1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/file.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/file.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * ext4 fs regular file handling primitives
17 *
18 * 64-bit file support on 64-bit platforms by Jakub Jelinek
19 * (jj@sunsite.ms.mff.cuni.cz)
20 */
21
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38
39 /*
40 * Returns %true if the given DIO request should be attempted with DIO, or
41 * %false if it should fall back to buffered I/O.
42 *
43 * DIO isn't well specified; when it's unsupported (either due to the request
44 * being misaligned, or due to the file not supporting DIO at all), filesystems
45 * either fall back to buffered I/O or return EINVAL. For files that don't use
46 * any special features like encryption or verity, ext4 has traditionally
47 * returned EINVAL for misaligned DIO. iomap_dio_rw() uses this convention too.
48 * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
49 *
50 * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
51 * traditionally falls back to buffered I/O.
52 *
53 * This function implements the traditional ext4 behavior in all these cases.
54 */
ext4_should_use_dio(struct kiocb * iocb,struct iov_iter * iter)55 static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
56 {
57 struct inode *inode = file_inode(iocb->ki_filp);
58 u32 dio_align = ext4_dio_alignment(inode);
59
60 if (dio_align == 0)
61 return false;
62
63 if (dio_align == 1)
64 return true;
65
66 return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
67 }
68
ext4_dio_read_iter(struct kiocb * iocb,struct iov_iter * to)69 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
70 {
71 ssize_t ret;
72 struct inode *inode = file_inode(iocb->ki_filp);
73
74 if (iocb->ki_flags & IOCB_NOWAIT) {
75 if (!inode_trylock_shared(inode))
76 return -EAGAIN;
77 } else {
78 inode_lock_shared(inode);
79 }
80
81 if (!ext4_should_use_dio(iocb, to)) {
82 inode_unlock_shared(inode);
83 /*
84 * Fallback to buffered I/O if the operation being performed on
85 * the inode is not supported by direct I/O. The IOCB_DIRECT
86 * flag needs to be cleared here in order to ensure that the
87 * direct I/O path within generic_file_read_iter() is not
88 * taken.
89 */
90 iocb->ki_flags &= ~IOCB_DIRECT;
91 return generic_file_read_iter(iocb, to);
92 }
93
94 ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
95 inode_unlock_shared(inode);
96
97 file_accessed(iocb->ki_filp);
98 return ret;
99 }
100
101 #ifdef CONFIG_FS_DAX
ext4_dax_read_iter(struct kiocb * iocb,struct iov_iter * to)102 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
103 {
104 struct inode *inode = file_inode(iocb->ki_filp);
105 ssize_t ret;
106
107 if (iocb->ki_flags & IOCB_NOWAIT) {
108 if (!inode_trylock_shared(inode))
109 return -EAGAIN;
110 } else {
111 inode_lock_shared(inode);
112 }
113 /*
114 * Recheck under inode lock - at this point we are sure it cannot
115 * change anymore
116 */
117 if (!IS_DAX(inode)) {
118 inode_unlock_shared(inode);
119 /* Fallback to buffered IO in case we cannot support DAX */
120 return generic_file_read_iter(iocb, to);
121 }
122 ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
123 inode_unlock_shared(inode);
124
125 file_accessed(iocb->ki_filp);
126 return ret;
127 }
128 #endif
129
ext4_file_read_iter(struct kiocb * iocb,struct iov_iter * to)130 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
131 {
132 struct inode *inode = file_inode(iocb->ki_filp);
133
134 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
135 return -EIO;
136
137 if (!iov_iter_count(to))
138 return 0; /* skip atime */
139
140 #ifdef CONFIG_FS_DAX
141 if (IS_DAX(inode))
142 return ext4_dax_read_iter(iocb, to);
143 #endif
144 if (iocb->ki_flags & IOCB_DIRECT)
145 return ext4_dio_read_iter(iocb, to);
146
147 return generic_file_read_iter(iocb, to);
148 }
149
150 /*
151 * Called when an inode is released. Note that this is different
152 * from ext4_file_open: open gets called at every open, but release
153 * gets called only when /all/ the files are closed.
