1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include "messages.h"
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "bio.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "space-info.h"
46 #include "sysfs.h"
47 #include "zoned.h"
48 #include "tests/btrfs-tests.h"
49 #include "block-group.h"
50 #include "discard.h"
51 #include "qgroup.h"
52 #include "raid56.h"
53 #include "fs.h"
54 #include "accessors.h"
55 #include "defrag.h"
56 #include "dir-item.h"
57 #include "ioctl.h"
58 #include "scrub.h"
59 #include "verity.h"
60 #include "super.h"
61 #include "extent-tree.h"
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/btrfs.h>
64
65 static const struct super_operations btrfs_super_ops;
66
67 /*
68 * Types for mounting the default subvolume and a subvolume explicitly
69 * requested by subvol=/path. That way the callchain is straightforward and we
70 * don't have to play tricks with the mount options and recursive calls to
71 * btrfs_mount.
72 *
73 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
74 */
75 static struct file_system_type btrfs_fs_type;
76 static struct file_system_type btrfs_root_fs_type;
77
78 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
79
btrfs_put_super(struct super_block * sb)80 static void btrfs_put_super(struct super_block *sb)
81 {
82 close_ctree(btrfs_sb(sb));
83 }
84
85 enum {
86 Opt_acl, Opt_noacl,
87 Opt_clear_cache,
88 Opt_commit_interval,
89 Opt_compress,
90 Opt_compress_force,
91 Opt_compress_force_type,
92 Opt_compress_type,
93 Opt_degraded,
94 Opt_device,
95 Opt_fatal_errors,
96 Opt_flushoncommit, Opt_noflushoncommit,
97 Opt_max_inline,
98 Opt_barrier, Opt_nobarrier,
99 Opt_datacow, Opt_nodatacow,
100 Opt_datasum, Opt_nodatasum,
101 Opt_defrag, Opt_nodefrag,
102 Opt_discard, Opt_nodiscard,
103 Opt_discard_mode,
104 Opt_norecovery,
105 Opt_ratio,
106 Opt_rescan_uuid_tree,
107 Opt_skip_balance,
108 Opt_space_cache, Opt_no_space_cache,
109 Opt_space_cache_version,
110 Opt_ssd, Opt_nossd,
111 Opt_ssd_spread, Opt_nossd_spread,
112 Opt_subvol,
113 Opt_subvol_empty,
114 Opt_subvolid,
115 Opt_thread_pool,
116 Opt_treelog, Opt_notreelog,
117 Opt_user_subvol_rm_allowed,
118
119 /* Rescue options */
120 Opt_rescue,
121 Opt_usebackuproot,
122 Opt_nologreplay,
123 Opt_ignorebadroots,
124 Opt_ignoredatacsums,
125 Opt_rescue_all,
126
127 /* Deprecated options */
128 Opt_recovery,
129 Opt_inode_cache, Opt_noinode_cache,
130
131 /* Debugging options */
132 Opt_check_integrity,
133 Opt_check_integrity_including_extent_data,
134 Opt_check_integrity_print_mask,
135 Opt_enospc_debug, Opt_noenospc_debug,
136 #ifdef CONFIG_BTRFS_DEBUG
137 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
138 #endif
139 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
140 Opt_ref_verify,
141 #endif
142 Opt_err,
143 };
144
145 static const match_table_t tokens = {
146 {Opt_acl, "acl"},
147 {Opt_noacl, "noacl"},
148 {Opt_clear_cache, "clear_cache"},
149 {Opt_commit_interval, "commit=%u"},
150 {Opt_compress, "compress"},
151 {Opt_compress_type, "compress=%s"},
152 {Opt_compress_force, "compress-force"},
153 {Opt_compress_force_type, "compress-force=%s"},
154 {Opt_degraded, "degraded"},
155 {Opt_device, "device=%s"},
156 {Opt_fatal_errors, "fatal_errors=%s"},
157 {Opt_flushoncommit, "flushoncommit"},
158 {Opt_noflushoncommit, "noflushoncommit"},
159 {Opt_inode_cache, "inode_cache"},
160 {Opt_noinode_cache, "noinode_cache"},
161 {Opt_max_inline, "max_inline=%s"},
162 {Opt_barrier, "barrier"},
163 {Opt_nobarrier, "nobarrier"},
164 {Opt_datacow, "datacow"},
165 {Opt_nodatacow, "nodatacow"},
166 {Opt_datasum, "datasum"},
167 {Opt_nodatasum, "nodatasum"},
168 {Opt_defrag, "autodefrag"},
169 {Opt_nodefrag, "noautodefrag"},
170 {Opt_discard, "discard"},
171 {Opt_discard_mode, "discard=%s"},
172 {Opt_nodiscard, "nodiscard"},
173 {Opt_norecovery, "norecovery"},
174 {Opt_ratio, "metadata_ratio=%u"},
175 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
176 {Opt_skip_balance, "skip_balance"},
177 {Opt_space_cache, "space_cache"},
178 {Opt_no_space_cache, "nospace_cache"},
179 {Opt_space_cache_version, "space_cache=%s"},
180 {Opt_ssd, "ssd"},
181 {Opt_nossd, "nossd"},
182 {Opt_ssd_spread, "ssd_spread"},
183 {Opt_nossd_spread, "nossd_spread"},
184 {Opt_subvol, "subvol=%s"},
185 {Opt_subvol_empty, "subvol="},
186 {Opt_subvolid, "subvolid=%s"},
187 {Opt_thread_pool, "thread_pool=%u"},
188 {Opt_treelog, "treelog"},
189 {Opt_notreelog, "notreelog"},
190 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
191
192 /* Rescue options */
193 {Opt_rescue, "rescue=%s"},
194 /* Deprecated, with alias rescue=nologreplay */
195 {Opt_nologreplay, "nologreplay"},
196 /* Deprecated, with alias rescue=usebackuproot */
197 {Opt_usebackuproot, "usebackuproot"},
198
199 /* Deprecated options */
200 {Opt_recovery, "recovery"},
201
202 /* Debugging options */
203 {Opt_check_integrity, "check_int"},
204 {Opt_check_integrity_including_extent_data, "check_int_data"},
205 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
206 {Opt_enospc_debug, "enospc_debug"},
207 {Opt_noenospc_debug, "noenospc_debug"},
208 #ifdef CONFIG_BTRFS_DEBUG
209 {Opt_fragment_data, "fragment=data"},
210 {Opt_fragment_metadata, "fragment=metadata"},
211 {Opt_fragment_all, "fragment=all"},
212 #endif
213 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
214 {Opt_ref_verify, "ref_verify"},
215 #endif
216 {Opt_err, NULL},
217 };
218
219 static const match_table_t rescue_tokens = {
220 {Opt_usebackuproot, "usebackuproot"},
221 {Opt_nologreplay, "nologreplay"},
222 {Opt_ignorebadroots, "ignorebadroots"},
223 {Opt_ignorebadroots, "ibadroots"},
224 {Opt_ignoredatacsums, "ignoredatacsums"},
225 {Opt_ignoredatacsums, "idatacsums"},
226 {Opt_rescue_all, "all"},
227 {Opt_err, NULL},
228 };
229
check_ro_option(struct btrfs_fs_info * fs_info,unsigned long opt,const char * opt_name)230 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt,
231 const char *opt_name)
232 {
233 if (fs_info->mount_opt & opt) {
234 btrfs_err(fs_info, "%s must be used with ro mount option",
235 opt_name);
236 return true;
237 }
238 return false;
239 }
240
parse_rescue_options(struct btrfs_fs_info * info,const char * options)241 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
242 {
243 char *opts;
244 char *orig;
245 char *p;
246 substring_t args[MAX_OPT_ARGS];
247 int ret = 0;
248
249 opts = kstrdup(options, GFP_KERNEL);
250 if (!opts)
251 return -ENOMEM;
252 orig = opts;
253
254 while ((p = strsep(&opts, ":")) != NULL) {
255 int token;
256
257 if (!*p)
258 continue;
259 token = match_token(p, rescue_tokens, args);
260 switch (token){
261 case Opt_usebackuproot:
262 btrfs_info(info,
263 "trying to use backup root at mount time");
264 btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
265 break;
266 case Opt_nologreplay:
267 btrfs_set_and_info(info, NOLOGREPLAY,
268 "disabling log replay at mount time");
269 break;
270 case Opt_ignorebadroots:
271 btrfs_set_and_info(info, IGNOREBADROOTS,
272 "ignoring bad roots");
273 break;
274 case Opt_ignoredatacsums:
275 btrfs_set_and_info(info, IGNOREDATACSUMS,
276 "ignoring data csums");
277 break;
278 case Opt_rescue_all:
279 btrfs_info(info, "enabling all of the rescue options");
280 btrfs_set_and_info(info, IGNOREDATACSUMS,
281 "ignoring data csums");
282 btrfs_set_and_info(info, IGNOREBADROOTS,
283 "ignoring bad roots");
284 btrfs_set_and_info(info, NOLOGREPLAY,
285 "disabling log replay at mount time");
286 break;
287 case Opt_err:
288 btrfs_info(info, "unrecognized rescue option '%s'", p);
289 ret = -EINVAL;
290 goto out;
291 default:
292 break;
293 }
294
295 }
296 out:
297 kfree(orig);
298 return ret;
299 }
300
301 /*
302 * Regular mount options parser. Everything that is needed only when
303 * reading in a new superblock is parsed here.
304 * XXX JDM: This needs to be cleaned up for remount.
305 */
btrfs_parse_options(struct btrfs_fs_info * info,char * options,unsigned long new_flags)306 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
307 unsigned long new_flags)
308 {
309 substring_t args[MAX_OPT_ARGS];
310 char *p, *num;
311 int intarg;
312 int ret = 0;
313 char *compress_type;
314 bool compress_force = false;
315 enum btrfs_compression_type saved_compress_type;
316 int saved_compress_level;
317 bool saved_compress_force;
318 int no_compress = 0;
319 const bool remounting = test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state);
320
321 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
322 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
323 else if (btrfs_free_space_cache_v1_active(info)) {
324 if (btrfs_is_zoned(info)) {
325 btrfs_info(info,
326 "zoned: clearing existing space cache");
327 btrfs_set_super_cache_generation(info->super_copy, 0);
328 } else {
329 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
330 }
331 }
332
333 /*
334 * Even the options are empty, we still need to do extra check
335 * against new flags
336 */
337 if (!options)
338 goto check;
339
340 while ((p = strsep(&options, ",")) != NULL) {
341 int token;
342 if (!*p)
343 continue;
344
345 token = match_token(p, tokens, args);
346 switch (token) {
347 case Opt_degraded:
348 btrfs_info(info, "allowing degraded mounts");
349 btrfs_set_opt(info->mount_opt, DEGRADED);
350 break;
351 case Opt_subvol:
352 case Opt_subvol_empty:
353 case Opt_subvolid:
354 case Opt_device:
355 /*
356 * These are parsed by btrfs_parse_subvol_options or
357 * btrfs_parse_device_options and can be ignored here.
