1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35
36 #include "pnode.h"
37 #include "internal.h"
38
39 /* Maximum number of mounts in a mount namespace */
40 static unsigned int sysctl_mount_max __read_mostly = 100000;
41
42 static unsigned int m_hash_mask __read_mostly;
43 static unsigned int m_hash_shift __read_mostly;
44 static unsigned int mp_hash_mask __read_mostly;
45 static unsigned int mp_hash_shift __read_mostly;
46
47 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)48 static int __init set_mhash_entries(char *str)
49 {
50 if (!str)
51 return 0;
52 mhash_entries = simple_strtoul(str, &str, 0);
53 return 1;
54 }
55 __setup("mhash_entries=", set_mhash_entries);
56
57 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)58 static int __init set_mphash_entries(char *str)
59 {
60 if (!str)
61 return 0;
62 mphash_entries = simple_strtoul(str, &str, 0);
63 return 1;
64 }
65 __setup("mphash_entries=", set_mphash_entries);
66
67 static u64 event;
68 static DEFINE_IDA(mnt_id_ida);
69 static DEFINE_IDA(mnt_group_ida);
70
71 static struct hlist_head *mount_hashtable __read_mostly;
72 static struct hlist_head *mountpoint_hashtable __read_mostly;
73 static struct kmem_cache *mnt_cache __read_mostly;
74 static DECLARE_RWSEM(namespace_sem);
75 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
77
78 struct mount_kattr {
79 unsigned int attr_set;
80 unsigned int attr_clr;
81 unsigned int propagation;
82 unsigned int lookup_flags;
83 bool recurse;
84 struct user_namespace *mnt_userns;
85 struct mnt_idmap *mnt_idmap;
86 };
87
88 /* /sys/fs */
89 struct kobject *fs_kobj;
90 EXPORT_SYMBOL_GPL(fs_kobj);
91
92 /*
93 * vfsmount lock may be taken for read to prevent changes to the
94 * vfsmount hash, ie. during mountpoint lookups or walking back
95 * up the tree.
96 *
97 * It should be taken for write in all cases where the vfsmount
98 * tree or hash is modified or when a vfsmount structure is modified.
99 */
100 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
101
lock_mount_hash(void)102 static inline void lock_mount_hash(void)
103 {
104 write_seqlock(&mount_lock);
105 }
106
unlock_mount_hash(void)107 static inline void unlock_mount_hash(void)
108 {
109 write_sequnlock(&mount_lock);
110 }
111
m_hash(struct vfsmount * mnt,struct dentry * dentry)112 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
113 {
114 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
115 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
116 tmp = tmp + (tmp >> m_hash_shift);
117 return &mount_hashtable[tmp & m_hash_mask];
118 }
119
mp_hash(struct dentry * dentry)120 static inline struct hlist_head *mp_hash(struct dentry *dentry)
121 {
122 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
123 tmp = tmp + (tmp >> mp_hash_shift);
124 return &mountpoint_hashtable[tmp & mp_hash_mask];
125 }
126
mnt_alloc_id(struct mount * mnt)127 static int mnt_alloc_id(struct mount *mnt)
128 {
129 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
130
131 if (res < 0)
132 return res;
133 mnt->mnt_id = res;
134 return 0;
135 }
136
mnt_free_id(struct mount * mnt)137 static void mnt_free_id(struct mount *mnt)
138 {
139 ida_free(&mnt_id_ida, mnt->mnt_id);
140 }
141
142 /*
143 * Allocate a new peer group ID
144 */
mnt_alloc_group_id(struct mount * mnt)145 static int mnt_alloc_group_id(struct mount *mnt)
146 {
147 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
148
149 if (res < 0)
150 return res;
151 mnt->mnt_group_id = res;
152 return 0;
153 }
154
155 /*
156 * Release a peer group ID
157 */
mnt_release_group_id(struct mount * mnt)158 void mnt_release_group_id(struct mount *mnt)
159 {
160 ida_free(&mnt_group_ida, mnt->mnt_group_id);
161 mnt->mnt_group_id = 0;
162 }
163
164 /*
165 * vfsmount lock must be held for read
166 */
mnt_add_count(struct mount * mnt,int n)167 static inline void mnt_add_count(struct mount *mnt, int n)
168 {
169 #ifdef CONFIG_SMP
170 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
171 #else
172 preempt_disable();
173 mnt->mnt_count += n;
174 preempt_enable();
175 #endif
176 }
177
178 /*
179 * vfsmount lock must be held for write
180 */
mnt_get_count(struct mount * mnt)181 int mnt_get_count(struct mount *mnt)
182 {
183 #ifdef CONFIG_SMP
184 int count = 0;
185 int cpu;
186
187 for_each_possible_cpu(cpu) {
188 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
189 }
190
191 return count;
192 #else
193 return mnt->mnt_count;
194 #endif
195 }
196
alloc_vfsmnt(const char * name)197 static struct mount *alloc_vfsmnt(const char *name)
198 {
199 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
200 if (mnt) {
201 int err;
202
203 err = mnt_alloc_id(mnt);
204 if (err)
205 goto out_free_cache;
206
207 if (name) {
208 mnt->mnt_devname = kstrdup_const(name,
209 GFP_KERNEL_ACCOUNT);
210 if (!mnt->mnt_devname)
211 goto out_free_id;
212 }
213
214 #ifdef CONFIG_SMP
215 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
216 if (!mnt->mnt_pcp)
217 goto out_free_devname;
218
219 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
220 #else
221 mnt->mnt_count = 1;
222 mnt->mnt_writers = 0;
223 #endif
224
225 INIT_HLIST_NODE(&mnt->mnt_hash);
226 INIT_LIST_HEAD(&mnt->mnt_child);
227 INIT_LIST_HEAD(&mnt->mnt_mounts);
228 INIT_LIST_HEAD(&mnt->mnt_list);
229 INIT_LIST_HEAD(&mnt->mnt_expire);
230 INIT_LIST_HEAD(&mnt->mnt_share);
231 INIT_LIST_HEAD(&mnt->mnt_slave_list);
232 INIT_LIST_HEAD(&mnt->mnt_slave);
233 INIT_HLIST_NODE(&mnt->mnt_mp_list);
234 INIT_LIST_HEAD(&mnt->mnt_umounting);
235 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
236 mnt->mnt.mnt_idmap = &nop_mnt_idmap;
237 }
238 return mnt;
239
240 #ifdef CONFIG_SMP
241 out_free_devname:
242 kfree_const(mnt->mnt_devname);
243 #endif
244 out_free_id:
245 mnt_free_id(mnt);
246 out_free_cache:
247 kmem_cache_free(mnt_cache, mnt);
248 return NULL;
249 }
250
251 /*
252 * Most r/o checks on a fs are for operations that take
253 * discrete amounts of time, like a write() or unlink().
254 * We must keep track of when those operations start
255 * (for permission checks) and when they end, so that
256 * we can determine when writes are able to occur to
257 * a filesystem.
258 */
259 /*
260 * __mnt_is_readonly: check whether a mount is read-only
261 * @mnt: the mount to check for its write status
262 *
263 * This shouldn't be used directly ouside of the VFS.
264 * It does not guarantee that the filesystem will stay
265 * r/w, just that it is right *now*. This can not and
266 * should not be used in place of IS_RDONLY(inode).
267 * mnt_want/drop_write() will _keep_ the filesystem
268 * r/w.
269 */
__mnt_is_readonly(struct vfsmount * mnt)270 bool __mnt_is_readonly(struct vfsmount *mnt)
271 {
272 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
273 }
274 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
275
mnt_inc_writers(struct mount * mnt)276 static inline void mnt_inc_writers(struct mount *mnt)
277 {
278 #ifdef CONFIG_SMP
279 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
280 #else
281 mnt->mnt_writers++;
282 #endif
283 }
284
mnt_dec_writers(struct mount * mnt)285 static inline void mnt_dec_writers(struct mount *mnt)
286 {
287 #ifdef CONFIG_SMP
288 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
289 #else
290 mnt->mnt_writers--;
291 #endif
292 }
293
mnt_get_writers(struct mount * mnt)294 static unsigned int mnt_get_writers(struct mount *mnt)
295 {
296 #ifdef CONFIG_SMP
297 unsigned int count = 0;
298 int cpu;
299
300 for_each_possible_cpu(cpu) {
301 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
302 }
303
304 return count;
305 #else
306 return mnt->mnt_writers;
307 #endif
308 }
309
mnt_is_readonly(struct vfsmount * mnt)310 static int mnt_is_readonly(struct vfsmount *mnt)
311 {
312 if (mnt->mnt_sb->s_readonly_remount)
313 return 1;
314 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
315 smp_rmb();
316 return __mnt_is_readonly(mnt);
317 }
318
319 /*
320 * Most r/o & frozen checks on a fs are for operations that take discrete
321 * amounts of time, like a write() or unlink(). We must keep track of when
322 * those operations start (for permission checks) and when they end, so that we
323 * can determine when writes are able to occur to a filesystem.
