info *fs_info = root->fs_info;
3598 int ret = 0;
3599 int wret;
3600 int split;
3601 int num_doubles = 0;
3602 int tried_avoid_double = 0;
3603
3604 l = path->nodes[0];
3605 slot = path->slots[0];
3606 if (extend && data_size + btrfs_item_size(l, slot) +
3607 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3608 return -EOVERFLOW;
3609
3610 /* first try to make some room by pushing left and right */
3611 if (data_size && path->nodes[1]) {
3612 int space_needed = data_size;
3613
3614 if (slot < btrfs_header_nritems(l))
3615 space_needed -= btrfs_leaf_free_space(l);
3616
3617 wret = push_leaf_right(trans, root, path, space_needed,
3618 space_needed, 0, 0);
3619 if (wret < 0)
3620 return wret;
3621 if (wret) {
3622 space_needed = data_size;
3623 if (slot > 0)
3624 space_needed -= btrfs_leaf_free_space(l);
3625 wret = push_leaf_left(trans, root, path, space_needed,
3626 space_needed, 0, (u32)-1);
3627 if (wret < 0)
3628 return wret;
3629 }
3630 l = path->nodes[0];
3631
3632 /* did the pushes work? */
3633 if (btrfs_leaf_free_space(l) >= data_size)
3634 return 0;
3635 }
3636
3637 if (!path->nodes[1]) {
3638 ret = insert_new_root(trans, root, path, 1);
3639 if (ret)
3640 return ret;
3641 }
3642 again:
3643 split = 1;
3644 l = path->nodes[0];
3645 slot = path->slots[0];
3646 nritems = btrfs_header_nritems(l);
3647 mid = (nritems + 1) / 2;
3648
3649 if (mid <= slot) {
3650 if (nritems == 1 ||
3651 leaf_space_used(l, mid, nritems - mid) + data_size >
3652 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3653 if (slot >= nritems) {
3654 split = 0;
3655 } else {
3656 mid = slot;
3657 if (mid != nritems &&
3658 leaf_space_used(l, mid, nritems - mid) +
3659 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3660 if (data_size && !tried_avoid_double)
3661 goto push_for_double;
3662 split = 2;
3663 }
3664 }
3665 }
3666 } else {
3667 if (leaf_space_used(l, 0, mid) + data_size >
3668 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3669 if (!extend && data_size && slot == 0) {
3670 split = 0;
3671 } else if ((extend || !data_size) && slot == 0) {
3672 mid = 1;
3673 } else {
3674 mid = slot;
3675 if (mid != nritems &&
3676 leaf_space_used(l, mid, nritems - mid) +
3677 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3678 if (data_size && !tried_avoid_double)
3679 goto push_for_double;
3680 split = 2;
3681 }
3682 }
3683 }
3684 }
3685
3686 if (split == 0)
3687 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3688 else
3689 btrfs_item_key(l, &disk_key, mid);
3690
3691 /*
3692 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3693 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3694 * subclasses, which is 8 at the time of this patch, and we've maxed it
3695 * out. In the future we could add a
3696 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3697 * use BTRFS_NESTING_NEW_ROOT.
3698 */
3699 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3700 &disk_key, 0, l->start, 0,
3701 num_doubles ? BTRFS_NESTING_NEW_ROOT :
3702 BTRFS_NESTING_SPLIT);
3703 if (IS_ERR(right))
3704 return PTR_ERR(right);
3705
3706 root_add_used(root, fs_info->nodesize);
3707
3708 if (split == 0) {
3709 if (mid <= slot) {
3710 btrfs_set_header_nritems(right, 0);
3711 insert_ptr(trans, path, &disk_key,
3712 right->start, path->slots[1] + 1, 1);
3713 btrfs_tree_unlock(path->nodes[0]);
3714 free_extent_buffer(path->nodes[0]);
3715 path->nodes[0] = right;
3716 path->slots[0] = 0;
3717 path->slots[1] += 1;
3718 } else {
3719 btrfs_set_header_nritems(right, 0);
3720 insert_ptr(trans, path, &disk_key,
3721 right->start, path->slots[1], 1);
3722 btrfs_tree_unlock(path->nodes[0]);
3723 free_extent_buffer(path->nodes[0]);
3724 path->nodes[0] = right;
3725 path->slots[0] = 0;
3726 if (path->slots[1] == 0)
3727 fixup_low_keys(path, &disk_key, 1);
3728 }
3729 /*
3730 * We create a new leaf 'right' for the required ins_len and
3731 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3732 * the content of ins_len to 'right'.