358 */
359 break;
360 case Opt_nodatasum:
361 btrfs_set_and_info(info, NODATASUM,
362 "setting nodatasum");
363 break;
364 case Opt_datasum:
365 if (btrfs_test_opt(info, NODATASUM)) {
366 if (btrfs_test_opt(info, NODATACOW))
367 btrfs_info(info,
368 "setting datasum, datacow enabled");
369 else
370 btrfs_info(info, "setting datasum");
371 }
372 btrfs_clear_opt(info->mount_opt, NODATACOW);
373 btrfs_clear_opt(info->mount_opt, NODATASUM);
374 break;
375 case Opt_nodatacow:
376 if (!btrfs_test_opt(info, NODATACOW)) {
377 if (!btrfs_test_opt(info, COMPRESS) ||
378 !btrfs_test_opt(info, FORCE_COMPRESS)) {
379 btrfs_info(info,
380 "setting nodatacow, compression disabled");
381 } else {
382 btrfs_info(info, "setting nodatacow");
383 }
384 }
385 btrfs_clear_opt(info->mount_opt, COMPRESS);
386 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
387 btrfs_set_opt(info->mount_opt, NODATACOW);
388 btrfs_set_opt(info->mount_opt, NODATASUM);
389 break;
390 case Opt_datacow:
391 btrfs_clear_and_info(info, NODATACOW,
392 "setting datacow");
393 break;
394 case Opt_compress_force:
395 case Opt_compress_force_type:
396 compress_force = true;
397 fallthrough;
398 case Opt_compress:
399 case Opt_compress_type:
400 saved_compress_type = btrfs_test_opt(info,
401 COMPRESS) ?
402 info->compress_type : BTRFS_COMPRESS_NONE;
403 saved_compress_force =
404 btrfs_test_opt(info, FORCE_COMPRESS);
405 saved_compress_level = info->compress_level;
406 if (token == Opt_compress ||
407 token == Opt_compress_force ||
408 strncmp(args[0].from, "zlib", 4) == 0) {
409 compress_type = "zlib";
410
411 info->compress_type = BTRFS_COMPRESS_ZLIB;
412 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
413 /*
414 * args[0] contains uninitialized data since
415 * for these tokens we don't expect any
416 * parameter.
417 */
418 if (token != Opt_compress &&
419 token != Opt_compress_force)
420 info->compress_level =
421 btrfs_compress_str2level(
422 BTRFS_COMPRESS_ZLIB,
423 args[0].from + 4);
424 btrfs_set_opt(info->mount_opt, COMPRESS);
425 btrfs_clear_opt(info->mount_opt, NODATACOW);
426 btrfs_clear_opt(info->mount_opt, NODATASUM);
427 no_compress = 0;
428 } else if (strncmp(args[0].from, "lzo", 3) == 0) {
429 compress_type = "lzo";
430 info->compress_type = BTRFS_COMPRESS_LZO;
431 info->compress_level = 0;
432 btrfs_set_opt(info->mount_opt, COMPRESS);
433 btrfs_clear_opt(info->mount_opt, NODATACOW);
434 btrfs_clear_opt(info->mount_opt, NODATASUM);
435 btrfs_set_fs_incompat(info, COMPRESS_LZO);
436 no_compress = 0;
437 } else if (strncmp(args[0].from, "zstd", 4) == 0) {
438 compress_type = "zstd";
439 info->compress_type = BTRFS_COMPRESS_ZSTD;
440 info->compress_level =
441 btrfs_compress_str2level(
442 BTRFS_COMPRESS_ZSTD,
443 args[0].from + 4);
444 btrfs_set_opt(info->mount_opt, COMPRESS);
445 btrfs_clear_opt(info->mount_opt, NODATACOW);
446 btrfs_clear_opt(info->mount_opt, NODATASUM);
447 btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
448 no_compress = 0;
449 } else if (strncmp(args[0].from, "no", 2) == 0) {
450 compress_type = "no";
451 info->compress_level = 0;
452 info->compress_type = 0;
453 btrfs_clear_opt(info->mount_opt, COMPRESS);
454 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
455 compress_force = false;
456 no_compress++;
457 } else {
458 btrfs_err(info, "unrecognized compression value %s",
459 args[0].from);
460 ret = -EINVAL;
461 goto out;
462 }
463
464 if (compress_force) {
465 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
466 } else {
467 /*
468 * If we remount from compress-force=xxx to
469 * compress=xxx, we need clear FORCE_COMPRESS
470 * flag, otherwise, there is no way for users
471 * to disable forcible compression separately.
472 */
473 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
474 }
475 if (no_compress == 1) {
476 btrfs_info(info, "use no compression");
477 } else if ((info->compress_type != saved_compress_type) ||
478 (compress_force != saved_compress_force) ||
479 (info->compress_level != saved_compress_level)) {
480 btrfs_info(info, "%s %s compression, level %d",
481 (compress_force) ? "force" : "use",
482 compress_type, info->compress_level);
483 }
484 compress_force = false;
485 break;
486 case Opt_ssd:
487 btrfs_set_and_info(info, SSD,
488 "enabling ssd optimizations");
489 btrfs_clear_opt(info->mount_opt, NOSSD);
490 break;
491 case Opt_ssd_spread:
492 btrfs_set_and_info(info, SSD,
493 "enabling ssd optimizations");
494 btrfs_set_and_info(info, SSD_SPREAD,
495 "using spread ssd allocation scheme");
496 btrfs_clear_opt(info->mount_opt, NOSSD);
497 break;
498 case Opt_nossd:
499 btrfs_set_opt(info->mount_opt, NOSSD);
500 btrfs_clear_and_info(info, SSD,
501 "not using ssd optimizations");
502 fallthrough;
503 case Opt_nossd_spread:
504 btrfs_clear_and_info(info, SSD_SPREAD,
505 "not using spread ssd allocation scheme");
506 break;
507 case Opt_barrier:
508 btrfs_clear_and_info(info, NOBARRIER,
509 "turning on barriers");
510 break;
511 case Opt_nobarrier:
512 btrfs_set_and_info(info, NOBARRIER,
513 "turning off barriers");
514 break;
515 case Opt_thread_pool:
516 ret = match_int(&args[0], &intarg);
517 if (ret) {
518 btrfs_err(info, "unrecognized thread_pool value %s",
519 args[0].from);
520 goto out;
521 } else if (intarg == 0) {
522 btrfs_err(info, "invalid value 0 for thread_pool");
523 ret = -EINVAL;
524 goto out;
525 }
526 info->thread_pool_size = intarg;
527 break;
528 case Opt_max_inline:
529 num = match_strdup(&args[0]);
530 if (num) {
531 info->max_inline = memparse(num, NULL);
532 kfree(num);
533
534 if (info->max_inline) {
535 info->max_inline = min_t(u64,
536 info->max_inline,
537 info->sectorsize);
538 }
539 btrfs_info(info, "max_inline at %llu",
540 info->max_inline);
541 } else {
542 ret = -ENOMEM;
543 goto out;
544 }
545 break;
546 case Opt_acl:
547 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
548 info->sb->s_flags |= SB_POSIXACL;
549 break;
550 #else
551 btrfs_err(info, "support for ACL not compiled in!");
552 ret = -EINVAL;
553 goto out;
554 #endif
555 case Opt_noacl:
556 info->sb->s_flags &= ~SB_POSIXACL;
557 break;
558 case Opt_notreelog:
559 btrfs_set_and_info(info, NOTREELOG,
560 "disabling tree log");
561 break;
562 case Opt_treelog:
563 btrfs_clear_and_info(info, NOTREELOG,
564 "enabling tree log");
565 break;
566 case Opt_norecovery:
567 case Opt_nologreplay:
568 btrfs_warn(info,
569 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
570 btrfs_set_and_info(info, NOLOGREPLAY,
571 "disabling log replay at mount time");
572 break;
573 case Opt_flushoncommit:
574 btrfs_set_and_info(info, FLUSHONCOMMIT,
575 "turning on flush-on-commit");
576 break;
577 case Opt_noflushoncommit:
578 btrfs_clear_and_info(info, FLUSHONCOMMIT,
579 "turning off flush-on-commit");
580 break;
581 case Opt_ratio:
582 ret = match_int(&args[0], &intarg);
583 if (ret) {
584 btrfs_err(info, "unrecognized metadata_ratio value %s",
585 args[0].from);
586 goto out;
587 }
588 info->metadata_ratio = intarg;
589 btrfs_info(info, "metadata ratio %u",
590 info->metadata_ratio);
591 break;
592 case Opt_discard:
593 case Opt_discard_mode:
594 if (token == Opt_discard ||
595 strcmp(args[0].from, "sync") == 0) {
596 btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
597 btrfs_set_and_info(info, DISCARD_SYNC,
598 "turning on sync discard");
599 } else if (strcmp(args[0].from, "async") == 0) {
600 btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
601 btrfs_set_and_info(info, DISCARD_ASYNC,
602 "turning on async discard");
603 } else {
604 btrfs_err(info, "unrecognized discard mode value %s",
605 args[0].from);
606 ret = -EINVAL;
607 goto out;
608 }
609 btrfs_clear_opt(info->mount_opt, NODISCARD);
610 break;
611 case Opt_nodiscard:
612 btrfs_clear_and_info(info, DISCARD_SYNC,
613 "turning off discard");
614 btrfs_clear_and_info(info, DISCARD_ASYNC,
615 "turning off async discard");
616 btrfs_set_opt(info->mount_opt, NODISCARD);
617 break;
618 case Opt_space_cache:
619 case Opt_space_cache_version:
620 /*
621 * We already set FREE_SPACE_TREE above because we have
622 * compat_ro(FREE_SPACE_TREE) set, and we aren't going
623 * to allow v1 to be set for extent tree v2, simply
624 * ignore this setting if we're extent tree v2.