324 */
325 /**
326 * __mnt_want_write - get write access to a mount without freeze protection
327 * @m: the mount on which to take a write
328 *
329 * This tells the low-level filesystem that a write is about to be performed to
330 * it, and makes sure that writes are allowed (mnt it read-write) before
331 * returning success. This operation does not protect against filesystem being
332 * frozen. When the write operation is finished, __mnt_drop_write() must be
333 * called. This is effectively a refcount.
334 */
__mnt_want_write(struct vfsmount * m)335 int __mnt_want_write(struct vfsmount *m)
336 {
337 struct mount *mnt = real_mount(m);
338 int ret = 0;
339
340 preempt_disable();
341 mnt_inc_writers(mnt);
342 /*
343 * The store to mnt_inc_writers must be visible before we pass
344 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
345 * incremented count after it has set MNT_WRITE_HOLD.
346 */
347 smp_mb();
348 might_lock(&mount_lock.lock);
349 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
350 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
351 cpu_relax();
352 } else {
353 /*
354 * This prevents priority inversion, if the task
355 * setting MNT_WRITE_HOLD got preempted on a remote
356 * CPU, and it prevents life lock if the task setting
357 * MNT_WRITE_HOLD has a lower priority and is bound to
358 * the same CPU as the task that is spinning here.
359 */
360 preempt_enable();
361 lock_mount_hash();
362 unlock_mount_hash();
363 preempt_disable();
364 }
365 }
366 /*
367 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
368 * be set to match its requirements. So we must not load that until
369 * MNT_WRITE_HOLD is cleared.
370 */
371 smp_rmb();
372 if (mnt_is_readonly(m)) {
373 mnt_dec_writers(mnt);
374 ret = -EROFS;
375 }
376 preempt_enable();
377
378 return ret;
379 }
380
381 /**
382 * mnt_want_write - get write access to a mount
383 * @m: the mount on which to take a write
384 *
385 * This tells the low-level filesystem that a write is about to be performed to
386 * it, and makes sure that writes are allowed (mount is read-write, filesystem
387 * is not frozen) before returning success. When the write operation is
388 * finished, mnt_drop_write() must be called. This is effectively a refcount.
389 */
mnt_want_write(struct vfsmount * m)390 int mnt_want_write(struct vfsmount *m)
391 {
392 int ret;
393
394 sb_start_write(m->mnt_sb);
395 ret = __mnt_want_write(m);
396 if (ret)
397 sb_end_write(m->mnt_sb);
398 return ret;
399 }
400 EXPORT_SYMBOL_GPL(mnt_want_write);
401
402 /**
403 * __mnt_want_write_file - get write access to a file's mount
404 * @file: the file who's mount on which to take a write
405 *
406 * This is like __mnt_want_write, but if the file is already open for writing it
407 * skips incrementing mnt_writers (since the open file already has a reference)
408 * and instead only does the check for emergency r/o remounts. This must be
409 * paired with __mnt_drop_write_file.
410 */
__mnt_want_write_file(struct file * file)411 int __mnt_want_write_file(struct file *file)
412 {
413 if (file->f_mode & FMODE_WRITER) {
414 /*
415 * Superblock may have become readonly while there are still
416 * writable fd's, e.g. due to a fs error with errors=remount-ro
417 */
418 if (__mnt_is_readonly(file->f_path.mnt))
419 return -EROFS;
420 return 0;
421 }
422 return __mnt_want_write(file->f_path.mnt);
423 }
424
425 /**
426 * mnt_want_write_file - get write access to a file's mount
427 * @file: the file who's mount on which to take a write
428 *
429 * This is like mnt_want_write, but if the file is already open for writing it
430 * skips incrementing mnt_writers (since the open file already has a reference)
431 * and instead only does the freeze protection and the check for emergency r/o
432 * remounts. This must be paired with mnt_drop_write_file.
433 */
mnt_want_write_file(struct file * file)434 int mnt_want_write_file(struct file *file)
435 {
436 int ret;
437
438 sb_start_write(file_inode(file)->i_sb);
439 ret = __mnt_want_write_file(file);
440 if (ret)
441 sb_end_write(file_inode(file)->i_sb);
442 return ret;
443 }
444 EXPORT_SYMBOL_GPL(mnt_want_write_file);
445
446 /**
447 * __mnt_drop_write - give up write access to a mount
448 * @mnt: the mount on which to give up write access
449 *
450 * Tells the low-level filesystem that we are done
451 * performing writes to it. Must be matched with
452 * __mnt_want_write() call above.
453 */
__mnt_drop_write(struct vfsmount * mnt)454 void __mnt_drop_write(struct vfsmount *mnt)
455 {
456 preempt_disable();
457 mnt_dec_writers(real_mount(mnt));
458 preempt_enable();
459 }
460
461 /**
462 * mnt_drop_write - give up write access to a mount
463 * @mnt: the mount on which to give up write access
464 *
465 * Tells the low-level filesystem that we are done performing writes to it and
466 * also allows filesystem to be frozen again. Must be matched with
467 * mnt_want_write() call above.
468 */
mnt_drop_write(struct vfsmount * mnt)469 void mnt_drop_write(struct vfsmount *mnt)
470 {
471 __mnt_drop_write(mnt);
472 sb_end_write(mnt->mnt_sb);
473 }
474 EXPORT_SYMBOL_GPL(mnt_drop_write);
475
__mnt_drop_write_file(struct file * file)476 void __mnt_drop_write_file(struct file *file)
477 {
478 if (!(file->f_mode & FMODE_WRITER))
479 __mnt_drop_write(file->f_path.mnt);
480 }
481
mnt_drop_write_file(struct file * file)482 void mnt_drop_write_file(struct file *file)
483 {
484 __mnt_drop_write_file(file);
485 sb_end_write(file_inode(file)->i_sb);
486 }
487 EXPORT_SYMBOL(mnt_drop_write_file);
488
489 /**
490 * mnt_hold_writers - prevent write access to the given mount
491 * @mnt: mnt to prevent write access to
492 *
493 * Prevents write access to @mnt if there are no active writers for @mnt.
494 * This function needs to be called and return successfully before changing
495 * properties of @mnt that need to remain stable for callers with write access
496 * to @mnt.
497 *
498 * After this functions has been called successfully callers must pair it with
499 * a call to mnt_unhold_writers() in order to stop preventing write access to
500 * @mnt.
501 *
502 * Context: This function expects lock_mount_hash() to be held serializing
503 * setting MNT_WRITE_HOLD.
504 * Return: On success 0 is returned.
505 * On error, -EBUSY is returned.
506 */
mnt_hold_writers(struct mount * mnt)507 static inline int mnt_hold_writers(struct mount *mnt)
508 {
509 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
510 /*
511 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
512 * should be visible before we do.
513 */
514 smp_mb();
515
516 /*
517 * With writers on hold, if this value is zero, then there are
518 * definitely no active writers (although held writers may subsequently
519 * increment the count, they'll have to wait, and decrement it after
520 * seeing MNT_READONLY).
521 *
522 * It is OK to have counter incremented on one CPU and decremented on
523 * another: the sum will add up correctly. The danger would be when we
524 * sum up each counter, if we read a counter before it is incremented,
525 * but then read another CPU's count which it has been subsequently
526 * decremented from -- we would see more decrements than we should.
527 * MNT_WRITE_HOLD protects against this scenario, because
528 * mnt_want_write first increments count, then smp_mb, then spins on
529 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
530 * we're counting up here.
531 */
532 if (mnt_get_writers(mnt) > 0)
533 return -EBUSY;
534
535 return 0;
536 }
537
538 /**
539 * mnt_unhold_writers - stop preventing write access to the given mount
540 * @mnt: mnt to stop preventing write access to
541 *
542 * Stop preventing write access to @mnt allowing callers to gain write access
543 * to @mnt again.
544 *
545 * This function can only be called after a successful call to
546 * mnt_hold_writers().
547 *
548 * Context: This function expects lock_mount_hash() to be held.
549 */
mnt_unhold_writers(struct mount * mnt)550 static inline void mnt_unhold_writers(struct mount *mnt)
551 {
552 /*
553 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
554 * that become unheld will see MNT_READONLY.