154 */
ext4_release_file(struct inode * inode,struct file * filp)155 static int ext4_release_file(struct inode *inode, struct file *filp)
156 {
157 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
158 ext4_alloc_da_blocks(inode);
159 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
160 }
161 /* if we are the last writer on the inode, drop the block reservation */
162 if ((filp->f_mode & FMODE_WRITE) &&
163 (atomic_read(&inode->i_writecount) == 1) &&
164 !EXT4_I(inode)->i_reserved_data_blocks) {
165 down_write(&EXT4_I(inode)->i_data_sem);
166 ext4_discard_preallocations(inode, 0);
167 up_write(&EXT4_I(inode)->i_data_sem);
168 }
169 if (is_dx(inode) && filp->private_data)
170 ext4_htree_free_dir_info(filp->private_data);
171
172 return 0;
173 }
174
175 /*
176 * This tests whether the IO in question is block-aligned or not.
177 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
178 * are converted to written only after the IO is complete. Until they are
179 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
180 * it needs to zero out portions of the start and/or end block. If 2 AIO
181 * threads are at work on the same unwritten block, they must be synchronized
182 * or one thread will zero the other's data, causing corruption.
183 */
184 static bool
ext4_unaligned_io(struct inode * inode,struct iov_iter * from,loff_t pos)185 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
186 {
187 struct super_block *sb = inode->i_sb;
188 unsigned long blockmask = sb->s_blocksize - 1;
189
190 if ((pos | iov_iter_alignment(from)) & blockmask)
191 return true;
192
193 return false;
194 }
195
196 static bool
ext4_extending_io(struct inode * inode,loff_t offset,size_t len)197 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
198 {
199 if (offset + len > i_size_read(inode) ||
200 offset + len > EXT4_I(inode)->i_disksize)
201 return true;
202 return false;
203 }
204
205 /* Is IO overwriting allocated or initialized blocks? */
ext4_overwrite_io(struct inode * inode,loff_t pos,loff_t len,bool * unwritten)206 static bool ext4_overwrite_io(struct inode *inode,
207 loff_t pos, loff_t len, bool *unwritten)
208 {
209 struct ext4_map_blocks map;
210 unsigned int blkbits = inode->i_blkbits;
211 int err, blklen;
212
213 if (pos + len > i_size_read(inode))
214 return false;
215
216 map.m_lblk = pos >> blkbits;
217 map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
218 blklen = map.m_len;
219
220 err = ext4_map_blocks(NULL, inode, &map, 0);
221 if (err != blklen)
222 return false;
223 /*
224 * 'err==len' means that all of the blocks have been preallocated,
225 * regardless of whether they have been initialized or not. We need to
226 * check m_flags to distinguish the unwritten extents.
227 */
228 *unwritten = !(map.m_flags & EXT4_MAP_MAPPED);
229 return true;
230 }
231
ext4_generic_write_checks(struct kiocb * iocb,struct iov_iter * from)232 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
233 struct iov_iter *from)
234 {
235 struct inode *inode = file_inode(iocb->ki_filp);
236 ssize_t ret;
237
238 if (unlikely(IS_IMMUTABLE(inode)))
239 return -EPERM;
240
241 ret = generic_write_checks(iocb, from);
242 if (ret <= 0)
243 return ret;
244
245 /*
246 * If we have encountered a bitmap-format file, the size limit
247 * is smaller than s_maxbytes, which is for extent-mapped files.
248 */
249 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
250 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
251
252 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
253 return -EFBIG;
254 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
255 }
256
257 return iov_iter_count(from);
258 }
259
ext4_write_checks(struct kiocb * iocb,struct iov_iter * from)260 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
261 {
262 ssize_t ret, count;
263
264 count = ext4_generic_write_checks(iocb, from);
265 if (count <= 0)
266 return count;
267
268 ret = file_modified(iocb->ki_filp);
269 if (ret)
270 return ret;
271 return count;
272 }
273
ext4_buffered_write_iter(struct kiocb * iocb,struct iov_iter * from)274 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
275 struct iov_iter *from)
276 {
277 ssize_t ret;
278 struct inode *inode = file_inode(iocb->ki_filp);
279
280 if (iocb->ki_flags & IOCB_NOWAIT)
281 return -EOPNOTSUPP;
282
283 inode_lock(inode);
284 ret = ext4_write_checks(iocb, from);
285 if (ret <= 0)
286 goto out;
287
288 current->backing_dev_info = inode_to_bdi(inode);
289 ret = generic_perform_write(iocb, from);
290 current->backing_dev_info = NULL;
291
292 out:
293 inode_unlock(inode);
294 if (likely(ret > 0)) {
295 iocb->ki_pos += ret;
296 ret = generic_write_sync(iocb, ret);
297 }
298
299 return ret;
300 }
301
ext4_handle_inode_extension(struct inode * inode,loff_t offset,ssize_t written,size_t count)302 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
303 ssize_t written, size_t count)
304 {
305 handle_t *handle;
306 bool truncate = false;
307 u8 blkbits = inode->i_blkbits;
308 ext4_lblk_t written_blk, end_blk;
309 int ret;
310
311 /*
312 * Note that EXT4_I(inode)->i_disksize can get extended up to
313 * inode->i_size while the I/O was running due to writeback of delalloc
314 * blocks. But, the code in ext4_iomap_alloc() is careful to use
315 * zeroed/unwritten extents if this is possible; thus we won't leave
316 * uninitialized blocks in a file even if we didn't succeed in writing
317 * as much as we intended.