3733 */
3734 return ret;
3735 }
3736
3737 copy_for_split(trans, path, l, right, slot, mid, nritems);
3738
3739 if (split == 2) {
3740 BUG_ON(num_doubles != 0);
3741 num_doubles++;
3742 goto again;
3743 }
3744
3745 return 0;
3746
3747 push_for_double:
3748 push_for_double_split(trans, root, path, data_size);
3749 tried_avoid_double = 1;
3750 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3751 return 0;
3752 goto again;
3753 }
3754
setup_leaf_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int ins_len)3755 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3756 struct btrfs_root *root,
3757 struct btrfs_path *path, int ins_len)
3758 {
3759 struct btrfs_key key;
3760 struct extent_buffer *leaf;
3761 struct btrfs_file_extent_item *fi;
3762 u64 extent_len = 0;
3763 u32 item_size;
3764 int ret;
3765
3766 leaf = path->nodes[0];
3767 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3768
3769 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3770 key.type != BTRFS_EXTENT_CSUM_KEY);
3771
3772 if (btrfs_leaf_free_space(leaf) >= ins_len)
3773 return 0;
3774
3775 item_size = btrfs_item_size(leaf, path->slots[0]);
3776 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3777 fi = btrfs_item_ptr(leaf, path->slots[0],
3778 struct btrfs_file_extent_item);
3779 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3780 }
3781 btrfs_release_path(path);
3782
3783 path->keep_locks = 1;
3784 path->search_for_split = 1;
3785 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3786 path->search_for_split = 0;
3787 if (ret > 0)
3788 ret = -EAGAIN;
3789 if (ret < 0)
3790 goto err;
3791
3792 ret = -EAGAIN;
3793 leaf = path->nodes[0];
3794 /* if our item isn't there, return now */
3795 if (item_size != btrfs_item_size(leaf, path->slots[0]))
3796 goto err;
3797
3798 /* the leaf has changed, it now has room. return now */
3799 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3800 goto err;
3801
3802 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3803 fi = btrfs_item_ptr(leaf, path->slots[0],
3804 struct btrfs_file_extent_item);
3805 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3806 goto err;
3807 }
3808
3809 ret = split_leaf(trans, root, &key, path, ins_len, 1);
3810 if (ret)
3811 goto err;
3812
3813 path->keep_locks = 0;
3814 btrfs_unlock_up_safe(path, 1);
3815 return 0;
3816 err:
3817 path->keep_locks = 0;
3818 return ret;
3819 }
3820
split_item(struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)3821 static noinline int split_item(struct btrfs_path *path,
3822 const struct btrfs_key *new_key,
3823 unsigned long split_offset)
3824 {
3825 struct extent_buffer *leaf;
3826 int orig_slot, slot;
3827 char *buf;
3828 u32 nritems;
3829 u32 item_size;
3830 u32 orig_offset;
3831 struct btrfs_disk_key disk_key;
3832
3833 leaf = path->nodes[0];
3834 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3835
3836 orig_slot = path->slots[0];
3837 orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3838 item_size = btrfs_item_size(leaf, path->slots[0]);
3839
3840 buf = kmalloc(item_size, GFP_NOFS);
3841 if (!buf)
3842 return -ENOMEM;
3843
3844 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3845 path->slots[0]), item_size);
3846
3847 slot = path->slots[0] + 1;
3848 nritems = btrfs_header_nritems(leaf);
3849 if (slot != nritems) {
3850 /* shift the items */
3851 memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3852 }
3853
3854 btrfs_cpu_key_to_disk(&disk_key, new_key);
3855 btrfs_set_item_key(leaf, &disk_key, slot);
3856
3857 btrfs_set_item_offset(leaf, slot, orig_offset);
3858 btrfs_set_item_size(leaf, slot, item_size - split_offset);
3859
3860 btrfs_set_item_offset(leaf, orig_slot,
3861 orig_offset + item_size - split_offset);
3862 btrfs_set_item_size(leaf, orig_slot, split_offset);
3863
3864 btrfs_set_header_nritems(leaf, nritems + 1);
3865
3866 /* write the data for the start of the original item */
3867 write_extent_buffer(leaf, buf,
3868 btrfs_item_ptr_offset(leaf, path->slots[0]),
3869 split_offset);
3870
3871 /* write the data for the new item */
3872 write_extent_buffer(leaf, buf + split_offset,
3873 btrfs_item_ptr_offset(leaf, slot),
3874 item_size - split_offset);
3875 btrfs_mark_buffer_dirty(leaf);
3876
3877 BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3878 kfree(buf);
3879 return 0;
3880 }
3881
3882 /*
3883 * This function splits a single item into two items,
3884 * giving 'new_key' to the new item and splitting the
3885 * old one at split_offset (from the start of the item).
3886 *
3887 * The path may be released by this operation. After
3888 * the split, the path is pointing to the old item. The
3889 * new item is going to be in the same node as the old one.
3890 *
3891 * Note, the item being split must be smaller enough to live alone on
3892 * a tree block with room for one extra struct btrfs_item
3893 *
3894 * This allows us to split the item in place, keeping a lock on the
3895 * leaf the entire time.
3896 */
btrfs_split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)3897 int btrfs_split_item(struct btrfs_trans_handle *trans,
3898 struct btrfs_root *root,
3899 struct btrfs_path *path,
3900 const struct btrfs_key *new_key,
3901 unsigned long split_offset)
3902 {
3903 int ret;
3904 ret = setup_leaf_for_split(trans, root, path,
3905 sizeof(struct btrfs_item));
3906 if (ret)
3907 return ret;
3908
3909 ret = split_item(path, new_key, split_offset);
3910 return ret;
3911 }
3912
3913 /*
3914 * make the item pointed to by the path smaller. new_size indicates
3915 * how small to make it, and from_end tells us if we just chop bytes
3916 * off the end of the item or if we shift the item to chop bytes off
3917 * the front.