555 */
556 smp_wmb();
557 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
558 }
559
mnt_make_readonly(struct mount * mnt)560 static int mnt_make_readonly(struct mount *mnt)
561 {
562 int ret;
563
564 ret = mnt_hold_writers(mnt);
565 if (!ret)
566 mnt->mnt.mnt_flags |= MNT_READONLY;
567 mnt_unhold_writers(mnt);
568 return ret;
569 }
570
sb_prepare_remount_readonly(struct super_block * sb)571 int sb_prepare_remount_readonly(struct super_block *sb)
572 {
573 struct mount *mnt;
574 int err = 0;
575
576 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
577 if (atomic_long_read(&sb->s_remove_count))
578 return -EBUSY;
579
580 lock_mount_hash();
581 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
582 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
583 err = mnt_hold_writers(mnt);
584 if (err)
585 break;
586 }
587 }
588 if (!err && atomic_long_read(&sb->s_remove_count))
589 err = -EBUSY;
590
591 if (!err) {
592 sb->s_readonly_remount = 1;
593 smp_wmb();
594 }
595 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
596 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
597 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
598 }
599 unlock_mount_hash();
600
601 return err;
602 }
603
free_vfsmnt(struct mount * mnt)604 static void free_vfsmnt(struct mount *mnt)
605 {
606 mnt_idmap_put(mnt_idmap(&mnt->mnt));
607 kfree_const(mnt->mnt_devname);
608 #ifdef CONFIG_SMP
609 free_percpu(mnt->mnt_pcp);
610 #endif
611 kmem_cache_free(mnt_cache, mnt);
612 }
613
delayed_free_vfsmnt(struct rcu_head * head)614 static void delayed_free_vfsmnt(struct rcu_head *head)
615 {
616 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
617 }
618
619 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)620 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
621 {
622 struct mount *mnt;
623 if (read_seqretry(&mount_lock, seq))
624 return 1;
625 if (bastard == NULL)
626 return 0;
627 mnt = real_mount(bastard);
628 mnt_add_count(mnt, 1);
629 smp_mb(); // see mntput_no_expire()
630 if (likely(!read_seqretry(&mount_lock, seq)))
631 return 0;
632 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
633 mnt_add_count(mnt, -1);
634 return 1;
635 }
636 lock_mount_hash();
637 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
638 mnt_add_count(mnt, -1);
639 unlock_mount_hash();
640 return 1;
641 }
642 unlock_mount_hash();
643 /* caller will mntput() */
644 return -1;
645 }
646
647 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)648 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
649 {
650 int res = __legitimize_mnt(bastard, seq);
651 if (likely(!res))
652 return true;
653 if (unlikely(res < 0)) {
654 rcu_read_unlock();
655 mntput(bastard);
656 rcu_read_lock();
657 }
658 return false;
659 }
660
661 /*
662 * find the first mount at @dentry on vfsmount @mnt.
663 * call under rcu_read_lock()
664 */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)665 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
666 {
667 struct hlist_head *head = m_hash(mnt, dentry);
668 struct mount *p;
669
670 hlist_for_each_entry_rcu(p, head, mnt_hash)
671 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
672 return p;
673 return NULL;
674 }
675
676 /*
677 * lookup_mnt - Return the first child mount mounted at path
678 *
679 * "First" means first mounted chronologically. If you create the
680 * following mounts:
681 *
682 * mount /dev/sda1 /mnt
683 * mount /dev/sda2 /mnt
684 * mount /dev/sda3 /mnt
685 *
686 * Then lookup_mnt() on the base /mnt dentry in the root mount will
687 * return successively the root dentry and vfsmount of /dev/sda1, then
688 * /dev/sda2, then /dev/sda3, then NULL.
689 *
690 * lookup_mnt takes a reference to the found vfsmount.
691 */
lookup_mnt(const struct path * path)692 struct vfsmount *lookup_mnt(const struct path *path)
693 {
694 struct mount *child_mnt;
695 struct vfsmount *m;
696 unsigned seq;
697
698 rcu_read_lock();
699 do {
700 seq = read_seqbegin(&mount_lock);
701 child_mnt = __lookup_mnt(path->mnt, path->dentry);
702 m = child_mnt ? &child_mnt->mnt : NULL;
703 } while (!legitimize_mnt(m, seq));
704 rcu_read_unlock();
705 return m;
706 }
707
lock_ns_list(struct mnt_namespace * ns)708 static inline void lock_ns_list(struct mnt_namespace *ns)
709 {
710 spin_lock(&ns->ns_lock);
711 }
712
unlock_ns_list(struct mnt_namespace * ns)713 static inline void unlock_ns_list(struct mnt_namespace *ns)
714 {
715 spin_unlock(&ns->ns_lock);
716 }
717
mnt_is_cursor(struct mount * mnt)718 static inline bool mnt_is_cursor(struct mount *mnt)
719 {
720 return mnt->mnt.mnt_flags & MNT_CURSOR;
721 }
722
723 /*
724 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
725 * current mount namespace.
726 *
727 * The common case is dentries are not mountpoints at all and that
728 * test is handled inline. For the slow case when we are actually
729 * dealing with a mountpoint of some kind, walk through all of the
730 * mounts in the current mount namespace and test to see if the dentry
731 * is a mountpoint.
732 *
733 * The mount_hashtable is not usable in the context because we
734 * need to identify all mounts that may be in the current mount
735 * namespace not just a mount that happens to have some specified
736 * parent mount.
737 */
__is_local_mountpoint(struct dentry * dentry)738 bool __is_local_mountpoint(struct dentry *dentry)
739 {
740 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
741 struct mount *mnt;
742 bool is_covered = false;
743
744 down_read(&namespace_sem);
745 lock_ns_list(ns);
746 list_for_each_entry(mnt, &ns->list, mnt_list) {
747 if (mnt_is_cursor(mnt))
748 continue;
749 is_covered = (mnt->mnt_mountpoint == dentry);
750 if (is_covered)
751 break;
752 }
753 unlock_ns_list(ns);
754 up_read(&namespace_sem);
755
756 return is_covered;
757 }
758
lookup_mountpoint(struct dentry * dentry)759 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
760 {
761 struct hlist_head *chain = mp_hash(dentry);
762 struct mountpoint *mp;
763
764 hlist_for_each_entry(mp, chain, m_hash) {
765 if (mp->m_dentry == dentry) {
766 mp->m_count++;
767 return mp;
768 }
769 }
770 return NULL;
771 }
772
get_mountpoint(struct dentry * dentry)773 static struct mountpoint *get_mountpoint(struct dentry *dentry)
774 {
775 struct mountpoint *mp, *new = NULL;
776 int ret;
777
778 if (d_mountpoint(dentry)) {
779 /* might be worth a WARN_ON() */
780 if (d_unlinked(dentry))
781 return ERR_PTR(-ENOENT);
782 mountpoint:
783 read_seqlock_excl(&mount_lock);
784 mp = lookup_mountpoint(dentry);
785 read_sequnlock_excl(&mount_lock);
786 if (mp)
787 goto done;
788 }
789
790 if (!new)
791 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
792 if (!new)
793 return ERR_PTR(-ENOMEM);
794
795
796 /* Exactly one processes may set d_mounted */
797 ret = d_set_mounted(dentry);
798
799 /* Someone else set d_mounted? */
800 if (ret == -EBUSY)
801 goto mountpoint;
802
803 /* The dentry is not available as a mountpoint? */
804 mp = ERR_PTR(ret);
805 if (ret)
806 goto done;
807
808 /* Add the new mountpoint to the hash table */
809 read_seqlock_excl(&mount_lock);
810 new->m_dentry = dget(dentry);
811 new->m_count = 1;
812 hlist_add_head(&new->m_hash, mp_hash(dentry));
813 INIT_HLIST_HEAD(&new->m_list);
814 read_sequnlock_excl(&mount_lock);
815
816 mp = new;
817 new = NULL;
818 done:
819 kfree(new);
820 return mp;
821 }
822
823 /*
824 * vfsmount lock must be held. Additionally, the caller is responsible
825 * for serializing calls for given disposal list.