318 */
319 WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
320 if (offset + count <= EXT4_I(inode)->i_disksize) {
321 /*
322 * We need to ensure that the inode is removed from the orphan
323 * list if it has been added prematurely, due to writeback of
324 * delalloc blocks.
325 */
326 if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
327 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
328
329 if (IS_ERR(handle)) {
330 ext4_orphan_del(NULL, inode);
331 return PTR_ERR(handle);
332 }
333
334 ext4_orphan_del(handle, inode);
335 ext4_journal_stop(handle);
336 }
337
338 return written;
339 }
340
341 if (written < 0)
342 goto truncate;
343
344 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
345 if (IS_ERR(handle)) {
346 written = PTR_ERR(handle);
347 goto truncate;
348 }
349
350 if (ext4_update_inode_size(inode, offset + written)) {
351 ret = ext4_mark_inode_dirty(handle, inode);
352 if (unlikely(ret)) {
353 written = ret;
354 ext4_journal_stop(handle);
355 goto truncate;
356 }
357 }
358
359 /*
360 * We may need to truncate allocated but not written blocks beyond EOF.
361 */
362 written_blk = ALIGN(offset + written, 1 << blkbits);
363 end_blk = ALIGN(offset + count, 1 << blkbits);
364 if (written_blk < end_blk && ext4_can_truncate(inode))
365 truncate = true;
366
367 /*
368 * Remove the inode from the orphan list if it has been extended and
369 * everything went OK.
370 */
371 if (!truncate && inode->i_nlink)
372 ext4_orphan_del(handle, inode);
373 ext4_journal_stop(handle);
374
375 if (truncate) {
376 truncate:
377 ext4_truncate_failed_write(inode);
378 /*
379 * If the truncate operation failed early, then the inode may
380 * still be on the orphan list. In that case, we need to try
381 * remove the inode from the in-memory linked list.
382 */
383 if (inode->i_nlink)
384 ext4_orphan_del(NULL, inode);
385 }
386
387 return written;
388 }
389
ext4_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)390 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
391 int error, unsigned int flags)
392 {
393 loff_t pos = iocb->ki_pos;
394 struct inode *inode = file_inode(iocb->ki_filp);
395
396 if (error)
397 return error;
398
399 if (size && flags & IOMAP_DIO_UNWRITTEN) {
400 error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
401 if (error < 0)
402 return error;
403 }
404 /*
405 * If we are extending the file, we have to update i_size here before
406 * page cache gets invalidated in iomap_dio_rw(). Otherwise racing
407 * buffered reads could zero out too much from page cache pages. Update
408 * of on-disk size will happen later in ext4_dio_write_iter() where
409 * we have enough information to also perform orphan list handling etc.
410 * Note that we perform all extending writes synchronously under
411 * i_rwsem held exclusively so i_size update is safe here in that case.
412 * If the write was not extending, we cannot see pos > i_size here
413 * because operations reducing i_size like truncate wait for all
414 * outstanding DIO before updating i_size.
415 */
416 pos += size;
417 if (pos > i_size_read(inode))
418 i_size_write(inode, pos);
419
420 return 0;
421 }
422
423 static const struct iomap_dio_ops ext4_dio_write_ops = {
424 .end_io = ext4_dio_write_end_io,
425 };
426
427 /*
428 * The intention here is to start with shared lock acquired then see if any
429 * condition requires an exclusive inode lock. If yes, then we restart the
430 * whole operation by releasing the shared lock and acquiring exclusive lock.