625 */
626 if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
627 break;
628 if (token == Opt_space_cache ||
629 strcmp(args[0].from, "v1") == 0) {
630 btrfs_clear_opt(info->mount_opt,
631 FREE_SPACE_TREE);
632 btrfs_set_and_info(info, SPACE_CACHE,
633 "enabling disk space caching");
634 } else if (strcmp(args[0].from, "v2") == 0) {
635 btrfs_clear_opt(info->mount_opt,
636 SPACE_CACHE);
637 btrfs_set_and_info(info, FREE_SPACE_TREE,
638 "enabling free space tree");
639 } else {
640 btrfs_err(info, "unrecognized space_cache value %s",
641 args[0].from);
642 ret = -EINVAL;
643 goto out;
644 }
645 break;
646 case Opt_rescan_uuid_tree:
647 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
648 break;
649 case Opt_no_space_cache:
650 /*
651 * We cannot operate without the free space tree with
652 * extent tree v2, ignore this option.
653 */
654 if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
655 break;
656 if (btrfs_test_opt(info, SPACE_CACHE)) {
657 btrfs_clear_and_info(info, SPACE_CACHE,
658 "disabling disk space caching");
659 }
660 if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
661 btrfs_clear_and_info(info, FREE_SPACE_TREE,
662 "disabling free space tree");
663 }
664 break;
665 case Opt_inode_cache:
666 case Opt_noinode_cache:
667 btrfs_warn(info,
668 "the 'inode_cache' option is deprecated and has no effect since 5.11");
669 break;
670 case Opt_clear_cache:
671 /*
672 * We cannot clear the free space tree with extent tree
673 * v2, ignore this option.
674 */
675 if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
676 break;
677 btrfs_set_and_info(info, CLEAR_CACHE,
678 "force clearing of disk cache");
679 break;
680 case Opt_user_subvol_rm_allowed:
681 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
682 break;
683 case Opt_enospc_debug:
684 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
685 break;
686 case Opt_noenospc_debug:
687 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
688 break;
689 case Opt_defrag:
690 btrfs_set_and_info(info, AUTO_DEFRAG,
691 "enabling auto defrag");
692 break;
693 case Opt_nodefrag:
694 btrfs_clear_and_info(info, AUTO_DEFRAG,
695 "disabling auto defrag");
696 break;
697 case Opt_recovery:
698 case Opt_usebackuproot:
699 btrfs_warn(info,
700 "'%s' is deprecated, use 'rescue=usebackuproot' instead",
701 token == Opt_recovery ? "recovery" :
702 "usebackuproot");
703 btrfs_info(info,
704 "trying to use backup root at mount time");
705 btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
706 break;
707 case Opt_skip_balance:
708 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
709 break;
710 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
711 case Opt_check_integrity_including_extent_data:
712 btrfs_info(info,
713 "enabling check integrity including extent data");
714 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA);
715 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
716 break;
717 case Opt_check_integrity:
718 btrfs_info(info, "enabling check integrity");
719 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
720 break;
721 case Opt_check_integrity_print_mask:
722 ret = match_int(&args[0], &intarg);
723 if (ret) {
724 btrfs_err(info,
725 "unrecognized check_integrity_print_mask value %s",
726 args[0].from);
727 goto out;
728 }
729 info->check_integrity_print_mask = intarg;
730 btrfs_info(info, "check_integrity_print_mask 0x%x",
731 info->check_integrity_print_mask);
732 break;
733 #else
734 case Opt_check_integrity_including_extent_data:
735 case Opt_check_integrity:
736 case Opt_check_integrity_print_mask:
737 btrfs_err(info,
738 "support for check_integrity* not compiled in!");
739 ret = -EINVAL;
740 goto out;
741 #endif
742 case Opt_fatal_errors:
743 if (strcmp(args[0].from, "panic") == 0) {
744 btrfs_set_opt(info->mount_opt,
745 PANIC_ON_FATAL_ERROR);
746 } else if (strcmp(args[0].from, "bug") == 0) {
747 btrfs_clear_opt(info->mount_opt,
748 PANIC_ON_FATAL_ERROR);
749 } else {
750 btrfs_err(info, "unrecognized fatal_errors value %s",
751 args[0].from);
752 ret = -EINVAL;
753 goto out;
754 }
755 break;
756 case Opt_commit_interval:
757 intarg = 0;
758 ret = match_int(&args[0], &intarg);
759 if (ret) {
760 btrfs_err(info, "unrecognized commit_interval value %s",
761 args[0].from);
762 ret = -EINVAL;
763 goto out;
764 }
765 if (intarg == 0) {
766 btrfs_info(info,
767 "using default commit interval %us",
768 BTRFS_DEFAULT_COMMIT_INTERVAL);
769 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
770 } else if (intarg > 300) {
771 btrfs_warn(info, "excessive commit interval %d",
772 intarg);
773 }
774 info->commit_interval = intarg;
775 break;
776 case Opt_rescue:
777 ret = parse_rescue_options(info, args[0].from);
778 if (ret < 0) {
779 btrfs_err(info, "unrecognized rescue value %s",
780 args[0].from);
781 goto out;
782 }
783 break;
784 #ifdef CONFIG_BTRFS_DEBUG
785 case Opt_fragment_all:
786 btrfs_info(info, "fragmenting all space");
787 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
788 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
789 break;
790 case Opt_fragment_metadata:
791 btrfs_info(info, "fragmenting metadata");
792 btrfs_set_opt(info->mount_opt,
793 FRAGMENT_METADATA);
794 break;
795 case Opt_fragment_data:
796 btrfs_info(info, "fragmenting data");
797 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
798 break;
799 #endif
800 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
801 case Opt_ref_verify:
802 btrfs_info(info, "doing ref verification");
803 btrfs_set_opt(info->mount_opt, REF_VERIFY);
804 break;
805 #endif
806 case Opt_err:
807 btrfs_err(info, "unrecognized mount option '%s'", p);
808 ret = -EINVAL;
809 goto out;
810 default:
811 break;
812 }
813 }
814 check:
815 /* We're read-only, don't have to check. */
816 if (new_flags & SB_RDONLY)
817 goto out;
818
819 if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
820 check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
821 check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))
822 ret = -EINVAL;
823 out:
824 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
825 !btrfs_test_opt(info, FREE_SPACE_TREE) &&
826 !btrfs_test_opt(info, CLEAR_CACHE)) {
827 btrfs_err(info, "cannot disable free space tree");
828 ret = -EINVAL;
829
830 }
831 if (!ret)
832 ret = btrfs_check_mountopts_zoned(info);
833 if (!ret && !remounting) {
834 if (btrfs_test_opt(info, SPACE_CACHE))
835 btrfs_info(info, "disk space caching is enabled");
836 if (btrfs_test_opt(info, FREE_SPACE_TREE))
837 btrfs_info(info, "using free space tree");
838 }
839 return ret;
840 }
841
842 /*
843 * Parse mount options that are required early in the mount process.
844 *
845 * All other options will be parsed on much later in the mount process and
846 * only when we need to allocate a new super block.
847 */
btrfs_parse_device_options(const char * options,fmode_t flags,void * holder)848 static int btrfs_parse_device_options(const char *options, fmode_t flags,
849 void *holder)
850 {
851 substring_t args[MAX_OPT_ARGS];
852 char *device_name, *opts, *orig, *p;
853 struct btrfs_device *device = NULL;
854 int error = 0;
855
856 lockdep_assert_held(&uuid_mutex);
857
858 if (!options)
859 return 0;
860
861 /*
862 * strsep changes the string, duplicate it because btrfs_parse_options
863 * gets called later
864 */
865 opts = kstrdup(options, GFP_KERNEL);
866 if (!opts)
867 return -ENOMEM;
868 orig = opts;
869
870 while ((p = strsep(&opts, ",")) != NULL) {
871 int token;
872
873 if (!*p)
874 continue;
875
876 token = match_token(p, tokens, args);
877 if (token == Opt_device) {
878 device_name = match_strdup(&args[0]);
879 if (!device_name) {
880 error = -ENOMEM;
881 goto out;
882 }
883 device = btrfs_scan_one_device(device_name, flags,
884 holder);
885 kfree(device_name);
886 if (IS_ERR(device)) {
887 error = PTR_ERR(device);
888 goto out;
889 }
890 }
891 }
892
893 out:
894 kfree(orig);
895 return error;
896 }
897
898 /*
899 * Parse mount options that are related to subvolume id
900 *
901 * The value is later passed to mount_subvol()
902 */
btrfs_parse_subvol_options(const char * options,char ** subvol_name,u64 * subvol_objectid)903 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
904 u64 *subvol_objectid)
905 {
906 substring_t args[MAX_OPT_ARGS];
907 char *opts, *orig, *p;
908 int error = 0;
909 u64 subvolid;
910
911 if (!options)
912 return 0;
913
914 /*
915 * strsep changes the string, duplicate it because
916 * btrfs_parse_device_options gets called later
917 */
918 opts = kstrdup(options, GFP_KERNEL);
919 if (!opts)
920 return -ENOMEM;
921 orig = opts;
922
923 while ((p = strsep(&opts, ",")) != NULL) {
924 int token;
925 if (!*p)
926 continue;
927
928 token = match_token(p, tokens, args);
929 switch (token) {
930 case Opt_subvol:
931 kfree(*subvol_name);
932 *subvol_name = match_strdup(&args[0]);
933 if (!*subvol_name) {
934 error = -ENOMEM;
935 goto out;
936 }
937 break;
938 case Opt_subvolid:
939 error = match_u64(&args[0], &subvolid);
940 if (error)
941 goto out;
942
943 /* we want the original fs_tree */
944 if (subvolid == 0)
945 subvolid = BTRFS_FS_TREE_OBJECTID;
946
947 *subvol_objectid = subvolid;
948 break;
949 default:
950 break;
951 }
952 }
953
954 out:
955 kfree(orig);
956 return error;
957 }
958
btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info * fs_info,u64 subvol_objectid)959 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
960 u64 subvol_objectid)
961 {
962 struct btrfs_root *root = fs_info->tree_root;
963 struct btrfs_root *fs_root = NULL;
964 struct btrfs_root_ref *root_ref;
965 struct btrfs_inode_ref *inode_ref;
966 struct btrfs_key key;
967 struct btrfs_path *path = NULL;
968 char *name = NULL, *ptr;
969 u64 dirid;
970 int len;
971 int ret;
972
973 path = btrfs_alloc_path();
974 if (!path) {
975 ret = -ENOMEM;
976 goto err;
977 }
978
979 name = kmalloc(PATH_MAX, GFP_KERNEL);
980 if (!name) {
981 ret = -ENOMEM;
982 goto err;
983 }
984 ptr = name + PATH_MAX - 1;
985 ptr[0] = '\0';
986
987 /*
988 * Walk up the subvolume trees in the tree of tree roots by root
989 * backrefs until we hit the top-level subvolume.