3918 */
btrfs_truncate_item(struct btrfs_path * path,u32 new_size,int from_end)3919 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3920 {
3921 int slot;
3922 struct extent_buffer *leaf;
3923 u32 nritems;
3924 unsigned int data_end;
3925 unsigned int old_data_start;
3926 unsigned int old_size;
3927 unsigned int size_diff;
3928 int i;
3929 struct btrfs_map_token token;
3930
3931 leaf = path->nodes[0];
3932 slot = path->slots[0];
3933
3934 old_size = btrfs_item_size(leaf, slot);
3935 if (old_size == new_size)
3936 return;
3937
3938 nritems = btrfs_header_nritems(leaf);
3939 data_end = leaf_data_end(leaf);
3940
3941 old_data_start = btrfs_item_offset(leaf, slot);
3942
3943 size_diff = old_size - new_size;
3944
3945 BUG_ON(slot < 0);
3946 BUG_ON(slot >= nritems);
3947
3948 /*
3949 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3950 */
3951 /* first correct the data pointers */
3952 btrfs_init_map_token(&token, leaf);
3953 for (i = slot; i < nritems; i++) {
3954 u32 ioff;
3955
3956 ioff = btrfs_token_item_offset(&token, i);
3957 btrfs_set_token_item_offset(&token, i, ioff + size_diff);
3958 }
3959
3960 /* shift the data */
3961 if (from_end) {
3962 memmove_leaf_data(leaf, data_end + size_diff, data_end,
3963 old_data_start + new_size - data_end);
3964 } else {
3965 struct btrfs_disk_key disk_key;
3966 u64 offset;
3967
3968 btrfs_item_key(leaf, &disk_key, slot);
3969
3970 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3971 unsigned long ptr;
3972 struct btrfs_file_extent_item *fi;
3973
3974 fi = btrfs_item_ptr(leaf, slot,
3975 struct btrfs_file_extent_item);
3976 fi = (struct btrfs_file_extent_item *)(
3977 (unsigned long)fi - size_diff);
3978
3979 if (btrfs_file_extent_type(leaf, fi) ==
3980 BTRFS_FILE_EXTENT_INLINE) {
3981 ptr = btrfs_item_ptr_offset(leaf, slot);
3982 memmove_extent_buffer(leaf, ptr,
3983 (unsigned long)fi,
3984 BTRFS_FILE_EXTENT_INLINE_DATA_START);
3985 }
3986 }
3987
3988 memmove_leaf_data(leaf, data_end + size_diff, data_end,
3989 old_data_start - data_end);
3990
3991 offset = btrfs_disk_key_offset(&disk_key);
3992 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3993 btrfs_set_item_key(leaf, &disk_key, slot);
3994 if (slot == 0)
3995 fixup_low_keys(path, &disk_key, 1);
3996 }
3997
3998 btrfs_set_item_size(leaf, slot, new_size);
3999 btrfs_mark_buffer_dirty(leaf);
4000
4001 if (btrfs_leaf_free_space(leaf) < 0) {
4002 btrfs_print_leaf(leaf);
4003 BUG();
4004 }
4005 }
4006
4007 /*
4008 * make the item pointed to by the path bigger, data_size is the added size.
4009 */
btrfs_extend_item(struct btrfs_path * path,u32 data_size)4010 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4011 {
4012 int slot;
4013 struct extent_buffer *leaf;
4014 u32 nritems;
4015 unsigned int data_end;
4016 unsigned int old_data;
4017 unsigned int old_size;
4018 int i;
4019 struct btrfs_map_token token;
4020
4021 leaf = path->nodes[0];
4022
4023 nritems = btrfs_header_nritems(leaf);
4024 data_end = leaf_data_end(leaf);
4025
4026 if (btrfs_leaf_free_space(leaf) < data_size) {
4027 btrfs_print_leaf(leaf);
4028 BUG();
4029 }
4030 slot = path->slots[0];
4031 old_data = btrfs_item_data_end(leaf, slot);
4032
4033 BUG_ON(slot < 0);
4034 if (slot >= nritems) {
4035 btrfs_print_leaf(leaf);
4036 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4037 slot, nritems);
4038 BUG();
4039 }
4040
4041 /*
4042 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4043 */
4044 /* first correct the data pointers */
4045 btrfs_init_map_token(&token, leaf);
4046 for (i = slot; i < nritems; i++) {
4047 u32 ioff;
4048
4049 ioff = btrfs_token_item_offset(&token, i);
4050 btrfs_set_token_item_offset(&token, i, ioff - data_size);
4051 }
4052
4053 /* shift the data */
4054 memmove_leaf_data(leaf, data_end - data_size, data_end,
4055 old_data - data_end);
4056
4057 data_end = old_data;
4058 old_size = btrfs_item_size(leaf, slot);
4059 btrfs_set_item_size(leaf, slot, old_size + data_size);
4060 btrfs_mark_buffer_dirty(leaf);
4061
4062 if (btrfs_leaf_free_space(leaf) < 0) {
4063 btrfs_print_leaf(leaf);
4064 BUG();
4065 }
4066 }
4067
4068 /*
4069 * Make space in the node before inserting one or more items.
4070 *
4071 * @root: root we are inserting items to
4072 * @path: points to the leaf/slot where we are going to insert new items
4073 * @batch: information about the batch of items to insert
4074 *
4075 * Main purpose is to save stack depth by doing the bulk of the work in a
4076 * function that doesn't call btrfs_search_slot
4077 */
setup_items_for_insert(struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_item_batch * batch)4078 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4079 const struct btrfs_item_batch *batch)
4080 {
4081 struct btrfs_fs_info *fs_info = root->fs_info;
4082 int i;
4083 u32 nritems;
4084 unsigned int data_end;
4085 struct btrfs_disk_key disk_key;
4086 struct extent_buffer *leaf;
4087 int slot;
4088 struct btrfs_map_token token;
4089 u32 total_size;
4090
4091 /*
4092 * Before anything else, update keys in the parent and other ancestors
4093 * if needed, then release the write locks on them, so that other tasks
4094 * can use them while we modify the leaf.
4095 */
4096 if (path->slots[0] == 0) {
4097 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4098 fixup_low_keys(path, &disk_key, 1);
4099 }
4100 btrfs_unlock_up_safe(path, 1);
4101
4102 leaf = path->nodes[0];
4103 slot = path->slots[0];
4104
4105 nritems = btrfs_header_nritems(leaf);
4106 data_end = leaf_data_end(leaf);
4107 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4108
4109 if (btrfs_leaf_free_space(leaf) < total_size) {
4110 btrfs_print_leaf(leaf);
4111 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4112 total_size, btrfs_leaf_free_space(leaf));
4113 BUG();
4114 }
4115
4116 btrfs_init_map_token(&token, leaf);
4117 if (slot != nritems) {
4118 unsigned int old_data = btrfs_item_data_end(leaf, slot);
4119
4120 if (old_data < data_end) {
4121 btrfs_print_leaf(leaf);
4122 btrfs_crit(fs_info,
4123 "item at slot %d with data offset %u beyond data end of leaf %u",
4124 slot, old_data, data_end);
4125 BUG();
4126 }
4127 /*
4128 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4129 */
4130 /* first correct the data pointers */
4131 for (i = slot; i < nritems; i++) {
4132 u32 ioff;
4133
4134 ioff = btrfs_token_item_offset(&token, i);
4135 btrfs_set_token_item_offset(&token, i,
4136 ioff - batch->total_data_size);
4137 }
4138 /* shift the items */
4139 memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4140
4141 /* shift the data */
4142 memmove_leaf_data(leaf, data_end - batch->total_data_size,
4143 data_end, old_data - data_end);
4144 data_end = old_data;
4145 }
4146
4147 /* setup the item for the new data */
4148 for (i = 0; i < batch->nr; i++) {
4149 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4150 btrfs_set_item_key(leaf, &disk_key, slot + i);
4151 data_end -= batch->data_sizes[i];
4152 btrfs_set_token_item_offset(&token, slot + i, data_end);
4153 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4154 }
4155
4156 btrfs_set_header_nritems(leaf, nritems + batch->nr);
4157 btrfs_mark_buffer_dirty(leaf);
4158
4159 if (btrfs_leaf_free_space(leaf) < 0) {
4160 btrfs_print_leaf(leaf);
4161 BUG();
4162 }
4163 }
4164
4165 /*
4166 * Insert a new item into a leaf.