431 *
432 * - For unaligned_io we never take shared lock as it may cause data corruption
433 * when two unaligned IO tries to modify the same block e.g. while zeroing.
434 *
435 * - For extending writes case we don't take the shared lock, since it requires
436 * updating inode i_disksize and/or orphan handling with exclusive lock.
437 *
438 * - shared locking will only be true mostly with overwrites, including
439 * initialized blocks and unwritten blocks. For overwrite unwritten blocks
440 * we protect splitting extents by i_data_sem in ext4_inode_info, so we can
441 * also release exclusive i_rwsem lock.
442 *
443 * - Otherwise we will switch to exclusive i_rwsem lock.
444 */
ext4_dio_write_checks(struct kiocb * iocb,struct iov_iter * from,bool * ilock_shared,bool * extend,bool * unwritten)445 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
446 bool *ilock_shared, bool *extend,
447 bool *unwritten)
448 {
449 struct file *file = iocb->ki_filp;
450 struct inode *inode = file_inode(file);
451 loff_t offset;
452 size_t count;
453 ssize_t ret;
454
455 restart:
456 ret = ext4_generic_write_checks(iocb, from);
457 if (ret <= 0)
458 goto out;
459
460 offset = iocb->ki_pos;
461 count = ret;
462 if (ext4_extending_io(inode, offset, count))
463 *extend = true;
464 /*
465 * Determine whether the IO operation will overwrite allocated
466 * and initialized blocks.
467 * We need exclusive i_rwsem for changing security info
468 * in file_modified().
469 */
470 if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
471 !ext4_overwrite_io(inode, offset, count, unwritten))) {
472 if (iocb->ki_flags & IOCB_NOWAIT) {
473 ret = -EAGAIN;
474 goto out;
475 }
476 inode_unlock_shared(inode);
477 *ilock_shared = false;
478 inode_lock(inode);
479 goto restart;
480 }
481
482 ret = file_modified(file);
483 if (ret < 0)
484 goto out;
485
486 return count;
487 out:
488 if (*ilock_shared)
489 inode_unlock_shared(inode);
490 else
491 inode_unlock(inode);
492 return ret;
493 }
494
ext4_dio_write_iter(struct kiocb * iocb,struct iov_iter * from)495 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
496 {
497 ssize_t ret;
498 handle_t *handle;
499 struct inode *inode = file_inode(iocb->ki_filp);
500 loff_t offset = iocb->ki_pos;
501 size_t count = iov_iter_count(from);
502 const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
503 bool extend = false, unaligned_io = false, unwritten = false;
504 bool ilock_shared = true;
505
506 /*
507 * We initially start with shared inode lock unless it is
508 * unaligned IO which needs exclusive lock anyways.
509 */
510 if (ext4_unaligned_io(inode, from, offset)) {
511 unaligned_io = true;
512 ilock_shared = false;
513 }
514 /*
515 * Quick check here without any i_rwsem lock to see if it is extending
516 * IO. A more reliable check is done in ext4_dio_write_checks() with
517 * proper locking in place.
518 */
519 if (offset + count > i_size_read(inode))
520 ilock_shared = false;
521
522 if (iocb->ki_flags & IOCB_NOWAIT) {
523 if (ilock_shared) {
524 if (!inode_trylock_shared(inode))
525 return -EAGAIN;
526 } else {
527 if (!inode_trylock(inode))
528 return -EAGAIN;
529 }
530 } else {
531 if (ilock_shared)
532 inode_lock_shared(inode);
533 else
534 inode_lock(inode);
535 }
536
537 /* Fallback to buffered I/O if the inode does not support direct I/O. */
538 if (!ext4_should_use_dio(iocb, from)) {
539 if (ilock_shared)
540 inode_unlock_shared(inode);
541 else
542 inode_unlock(inode);
543 return ext4_buffered_write_iter(iocb, from);
544 }
545
546 ret = ext4_dio_write_checks(iocb, from,
547 &ilock_shared, &extend, &unwritten);
548 if (ret <= 0)
549 return ret;
550
551 /* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
552 if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
553 ret = -EAGAIN;
554 goto out;
555 }
556 /*
557 * Make sure inline data cannot be created anymore since we are going
558 * to allocate blocks for DIO. We know the inode does not have any
559 * inline data now because ext4_dio_supported() checked for that.