826 */
__put_mountpoint(struct mountpoint * mp,struct list_head * list)827 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
828 {
829 if (!--mp->m_count) {
830 struct dentry *dentry = mp->m_dentry;
831 BUG_ON(!hlist_empty(&mp->m_list));
832 spin_lock(&dentry->d_lock);
833 dentry->d_flags &= ~DCACHE_MOUNTED;
834 spin_unlock(&dentry->d_lock);
835 dput_to_list(dentry, list);
836 hlist_del(&mp->m_hash);
837 kfree(mp);
838 }
839 }
840
841 /* called with namespace_lock and vfsmount lock */
put_mountpoint(struct mountpoint * mp)842 static void put_mountpoint(struct mountpoint *mp)
843 {
844 __put_mountpoint(mp, &ex_mountpoints);
845 }
846
check_mnt(struct mount * mnt)847 static inline int check_mnt(struct mount *mnt)
848 {
849 return mnt->mnt_ns == current->nsproxy->mnt_ns;
850 }
851
852 /*
853 * vfsmount lock must be held for write
854 */
touch_mnt_namespace(struct mnt_namespace * ns)855 static void touch_mnt_namespace(struct mnt_namespace *ns)
856 {
857 if (ns) {
858 ns->event = ++event;
859 wake_up_interruptible(&ns->poll);
860 }
861 }
862
863 /*
864 * vfsmount lock must be held for write
865 */
__touch_mnt_namespace(struct mnt_namespace * ns)866 static void __touch_mnt_namespace(struct mnt_namespace *ns)
867 {
868 if (ns && ns->event != event) {
869 ns->event = event;
870 wake_up_interruptible(&ns->poll);
871 }
872 }
873
874 /*
875 * vfsmount lock must be held for write
876 */
unhash_mnt(struct mount * mnt)877 static struct mountpoint *unhash_mnt(struct mount *mnt)
878 {
879 struct mountpoint *mp;
880 mnt->mnt_parent = mnt;
881 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
882 list_del_init(&mnt->mnt_child);
883 hlist_del_init_rcu(&mnt->mnt_hash);
884 hlist_del_init(&mnt->mnt_mp_list);
885 mp = mnt->mnt_mp;
886 mnt->mnt_mp = NULL;
887 return mp;
888 }
889
890 /*
891 * vfsmount lock must be held for write
892 */
umount_mnt(struct mount * mnt)893 static void umount_mnt(struct mount *mnt)
894 {
895 put_mountpoint(unhash_mnt(mnt));
896 }
897
898 /*
899 * vfsmount lock must be held for write
900 */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)901 void mnt_set_mountpoint(struct mount *mnt,
902 struct mountpoint *mp,
903 struct mount *child_mnt)
904 {
905 mp->m_count++;
906 mnt_add_count(mnt, 1); /* essentially, that's mntget */
907 child_mnt->mnt_mountpoint = mp->m_dentry;
908 child_mnt->mnt_parent = mnt;
909 child_mnt->mnt_mp = mp;
910 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
911 }
912
__attach_mnt(struct mount * mnt,struct mount * parent)913 static void __attach_mnt(struct mount *mnt, struct mount *parent)
914 {
915 hlist_add_head_rcu(&mnt->mnt_hash,
916 m_hash(&parent->mnt, mnt->mnt_mountpoint));
917 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
918 }
919
920 /*
921 * vfsmount lock must be held for write
922 */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp)923 static void attach_mnt(struct mount *mnt,
924 struct mount *parent,
925 struct mountpoint *mp)
926 {
927 mnt_set_mountpoint(parent, mp, mnt);
928 __attach_mnt(mnt, parent);
929 }
930
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)931 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
932 {
933 struct mountpoint *old_mp = mnt->mnt_mp;
934 struct mount *old_parent = mnt->mnt_parent;
935
936 list_del_init(&mnt->mnt_child);
937 hlist_del_init(&mnt->mnt_mp_list);
938 hlist_del_init_rcu(&mnt->mnt_hash);
939
940 attach_mnt(mnt, parent, mp);
941
942 put_mountpoint(old_mp);
943 mnt_add_count(old_parent, -1);
944 }
945
946 /*
947 * vfsmount lock must be held for write
948 */
commit_tree(struct mount * mnt)949 static void commit_tree(struct mount *mnt)
950 {
951 struct mount *parent = mnt->mnt_parent;
952 struct mount *m;
953 LIST_HEAD(head);
954 struct mnt_namespace *n = parent->mnt_ns;
955
956 BUG_ON(parent == mnt);
957
958 list_add_tail(&head, &mnt->mnt_list);
959 list_for_each_entry(m, &head, mnt_list)
960 m->mnt_ns = n;
961
962 list_splice(&head, n->list.prev);
963
964 n->mounts += n->pending_mounts;
965 n->pending_mounts = 0;
966
967 __attach_mnt(mnt, parent);
968 touch_mnt_namespace(n);
969 }
970
next_mnt(struct mount * p,struct mount * root)971 static struct mount *next_mnt(struct mount *p, struct mount *root)
972 {
973 struct list_head *next = p->mnt_mounts.next;
974 if (next == &p->mnt_mounts) {
975 while (1) {
976 if (p == root)
977 return NULL;
978 next = p->mnt_child.next;
979 if (next != &p->mnt_parent->mnt_mounts)
980 break;
981 p = p->mnt_parent;
982 }
983 }
984 return list_entry(next, struct mount, mnt_child);
985 }
986
skip_mnt_tree(struct mount * p)987 static struct mount *skip_mnt_tree(struct mount *p)
988 {
989 struct list_head *prev = p->mnt_mounts.prev;
990 while (prev != &p->mnt_mounts) {
991 p = list_entry(prev, struct mount, mnt_child);
992 prev = p->mnt_mounts.prev;
993 }
994 return p;
995 }
996
997 /**
998 * vfs_create_mount - Create a mount for a configured superblock
999 * @fc: The configuration context with the superblock attached
1000 *
1001 * Create a mount to an already configured superblock. If necessary, the
1002 * caller should invoke vfs_get_tree() before calling this.
1003 *
1004 * Note that this does not attach the mount to anything.
1005 */
vfs_create_mount(struct fs_context * fc)1006 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1007 {
1008 struct mount *mnt;
1009
1010 if (!fc->root)
1011 return ERR_PTR(-EINVAL);
1012
1013 mnt = alloc_vfsmnt(fc->source ?: "none");
1014 if (!mnt)
1015 return ERR_PTR(-ENOMEM);
1016
1017 if (fc->sb_flags & SB_KERNMOUNT)
1018 mnt->mnt.mnt_flags = MNT_INTERNAL;
1019
1020 atomic_inc(&fc->root->d_sb->s_active);
1021 mnt->mnt.mnt_sb = fc->root->d_sb;
1022 mnt->mnt.mnt_root = dget(fc->root);
1023 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1024 mnt->mnt_parent = mnt;
1025
1026 lock_mount_hash();
1027 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1028 unlock_mount_hash();
1029 return &mnt->mnt;
1030 }
1031 EXPORT_SYMBOL(vfs_create_mount);
1032
fc_mount(struct fs_context * fc)1033 struct vfsmount *fc_mount(struct fs_context *fc)
1034 {
1035 int err = vfs_get_tree(fc);
1036 if (!err) {
1037 up_write(&fc->root->d_sb->s_umount);
1038 return vfs_create_mount(fc);
1039 }
1040 return ERR_PTR(err);
1041 }
1042 EXPORT_SYMBOL(fc_mount);
1043
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)1044 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1045 int flags, const char *name,
1046 void *data)
1047 {
1048 struct fs_context *fc;
1049 struct vfsmount *mnt;
1050 int ret = 0;
1051
1052 if (!type)
1053 return ERR_PTR(-EINVAL);
1054
1055 fc = fs_context_for_mount(type, flags);
1056 if (IS_ERR(fc))
1057 return ERR_CAST(fc);
1058
1059 if (name)
1060 ret = vfs_parse_fs_string(fc, "source",
1061 name, strlen(name));
1062 if (!ret)
1063 ret = parse_monolithic_mount_data(fc, data);
1064 if (!ret)
1065 mnt = fc_mount(fc);
1066 else
1067 mnt = ERR_PTR(ret);
1068
1069 put_fs_context(fc);
1070 return mnt;
1071 }
1072 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1073
1074 struct vfsmount *
vfs_submount(const struct dentry * mountpoint,struct file_system_type * type,const char * name,void * data)1075 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1076 const char *name, void *data)
1077 {
1078 /* Until it is worked out how to pass the user namespace
1079 * through from the parent mount to the submount don't support
1080 * unprivileged mounts with submounts.