4167 *
4168 * @root: The root of the btree.
4169 * @path: A path pointing to the target leaf and slot.
4170 * @key: The key of the new item.
4171 * @data_size: The size of the data associated with the new key.
4172 */
btrfs_setup_item_for_insert(struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key,u32 data_size)4173 void btrfs_setup_item_for_insert(struct btrfs_root *root,
4174 struct btrfs_path *path,
4175 const struct btrfs_key *key,
4176 u32 data_size)
4177 {
4178 struct btrfs_item_batch batch;
4179
4180 batch.keys = key;
4181 batch.data_sizes = &data_size;
4182 batch.total_data_size = data_size;
4183 batch.nr = 1;
4184
4185 setup_items_for_insert(root, path, &batch);
4186 }
4187
4188 /*
4189 * Given a key and some data, insert items into the tree.
4190 * This does all the path init required, making room in the tree if needed.
4191 */
btrfs_insert_empty_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_item_batch * batch)4192 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4193 struct btrfs_root *root,
4194 struct btrfs_path *path,
4195 const struct btrfs_item_batch *batch)
4196 {
4197 int ret = 0;
4198 int slot;
4199 u32 total_size;
4200
4201 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4202 ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4203 if (ret == 0)
4204 return -EEXIST;
4205 if (ret < 0)
4206 return ret;
4207
4208 slot = path->slots[0];
4209 BUG_ON(slot < 0);
4210
4211 setup_items_for_insert(root, path, batch);
4212 return 0;
4213 }
4214
4215 /*
4216 * Given a key and some data, insert an item into the tree.
4217 * This does all the path init required, making room in the tree if needed.
4218 */
btrfs_insert_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * cpu_key,void * data,u32 data_size)4219 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4220 const struct btrfs_key *cpu_key, void *data,
4221 u32 data_size)
4222 {
4223 int ret = 0;
4224 struct btrfs_path *path;
4225 struct extent_buffer *leaf;
4226 unsigned long ptr;
4227
4228 path = btrfs_alloc_path();
4229 if (!path)
4230 return -ENOMEM;
4231 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4232 if (!ret) {
4233 leaf = path->nodes[0];
4234 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4235 write_extent_buffer(leaf, data, ptr, data_size);
4236 btrfs_mark_buffer_dirty(leaf);
4237 }
4238 btrfs_free_path(path);
4239 return ret;
4240 }
4241
4242 /*
4243 * This function duplicates an item, giving 'new_key' to the new item.
4244 * It guarantees both items live in the same tree leaf and the new item is
4245 * contiguous with the original item.
4246 *
4247 * This allows us to split a file extent in place, keeping a lock on the leaf
4248 * the entire time.
4249 */
btrfs_duplicate_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key)4250 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4251 struct btrfs_root *root,
4252 struct btrfs_path *path,
4253 const struct btrfs_key *new_key)
4254 {
4255 struct extent_buffer *leaf;
4256 int ret;
4257 u32 item_size;
4258
4259 leaf = path->nodes[0];
4260 item_size = btrfs_item_size(leaf, path->slots[0]);
4261 ret = setup_leaf_for_split(trans, root, path,
4262 item_size + sizeof(struct btrfs_item));
4263 if (ret)
4264 return ret;
4265
4266 path->slots[0]++;
4267 btrfs_setup_item_for_insert(root, path, new_key, item_size);
4268 leaf = path->nodes[0];
4269 memcpy_extent_buffer(leaf,
4270 btrfs_item_ptr_offset(leaf, path->slots[0]),
4271 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4272 item_size);
4273 return 0;
4274 }
4275
4276 /*
4277 * delete the pointer from a given node.
4278 *
4279 * the tree should have been previously balanced so the deletion does not
4280 * empty a node.
4281 */
del_ptr(struct btrfs_root * root,struct btrfs_path * path,int level,int slot)4282 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4283 int level, int slot)
4284 {
4285 struct extent_buffer *parent = path->nodes[level];
4286 u32 nritems;
4287 int ret;
4288
4289 nritems = btrfs_header_nritems(parent);
4290 if (slot != nritems - 1) {
4291 if (level) {
4292 ret = btrfs_tree_mod_log_insert_move(parent, slot,
4293 slot + 1, nritems - slot - 1);
4294 BUG_ON(ret < 0);
4295 }
4296 memmove_extent_buffer(parent,
4297 btrfs_node_key_ptr_offset(parent, slot),
4298 btrfs_node_key_ptr_offset(parent, slot + 1),
4299 sizeof(struct btrfs_key_ptr) *
4300 (nritems - slot - 1));
4301 } else if (level) {
4302 ret = btrfs_tree_mod_log_insert_key(parent, slot,
4303 BTRFS_MOD_LOG_KEY_REMOVE);
4304 BUG_ON(ret < 0);
4305 }
4306
4307 nritems--;
4308 btrfs_set_header_nritems(parent, nritems);
4309 if (nritems == 0 && parent == root->node) {
4310 BUG_ON(btrfs_header_level(root->node) != 1);
4311 /* just turn the root into a leaf and break */
4312 btrfs_set_header_level(root->node, 0);
4313 } else if (slot == 0) {
4314 struct btrfs_disk_key disk_key;
4315
4316 btrfs_node_key(parent, &disk_key, 0);
4317 fixup_low_keys(path, &disk_key, level + 1);
4318 }
4319 btrfs_mark_buffer_dirty(parent);
4320 }
4321
4322 /*
4323 * a helper function to delete the leaf pointed to by path->slots[1] and
4324 * path->nodes[1].