990 */
991 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
992 key.objectid = subvol_objectid;
993 key.type = BTRFS_ROOT_BACKREF_KEY;
994 key.offset = (u64)-1;
995
996 ret = btrfs_search_backwards(root, &key, path);
997 if (ret < 0) {
998 goto err;
999 } else if (ret > 0) {
1000 ret = -ENOENT;
1001 goto err;
1002 }
1003
1004 subvol_objectid = key.offset;
1005
1006 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1007 struct btrfs_root_ref);
1008 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1009 ptr -= len + 1;
1010 if (ptr < name) {
1011 ret = -ENAMETOOLONG;
1012 goto err;
1013 }
1014 read_extent_buffer(path->nodes[0], ptr + 1,
1015 (unsigned long)(root_ref + 1), len);
1016 ptr[0] = '/';
1017 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1018 btrfs_release_path(path);
1019
1020 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1021 if (IS_ERR(fs_root)) {
1022 ret = PTR_ERR(fs_root);
1023 fs_root = NULL;
1024 goto err;
1025 }
1026
1027 /*
1028 * Walk up the filesystem tree by inode refs until we hit the
1029 * root directory.
1030 */
1031 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1032 key.objectid = dirid;
1033 key.type = BTRFS_INODE_REF_KEY;
1034 key.offset = (u64)-1;
1035
1036 ret = btrfs_search_backwards(fs_root, &key, path);
1037 if (ret < 0) {
1038 goto err;
1039 } else if (ret > 0) {
1040 ret = -ENOENT;
1041 goto err;
1042 }
1043
1044 dirid = key.offset;
1045
1046 inode_ref = btrfs_item_ptr(path->nodes[0],
1047 path->slots[0],
1048 struct btrfs_inode_ref);
1049 len = btrfs_inode_ref_name_len(path->nodes[0],
1050 inode_ref);
1051 ptr -= len + 1;
1052 if (ptr < name) {
1053 ret = -ENAMETOOLONG;
1054 goto err;
1055 }
1056 read_extent_buffer(path->nodes[0], ptr + 1,
1057 (unsigned long)(inode_ref + 1), len);
1058 ptr[0] = '/';
1059 btrfs_release_path(path);
1060 }
1061 btrfs_put_root(fs_root);
1062 fs_root = NULL;
1063 }
1064
1065 btrfs_free_path(path);
1066 if (ptr == name + PATH_MAX - 1) {
1067 name[0] = '/';
1068 name[1] = '\0';
1069 } else {
1070 memmove(name, ptr, name + PATH_MAX - ptr);
1071 }
1072 return name;
1073
1074 err:
1075 btrfs_put_root(fs_root);
1076 btrfs_free_path(path);
1077 kfree(name);
1078 return ERR_PTR(ret);
1079 }
1080
get_default_subvol_objectid(struct btrfs_fs_info * fs_info,u64 * objectid)1081 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1082 {
1083 struct btrfs_root *root = fs_info->tree_root;
1084 struct btrfs_dir_item *di;
1085 struct btrfs_path *path;
1086 struct btrfs_key location;
1087 struct fscrypt_str name = FSTR_INIT("default", 7);
1088 u64 dir_id;
1089
1090 path = btrfs_alloc_path();
1091 if (!path)
1092 return -ENOMEM;
1093
1094 /*
1095 * Find the "default" dir item which points to the root item that we
1096 * will mount by default if we haven't been given a specific subvolume
1097 * to mount.
1098 */
1099 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1100 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
1101 if (IS_ERR(di)) {
1102 btrfs_free_path(path);
1103 return PTR_ERR(di);
1104 }
1105 if (!di) {
1106 /*
1107 * Ok the default dir item isn't there. This is weird since
1108 * it's always been there, but don't freak out, just try and
1109 * mount the top-level subvolume.
1110 */
1111 btrfs_free_path(path);
1112 *objectid = BTRFS_FS_TREE_OBJECTID;
1113 return 0;
1114 }
1115
1116 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1117 btrfs_free_path(path);
1118 *objectid = location.objectid;
1119 return 0;
1120 }
1121
btrfs_fill_super(struct super_block * sb,struct btrfs_fs_devices * fs_devices,void * data)1122 static int btrfs_fill_super(struct super_block *sb,
1123 struct btrfs_fs_devices *fs_devices,
1124 void *data)
1125 {
1126 struct inode *inode;
1127 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1128 int err;
1129
1130 sb->s_maxbytes = MAX_LFS_FILESIZE;
1131 sb->s_magic = BTRFS_SUPER_MAGIC;
1132 sb->s_op = &btrfs_super_ops;
1133 sb->s_d_op = &btrfs_dentry_operations;
1134 sb->s_export_op = &btrfs_export_ops;
1135 #ifdef CONFIG_FS_VERITY
1136 sb->s_vop = &btrfs_verityops;
1137 #endif
1138 sb->s_xattr = btrfs_xattr_handlers;
1139 sb->s_time_gran = 1;
1140 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1141 sb->s_flags |= SB_POSIXACL;
1142 #endif
1143 sb->s_flags |= SB_I_VERSION;
1144 sb->s_iflags |= SB_I_CGROUPWB;
1145
1146 err = super_setup_bdi(sb);
1147 if (err) {
1148 btrfs_err(fs_info, "super_setup_bdi failed");
1149 return err;
1150 }
1151
1152 err = open_ctree(sb, fs_devices, (char *)data);
1153 if (err) {
1154 btrfs_err(fs_info, "open_ctree failed");
1155 return err;
1156 }
1157
1158 inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1159 if (IS_ERR(inode)) {
1160 err = PTR_ERR(inode);
1161 goto fail_close;
1162 }
1163
1164 sb->s_root = d_make_root(inode);
1165 if (!sb->s_root) {
1166 err = -ENOMEM;
1167 goto fail_close;
1168 }
1169
1170 sb->s_flags |= SB_ACTIVE;
1171 return 0;
1172
1173 fail_close:
1174 close_ctree(fs_info);
1175 return err;
1176 }
1177
btrfs_sync_fs(struct super_block * sb,int wait)1178 int btrfs_sync_fs(struct super_block *sb, int wait)
1179 {
1180 struct btrfs_trans_handle *trans;
1181 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1182 struct btrfs_root *root = fs_info->tree_root;
1183
1184 trace_btrfs_sync_fs(fs_info, wait);
1185
1186 if (!wait) {
1187 filemap_flush(fs_info->btree_inode->i_mapping);
1188 return 0;
1189 }
1190
1191 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1192
1193 trans = btrfs_attach_transaction_barrier(root);
1194 if (IS_ERR(trans)) {
1195 /* no transaction, don't bother */
1196 if (PTR_ERR(trans) == -ENOENT) {
1197 /*
1198 * Exit unless we have some pending changes
1199 * that need to go through commit
1200 */
1201 if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1202 &fs_info->flags))
1203 return 0;
1204 /*
1205 * A non-blocking test if the fs is frozen. We must not
1206 * start a new transaction here otherwise a deadlock
1207 * happens. The pending operations are delayed to the
1208 * next commit after thawing.
1209 */
1210 if (sb_start_write_trylock(sb))
1211 sb_end_write(sb);
1212 else
1213 return 0;
1214 trans = btrfs_start_transaction(root, 0);
1215 }
1216 if (IS_ERR(trans))
1217 return PTR_ERR(trans);
1218 }
1219 return btrfs_commit_transaction(trans);
1220 }
1221
print_rescue_option(struct seq_file * seq,const char * s,bool * printed)1222 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1223 {
1224 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1225 *printed = true;
1226 }
1227
btrfs_show_options(struct seq_file * seq,struct dentry * dentry)1228 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1229 {
1230 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1231 const char *compress_type;
1232 const char *subvol_name;
1233 bool printed = false;
1234
1235 if (btrfs_test_opt(info, DEGRADED))
1236 seq_puts(seq, ",degraded");
1237 if (btrfs_test_opt(info, NODATASUM))
1238 seq_puts(seq, ",nodatasum");
1239 if (btrfs_test_opt(info, NODATACOW))
1240 seq_puts(seq, ",nodatacow");
1241 if (btrfs_test_opt(info, NOBARRIER))
1242 seq_puts(seq, ",nobarrier");
1243 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1244 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1245 if (info->thread_pool_size != min_t(unsigned long,
1246 num_online_cpus() + 2, 8))
1247 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1248 if (btrfs_test_opt(info, COMPRESS)) {
1249 compress_type = btrfs_compress_type2str(info->compress_type);
1250 if (btrfs_test_opt(info, FORCE_COMPRESS))
1251 seq_printf(seq, ",compress-force=%s", compress_type);
1252 else
1253 seq_printf(seq, ",compress=%s", compress_type);
1254 if (info->compress_level)
1255 seq_printf(seq, ":%d", info->compress_level);
1256 }
1257 if (btrfs_test_opt(info, NOSSD))
1258 seq_puts(seq, ",nossd");
1259 if (btrfs_test_opt(info, SSD_SPREAD))
1260 seq_puts(seq, ",ssd_spread");
1261 else if (btrfs_test_opt(info, SSD))
1262 seq_puts(seq, ",ssd");
1263 if (btrfs_test_opt(info, NOTREELOG))
1264 seq_puts(seq, ",notreelog");
1265 if (btrfs_test_opt(info, NOLOGREPLAY))
1266 print_rescue_option(seq, "nologreplay", &printed);
1267 if (btrfs_test_opt(info, USEBACKUPROOT))
1268 print_rescue_option(seq, "usebackuproot", &printed);
1269 if (btrfs_test_opt(info, IGNOREBADROOTS))
1270 print_rescue_option(seq, "ignorebadroots", &printed);
1271 if (btrfs_test_opt(info, IGNOREDATACSUMS))
1272 print_rescue_option(seq, "ignoredatacsums", &printed);
1273 if (btrfs_test_opt(info, FLUSHONCOMMIT))
1274 seq_puts(seq, ",flushoncommit");
1275 if (btrfs_test_opt(info, DISCARD_SYNC))
1276 seq_puts(seq, ",discard");
1277 if (btrfs_test_opt(info, DISCARD_ASYNC))
1278 seq_puts(seq, ",discard=async");
1279 if (!(info->sb->s_flags & SB_POSIXACL))
1280 seq_puts(seq, ",noacl");
1281 if (btrfs_free_space_cache_v1_active(info))
1282 seq_puts(seq, ",space_cache");
1283 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1284 seq_puts(seq, ",space_cache=v2");
1285 else
1286 seq_puts(seq, ",nospace_cache");
1287 if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1288 seq_puts(seq, ",rescan_uuid_tree");