1081 */
1082 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1083 return ERR_PTR(-EPERM);
1084
1085 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1086 }
1087 EXPORT_SYMBOL_GPL(vfs_submount);
1088
clone_mnt(struct mount * old,struct dentry * root,int flag)1089 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1090 int flag)
1091 {
1092 struct super_block *sb = old->mnt.mnt_sb;
1093 struct mount *mnt;
1094 int err;
1095
1096 mnt = alloc_vfsmnt(old->mnt_devname);
1097 if (!mnt)
1098 return ERR_PTR(-ENOMEM);
1099
1100 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1101 mnt->mnt_group_id = 0; /* not a peer of original */
1102 else
1103 mnt->mnt_group_id = old->mnt_group_id;
1104
1105 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1106 err = mnt_alloc_group_id(mnt);
1107 if (err)
1108 goto out_free;
1109 }
1110
1111 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1112 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1113
1114 atomic_inc(&sb->s_active);
1115 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1116
1117 mnt->mnt.mnt_sb = sb;
1118 mnt->mnt.mnt_root = dget(root);
1119 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1120 mnt->mnt_parent = mnt;
1121 lock_mount_hash();
1122 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1123 unlock_mount_hash();
1124
1125 if ((flag & CL_SLAVE) ||
1126 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1127 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1128 mnt->mnt_master = old;
1129 CLEAR_MNT_SHARED(mnt);
1130 } else if (!(flag & CL_PRIVATE)) {
1131 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1132 list_add(&mnt->mnt_share, &old->mnt_share);
1133 if (IS_MNT_SLAVE(old))
1134 list_add(&mnt->mnt_slave, &old->mnt_slave);
1135 mnt->mnt_master = old->mnt_master;
1136 } else {
1137 CLEAR_MNT_SHARED(mnt);
1138 }
1139 if (flag & CL_MAKE_SHARED)
1140 set_mnt_shared(mnt);
1141
1142 /* stick the duplicate mount on the same expiry list
1143 * as the original if that was on one */
1144 if (flag & CL_EXPIRE) {
1145 if (!list_empty(&old->mnt_expire))
1146 list_add(&mnt->mnt_expire, &old->mnt_expire);
1147 }
1148
1149 return mnt;
1150
1151 out_free:
1152 mnt_free_id(mnt);
1153 free_vfsmnt(mnt);
1154 return ERR_PTR(err);
1155 }
1156
cleanup_mnt(struct mount * mnt)1157 static void cleanup_mnt(struct mount *mnt)
1158 {
1159 struct hlist_node *p;
1160 struct mount *m;
1161 /*
1162 * The warning here probably indicates that somebody messed
1163 * up a mnt_want/drop_write() pair. If this happens, the
1164 * filesystem was probably unable to make r/w->r/o transitions.
1165 * The locking used to deal with mnt_count decrement provides barriers,
1166 * so mnt_get_writers() below is safe.
1167 */
1168 WARN_ON(mnt_get_writers(mnt));
1169 if (unlikely(mnt->mnt_pins.first))
1170 mnt_pin_kill(mnt);
1171 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1172 hlist_del(&m->mnt_umount);
1173 mntput(&m->mnt);
1174 }
1175 fsnotify_vfsmount_delete(&mnt->mnt);
1176 dput(mnt->mnt.mnt_root);
1177 deactivate_super(mnt->mnt.mnt_sb);
1178 mnt_free_id(mnt);
1179 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1180 }
1181
__cleanup_mnt(struct rcu_head * head)1182 static void __cleanup_mnt(struct rcu_head *head)
1183 {
1184 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1185 }
1186
1187 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1188 static void delayed_mntput(struct work_struct *unused)
1189 {
1190 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1191 struct mount *m, *t;
1192
1193 llist_for_each_entry_safe(m, t, node, mnt_llist)
1194 cleanup_mnt(m);
1195 }
1196 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1197
mntput_no_expire(struct mount * mnt)1198 static void mntput_no_expire(struct mount *mnt)
1199 {
1200 LIST_HEAD(list);
1201 int count;
1202
1203 rcu_read_lock();
1204 if (likely(READ_ONCE(mnt->mnt_ns))) {
1205 /*
1206 * Since we don't do lock_mount_hash() here,
1207 * ->mnt_ns can change under us. However, if it's
1208 * non-NULL, then there's a reference that won't
1209 * be dropped until after an RCU delay done after
1210 * turning ->mnt_ns NULL. So if we observe it
1211 * non-NULL under rcu_read_lock(), the reference
1212 * we are dropping is not the final one.
1213 */
1214 mnt_add_count(mnt, -1);
1215 rcu_read_unlock();
1216 return;
1217 }
1218 lock_mount_hash();
1219 /*
1220 * make sure that if __legitimize_mnt() has not seen us grab
1221 * mount_lock, we'll see their refcount increment here.
1222 */
1223 smp_mb();
1224 mnt_add_count(mnt, -1);
1225 count = mnt_get_count(mnt);
1226 if (count != 0) {
1227 WARN_ON(count < 0);
1228 rcu_read_unlock();
1229 unlock_mount_hash();
1230 return;
1231 }
1232 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1233 rcu_read_unlock();
1234 unlock_mount_hash();
1235 return;
1236 }
1237 mnt->mnt.mnt_flags |= MNT_DOOMED;
1238 rcu_read_unlock();
1239
1240 list_del(&mnt->mnt_instance);
1241
1242 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1243 struct mount *p, *tmp;
1244 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1245 __put_mountpoint(unhash_mnt(p), &list);
1246 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1247 }
1248 }
1249 unlock_mount_hash();
1250 shrink_dentry_list(&list);
1251
1252 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1253 struct task_struct *task = current;
1254 if (likely(!(task->flags & PF_KTHREAD))) {
1255 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1256 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1257 return;
1258 }
1259 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1260 schedule_delayed_work(&delayed_mntput_work, 1);
1261 return;
1262 }
1263 cleanup_mnt(mnt);
1264 }
1265
mntput(struct vfsmount * mnt)1266 void mntput(struct vfsmount *mnt)
1267 {
1268 if (mnt) {
1269 struct mount *m = real_mount(mnt);
1270 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1271 if (unlikely(m->mnt_expiry_mark))
1272 m->mnt_expiry_mark = 0;
1273 mntput_no_expire(m);
1274 }
1275 }
1276 EXPORT_SYMBOL(mntput);
1277
mntget(struct vfsmount * mnt)1278 struct vfsmount *mntget(struct vfsmount *mnt)
1279 {
1280 if (mnt)
1281 mnt_add_count(real_mount(mnt), 1);
1282 return mnt;
1283 }
1284 EXPORT_SYMBOL(mntget);
1285
1286 /*
1287 * Make a mount point inaccessible to new lookups.
1288 * Because there may still be current users, the caller MUST WAIT
1289 * for an RCU grace period before destroying the mount point.
1290 */
mnt_make_shortterm(struct vfsmount * mnt)1291 void mnt_make_shortterm(struct vfsmount *mnt)
1292 {
1293 if (mnt)
1294 real_mount(mnt)->mnt_ns = NULL;
1295 }
1296
1297 /**
1298 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1299 * @path: path to check
1300 *
1301 * d_mountpoint() can only be used reliably to establish if a dentry is
1302 * not mounted in any namespace and that common case is handled inline.
1303 * d_mountpoint() isn't aware of the possibility there may be multiple
1304 * mounts using a given dentry in a different namespace. This function
1305 * checks if the passed in path is a mountpoint rather than the dentry
1306 * alone.