4325 *
4326 * This deletes the pointer in path->nodes[1] and frees the leaf
4327 * block extent. zero is returned if it all worked out, < 0 otherwise.
4328 *
4329 * The path must have already been setup for deleting the leaf, including
4330 * all the proper balancing. path->nodes[1] must be locked.
4331 */
btrfs_del_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * leaf)4332 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4333 struct btrfs_root *root,
4334 struct btrfs_path *path,
4335 struct extent_buffer *leaf)
4336 {
4337 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4338 del_ptr(root, path, 1, path->slots[1]);
4339
4340 /*
4341 * btrfs_free_extent is expensive, we want to make sure we
4342 * aren't holding any locks when we call it
4343 */
4344 btrfs_unlock_up_safe(path, 0);
4345
4346 root_sub_used(root, leaf->len);
4347
4348 atomic_inc(&leaf->refs);
4349 btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4350 free_extent_buffer_stale(leaf);
4351 }
4352 /*
4353 * delete the item at the leaf level in path. If that empties
4354 * the leaf, remove it from the tree
4355 */
btrfs_del_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int slot,int nr)4356 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4357 struct btrfs_path *path, int slot, int nr)
4358 {
4359 struct btrfs_fs_info *fs_info = root->fs_info;
4360 struct extent_buffer *leaf;
4361 int ret = 0;
4362 int wret;
4363 u32 nritems;
4364
4365 leaf = path->nodes[0];
4366 nritems = btrfs_header_nritems(leaf);
4367
4368 if (slot + nr != nritems) {
4369 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4370 const int data_end = leaf_data_end(leaf);
4371 struct btrfs_map_token token;
4372 u32 dsize = 0;
4373 int i;
4374
4375 for (i = 0; i < nr; i++)
4376 dsize += btrfs_item_size(leaf, slot + i);
4377
4378 memmove_leaf_data(leaf, data_end + dsize, data_end,
4379 last_off - data_end);
4380
4381 btrfs_init_map_token(&token, leaf);
4382 for (i = slot + nr; i < nritems; i++) {
4383 u32 ioff;
4384
4385 ioff = btrfs_token_item_offset(&token, i);
4386 btrfs_set_token_item_offset(&token, i, ioff + dsize);
4387 }
4388
4389 memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4390 }
4391 btrfs_set_header_nritems(leaf, nritems - nr);
4392 nritems -= nr;
4393
4394 /* delete the leaf if we've emptied it */
4395 if (nritems == 0) {
4396 if (leaf == root->node) {
4397 btrfs_set_header_level(leaf, 0);
4398 } else {
4399 btrfs_clear_buffer_dirty(trans, leaf);
4400 btrfs_del_leaf(trans, root, path, leaf);
4401 }
4402 } else {
4403 int used = leaf_space_used(leaf, 0, nritems);
4404 if (slot == 0) {
4405 struct btrfs_disk_key disk_key;
4406
4407 btrfs_item_key(leaf, &disk_key, 0);
4408 fixup_low_keys(path, &disk_key, 1);
4409 }
4410
4411 /*
4412 * Try to delete the leaf if it is mostly empty. We do this by
4413 * trying to move all its items into its left and right neighbours.
4414 * If we can't move all the items, then we don't delete it - it's
4415 * not ideal, but future insertions might fill the leaf with more
4416 * items, or items from other leaves might be moved later into our
4417 * leaf due to deletions on those leaves.
4418 */
4419 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4420 u32 min_push_space;
4421
4422 /* push_leaf_left fixes the path.
4423 * make sure the path still points to our leaf
4424 * for possible call to del_ptr below
4425 */
4426 slot = path->slots[1];
4427 atomic_inc(&leaf->refs);
4428 /*
4429 * We want to be able to at least push one item to the
4430 * left neighbour leaf, and that's the first item.
4431 */
4432 min_push_space = sizeof(struct btrfs_item) +
4433 btrfs_item_size(leaf, 0);
4434 wret = push_leaf_left(trans, root, path, 0,
4435 min_push_space, 1, (u32)-1);
4436 if (wret < 0 && wret != -ENOSPC)
4437 ret = wret;
4438
4439 if (path->nodes[0] == leaf &&
4440 btrfs_header_nritems(leaf)) {
4441 /*
4442 * If we were not able to push all items from our
4443 * leaf to its left neighbour, then attempt to
4444 * either push all the remaining items to the
4445 * right neighbour or none. There's no advantage
4446 * in pushing only some items, instead of all, as
4447 * it's pointless to end up with a leaf having
4448 * too few items while the neighbours can be full
4449 * or nearly full.
4450 */
4451 nritems = btrfs_header_nritems(leaf);
4452 min_push_space = leaf_space_used(leaf, 0, nritems);
4453 wret = push_leaf_right(trans, root, path, 0,
4454 min_push_space, 1, 0);
4455 if (wret < 0 && wret != -ENOSPC)
4456 ret = wret;
4457 }
4458
4459 if (btrfs_header_nritems(leaf) == 0) {
4460 path->slots[1] = slot;
4461 btrfs_del_leaf(trans, root, path, leaf);
4462 free_extent_buffer(leaf);
4463 ret = 0;
4464 } else {
4465 /* if we're still in the path, make sure
4466 * we're dirty. Otherwise, one of the
4467 * push_leaf functions must have already
4468 * dirtied this buffer
4469 */
4470 if (path->nodes[0] == leaf)
4471 btrfs_mark_buffer_dirty(leaf);
4472 free_extent_buffer(leaf);
4473 }
4474 } else {
4475 btrfs_mark_buffer_dirty(leaf);
4476 }
4477 }
4478 return ret;
4479 }
4480
4481 /*
4482 * search the tree again to find a leaf with lesser keys
4483 * returns 0 if it found something or 1 if there are no lesser leaves.