560 */
561 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
562
563 offset = iocb->ki_pos;
564 count = ret;
565
566 /*
567 * Unaligned direct IO must be serialized among each other as zeroing
568 * of partial blocks of two competing unaligned IOs can result in data
569 * corruption.
570 *
571 * So we make sure we don't allow any unaligned IO in flight.
572 * For IOs where we need not wait (like unaligned non-AIO DIO),
573 * below inode_dio_wait() may anyway become a no-op, since we start
574 * with exclusive lock.
575 */
576 if (unaligned_io)
577 inode_dio_wait(inode);
578
579 if (extend) {
580 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
581 if (IS_ERR(handle)) {
582 ret = PTR_ERR(handle);
583 goto out;
584 }
585
586 ret = ext4_orphan_add(handle, inode);
587 if (ret) {
588 ext4_journal_stop(handle);
589 goto out;
590 }
591
592 ext4_journal_stop(handle);
593 }
594
595 if (ilock_shared && !unwritten)
596 iomap_ops = &ext4_iomap_overwrite_ops;
597 ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
598 (unaligned_io || extend) ? IOMAP_DIO_FORCE_WAIT : 0,
599 NULL, 0);
600 if (ret == -ENOTBLK)
601 ret = 0;
602
603 if (extend)
604 ret = ext4_handle_inode_extension(inode, offset, ret, count);
605
606 out:
607 if (ilock_shared)
608 inode_unlock_shared(inode);
609 else
610 inode_unlock(inode);
611
612 if (ret >= 0 && iov_iter_count(from)) {
613 ssize_t err;
614 loff_t endbyte;
615
616 offset = iocb->ki_pos;
617 err = ext4_buffered_write_iter(iocb, from);
618 if (err < 0)
619 return err;
620
621 /*
622 * We need to ensure that the pages within the page cache for
623 * the range covered by this I/O are written to disk and
624 * invalidated. This is in attempt to preserve the expected
625 * direct I/O semantics in the case we fallback to buffered I/O
626 * to complete off the I/O request.
627 */
628 ret += err;
629 endbyte = offset + err - 1;
630 err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
631 offset, endbyte);
632 if (!err)
633 invalidate_mapping_pages(iocb->ki_filp->f_mapping,
634 offset >> PAGE_SHIFT,
635 endbyte >> PAGE_SHIFT);
636 }
637
638 return ret;
639 }
640
641 #ifdef CONFIG_FS_DAX
642 static ssize_t
ext4_dax_write_iter(struct kiocb * iocb,struct iov_iter * from)643 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
644 {
645 ssize_t ret;
646 size_t count;
647 loff_t offset;
648 handle_t *handle;
649 bool extend = false;
650 struct inode *inode = file_inode(iocb->ki_filp);
651
652 if (iocb->ki_flags & IOCB_NOWAIT) {
653 if (!inode_trylock(inode))
654 return -EAGAIN;
655 } else {
656 inode_lock(inode);
657 }
658
659 ret = ext4_write_checks(iocb, from);
660 if (ret <= 0)
661 goto out;
662
663 offset = iocb->ki_pos;
664 count = iov_iter_count(from);
665
666 if (offset + count > EXT4_I(inode)->i_disksize) {
667 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
668 if (IS_ERR(handle)) {
669 ret = PTR_ERR(handle);
670 goto out;
671 }
672
673 ret = ext4_orphan_add(handle, inode);
674 if (ret) {
675 ext4_journal_stop(handle);
676 goto out;
677 }
678
679 extend = true;
680 ext4_journal_stop(handle);
681 }
682
683 ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
684
685 if (extend)
686 ret = ext4_handle_inode_extension(inode, offset, ret, count);
687 out:
688 inode_unlock(inode);
689 if (ret > 0)
690 ret = generic_write_sync(iocb, ret);
691 return ret;
692 }
693 #endif
694
695 static ssize_t
ext4_file_write_iter(struct kiocb * iocb,struct iov_iter * from)696 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
697 {
698 struct inode *inode = file_inode(iocb->ki_filp);
699
700 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
701 return -EIO;
702
703 #ifdef CONFIG_FS_DAX
704 if (IS_DAX(inode))
705 return ext4_dax_write_iter(iocb, from);
706 #endif
707 if (iocb->ki_flags & IOCB_DIRECT)
708 return ext4_dio_write_iter(iocb, from);
709 else
710 return ext4_buffered_write_iter(iocb, from);
711 }
712
713 #ifdef CONFIG_FS_DAX
ext4_dax_huge_fault(struct vm_fault * vmf,enum page_entry_size pe_size)714 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
715 enum page_entry_size pe_size)
716 {
717 int error = 0;
718 vm_fault_t result;
719 int retries = 0;
720 handle_t *handle = NULL;
721 struct inode *inode = file_inode(vmf->vma->vm_file);
722 struct super_block *sb = inode->i_sb;
723
724 /*
725 * We have to distinguish real writes from writes which will result in a
726 * COW page; COW writes should *not* poke the journal (the file will not
727 * be changed). Doing so would cause unintended failures when mounted
728 * read-only.