1307 */
path_is_mountpoint(const struct path * path)1308 bool path_is_mountpoint(const struct path *path)
1309 {
1310 unsigned seq;
1311 bool res;
1312
1313 if (!d_mountpoint(path->dentry))
1314 return false;
1315
1316 rcu_read_lock();
1317 do {
1318 seq = read_seqbegin(&mount_lock);
1319 res = __path_is_mountpoint(path);
1320 } while (read_seqretry(&mount_lock, seq));
1321 rcu_read_unlock();
1322
1323 return res;
1324 }
1325 EXPORT_SYMBOL(path_is_mountpoint);
1326
mnt_clone_internal(const struct path * path)1327 struct vfsmount *mnt_clone_internal(const struct path *path)
1328 {
1329 struct mount *p;
1330 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1331 if (IS_ERR(p))
1332 return ERR_CAST(p);
1333 p->mnt.mnt_flags |= MNT_INTERNAL;
1334 return &p->mnt;
1335 }
1336
1337 #ifdef CONFIG_PROC_FS
mnt_list_next(struct mnt_namespace * ns,struct list_head * p)1338 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1339 struct list_head *p)
1340 {
1341 struct mount *mnt, *ret = NULL;
1342
1343 lock_ns_list(ns);
1344 list_for_each_continue(p, &ns->list) {
1345 mnt = list_entry(p, typeof(*mnt), mnt_list);
1346 if (!mnt_is_cursor(mnt)) {
1347 ret = mnt;
1348 break;
1349 }
1350 }
1351 unlock_ns_list(ns);
1352
1353 return ret;
1354 }
1355
1356 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1357 static void *m_start(struct seq_file *m, loff_t *pos)
1358 {
1359 struct proc_mounts *p = m->private;
1360 struct list_head *prev;
1361
1362 down_read(&namespace_sem);
1363 if (!*pos) {
1364 prev = &p->ns->list;
1365 } else {
1366 prev = &p->cursor.mnt_list;
1367
1368 /* Read after we'd reached the end? */
1369 if (list_empty(prev))
1370 return NULL;
1371 }
1372
1373 return mnt_list_next(p->ns, prev);
1374 }
1375
m_next(struct seq_file * m,void * v,loff_t * pos)1376 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1377 {
1378 struct proc_mounts *p = m->private;
1379 struct mount *mnt = v;
1380
1381 ++*pos;
1382 return mnt_list_next(p->ns, &mnt->mnt_list);
1383 }
1384
m_stop(struct seq_file * m,void * v)1385 static void m_stop(struct seq_file *m, void *v)
1386 {
1387 struct proc_mounts *p = m->private;
1388 struct mount *mnt = v;
1389
1390 lock_ns_list(p->ns);
1391 if (mnt)
1392 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1393 else
1394 list_del_init(&p->cursor.mnt_list);
1395 unlock_ns_list(p->ns);
1396 up_read(&namespace_sem);
1397 }
1398
m_show(struct seq_file * m,void * v)1399 static int m_show(struct seq_file *m, void *v)
1400 {
1401 struct proc_mounts *p = m->private;
1402 struct mount *r = v;
1403 return p->show(m, &r->mnt);
1404 }
1405
1406 const struct seq_operations mounts_op = {
1407 .start = m_start,
1408 .next = m_next,
1409 .stop = m_stop,
1410 .show = m_show,
1411 };
1412
mnt_cursor_del(struct mnt_namespace * ns,struct mount * cursor)1413 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1414 {
1415 down_read(&namespace_sem);
1416 lock_ns_list(ns);
1417 list_del(&cursor->mnt_list);
1418 unlock_ns_list(ns);
1419 up_read(&namespace_sem);
1420 }
1421 #endif /* CONFIG_PROC_FS */
1422
1423 /**
1424 * may_umount_tree - check if a mount tree is busy
1425 * @m: root of mount tree
1426 *
1427 * This is called to check if a tree of mounts has any
1428 * open files, pwds, chroots or sub mounts that are
1429 * busy.
1430 */
may_umount_tree(struct vfsmount * m)1431 int may_umount_tree(struct vfsmount *m)
1432 {
1433 struct mount *mnt = real_mount(m);
1434 int actual_refs = 0;
1435 int minimum_refs = 0;
1436 struct mount *p;
1437 BUG_ON(!m);
1438
1439 /* write lock needed for mnt_get_count */
1440 lock_mount_hash();
1441 for (p = mnt; p; p = next_mnt(p, mnt)) {
1442 actual_refs += mnt_get_count(p);
1443 minimum_refs += 2;
1444 }
1445 unlock_mount_hash();
1446
1447 if (actual_refs > minimum_refs)
1448 return 0;
1449
1450 return 1;
1451 }
1452
1453 EXPORT_SYMBOL(may_umount_tree);
1454
1455 /**
1456 * may_umount - check if a mount point is busy
1457 * @mnt: root of mount
1458 *
1459 * This is called to check if a mount point has any
1460 * open files, pwds, chroots or sub mounts. If the
1461 * mount has sub mounts this will return busy
1462 * regardless of whether the sub mounts are busy.
1463 *
1464 * Doesn't take quota and stuff into account. IOW, in some cases it will
1465 * give false negatives. The main reason why it's here is that we need
1466 * a non-destructive way to look for easily umountable filesystems.
1467 */
may_umount(struct vfsmount * mnt)1468 int may_umount(struct vfsmount *mnt)
1469 {
1470 int ret = 1;
1471 down_read(&namespace_sem);
1472 lock_mount_hash();
1473 if (propagate_mount_busy(real_mount(mnt), 2))
1474 ret = 0;
1475 unlock_mount_hash();
1476 up_read(&namespace_sem);
1477 return ret;
1478 }
1479
1480 EXPORT_SYMBOL(may_umount);
1481
namespace_unlock(void)1482 static void namespace_unlock(void)
1483 {
1484 struct hlist_head head;
1485 struct hlist_node *p;
1486 struct mount *m;
1487 LIST_HEAD(list);
1488
1489 hlist_move_list(&unmounted, &head);
1490 list_splice_init(&ex_mountpoints, &list);
1491
1492 up_write(&namespace_sem);
1493
1494 shrink_dentry_list(&list);
1495
1496 if (likely(hlist_empty(&head)))
1497 return;
1498
1499 synchronize_rcu_expedited();
1500
1501 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1502 hlist_del(&m->mnt_umount);
1503 mntput(&m->mnt);
1504 }
1505 }
1506
namespace_lock(void)1507 static inline void namespace_lock(void)
1508 {
1509 down_write(&namespace_sem);
1510 }
1511
1512 enum umount_tree_flags {
1513 UMOUNT_SYNC = 1,
1514 UMOUNT_PROPAGATE = 2,
1515 UMOUNT_CONNECTED = 4,
1516 };
1517
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1518 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1519 {
1520 /* Leaving mounts connected is only valid for lazy umounts */
1521 if (how & UMOUNT_SYNC)
1522 return true;
1523
1524 /* A mount without a parent has nothing to be connected to */
1525 if (!mnt_has_parent(mnt))
1526 return true;
1527
1528 /* Because the reference counting rules change when mounts are
1529 * unmounted and connected, umounted mounts may not be
1530 * connected to mounted mounts.
1531 */
1532 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1533 return true;
1534
1535 /* Has it been requested that the mount remain connected? */
1536 if (how & UMOUNT_CONNECTED)
1537 return false;
1538
1539 /* Is the mount locked such that it needs to remain connected? */
1540 if (IS_MNT_LOCKED(mnt))
1541 return false;
1542
1543 /* By default disconnect the mount */
1544 return true;
1545 }
1546
1547 /*
1548 * mount_lock must be held
1549 * namespace_sem must be held for write
1550 */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1551 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1552 {
1553 LIST_HEAD(tmp_list);
1554 struct mount *p;
1555
1556 if (how & UMOUNT_PROPAGATE)
1557 propagate_mount_unlock(mnt);
1558
1559 /* Gather the mounts to umount */
1560 for (p = mnt; p; p = next_mnt(p, mnt)) {
1561 p->mnt.mnt_flags |= MNT_UMOUNT;
1562 list_move(&p->mnt_list, &tmp_list);
1563 }
1564
1565 /* Hide the mounts from mnt_mounts */
1566 list_for_each_entry(p, &tmp_list, mnt_list) {
1567 list_del_init(&p->mnt_child);
1568 }
1569
1570 /* Add propogated mounts to the tmp_list */
1571 if (how & UMOUNT_PROPAGATE)
1572 propagate_umount(&tmp_list);
1573
1574 while (!list_empty(&tmp_list)) {
1575 struct mnt_namespace *ns;
1576 bool disconnect;
1577 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1578 list_del_init(&p->mnt_expire);
1579 list_del_init(&p->mnt_list);
1580 ns = p->mnt_ns;
1581 if (ns) {
1582 ns->mounts--;
1583 __touch_mnt_namespace(ns);
1584 }
1585 p->mnt_ns = NULL;
1586 if (how & UMOUNT_SYNC)
1587 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1588
1589 disconnect = disconnect_mount(p, how);
1590 if (mnt_has_parent(p)) {
1591 mnt_add_count(p->mnt_parent, -1);
1592 if (!disconnect) {
1593 /* Don't forget about p */
1594 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1595 } else {
1596 umount_mnt(p);
1597 }
1598 }
1599 change_mnt_propagation(p, MS_PRIVATE);
1600 if (disconnect)
1601 hlist_add_head(&p->mnt_umount, &unmounted);
1602 }
1603 }
1604
1605 static void shrink_submounts(struct mount *mnt);
1606
do_umount_root(struct super_block * sb)1607 static int do_umount_root(struct super_block *sb)
1608 {
1609 int ret = 0;
1610
1611 down_write(&sb->s_umount);
1612 if (!sb_rdonly(sb)) {
1613 struct fs_context *fc;
1614
1615 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1616 SB_RDONLY);
1617 if (IS_ERR(fc)) {
1618 ret = PTR_ERR(fc);
1619 } else {
1620 ret = parse_monolithic_mount_data(fc, NULL);
1621 if (!ret)
1622 ret = reconfigure_super(fc);
1623 put_fs_context(fc);
1624 }
1625 }
1626 up_write(&sb->s_umount);
1627 return ret;
1628 }
1629
do_umount(struct mount * mnt,int flags)1630 static int do_umount(struct mount *mnt, int flags)
1631 {
1632 struct super_block *sb = mnt->mnt.mnt_sb;
1633 int retval;
1634
1635 retval = security_sb_umount(&mnt->mnt, flags);
1636 if (retval)
1637 return retval;
1638
1639 /*
1640 * Allow userspace to request a mountpoint be expired rather than
1641 * unmounting unconditionally. Unmount only happens if:
1642 * (1) the mark is already set (the mark is cleared by mntput())
1643 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1644 */
1645 if (flags & MNT_EXPIRE) {
1646 if (&mnt->mnt == current->fs->root.mnt ||
1647 flags & (MNT_FORCE | MNT_DETACH))
1648 return -EINVAL;
1649
1650 /*
1651 * probably don't strictly need the lock here if we examined
1652 * all race cases, but it's a slowpath.