4484 * returns < 0 on io errors.
4485 *
4486 * This may release the path, and so you may lose any locks held at the
4487 * time you call it.
4488 */
btrfs_prev_leaf(struct btrfs_root * root,struct btrfs_path * path)4489 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4490 {
4491 struct btrfs_key key;
4492 struct btrfs_disk_key found_key;
4493 int ret;
4494
4495 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4496
4497 if (key.offset > 0) {
4498 key.offset--;
4499 } else if (key.type > 0) {
4500 key.type--;
4501 key.offset = (u64)-1;
4502 } else if (key.objectid > 0) {
4503 key.objectid--;
4504 key.type = (u8)-1;
4505 key.offset = (u64)-1;
4506 } else {
4507 return 1;
4508 }
4509
4510 btrfs_release_path(path);
4511 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4512 if (ret < 0)
4513 return ret;
4514 btrfs_item_key(path->nodes[0], &found_key, 0);
4515 ret = comp_keys(&found_key, &key);
4516 /*
4517 * We might have had an item with the previous key in the tree right
4518 * before we released our path. And after we released our path, that
4519 * item might have been pushed to the first slot (0) of the leaf we
4520 * were holding due to a tree balance. Alternatively, an item with the
4521 * previous key can exist as the only element of a leaf (big fat item).
4522 * Therefore account for these 2 cases, so that our callers (like
4523 * btrfs_previous_item) don't miss an existing item with a key matching
4524 * the previous key we computed above.
4525 */
4526 if (ret <= 0)
4527 return 0;
4528 return 1;
4529 }
4530
4531 /*
4532 * A helper function to walk down the tree starting at min_key, and looking
4533 * for nodes or leaves that are have a minimum transaction id.
4534 * This is used by the btree defrag code, and tree logging
4535 *
4536 * This does not cow, but it does stuff the starting key it finds back
4537 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4538 * key and get a writable path.
4539 *
4540 * This honors path->lowest_level to prevent descent past a given level
4541 * of the tree.
4542 *
4543 * min_trans indicates the oldest transaction that you are interested
4544 * in walking through. Any nodes or leaves older than min_trans are
4545 * skipped over (without reading them).
4546 *
4547 * returns zero if something useful was found, < 0 on error and 1 if there
4548 * was nothing in the tree that matched the search criteria.
4549 */
btrfs_search_forward(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_path * path,u64 min_trans)4550 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4551 struct btrfs_path *path,
4552 u64 min_trans)
4553 {
4554 struct extent_buffer *cur;
4555 struct btrfs_key found_key;
4556 int slot;
4557 int sret;
4558 u32 nritems;
4559 int level;
4560 int ret = 1;
4561 int keep_locks = path->keep_locks;
4562
4563 ASSERT(!path->nowait);
4564 path->keep_locks = 1;
4565 again:
4566 cur = btrfs_read_lock_root_node(root);
4567 level = btrfs_header_level(cur);
4568 WARN_ON(path->nodes[level]);
4569 path->nodes[level] = cur;
4570 path->locks[level] = BTRFS_READ_LOCK;
4571
4572 if (btrfs_header_generation(cur) < min_trans) {
4573 ret = 1;
4574 goto out;
4575 }
4576 while (1) {
4577 nritems = btrfs_header_nritems(cur);
4578 level = btrfs_header_level(cur);
4579 sret = btrfs_bin_search(cur, min_key, &slot);
4580 if (sret < 0) {
4581 ret = sret;
4582 goto out;
4583 }
4584
4585 /* at the lowest level, we're done, setup the path and exit */
4586 if (level == path->lowest_level) {
4587 if (slot >= nritems)
4588 goto find_next_key;
4589 ret = 0;
4590 path->slots[level] = slot;
4591 btrfs_item_key_to_cpu(cur, &found_key, slot);
4592 goto out;
4593 }
4594 if (sret && slot > 0)
4595 slot--;
4596 /*
4597 * check this node pointer against the min_trans parameters.
4598 * If it is too old, skip to the next one.
4599 */
4600 while (slot < nritems) {
4601 u64 gen;
4602
4603 gen = btrfs_node_ptr_generation(cur, slot);
4604 if (gen < min_trans) {
4605 slot++;
4606 continue;
4607 }
4608 break;
4609 }
4610 find_next_key:
4611 /*
4612 * we didn't find a candidate key in this node, walk forward
4613 * and find another one
4614 */
4615 if (slot >= nritems) {
4616 path->slots[level] = slot;
4617 sret = btrfs_find_next_key(root, path, min_key, level,
4618 min_trans);
4619 if (sret == 0) {
4620 btrfs_release_path(path);
4621 goto again;
4622 } else {
4623 goto out;
4624 }
4625 }
4626 /* save our key for returning back */
4627 btrfs_node_key_to_cpu(cur, &found_key, slot);
4628 path->slots[level] = slot;
4629 if (level == path->lowest_level) {
4630 ret = 0;
4631 goto out;
4632 }
4633 cur = btrfs_read_node_slot(cur, slot);
4634 if (IS_ERR(cur)) {
4635 ret = PTR_ERR(cur);
4636 goto out;
4637 }
4638
4639 btrfs_tree_read_lock(cur);
4640
4641 path->locks[level - 1] = BTRFS_READ_LOCK;
4642 path->nodes[level - 1] = cur;
4643 unlock_up(path, level, 1, 0, NULL);
4644 }
4645 out:
4646 path->keep_locks = keep_locks;
4647 if (ret == 0) {
4648 btrfs_unlock_up_safe(path, path->lowest_level + 1);
4649 memcpy(min_key, &found_key, sizeof(found_key));
4650 }
4651 return ret;
4652 }
4653
4654 /*
4655 * this is similar to btrfs_next_leaf, but does not try to preserve
4656 * and fixup the path. It looks for and returns the next key in the
4657 * tree based on the current path and the min_trans parameters.