729 *
730 * We check for VM_SHARED rather than vmf->cow_page since the latter is
731 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
732 * other sizes, dax_iomap_fault will handle splitting / fallback so that
733 * we eventually come back with a COW page.
734 */
735 bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
736 (vmf->vma->vm_flags & VM_SHARED);
737 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
738 pfn_t pfn;
739
740 if (write) {
741 sb_start_pagefault(sb);
742 file_update_time(vmf->vma->vm_file);
743 filemap_invalidate_lock_shared(mapping);
744 retry:
745 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
746 EXT4_DATA_TRANS_BLOCKS(sb));
747 if (IS_ERR(handle)) {
748 filemap_invalidate_unlock_shared(mapping);
749 sb_end_pagefault(sb);
750 return VM_FAULT_SIGBUS;
751 }
752 } else {
753 filemap_invalidate_lock_shared(mapping);
754 }
755 result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
756 if (write) {
757 ext4_journal_stop(handle);
758
759 if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
760 ext4_should_retry_alloc(sb, &retries))
761 goto retry;
762 /* Handling synchronous page fault? */
763 if (result & VM_FAULT_NEEDDSYNC)
764 result = dax_finish_sync_fault(vmf, pe_size, pfn);
765 filemap_invalidate_unlock_shared(mapping);
766 sb_end_pagefault(sb);
767 } else {
768 filemap_invalidate_unlock_shared(mapping);
769 }
770
771 return result;
772 }
773
ext4_dax_fault(struct vm_fault * vmf)774 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
775 {
776 return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
777 }
778
779 static const struct vm_operations_struct ext4_dax_vm_ops = {
780 .fault = ext4_dax_fault,
781 .huge_fault = ext4_dax_huge_fault,
782 .page_mkwrite = ext4_dax_fault,
783 .pfn_mkwrite = ext4_dax_fault,
784 };
785 #else
786 #define ext4_dax_vm_ops ext4_file_vm_ops
787 #endif
788
789 static const struct vm_operations_struct ext4_file_vm_ops = {
790 .fault = filemap_fault,
791 .map_pages = filemap_map_pages,
792 .page_mkwrite = ext4_page_mkwrite,
793 };
794
ext4_file_mmap(struct file * file,struct vm_area_struct * vma)795 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
796 {
797 struct inode *inode = file->f_mapping->host;
798 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
799 struct dax_device *dax_dev = sbi->s_daxdev;
800
801 if (unlikely(ext4_forced_shutdown(sbi)))
802 return -EIO;
803
804 /*
805 * We don't support synchronous mappings for non-DAX files and
806 * for DAX files if underneath dax_device is not synchronous.
807 */
808 if (!daxdev_mapping_supported(vma, dax_dev))
809 return -EOPNOTSUPP;
810
811 file_accessed(file);
812 if (IS_DAX(file_inode(file))) {
813 vma->vm_ops = &ext4_dax_vm_ops;
814 vm_flags_set(vma, VM_HUGEPAGE);
815 } else {
816 vma->vm_ops = &ext4_file_vm_ops;
817 }
818 return 0;
819 }
820
ext4_sample_last_mounted(struct super_block * sb,struct vfsmount * mnt)821 static int ext4_sample_last_mounted(struct super_block *sb,
822 struct vfsmount *mnt)
823 {
824 struct ext4_sb_info *sbi = EXT4_SB(sb);
825 struct path path;
826 char buf[64], *cp;
827 handle_t *handle;
828 int err;
829
830 if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
831 return 0;
832
833 if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
834 return 0;
835
836 ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
837 /*
838 * Sample where the filesystem has been mounted and
839 * store it in the superblock for sysadmin convenience
840 * when trying to sort through large numbers of block
841 * devices or filesystem images.