1289 if (btrfs_test_opt(info, CLEAR_CACHE))
1290 seq_puts(seq, ",clear_cache");
1291 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1292 seq_puts(seq, ",user_subvol_rm_allowed");
1293 if (btrfs_test_opt(info, ENOSPC_DEBUG))
1294 seq_puts(seq, ",enospc_debug");
1295 if (btrfs_test_opt(info, AUTO_DEFRAG))
1296 seq_puts(seq, ",autodefrag");
1297 if (btrfs_test_opt(info, SKIP_BALANCE))
1298 seq_puts(seq, ",skip_balance");
1299 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1300 if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA))
1301 seq_puts(seq, ",check_int_data");
1302 else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1303 seq_puts(seq, ",check_int");
1304 if (info->check_integrity_print_mask)
1305 seq_printf(seq, ",check_int_print_mask=%d",
1306 info->check_integrity_print_mask);
1307 #endif
1308 if (info->metadata_ratio)
1309 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1310 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1311 seq_puts(seq, ",fatal_errors=panic");
1312 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1313 seq_printf(seq, ",commit=%u", info->commit_interval);
1314 #ifdef CONFIG_BTRFS_DEBUG
1315 if (btrfs_test_opt(info, FRAGMENT_DATA))
1316 seq_puts(seq, ",fragment=data");
1317 if (btrfs_test_opt(info, FRAGMENT_METADATA))
1318 seq_puts(seq, ",fragment=metadata");
1319 #endif
1320 if (btrfs_test_opt(info, REF_VERIFY))
1321 seq_puts(seq, ",ref_verify");
1322 seq_printf(seq, ",subvolid=%llu",
1323 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1324 subvol_name = btrfs_get_subvol_name_from_objectid(info,
1325 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1326 if (!IS_ERR(subvol_name)) {
1327 seq_puts(seq, ",subvol=");
1328 seq_escape(seq, subvol_name, " \t\n\\");
1329 kfree(subvol_name);
1330 }
1331 return 0;
1332 }
1333
btrfs_test_super(struct super_block * s,void * data)1334 static int btrfs_test_super(struct super_block *s, void *data)
1335 {
1336 struct btrfs_fs_info *p = data;
1337 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1338
1339 return fs_info->fs_devices == p->fs_devices;
1340 }
1341
btrfs_set_super(struct super_block * s,void * data)1342 static int btrfs_set_super(struct super_block *s, void *data)
1343 {
1344 int err = set_anon_super(s, data);
1345 if (!err)
1346 s->s_fs_info = data;
1347 return err;
1348 }
1349
1350 /*
1351 * subvolumes are identified by ino 256
1352 */
is_subvolume_inode(struct inode * inode)1353 static inline int is_subvolume_inode(struct inode *inode)
1354 {
1355 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1356 return 1;
1357 return 0;
1358 }
1359
mount_subvol(const char * subvol_name,u64 subvol_objectid,struct vfsmount * mnt)1360 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1361 struct vfsmount *mnt)
1362 {
1363 struct dentry *root;
1364 int ret;
1365
1366 if (!subvol_name) {
1367 if (!subvol_objectid) {
1368 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1369 &subvol_objectid);
1370 if (ret) {
1371 root = ERR_PTR(ret);
1372 goto out;
1373 }
1374 }
1375 subvol_name = btrfs_get_subvol_name_from_objectid(
1376 btrfs_sb(mnt->mnt_sb), subvol_objectid);
1377 if (IS_ERR(subvol_name)) {
1378 root = ERR_CAST(subvol_name);
1379 subvol_name = NULL;
1380 goto out;
1381 }
1382
1383 }
1384
1385 root = mount_subtree(mnt, subvol_name);
1386 /* mount_subtree() drops our reference on the vfsmount. */
1387 mnt = NULL;
1388
1389 if (!IS_ERR(root)) {
1390 struct super_block *s = root->d_sb;
1391 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1392 struct inode *root_inode = d_inode(root);
1393 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1394
1395 ret = 0;
1396 if (!is_subvolume_inode(root_inode)) {
1397 btrfs_err(fs_info, "'%s' is not a valid subvolume",
1398 subvol_name);
1399 ret = -EINVAL;
1400 }
1401 if (subvol_objectid && root_objectid != subvol_objectid) {
1402 /*
1403 * This will also catch a race condition where a
1404 * subvolume which was passed by ID is renamed and
1405 * another subvolume is renamed over the old location.
1406 */
1407 btrfs_err(fs_info,
1408 "subvol '%s' does not match subvolid %llu",
1409 subvol_name, subvol_objectid);
1410 ret = -EINVAL;
1411 }
1412 if (ret) {
1413 dput(root);
1414 root = ERR_PTR(ret);
1415 deactivate_locked_super(s);
1416 }
1417 }
1418
1419 out:
1420 mntput(mnt);
1421 kfree(subvol_name);
1422 return root;
1423 }
1424
1425 /*
1426 * Find a superblock for the given device / mount point.
1427 *
1428 * Note: This is based on mount_bdev from fs/super.c with a few additions
1429 * for multiple device setup. Make sure to keep it in sync.
1430 */
btrfs_mount_root(struct file_system_type * fs_type,int flags,const char * device_name,void * data)1431 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1432 int flags, const char *device_name, void *data)
1433 {
1434 struct block_device *bdev = NULL;
1435 struct super_block *s;
1436 struct btrfs_device *device = NULL;
1437 struct btrfs_fs_devices *fs_devices = NULL;
1438 struct btrfs_fs_info *fs_info = NULL;
1439 void *new_sec_opts = NULL;
1440 fmode_t mode = FMODE_READ;
1441 int error = 0;
1442
1443 if (!(flags & SB_RDONLY))
1444 mode |= FMODE_WRITE;
1445
1446 if (data) {
1447 error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1448 if (error)
1449 return ERR_PTR(error);
1450 }
1451
1452 /*
1453 * Setup a dummy root and fs_info for test/set super. This is because
1454 * we don't actually fill this stuff out until open_ctree, but we need
1455 * then open_ctree will properly initialize the file system specific
1456 * settings later. btrfs_init_fs_info initializes the static elements
1457 * of the fs_info (locks and such) to make cleanup easier if we find a
1458 * superblock with our given fs_devices later on at sget() time.
1459 */
1460 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1461 if (!fs_info) {
1462 error = -ENOMEM;
1463 goto error_sec_opts;
1464 }
1465 btrfs_init_fs_info(fs_info);
1466
1467 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1468 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1469 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1470 error = -ENOMEM;
1471 goto error_fs_info;
1472 }
1473
1474 mutex_lock(&uuid_mutex);
1475 error = btrfs_parse_device_options(data, mode, fs_type);
1476 if (error) {
1477 mutex_unlock(&uuid_mutex);
1478 goto error_fs_info;
1479 }
1480
1481 device = btrfs_scan_one_device(device_name, mode, fs_type);
1482 if (IS_ERR(device)) {
1483 mutex_unlock(&uuid_mutex);
1484 error = PTR_ERR(device);
1485 goto error_fs_info;
1486 }
1487
1488 fs_devices = device->fs_devices;
1489 fs_info->fs_devices = fs_devices;
1490
1491 error = btrfs_open_devices(fs_devices, mode, fs_type);
1492 mutex_unlock(&uuid_mutex);
1493 if (error)
1494 goto error_fs_info;
1495
1496 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1497 error = -EACCES;
1498 goto error_close_devices;
1499 }
1500
1501 bdev = fs_devices->latest_dev->bdev;
1502 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1503 fs_info);
1504 if (IS_ERR(s)) {
1505 error = PTR_ERR(s);
1506 goto error_close_devices;
1507 }
1508
1509 if (s->s_root) {
1510 btrfs_close_devices(fs_devices);
1511 btrfs_free_fs_info(fs_info);
1512 if ((flags ^ s->s_flags) & SB_RDONLY)
1513 error = -EBUSY;
1514 } else {
1515 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1516 shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s", fs_type->name,
1517 s->s_id);
1518 btrfs_sb(s)->bdev_holder = fs_type;
1519 if (!strstr(crc32c_impl(), "generic"))
1520 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1521 error = btrfs_fill_super(s, fs_devices, data);
1522 }
1523 if (!error)
1524 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1525 security_free_mnt_opts(&new_sec_opts);
1526 if (error) {
1527 deactivate_locked_super(s);
1528 return ERR_PTR(error);
1529 }
1530
1531 return dget(s->s_root);
1532
1533 error_close_devices:
1534 btrfs_close_devices(fs_devices);
1535 error_fs_info:
1536 btrfs_free_fs_info(fs_info);
1537 error_sec_opts:
1538 security_free_mnt_opts(&new_sec_opts);
1539 return ERR_PTR(error);
1540 }
1541
1542 /*
1543 * Mount function which is called by VFS layer.
1544 *
1545 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1546 * which needs vfsmount* of device's root (/). This means device's root has to
1547 * be mounted internally in any case.
1548 *
1549 * Operation flow:
1550 * 1. Parse subvol id related options for later use in mount_subvol().
1551 *
1552 * 2. Mount device's root (/) by calling vfs_kern_mount().
1553 *
1554 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1555 * first place. In order to avoid calling btrfs_mount() again, we use
1556 * different file_system_type which is not registered to VFS by
1557 * register_filesystem() (btrfs_root_fs_type). As a result,
1558 * btrfs_mount_root() is called. The return value will be used by
1559 * mount_subtree() in mount_subvol().
1560 *
1561 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is
1562 * "btrfs subvolume set-default", mount_subvol() is called always.