1653 */
1654 lock_mount_hash();
1655 if (mnt_get_count(mnt) != 2) {
1656 unlock_mount_hash();
1657 return -EBUSY;
1658 }
1659 unlock_mount_hash();
1660
1661 if (!xchg(&mnt->mnt_expiry_mark, 1))
1662 return -EAGAIN;
1663 }
1664
1665 /*
1666 * If we may have to abort operations to get out of this
1667 * mount, and they will themselves hold resources we must
1668 * allow the fs to do things. In the Unix tradition of
1669 * 'Gee thats tricky lets do it in userspace' the umount_begin
1670 * might fail to complete on the first run through as other tasks
1671 * must return, and the like. Thats for the mount program to worry
1672 * about for the moment.
1673 */
1674
1675 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1676 sb->s_op->umount_begin(sb);
1677 }
1678
1679 /*
1680 * No sense to grab the lock for this test, but test itself looks
1681 * somewhat bogus. Suggestions for better replacement?
1682 * Ho-hum... In principle, we might treat that as umount + switch
1683 * to rootfs. GC would eventually take care of the old vfsmount.
1684 * Actually it makes sense, especially if rootfs would contain a
1685 * /reboot - static binary that would close all descriptors and
1686 * call reboot(9). Then init(8) could umount root and exec /reboot.
1687 */
1688 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1689 /*
1690 * Special case for "unmounting" root ...
1691 * we just try to remount it readonly.
1692 */
1693 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1694 return -EPERM;
1695 return do_umount_root(sb);
1696 }
1697
1698 namespace_lock();
1699 lock_mount_hash();
1700
1701 /* Recheck MNT_LOCKED with the locks held */
1702 retval = -EINVAL;
1703 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1704 goto out;
1705
1706 event++;
1707 if (flags & MNT_DETACH) {
1708 if (!list_empty(&mnt->mnt_list))
1709 umount_tree(mnt, UMOUNT_PROPAGATE);
1710 retval = 0;
1711 } else {
1712 shrink_submounts(mnt);
1713 retval = -EBUSY;
1714 if (!propagate_mount_busy(mnt, 2)) {
1715 if (!list_empty(&mnt->mnt_list))
1716 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1717 retval = 0;
1718 }
1719 }
1720 out:
1721 unlock_mount_hash();
1722 namespace_unlock();
1723 return retval;
1724 }
1725
1726 /*
1727 * __detach_mounts - lazily unmount all mounts on the specified dentry
1728 *
1729 * During unlink, rmdir, and d_drop it is possible to loose the path
1730 * to an existing mountpoint, and wind up leaking the mount.
1731 * detach_mounts allows lazily unmounting those mounts instead of
1732 * leaking them.
1733 *
1734 * The caller may hold dentry->d_inode->i_mutex.
1735 */
__detach_mounts(struct dentry * dentry)1736 void __detach_mounts(struct dentry *dentry)
1737 {
1738 struct mountpoint *mp;
1739 struct mount *mnt;
1740
1741 namespace_lock();
1742 lock_mount_hash();
1743 mp = lookup_mountpoint(dentry);
1744 if (!mp)
1745 goto out_unlock;
1746
1747 event++;
1748 while (!hlist_empty(&mp->m_list)) {
1749 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1750 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1751 umount_mnt(mnt);
1752 hlist_add_head(&mnt->mnt_umount, &unmounted);
1753 }
1754 else umount_tree(mnt, UMOUNT_CONNECTED);
1755 }
1756 put_mountpoint(mp);
1757 out_unlock:
1758 unlock_mount_hash();
1759 namespace_unlock();
1760 }
1761
1762 /*
1763 * Is the caller allowed to modify his namespace?
1764 */
may_mount(void)1765 bool may_mount(void)
1766 {
1767 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1768 }
1769
warn_mandlock(void)1770 static void warn_mandlock(void)
1771 {
1772 pr_warn_once("=======================================================\n"
1773 "WARNING: The mand mount option has been deprecated and\n"
1774 " and is ignored by this kernel. Remove the mand\n"
1775 " option from the mount to silence this warning.\n"
1776 "=======================================================\n");
1777 }
1778
can_umount(const struct path * path,int flags)1779 static int can_umount(const struct path *path, int flags)
1780 {
1781 struct mount *mnt = real_mount(path->mnt);
1782
1783 if (!may_mount())
1784 return -EPERM;
1785 if (path->dentry != path->mnt->mnt_root)
1786 return -EINVAL;
1787 if (!check_mnt(mnt))
1788 return -EINVAL;
1789 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1790 return -EINVAL;
1791 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1792 return -EPERM;
1793 return 0;
1794 }
1795
1796 // caller is responsible for flags being sane
path_umount(struct path * path,int flags)1797 int path_umount(struct path *path, int flags)
1798 {
1799 struct mount *mnt = real_mount(path->mnt);
1800 int ret;
1801
1802 ret = can_umount(path, flags);
1803 if (!ret)
1804 ret = do_umount(mnt, flags);
1805
1806 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1807 dput(path->dentry);
1808 mntput_no_expire(mnt);
1809 return ret;
1810 }
1811
ksys_umount(char __user * name,int flags)1812 static int ksys_umount(char __user *name, int flags)
1813 {
1814 int lookup_flags = LOOKUP_MOUNTPOINT;
1815 struct path path;
1816 int ret;
1817
1818 // basic validity checks done first
1819 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1820 return -EINVAL;
1821
1822 if (!(flags & UMOUNT_NOFOLLOW))
1823 lookup_flags |= LOOKUP_FOLLOW;
1824 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1825 if (ret)
1826 return ret;
1827 return path_umount(&path, flags);
1828 }
1829
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)1830 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1831 {
1832 return ksys_umount(name, flags);
1833 }
1834
1835 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1836
1837 /*
1838 * The 2.0 compatible umount. No flags.
1839 */
SYSCALL_DEFINE1(oldumount,char __user *,name)1840 SYSCALL_DEFINE1(oldumount, char __user *, name)
1841 {
1842 return ksys_umount(name, 0);
1843 }
1844
1845 #endif
1846
is_mnt_ns_file(struct dentry * dentry)1847 static bool is_mnt_ns_file(struct dentry *dentry)
1848 {
1849 /* Is this a proxy for a mount namespace? */
1850 return dentry->d_op == &ns_dentry_operations &&
1851 dentry->d_fsdata == &mntns_operations;
1852 }
1853
to_mnt_ns(struct ns_common * ns)1854 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1855 {
1856 return container_of(ns, struct mnt_namespace, ns);
1857 }
1858
from_mnt_ns(struct mnt_namespace * mnt)1859 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1860 {
1861 return &mnt->ns;
1862 }
1863
mnt_ns_loop(struct dentry * dentry)1864 static bool mnt_ns_loop(struct dentry *dentry)
1865 {
1866 /* Could bind mounting the mount namespace inode cause a
1867 * mount namespace loop?