842 */
843 memset(buf, 0, sizeof(buf));
844 path.mnt = mnt;
845 path.dentry = mnt->mnt_root;
846 cp = d_path(&path, buf, sizeof(buf));
847 err = 0;
848 if (IS_ERR(cp))
849 goto out;
850
851 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
852 err = PTR_ERR(handle);
853 if (IS_ERR(handle))
854 goto out;
855 BUFFER_TRACE(sbi->s_sbh, "get_write_access");
856 err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
857 EXT4_JTR_NONE);
858 if (err)
859 goto out_journal;
860 lock_buffer(sbi->s_sbh);
861 strncpy(sbi->s_es->s_last_mounted, cp,
862 sizeof(sbi->s_es->s_last_mounted));
863 ext4_superblock_csum_set(sb);
864 unlock_buffer(sbi->s_sbh);
865 ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
866 out_journal:
867 ext4_journal_stop(handle);
868 out:
869 sb_end_intwrite(sb);
870 return err;
871 }
872
ext4_file_open(struct inode * inode,struct file * filp)873 static int ext4_file_open(struct inode *inode, struct file *filp)
874 {
875 int ret;
876
877 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
878 return -EIO;
879
880 ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
881 if (ret)
882 return ret;
883
884 ret = fscrypt_file_open(inode, filp);
885 if (ret)
886 return ret;
887
888 ret = fsverity_file_open(inode, filp);
889 if (ret)
890 return ret;
891
892 /*
893 * Set up the jbd2_inode if we are opening the inode for
894 * writing and the journal is present
895 */
896 if (filp->f_mode & FMODE_WRITE) {
897 ret = ext4_inode_attach_jinode(inode);
898 if (ret < 0)
899 return ret;
900 }
901
902 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
903 return dquot_file_open(inode, filp);
904 }
905
906 /*
907 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
908 * by calling generic_file_llseek_size() with the appropriate maxbytes
909 * value for each.
910 */
ext4_llseek(struct file * file,loff_t offset,int whence)911 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
912 {
913 struct inode *inode = file->f_mapping->host;
914 loff_t maxbytes;
915
916 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
917 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
918 else
919 maxbytes = inode->i_sb->s_maxbytes;
920
921 switch (whence) {
922 default:
923 return generic_file_llseek_size(file, offset, whence,
924 maxbytes, i_size_read(inode));
925 case SEEK_HOLE:
926 inode_lock_shared(inode);
927 offset = iomap_seek_hole(inode, offset,
928 &ext4_iomap_report_ops);
929 inode_unlock_shared(inode);
930 break;
931 case SEEK_DATA:
932 inode_lock_shared(inode);
933 offset = iomap_seek_data(inode, offset,
934 &ext4_iomap_report_ops);
935 inode_unlock_shared(inode);
936 break;
937 }
938
939 if (offset < 0)
940 return offset;
941 return vfs_setpos(file, offset, maxbytes);
942 }
943
944 const struct file_operations ext4_file_operations = {
945 .llseek = ext4_llseek,
946 .read_iter = ext4_file_read_iter,
947 .write_iter = ext4_file_write_iter,
948 .iopoll = iocb_bio_iopoll,
949 .unlocked_ioctl = ext4_ioctl,
950 #ifdef CONFIG_COMPAT
951 .compat_ioctl = ext4_compat_ioctl,
952 #endif
953 .mmap = ext4_file_mmap,
954 .mmap_supported_flags = MAP_SYNC,
955 .open = ext4_file_open,
956 .release = ext4_release_file,
957 .fsync = ext4_sync_file,
958 .get_unmapped_area = thp_get_unmapped_area,
959 .splice_read = generic_file_splice_read,
960 .splice_write = iter_file_splice_write,
961 .fallocate = ext4_fallocate,
962 };
963
964 const struct inode_operations ext4_file_inode_operations = {
965 .setattr = ext4_setattr,
966 .getattr = ext4_file_getattr,
967 .listxattr = ext4_listxattr,
968 .get_inode_acl = ext4_get_acl,
969 .set_acl = ext4_set_acl,
970 .fiemap = ext4_fiemap,
971 .fileattr_get = ext4_fileattr_get,
972 .fileattr_set = ext4_fileattr_set,
973 };
974
975