1563 */
btrfs_mount(struct file_system_type * fs_type,int flags,const char * device_name,void * data)1564 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1565 const char *device_name, void *data)
1566 {
1567 struct vfsmount *mnt_root;
1568 struct dentry *root;
1569 char *subvol_name = NULL;
1570 u64 subvol_objectid = 0;
1571 int error = 0;
1572
1573 error = btrfs_parse_subvol_options(data, &subvol_name,
1574 &subvol_objectid);
1575 if (error) {
1576 kfree(subvol_name);
1577 return ERR_PTR(error);
1578 }
1579
1580 /* mount device's root (/) */
1581 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1582 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1583 if (flags & SB_RDONLY) {
1584 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1585 flags & ~SB_RDONLY, device_name, data);
1586 } else {
1587 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1588 flags | SB_RDONLY, device_name, data);
1589 if (IS_ERR(mnt_root)) {
1590 root = ERR_CAST(mnt_root);
1591 kfree(subvol_name);
1592 goto out;
1593 }
1594
1595 down_write(&mnt_root->mnt_sb->s_umount);
1596 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1597 up_write(&mnt_root->mnt_sb->s_umount);
1598 if (error < 0) {
1599 root = ERR_PTR(error);
1600 mntput(mnt_root);
1601 kfree(subvol_name);
1602 goto out;
1603 }
1604 }
1605 }
1606 if (IS_ERR(mnt_root)) {
1607 root = ERR_CAST(mnt_root);
1608 kfree(subvol_name);
1609 goto out;
1610 }
1611
1612 /* mount_subvol() will free subvol_name and mnt_root */
1613 root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1614
1615 out:
1616 return root;
1617 }
1618
btrfs_resize_thread_pool(struct btrfs_fs_info * fs_info,u32 new_pool_size,u32 old_pool_size)1619 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1620 u32 new_pool_size, u32 old_pool_size)
1621 {
1622 if (new_pool_size == old_pool_size)
1623 return;
1624
1625 fs_info->thread_pool_size = new_pool_size;
1626
1627 btrfs_info(fs_info, "resize thread pool %d -> %d",
1628 old_pool_size, new_pool_size);
1629
1630 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1631 btrfs_workqueue_set_max(fs_info->hipri_workers, new_pool_size);
1632 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1633 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1634 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1635 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1636 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1637 }
1638
btrfs_remount_begin(struct btrfs_fs_info * fs_info,unsigned long old_opts,int flags)1639 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1640 unsigned long old_opts, int flags)
1641 {
1642 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1643 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1644 (flags & SB_RDONLY))) {
1645 /* wait for any defraggers to finish */
1646 wait_event(fs_info->transaction_wait,
1647 (atomic_read(&fs_info->defrag_running) == 0));
1648 if (flags & SB_RDONLY)
1649 sync_filesystem(fs_info->sb);
1650 }
1651 }
1652
btrfs_remount_cleanup(struct btrfs_fs_info * fs_info,unsigned long old_opts)1653 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1654 unsigned long old_opts)
1655 {
1656 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1657
1658 /*
1659 * We need to cleanup all defragable inodes if the autodefragment is
1660 * close or the filesystem is read only.
1661 */
1662 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1663 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1664 btrfs_cleanup_defrag_inodes(fs_info);
1665 }
1666
1667 /* If we toggled discard async */
1668 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1669 btrfs_test_opt(fs_info, DISCARD_ASYNC))
1670 btrfs_discard_resume(fs_info);
1671 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1672 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1673 btrfs_discard_cleanup(fs_info);
1674
1675 /* If we toggled space cache */
1676 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1677 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1678 }
1679
btrfs_remount(struct super_block * sb,int * flags,char * data)1680 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1681 {
1682 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1683 unsigned old_flags = sb->s_flags;
1684 unsigned long old_opts = fs_info->mount_opt;
1685 unsigned long old_compress_type = fs_info->compress_type;
1686 u64 old_max_inline = fs_info->max_inline;
1687 u32 old_thread_pool_size = fs_info->thread_pool_size;
1688 u32 old_metadata_ratio = fs_info->metadata_ratio;
1689 int ret;
1690
1691 sync_filesystem(sb);
1692 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1693
1694 if (data) {
1695 void *new_sec_opts = NULL;
1696
1697 ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1698 if (!ret)
1699 ret = security_sb_remount(sb, new_sec_opts);
1700 security_free_mnt_opts(&new_sec_opts);
1701 if (ret)
1702 goto restore;
1703 }
1704
1705 ret = btrfs_parse_options(fs_info, data, *flags);
1706 if (ret)
1707 goto restore;
1708
1709 ret = btrfs_check_features(fs_info, !(*flags & SB_RDONLY));
1710 if (ret < 0)
1711 goto restore;
1712
1713 btrfs_remount_begin(fs_info, old_opts, *flags);
1714 btrfs_resize_thread_pool(fs_info,
1715 fs_info->thread_pool_size, old_thread_pool_size);
1716
1717 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1718 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1719 (!sb_rdonly(sb) || (*flags & SB_RDONLY))) {
1720 btrfs_warn(fs_info,
1721 "remount supports changing free space tree only from ro to rw");
1722 /* Make sure free space cache options match the state on disk */
1723 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1724 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1725 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1726 }
1727 if (btrfs_free_space_cache_v1_active(fs_info)) {
1728 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1729 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1730 }
1731 }
1732
1733 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1734 goto out;
1735
1736 if (*flags & SB_RDONLY) {
1737 /*
1738 * this also happens on 'umount -rf' or on shutdown, when
1739 * the filesystem is busy.
1740 */
1741 cancel_work_sync(&fs_info->async_reclaim_work);
1742 cancel_work_sync(&fs_info->async_data_reclaim_work);
1743
1744 btrfs_discard_cleanup(fs_info);
1745
1746 /* wait for the uuid_scan task to finish */
1747 down(&fs_info->uuid_tree_rescan_sem);
1748 /* avoid complains from lockdep et al. */
1749 up(&fs_info->uuid_tree_rescan_sem);
1750
1751 btrfs_set_sb_rdonly(sb);
1752
1753 /*
1754 * Setting SB_RDONLY will put the cleaner thread to
1755 * sleep at the next loop if it's already active.
1756 * If it's already asleep, we'll leave unused block
1757 * groups on disk until we're mounted read-write again
1758 * unless we clean them up here.
1759 */
1760 btrfs_delete_unused_bgs(fs_info);
1761
1762 /*
1763 * The cleaner task could be already running before we set the
1764 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).
1765 * We must make sure that after we finish the remount, i.e. after
1766 * we call btrfs_commit_super(), the cleaner can no longer start
1767 * a transaction - either because it was dropping a dead root,
1768 * running delayed iputs or deleting an unused block group (the
1769 * cleaner picked a block group from the list of unused block
1770 * groups before we were able to in the previous call to
1771 * btrfs_delete_unused_bgs()).
1772 */
1773 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING,
1774 TASK_UNINTERRUPTIBLE);
1775
1776 /*
1777 * We've set the superblock to RO mode, so we might have made
1778 * the cleaner task sleep without running all pending delayed
1779 * iputs. Go through all the delayed iputs here, so that if an
1780 * unmount happens without remounting RW we don't end up at
1781 * finishing close_ctree() with a non-empty list of delayed
1782 * iputs.
1783 */
1784 btrfs_run_delayed_iputs(fs_info);
1785
1786 btrfs_dev_replace_suspend_for_unmount(fs_info);
1787 btrfs_scrub_cancel(fs_info);
1788 btrfs_pause_balance(fs_info);
1789
1790 /*
1791 * Pause the qgroup rescan worker if it is running. We don't want
1792 * it to be still running after we are in RO mode, as after that,
1793 * by the time we unmount, it might have left a transaction open,
1794 * so we would leak the transaction and/or crash.
1795 */
1796 btrfs_qgroup_wait_for_completion(fs_info, false);
1797
1798 ret = btrfs_commit_super(fs_info);
1799 if (ret)
1800 goto restore;
1801 } else {
1802 if (BTRFS_FS_ERROR(fs_info)) {
1803 btrfs_err(fs_info,
1804 "Remounting read-write after error is not allowed");
1805 ret = -EINVAL;
1806 goto restore;
1807 }
1808 if (fs_info->fs_devices->rw_devices == 0) {
1809 ret = -EACCES;
1810 goto restore;
1811 }
1812
1813 if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1814 btrfs_warn(fs_info,
1815 "too many missing devices, writable remount is not allowed");
1816 ret = -EACCES;
1817 goto restore;
1818 }
1819
1820 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1821 btrfs_warn(fs_info,
1822 "mount required to replay tree-log, cannot remount read-write");
1823 ret = -EINVAL;
1824 goto restore;
1825 }
1826
1827 /*
1828 * NOTE: when remounting with a change that does writes, don't
1829 * put it anywhere above this point, as we are not sure to be
1830 * safe to write until we pass the above checks.
1831 */
1832 ret = btrfs_start_pre_rw_mount(fs_info);
1833 if (ret)
1834 goto restore;
1835
1836 btrfs_clear_sb_rdonly(sb);
1837
1838 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1839 }
1840 out:
1841 /*
1842 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
1843 * since the absence of the flag means it can be toggled off by remount.
1844 */
1845 *flags |= SB_I_VERSION;
1846
1847 wake_up_process(fs_info->transaction_kthread);
1848 btrfs_remount_cleanup(fs_info, old_opts);
1849 btrfs_clear_oneshot_options(fs_info);
1850 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1851
1852 return 0;
1853
1854 restore:
1855 /* We've hit an error - don't reset SB_RDONLY */
1856 if (sb_rdonly(sb))
1857 old_flags |= SB_RDONLY;
1858 if (!(old_flags & SB_RDONLY))
1859 clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
1860 sb->s_flags = old_flags;
1861 fs_info->mount_opt = old_opts;
1862 fs_info->compress_type = old_compress_type;
1863 fs_info->max_inline = old_max_inline;
1864 btrfs_resize_thread_pool(fs_info,
1865 old_thread_pool_size, fs_info->thread_pool_size);
1866 fs_info->metadata_ratio = old_metadata_ratio;
1867 btrfs_remount_cleanup(fs_info, old_opts);
1868 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1869
1870 return ret;
1871 }
1872
1873 /* Used to sort the devices by max_avail(descending sort) */
btrfs_cmp_device_free_bytes(const void * a,const void * b)1874 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1875 {
1876 const struct btrfs_device_info *dev_info1 = a;
1877 const struct btrfs_device_info *dev_info2 = b;
1878
1879 if (dev_info1->max_avail > dev_info2->max_avail)
1880 return -1;
1881 else if (dev_info1->max_avail < dev_info2->max_avail)
1882 return 1;
1883 return 0;
1884 }
1885
1886 /*
1887 * sort the devices by max_avail, in which max free extent size of each device
1888 * is stored.(Descending Sort)
1889 */
btrfs_descending_sort_devices(struct btrfs_device_info * devices,size_t nr_devices)1890 static inline void btrfs_descending_sort_devices(
1891 struct btrfs_device_info *devices,
1892 size_t nr_devices)
1893 {
1894 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1895 btrfs_cmp_device_free_bytes, NULL);
1896 }
1897
1898 /*
1899 * The helper to calc the free space on the devices that can be used to store
1900 * file data.
1901 */
btrfs_calc_avail_data_space(struct btrfs_fs_info * fs_info,u64 * free_bytes)1902 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1903 u64 *free_bytes)
1904 {
1905 struct btrfs_device_info *devices_info;
1906 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1907 struct btrfs_device *device;
1908 u64 type;
1909 u64 avail_space;
1910 u64 min_stripe_size;
1911 int num_stripes = 1;
1912 int i = 0, nr_devices;
1913 const struct btrfs_raid_attr *rattr;
1914
1915 /*
1916 * We aren't under the device list lock, so this is racy-ish, but good
1917 * enough for our purposes.