4658 *
4659 * 0 is returned if another key is found, < 0 if there are any errors
4660 * and 1 is returned if there are no higher keys in the tree
4661 *
4662 * path->keep_locks should be set to 1 on the search made before
4663 * calling this function.
4664 */
btrfs_find_next_key(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,int level,u64 min_trans)4665 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4666 struct btrfs_key *key, int level, u64 min_trans)
4667 {
4668 int slot;
4669 struct extent_buffer *c;
4670
4671 WARN_ON(!path->keep_locks && !path->skip_locking);
4672 while (level < BTRFS_MAX_LEVEL) {
4673 if (!path->nodes[level])
4674 return 1;
4675
4676 slot = path->slots[level] + 1;
4677 c = path->nodes[level];
4678 next:
4679 if (slot >= btrfs_header_nritems(c)) {
4680 int ret;
4681 int orig_lowest;
4682 struct btrfs_key cur_key;
4683 if (level + 1 >= BTRFS_MAX_LEVEL ||
4684 !path->nodes[level + 1])
4685 return 1;
4686
4687 if (path->locks[level + 1] || path->skip_locking) {
4688 level++;
4689 continue;
4690 }
4691
4692 slot = btrfs_header_nritems(c) - 1;
4693 if (level == 0)
4694 btrfs_item_key_to_cpu(c, &cur_key, slot);
4695 else
4696 btrfs_node_key_to_cpu(c, &cur_key, slot);
4697
4698 orig_lowest = path->lowest_level;
4699 btrfs_release_path(path);
4700 path->lowest_level = level;
4701 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4702 0, 0);
4703 path->lowest_level = orig_lowest;
4704 if (ret < 0)
4705 return ret;
4706
4707 c = path->nodes[level];
4708 slot = path->slots[level];
4709 if (ret == 0)
4710 slot++;
4711 goto next;
4712 }
4713
4714 if (level == 0)
4715 btrfs_item_key_to_cpu(c, key, slot);
4716 else {
4717 u64 gen = btrfs_node_ptr_generation(c, slot);
4718
4719 if (gen < min_trans) {
4720 slot++;
4721 goto next;
4722 }
4723 btrfs_node_key_to_cpu(c, key, slot);
4724 }
4725 return 0;
4726 }
4727 return 1;
4728 }
4729
btrfs_next_old_leaf(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)4730 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4731 u64 time_seq)
4732 {
4733 int slot;
4734 int level;
4735 struct extent_buffer *c;
4736 struct extent_buffer *next;
4737 struct btrfs_fs_info *fs_info = root->fs_info;
4738 struct btrfs_key key;
4739 bool need_commit_sem = false;
4740 u32 nritems;
4741 int ret;
4742 int i;
4743
4744 /*
4745 * The nowait semantics are used only for write paths, where we don't
4746 * use the tree mod log and sequence numbers.
4747 */
4748 if (time_seq)
4749 ASSERT(!path->nowait);
4750
4751 nritems = btrfs_header_nritems(path->nodes[0]);
4752 if (nritems == 0)
4753 return 1;
4754
4755 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4756 again:
4757 level = 1;
4758 next = NULL;
4759 btrfs_release_path(path);
4760
4761 path->keep_locks = 1;
4762
4763 if (time_seq) {
4764 ret = btrfs_search_old_slot(root, &key, path, time_seq);
4765 } else {
4766 if (path->need_commit_sem) {
4767 path->need_commit_sem = 0;
4768 need_commit_sem = true;
4769 if (path->nowait) {
4770 if (!down_read_trylock(&fs_info->commit_root_sem)) {
4771 ret = -EAGAIN;
4772 goto done;
4773 }
4774 } else {
4775 down_read(&fs_info->commit_root_sem);
4776 }
4777 }
4778 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4779 }
4780 path->keep_locks = 0;
4781
4782 if (ret < 0)
4783 goto done;
4784
4785 nritems = btrfs_header_nritems(path->nodes[0]);
4786 /*
4787 * by releasing the path above we dropped all our locks. A balance
4788 * could have added more items next to the key that used to be
4789 * at the very end of the block. So, check again here and
4790 * advance the path if there are now more items available.
4791 */
4792 if (nritems > 0 && path->slots[0] < nritems - 1) {
4793 if (ret == 0)
4794 path->slots[0]++;
4795 ret = 0;
4796 goto done;
4797 }
4798 /*
4799 * So the above check misses one case:
4800 * - after releasing the path above, someone has removed the item that
4801 * used to be at the very end of the block, and balance between leafs
4802 * gets another one with bigger key.offset to replace it.
4803 *
4804 * This one should be returned as well, or we can get leaf corruption
4805 * later(esp. in __btrfs_drop_extents()).
4806 *
4807 * And a bit more explanation about this check,
4808 * with ret > 0, the key isn't found, the path points to the slot
4809 * where it should be inserted, so the path->slots[0] item must be the
4810 * bigger one.
4811 */
4812 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4813 ret = 0;
4814 goto done;
4815 }
4816
4817 while (level < BTRFS_MAX_LEVEL) {
4818 if (!path->nodes[level]) {
4819 ret = 1;
4820 goto done;
4821 }
4822
4823 slot = path->slots[level] + 1;
4824 c = path->nodes[level];
4825 if (slot >= btrfs_header_nritems(c)) {
4826 level++;
4827 if (level == BTRFS_MAX_LEVEL) {
4828 ret = 1;
4829 goto done;
4830 }
4831 continue;
4832 }
4833
4834
4835 /*
4836 * Our current level is where we're going to start from, and to
4837 * make sure lockdep doesn't complain we need to drop our locks
4838 * and nodes from 0 to our current level.
4839 */
4840 for (i = 0; i < level; i++) {
4841 if (path->locks[level]) {
4842 btrfs_tree_read_unlock(path->nodes[i]);
4843 path->locks[i] = 0;
4844 }
4845 free_extent_buffer(path->nodes[i]);
4846 path->nodes[i] = NULL;
4847 }
4848
4849 next = c;
4850 ret = read_block_for_search(root, path, &next, level,
4851 slot, &key);
4852 if (ret == -EAGAIN && !path->nowait)
4853 goto again;
4854
4855 if (ret < 0) {
4856 btrfs_release_path(path);
4857 goto done;
4858 }
4859
4860 if (!path->skip_locking) {
4861 ret = btrfs_try_tree_read_lock(next);
4862 if (!ret && path->nowait) {
4863 ret = -EAGAIN;
4864 goto done;
4865 }
4866 if (!ret && time_seq) {
4867 /*
4868 * If we don't get the lock, we may be racing
4869 * with push_leaf_left, holding that lock while
4870 * itself waiting for the leaf we've currently
4871 * locked. To solve this situation, we give up
4872 * on our lock and cycle.
4873 */
4874 free_extent_buffer(next);
4875 btrfs_release_path(path);
4876 cond_resched();
4877 goto again;
4878 }
4879 if (!ret)
4880 btrfs_tree_read_lock(next);
4881 }
4882 break;
4883 }
4884 path->slots[level] = slot;
4885 while (1) {
4886 level--;
4887 path->nodes[level] = next;
4888 path->slots[level] = 0;
4889 if (!path->skip_locking)
4890 path->locks[level] = BTRFS_READ_LOCK;
4891 if (!level)
4892 break;
4893
4894 ret = read_block_for_search(root, path, &next, level,
4895 0, &key);
4896 if (ret == -EAGAIN && !path->nowait)
4897 goto again;
4898
4899 if (ret < 0) {
4900 btrfs_release_path(path);
4901 goto done;
4902 }
4903
4904 if (!path->skip_locking) {
4905 if (path->nowait) {
4906 if (!btrfs_try_tree_read_lock(next)) {
4907 ret = -EAGAIN;
4908 goto done;
4909 }
4910 } else {
4911 btrfs_tree_read_lock(next);
4912 }
4913 }
4914 }
4915 ret = 0;
4916 done:
4917 unlock_up(path, 0, 1, 0, NULL);
4918 if (need_commit_sem) {
4919 int ret2;
4920
4921 path->need_commit_sem = 1;
4922 ret2 = finish_need_commit_sem_search(path);
4923 up_read(&fs_info->commit_root_sem);
4924 if (ret2)
4925 ret = ret2;
4926 }
4927
4928 return ret;
4929 }
4930
btrfs_next_old_item(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)4931 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
4932 {
4933 path->slots[0]++;
4934 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
4935 return btrfs_next_old_leaf(root, path, time_seq);
4936 return 0;
4937 }
4938
4939 /*
4940 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4941 * searching until it gets past min_objectid or finds an item of 'type'
4942 *
4943 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4944 */
btrfs_previous_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid,int type)4945 int btrfs_previous_item(struct btrfs_root *root,
4946 struct btrfs_path *path, u64 min_objectid,
4947 int type)
4948 {
4949 struct btrfs_key found_key;
4950 struct extent_buffer *leaf;
4951 u32 nritems;
4952 int ret;
4953
4954 while (1) {
4955 if (path->slots[0] == 0) {
4956 ret = btrfs_prev_leaf(root, path);
4957 if (ret != 0)
4958 return ret;
4959 } else {
4960 path->slots[0]--;
4961 }
4962 leaf = path->nodes[0];
4963 nritems = btrfs_header_nritems(leaf);
4964 if (nritems == 0)
4965 return 1;
4966 if (path->slots[0] == nritems)
4967 path->slots[0]--;
4968
4969 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4970 if (found_key.objectid < min_objectid)
4971 break;
4972 if (found_key.type == type)
4973 return 0;
4974 if (found_key.objectid == min_objectid &&
4975 found_key.type < type)
4976 break;
4977 }
4978 return 1;
4979 }
4980
4981 /*
4982 * search in extent tree to find a previous Metadata/Data extent item with
4983 * min objecitd.
4984 *
4985 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4986 */
btrfs_previous_extent_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid)4987 int btrfs_previous_extent_item(struct btrfs_root *root,
4988 struct btrfs_path *path, u64 min_objectid)
4989 {
4990 struct btrfs_key found_key;
4991 struct extent_buffer *leaf;
4992 u32 nritems;
4993 int ret;
4994
4995 while (1) {
4996 if (path->slots[0] == 0) {
4997 ret = btrfs_prev_leaf(root, path);
4998 if (ret != 0)
4999 return ret;
5000 } else {
5001 path->slots[0]--;
5002 }
5003 leaf = path->nodes[0];
5004 nritems = btrfs_header_nritems(leaf);
5005 if (nritems == 0)
5006 return 1;
5007 if (path->slots[0] == nritems)
5008 path->slots[0]--;
5009
5010 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5011 if (found_key.objectid < min_objectid)
5012 break;
5013 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5014 found_key.type == BTRFS_METADATA_ITEM_KEY)
5015 return 0;
5016 if (found_key.objectid == min_objectid &&
5017 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5018 break;
5019 }
5020 return 1;
5021 }
5022
btrfs_ctree_init(void)5023 int __init btrfs_ctree_init(void)
5024 {
5025 btrfs_path_cachep = kmem_cache_create("btrfs_path",
5026 sizeof(struct btrfs_path), 0,
5027 SLAB_MEM_SPREAD, NULL);
5028 if (!btrfs_path_cachep)
5029 return -ENOMEM;
5030 return 0;
5031 }
5032
btrfs_ctree_exit(void)5033 void __cold btrfs_ctree_exit(void)
5034 {
5035 kmem_cache_destroy(btrfs_path_cachep);
5036 }
5037