1918 */
1919 nr_devices = fs_info->fs_devices->open_devices;
1920 if (!nr_devices) {
1921 smp_mb();
1922 nr_devices = fs_info->fs_devices->open_devices;
1923 ASSERT(nr_devices);
1924 if (!nr_devices) {
1925 *free_bytes = 0;
1926 return 0;
1927 }
1928 }
1929
1930 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1931 GFP_KERNEL);
1932 if (!devices_info)
1933 return -ENOMEM;
1934
1935 /* calc min stripe number for data space allocation */
1936 type = btrfs_data_alloc_profile(fs_info);
1937 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1938
1939 if (type & BTRFS_BLOCK_GROUP_RAID0)
1940 num_stripes = nr_devices;
1941 else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1942 num_stripes = rattr->ncopies;
1943 else if (type & BTRFS_BLOCK_GROUP_RAID10)
1944 num_stripes = 4;
1945
1946 /* Adjust for more than 1 stripe per device */
1947 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1948
1949 rcu_read_lock();
1950 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1951 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1952 &device->dev_state) ||
1953 !device->bdev ||
1954 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1955 continue;
1956
1957 if (i >= nr_devices)
1958 break;
1959
1960 avail_space = device->total_bytes - device->bytes_used;
1961
1962 /* align with stripe_len */
1963 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1964
1965 /*
1966 * Ensure we have at least min_stripe_size on top of the
1967 * reserved space on the device.
1968 */
1969 if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1970 continue;
1971
1972 avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1973
1974 devices_info[i].dev = device;
1975 devices_info[i].max_avail = avail_space;
1976
1977 i++;
1978 }
1979 rcu_read_unlock();
1980
1981 nr_devices = i;
1982
1983 btrfs_descending_sort_devices(devices_info, nr_devices);
1984
1985 i = nr_devices - 1;
1986 avail_space = 0;
1987 while (nr_devices >= rattr->devs_min) {
1988 num_stripes = min(num_stripes, nr_devices);
1989
1990 if (devices_info[i].max_avail >= min_stripe_size) {
1991 int j;
1992 u64 alloc_size;
1993
1994 avail_space += devices_info[i].max_avail * num_stripes;
1995 alloc_size = devices_info[i].max_avail;
1996 for (j = i + 1 - num_stripes; j <= i; j++)
1997 devices_info[j].max_avail -= alloc_size;
1998 }
1999 i--;
2000 nr_devices--;
2001 }
2002
2003 kfree(devices_info);
2004 *free_bytes = avail_space;
2005 return 0;
2006 }
2007
2008 /*
2009 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2010 *
2011 * If there's a redundant raid level at DATA block groups, use the respective
2012 * multiplier to scale the sizes.
2013 *
2014 * Unused device space usage is based on simulating the chunk allocator
2015 * algorithm that respects the device sizes and order of allocations. This is
2016 * a close approximation of the actual use but there are other factors that may
2017 * change the result (like a new metadata chunk).
2018 *
2019 * If metadata is exhausted, f_bavail will be 0.
2020 */
btrfs_statfs(struct dentry * dentry,struct kstatfs * buf)2021 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2022 {
2023 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2024 struct btrfs_super_block *disk_super = fs_info->super_copy;
2025 struct btrfs_space_info *found;
2026 u64 total_used = 0;
2027 u64 total_free_data = 0;
2028 u64 total_free_meta = 0;
2029 u32 bits = fs_info->sectorsize_bits;
2030 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2031 unsigned factor = 1;
2032 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2033 int ret;
2034 u64 thresh = 0;
2035 int mixed = 0;
2036
2037 list_for_each_entry(found, &fs_info->space_info, list) {
2038 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2039 int i;
2040
2041 total_free_data += found->disk_total - found->disk_used;
2042 total_free_data -=
2043 btrfs_account_ro_block_groups_free_space(found);
2044
2045 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2046 if (!list_empty(&found->block_groups[i]))
2047 factor = btrfs_bg_type_to_factor(
2048 btrfs_raid_array[i].bg_flag);
2049 }
2050 }
2051
2052 /*
2053 * Metadata in mixed block group profiles are accounted in data
2054 */
2055 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2056 if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2057 mixed = 1;
2058 else
2059 total_free_meta += found->disk_total -
2060 found->disk_used;
2061 }
2062
2063 total_used += found->disk_used;
2064 }
2065
2066 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2067 buf->f_blocks >>= bits;
2068 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2069
2070 /* Account global block reserve as used, it's in logical size already */
2071 spin_lock(&block_rsv->lock);
2072 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2073 if (buf->f_bfree >= block_rsv->size >> bits)
2074 buf->f_bfree -= block_rsv->size >> bits;
2075 else
2076 buf->f_bfree = 0;
2077 spin_unlock(&block_rsv->lock);
2078
2079 buf->f_bavail = div_u64(total_free_data, factor);
2080 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2081 if (ret)
2082 return ret;
2083 buf->f_bavail += div_u64(total_free_data, factor);
2084 buf->f_bavail = buf->f_bavail >> bits;
2085
2086 /*
2087 * We calculate the remaining metadata space minus global reserve. If
2088 * this is (supposedly) smaller than zero, there's no space. But this
2089 * does not hold in practice, the exhausted state happens where's still
2090 * some positive delta. So we apply some guesswork and compare the
2091 * delta to a 4M threshold. (Practically observed delta was ~2M.)
2092 *
2093 * We probably cannot calculate the exact threshold value because this
2094 * depends on the internal reservations requested by various
2095 * operations, so some operations that consume a few metadata will
2096 * succeed even if the Avail is zero. But this is better than the other
2097 * way around.
2098 */
2099 thresh = SZ_4M;
2100
2101 /*
2102 * We only want to claim there's no available space if we can no longer
2103 * allocate chunks for our metadata profile and our global reserve will
2104 * not fit in the free metadata space. If we aren't ->full then we
2105 * still can allocate chunks and thus are fine using the currently
2106 * calculated f_bavail.
2107 */
2108 if (!mixed && block_rsv->space_info->full &&
2109 total_free_meta - thresh < block_rsv->size)
2110 buf->f_bavail = 0;
2111
2112 buf->f_type = BTRFS_SUPER_MAGIC;
2113 buf->f_bsize = dentry->d_sb->s_blocksize;
2114 buf->f_namelen = BTRFS_NAME_LEN;
2115
2116 /* We treat it as constant endianness (it doesn't matter _which_)
2117 because we want the fsid to come out the same whether mounted
2118 on a big-endian or little-endian host */
2119 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2120 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2121 /* Mask in the root object ID too, to disambiguate subvols */
2122 buf->f_fsid.val[0] ^=
2123 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2124 buf->f_fsid.val[1] ^=
2125 BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2126
2127 return 0;
2128 }
2129
btrfs_kill_super(struct super_block * sb)2130 static void btrfs_kill_super(struct super_block *sb)
2131 {
2132 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2133 kill_anon_super(sb);
2134 btrfs_free_fs_info(fs_info);
2135 }
2136
2137 static struct file_system_type btrfs_fs_type = {
2138 .owner = THIS_MODULE,
2139 .name = "btrfs",
2140 .mount = btrfs_mount,
2141 .kill_sb = btrfs_kill_super,
2142 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2143 };
2144
2145 static struct file_system_type btrfs_root_fs_type = {
2146 .owner = THIS_MODULE,
2147 .name = "btrfs",
2148 .mount = btrfs_mount_root,
2149 .kill_sb = btrfs_kill_super,
2150 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2151 };
2152
2153 MODULE_ALIAS_FS("btrfs");
2154
btrfs_control_open(struct inode * inode,struct file * file)2155 static int btrfs_control_open(struct inode *inode, struct file *file)
2156 {
2157 /*
2158 * The control file's private_data is used to hold the
2159 * transaction when it is started and is used to keep
2160 * track of whether a transaction is already in progress.
2161 */
2162 file->private_data = NULL;
2163 return 0;
2164 }
2165
2166 /*
2167 * Used by /dev/btrfs-control for devices ioctls.
2168 */
btrfs_control_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2169 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2170 unsigned long arg)
2171 {
2172 struct btrfs_ioctl_vol_args *vol;
2173 struct btrfs_device *device = NULL;
2174 dev_t devt = 0;
2175 int ret = -ENOTTY;
2176
2177 if (!capable(CAP_SYS_ADMIN))
2178 return -EPERM;
2179
2180 vol = memdup_user((void __user *)arg, sizeof(*vol));
2181 if (IS_ERR(vol))
2182 return PTR_ERR(vol);
2183 vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2184
2185 switch (cmd) {
2186 case BTRFS_IOC_SCAN_DEV:
2187 mutex_lock(&uuid_mutex);
2188 device = btrfs_scan_one_device(vol->name, FMODE_READ,
2189 &btrfs_root_fs_type);
2190 ret = PTR_ERR_OR_ZERO(device);
2191 mutex_unlock(&uuid_mutex);
2192 break;
2193 case BTRFS_IOC_FORGET_DEV:
2194 if (vol->name[0] != 0) {
2195 ret = lookup_bdev(vol->name, &devt);
2196 if (ret)
2197 break;
2198 }
2199 ret = btrfs_forget_devices(devt);
2200 break;
2201 case BTRFS_IOC_DEVICES_READY:
2202 mutex_lock(&uuid_mutex);
2203 device = btrfs_scan_one_device(vol->name, FMODE_READ,
2204 &btrfs_root_fs_type);
2205 if (IS_ERR(device)) {
2206 mutex_unlock(&uuid_mutex);
2207 ret = PTR_ERR(device);
2208 break;
2209 }
2210 ret = !(device->fs_devices->num_devices ==
2211 device->fs_devices->total_devices);
2212 mutex_unlock(&uuid_mutex);
2213 break;
2214 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2215 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2216 break;
2217 }
2218
2219 kfree(vol);
2220 return ret;
2221 }
2222
btrfs_freeze(struct super_block * sb)2223 static int btrfs_freeze(struct super_block *sb)
2224 {
2225 struct btrfs_trans_handle *trans;
2226 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2227 struct btrfs_root *root = fs_info->tree_root;
2228
2229 set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2230 /*
2231 * We don't need a barrier here, we'll wait for any transaction that
2232 * could be in progress on other threads (and do delayed iputs that
2233 * we want to avoid on a frozen filesystem), or do the commit
2234 * ourselves.
2235 */
2236 trans = btrfs_attach_transaction_barrier(root);
2237 if (IS_ERR(trans)) {
2238 /* no transaction, don't bother */
2239 if (PTR_ERR(trans) == -ENOENT)
2240 return 0;
2241 return PTR_ERR(trans);
2242 }
2243 return btrfs_commit_transaction(trans);
2244 }
2245
check_dev_super(struct btrfs_device * dev)2246 static int check_dev_super(struct btrfs_device *dev)
2247 {
2248 struct btrfs_fs_info *fs_info = dev->fs_info;
2249 struct btrfs_super_block *sb;
2250 u16 csum_type;
2251 int ret = 0;
2252
2253 /* This should be called with fs still frozen. */
2254 ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2255
2256 /* Missing dev, no need to check. */
2257 if (!dev->bdev)
2258 return 0;
2259
2260 /* Only need to check the primary super block. */
2261 sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2262 if (IS_ERR(sb))
2263 return PTR_ERR(sb);
2264
2265 /* Verify the checksum. */
2266 csum_type = btrfs_super_csum_type(sb);
2267 if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2268 btrfs_err(fs_info, "csum type changed, has %u expect %u",
2269 csum_type, btrfs_super_csum_type(fs_info->super_copy));
2270 ret = -EUCLEAN;
2271 goto out;
2272 }
2273
2274 if (btrfs_check_super_csum(fs_info, sb)) {
2275 btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2276 ret = -EUCLEAN;
2277 goto out;
2278 }
2279
2280 /* Btrfs_validate_super() includes fsid check against super->fsid. */
2281 ret = btrfs_validate_super(fs_info, sb, 0);
2282 if (ret < 0)
2283 goto out;
2284
2285 if (btrfs_super_generation(sb) != fs_info->last_trans_committed) {
2286 btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2287 btrfs_super_generation(sb),
2288 fs_info->last_trans_committed);
2289 ret = -EUCLEAN;
2290 goto out;
2291 }
2292 out:
2293 btrfs_release_disk_super(sb);
2294 return ret;
2295 }
2296
btrfs_unfreeze(struct super_block * sb)2297 static int btrfs_unfreeze(struct super_block *sb)
2298 {
2299 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2300 struct btrfs_device *device;
2301 int ret = 0;
2302
2303 /*
2304 * Make sure the fs is not changed by accident (like hibernation then
2305 * modified by other OS).
2306 * If we found anything wrong, we mark the fs error immediately.
2307 *
2308 * And since the fs is frozen, no one can modify the fs yet, thus
2309 * we don't need to hold device_list_mutex.
2310 */
2311 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2312 ret = check_dev_super(device);
2313 if (ret < 0) {
2314 btrfs_handle_fs_error(fs_info, ret,
2315 "super block on devid %llu got modified unexpectedly",
2316 device->devid);
2317 break;
2318 }
2319 }
2320 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2321
2322 /*
2323 * We still return 0, to allow VFS layer to unfreeze the fs even the
2324 * above checks failed. Since the fs is either fine or read-only, we're
2325 * safe to continue, without causing further damage.
2326 */
2327 return 0;
2328 }
2329
btrfs_show_devname(struct seq_file * m,struct dentry * root)2330 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2331 {
2332 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2333
2334 /*
2335 * There should be always a valid pointer in latest_dev, it may be stale
2336 * for a short moment in case it's being deleted but still valid until
2337 * the end of RCU grace period.
2338 */
2339 rcu_read_lock();
2340 seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2341 rcu_read_unlock();
2342
2343 return 0;
2344 }
2345
2346 static const struct super_operations btrfs_super_ops = {
2347 .drop_inode = btrfs_drop_inode,
2348 .evict_inode = btrfs_evict_inode,
2349 .put_super = btrfs_put_super,
2350 .sync_fs = btrfs_sync_fs,
2351 .show_options = btrfs_show_options,
2352 .show_devname = btrfs_show_devname,
2353 .alloc_inode = btrfs_alloc_inode,
2354 .destroy_inode = btrfs_destroy_inode,
2355 .free_inode = btrfs_free_inode,
2356 .statfs = btrfs_statfs,
2357 .remount_fs = btrfs_remount,
2358 .freeze_fs = btrfs_freeze,
2359 .unfreeze_fs = btrfs_unfreeze,
2360 };
2361
2362 static const struct file_operations btrfs_ctl_fops = {
2363 .open = btrfs_control_open,
2364 .unlocked_ioctl = btrfs_control_ioctl,
2365 .compat_ioctl = compat_ptr_ioctl,
2366 .owner = THIS_MODULE,
2367 .llseek = noop_llseek,
2368 };
2369
2370 static struct miscdevice btrfs_misc = {
2371 .minor = BTRFS_MINOR,
2372 .name = "btrfs-control",
2373 .fops = &btrfs_ctl_fops
2374 };
2375
2376 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2377 MODULE_ALIAS("devname:btrfs-control");
2378
btrfs_interface_init(void)2379 static int __init btrfs_interface_init(void)
2380 {
2381 return misc_register(&btrfs_misc);
2382 }
2383
btrfs_interface_exit(void)2384 static __cold void btrfs_interface_exit(void)
2385 {
2386 misc_deregister(&btrfs_misc);
2387 }
2388
btrfs_print_mod_info(void)2389 static int __init btrfs_print_mod_info(void)
2390 {
2391 static const char options[] = ""
2392 #ifdef CONFIG_BTRFS_DEBUG
2393 ", debug=on"
2394 #endif
2395 #ifdef CONFIG_BTRFS_ASSERT
2396 ", assert=on"
2397 #endif
2398 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2399 ", integrity-checker=on"
2400 #endif
2401 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2402 ", ref-verify=on"
2403 #endif
2404 #ifdef CONFIG_BLK_DEV_ZONED
2405 ", zoned=yes"
2406 #else
2407 ", zoned=no"
2408 #endif
2409 #ifdef CONFIG_FS_VERITY
2410 ", fsverity=yes"
2411 #else
2412 ", fsverity=no"
2413 #endif
2414 ;
2415 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2416 return 0;
2417 }
2418
register_btrfs(void)2419 static int register_btrfs(void)
2420 {
2421 return register_filesystem(&btrfs_fs_type);
2422 }
2423
unregister_btrfs(void)2424 static void unregister_btrfs(void)
2425 {
2426 unregister_filesystem(&btrfs_fs_type);
2427 }
2428
2429 /* Helper structure for long init/exit functions. */
2430 struct init_sequence {
2431 int (*init_func)(void);
2432 /* Can be NULL if the init_func doesn't need cleanup. */
2433 void (*exit_func)(void);
2434 };
2435
2436 static const struct init_sequence mod_init_seq[] = {
2437 {
2438 .init_func = btrfs_props_init,
2439 .exit_func = NULL,
2440 }, {
2441 .init_func = btrfs_init_sysfs,
2442 .exit_func = btrfs_exit_sysfs,
2443 }, {
2444 .init_func = btrfs_init_compress,
2445 .exit_func = btrfs_exit_compress,
2446 }, {
2447 .init_func = btrfs_init_cachep,
2448 .exit_func = btrfs_destroy_cachep,
2449 }, {
2450 .init_func = btrfs_transaction_init,
2451 .exit_func = btrfs_transaction_exit,
2452 }, {
2453 .init_func = btrfs_ctree_init,
2454 .exit_func = btrfs_ctree_exit,
2455 }, {
2456 .init_func = btrfs_free_space_init,
2457 .exit_func = btrfs_free_space_exit,
2458 }, {
2459 .init_func = extent_state_init_cachep,
2460 .exit_func = extent_state_free_cachep,
2461 }, {
2462 .init_func = extent_buffer_init_cachep,
2463 .exit_func = extent_buffer_free_cachep,
2464 }, {
2465 .init_func = btrfs_bioset_init,
2466 .exit_func = btrfs_bioset_exit,
2467 }, {
2468 .init_func = extent_map_init,
2469 .exit_func = extent_map_exit,
2470 }, {
2471 .init_func = ordered_data_init,
2472 .exit_func = ordered_data_exit,
2473 }, {
2474 .init_func = btrfs_delayed_inode_init,
2475 .exit_func = btrfs_delayed_inode_exit,
2476 }, {
2477 .init_func = btrfs_auto_defrag_init,
2478 .exit_func = btrfs_auto_defrag_exit,
2479 }, {
2480 .init_func = btrfs_delayed_ref_init,
2481 .exit_func = btrfs_delayed_ref_exit,
2482 }, {
2483 .init_func = btrfs_prelim_ref_init,
2484 .exit_func = btrfs_prelim_ref_exit,
2485 }, {
2486 .init_func = btrfs_interface_init,
2487 .exit_func = btrfs_interface_exit,
2488 }, {
2489 .init_func = btrfs_print_mod_info,
2490 .exit_func = NULL,
2491 }, {
2492 .init_func = btrfs_run_sanity_tests,
2493 .exit_func = NULL,
2494 }, {
2495 .init_func = register_btrfs,
2496 .exit_func = unregister_btrfs,
2497 }
2498 };
2499
2500 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2501
btrfs_exit_btrfs_fs(void)2502 static __always_inline void btrfs_exit_btrfs_fs(void)
2503 {
2504 int i;
2505
2506 for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2507 if (!mod_init_result[i])
2508 continue;
2509 if (mod_init_seq[i].exit_func)
2510 mod_init_seq[i].exit_func();
2511 mod_init_result[i] = false;
2512 }
2513 }
2514
exit_btrfs_fs(void)2515 static void __exit exit_btrfs_fs(void)
2516 {
2517 btrfs_exit_btrfs_fs();
2518 btrfs_cleanup_fs_uuids();
2519 }
2520
init_btrfs_fs(void)2521 static int __init init_btrfs_fs(void)
2522 {
2523 int ret;
2524 int i;
2525
2526 for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2527 ASSERT(!mod_init_result[i]);
2528 ret = mod_init_seq[i].init_func();
2529 if (ret < 0) {
2530 btrfs_exit_btrfs_fs();
2531 return ret;
2532 }
2533 mod_init_result[i] = true;
2534 }
2535 return 0;
2536 }
2537
2538 late_initcall(init_btrfs_fs);
2539 module_exit(exit_btrfs_fs)
2540
2541 MODULE_LICENSE("GPL");
2542 MODULE_SOFTDEP("pre: crc32c");
2543 MODULE_SOFTDEP("pre: xxhash64");
2544 MODULE_SOFTDEP("pre: sha256");
2545 MODULE_SOFTDEP("pre: blake2b-256");
2546