1868 */
1869 struct mnt_namespace *mnt_ns;
1870 if (!is_mnt_ns_file(dentry))
1871 return false;
1872
1873 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1874 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1875 }
1876
copy_tree(struct mount * mnt,struct dentry * dentry,int flag)1877 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1878 int flag)
1879 {
1880 struct mount *res, *p, *q, *r, *parent;
1881
1882 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1883 return ERR_PTR(-EINVAL);
1884
1885 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1886 return ERR_PTR(-EINVAL);
1887
1888 res = q = clone_mnt(mnt, dentry, flag);
1889 if (IS_ERR(q))
1890 return q;
1891
1892 q->mnt_mountpoint = mnt->mnt_mountpoint;
1893
1894 p = mnt;
1895 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1896 struct mount *s;
1897 if (!is_subdir(r->mnt_mountpoint, dentry))
1898 continue;
1899
1900 for (s = r; s; s = next_mnt(s, r)) {
1901 if (!(flag & CL_COPY_UNBINDABLE) &&
1902 IS_MNT_UNBINDABLE(s)) {
1903 if (s->mnt.mnt_flags & MNT_LOCKED) {
1904 /* Both unbindable and locked. */
1905 q = ERR_PTR(-EPERM);
1906 goto out;
1907 } else {
1908 s = skip_mnt_tree(s);
1909 continue;
1910 }
1911 }
1912 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1913 is_mnt_ns_file(s->mnt.mnt_root)) {
1914 s = skip_mnt_tree(s);
1915 continue;
1916 }
1917 while (p != s->mnt_parent) {
1918 p = p->mnt_parent;
1919 q = q->mnt_parent;
1920 }
1921 p = s;
1922 parent = q;
1923 q = clone_mnt(p, p->mnt.mnt_root, flag);
1924 if (IS_ERR(q))
1925 goto out;
1926 lock_mount_hash();
1927 list_add_tail(&q->mnt_list, &res->mnt_list);
1928 attach_mnt(q, parent, p->mnt_mp);
1929 unlock_mount_hash();
1930 }
1931 }
1932 return res;
1933 out:
1934 if (res) {
1935 lock_mount_hash();
1936 umount_tree(res, UMOUNT_SYNC);
1937 unlock_mount_hash();
1938 }
1939 return q;
1940 }
1941
1942 /* Caller should check returned pointer for errors */
1943
collect_mounts(const struct path * path)1944 struct vfsmount *collect_mounts(const struct path *path)
1945 {
1946 struct mount *tree;
1947 namespace_lock();
1948 if (!check_mnt(real_mount(path->mnt)))
1949 tree = ERR_PTR(-EINVAL);
1950 else
1951 tree = copy_tree(real_mount(path->mnt), path->dentry,
1952 CL_COPY_ALL | CL_PRIVATE);
1953 namespace_unlock();
1954 if (IS_ERR(tree))
1955 return ERR_CAST(tree);
1956 return &tree->mnt;
1957 }
1958
1959 static void free_mnt_ns(struct mnt_namespace *);
1960 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1961
dissolve_on_fput(struct vfsmount * mnt)1962 void dissolve_on_fput(struct vfsmount *mnt)
1963 {
1964 struct mnt_namespace *ns;
1965 namespace_lock();
1966 lock_mount_hash();
1967 ns = real_mount(mnt)->mnt_ns;
1968 if (ns) {
1969 if (is_anon_ns(ns))
1970 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1971 else
1972 ns = NULL;
1973 }
1974 unlock_mount_hash();
1975 namespace_unlock();
1976 if (ns)
1977 free_mnt_ns(ns);
1978 }
1979
drop_collected_mounts(struct vfsmount * mnt)1980 void drop_collected_mounts(struct vfsmount *mnt)
1981 {
1982 namespace_lock();
1983 lock_mount_hash();
1984 umount_tree(real_mount(mnt), 0);
1985 unlock_mount_hash();
1986 namespace_unlock();
1987 }
1988
has_locked_children(struct mount * mnt,struct dentry * dentry)1989 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1990 {
1991 struct mount *child;
1992
1993 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1994 if (!is_subdir(child->mnt_mountpoint, dentry))
1995 continue;
1996
1997 if (child->mnt.mnt_flags & MNT_LOCKED)
1998 return true;
1999 }
2000 return false;
2001 }
2002
2003 /**
2004 * clone_private_mount - create a private clone of a path
2005 * @path: path to clone
2006 *
2007 * This creates a new vfsmount, which will be the clone of @path. The new mount
2008 * will not be attached anywhere in the namespace and will be private (i.e.
2009 * changes to the originating mount won't be propagated into this).
2010 *
2011 * Release with mntput().
2012 */
clone_private_mount(const struct path * path)2013 struct vfsmount *clone_private_mount(const struct path *path)
2014 {
2015 struct mount *old_mnt = real_mount(path->mnt);
2016 struct mount *new_mnt;
2017
2018 down_read(&namespace_sem);
2019 if (IS_MNT_UNBINDABLE(old_mnt))
2020 goto invalid;
2021
2022 if (!check_mnt(old_mnt))
2023 goto invalid;
2024
2025 if (has_locked_children(old_mnt, path->dentry))
2026 goto invalid;
2027
2028 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2029 up_read(&namespace_sem);
2030
2031 if (IS_ERR(new_mnt))
2032 return ERR_CAST(new_mnt);
2033
2034 /* Longterm mount to be removed by kern_unmount*() */
2035 new_mnt->mnt_ns = MNT_NS_INTERNAL;
2036
2037 return &new_mnt->mnt;
2038
2039 invalid:
2040 up_read(&namespace_sem);
2041 return ERR_PTR(-EINVAL);
2042 }
2043 EXPORT_SYMBOL_GPL(clone_private_mount);
2044
iterate_mounts(int (* f)(struct vfsmount *,void *),void * arg,struct vfsmount * root)2045 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2046 struct vfsmount *root)
2047 {
2048 struct mount *mnt;
2049 int res = f(root, arg);
2050 if (res)
2051 return res;
2052 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2053 res = f(&mnt->mnt, arg);
2054 if (res)
2055 return res;
2056 }
2057 return 0;
2058 }
2059
lock_mnt_tree(struct mount * mnt)2060 static void lock_mnt_tree(struct mount *mnt)
2061 {
2062 struct mount *p;
2063
2064 for (p = mnt; p; p = next_mnt(p, mnt)) {
2065 int flags = p->mnt.mnt_flags;
2066 /* Don't allow unprivileged users to change mount flags */
2067 flags |= MNT_LOCK_ATIME;
2068
2069 if (flags & MNT_READONLY)
2070 flags |= MNT_LOCK_READONLY;
2071
2072 if (flags & MNT_NODEV)
2073 flags |= MNT_LOCK_NODEV;
2074
2075 if (flags & MNT_NOSUID)
2076 flags |= MNT_LOCK_NOSUID;
2077
2078 if (flags & MNT_NOEXEC)
2079 flags |= MNT_LOCK_NOEXEC;
2080 /* Don't allow unprivileged users to reveal what is under a mount */
2081 if (list_empty(&p->mnt_expire))
2082 flags |= MNT_LOCKED;
2083 p->mnt.mnt_flags = flags;
2084 }
2085 }
2086
cleanup_group_ids(struct mount * mnt,struct mount * end)2087 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2088 {
2089 struct mount *p;
2090
2091 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2092 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2093 mnt_release_group_id(p);
2094 }
2095 }
2096
invent_group_ids(struct mount * mnt,bool recurse)2097 static int invent_group_ids(struct mount *mnt, bool recurse)
2098 {
2099 struct mount *p;
2100
2101 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2102 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2103 int err = mnt_alloc_group_id(p);
2104 if (err) {
2105 cleanup_group_ids(mnt, p);
2106 return err;
2107 }
2108 }
2109 }
2110
2111 return 0;
2112 }
2113
count_mounts(struct mnt_namespace * ns,struct mount * mnt)2114 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2115 {
2116 unsigned int max = READ_ONCE(sysctl_mount_max);
2117 unsigned int mounts = 0;
2118 struct mount *p;
2119
2120 if (ns->mounts >= max)
2121 return -ENOSPC;
2122 max -= ns->mounts;
2123 if (ns->pending_mounts >= max)
2124 return -ENOSPC;
2125 max -= ns->pending_mounts;
2126
2127 for (p = mnt; p; p = next_mnt(p, mnt))
2128 mounts++;
2129
2130 if (mounts > max)
2131 return -ENOSPC;
2132
2133 ns->pending_mounts += mounts;
2134 return 0;
2135 }
2136
2137 /*
2138 * @source_mnt : mount tree to be attached
2139 * @nd : place the mount tree @source_mnt is attached
2140 * @parent_nd : if non-null, detach the source_mnt from its parent and
2141 * store the parent mount and mountpoint dentry.
2142 * (done when source_mnt is moved)
2143 *
2144 * NOTE: in the table below explains the semantics when a source mount
2145 * of a given type is attached to a destination mount of a given type.
2146 * ---------------------------------------------------------------------------
2147 * | BIND MOUNT OPERATION |
2148 * |**************************************************************************
2149 * | source-->| shared | private | slave | unbindable |
2150 * | dest | | | | |
2151 * | | | | | | |
2152 * | v | | | | |
2153 * |**************************************************************************
2154 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2155 * | | | | | |
2156 * |non-shared| shared (+) | private | slave (*) | invalid |
2157 * ***************************************************************************
2158 * A bind operation clones the source mount and mounts the clone on the
2159 * destination mount.
2160 *
2161 * (++) the cloned mount is propagated to all the mounts in the propagation
2162 * tree of the destination mount and the cloned mount is added to
2163 * the peer group of the source mount.
2164 * (+) the cloned mount is created under the destination mount and is marked
2165 * as shared. The cloned mount is added to the peer group of the source
2166 * mount.
2167 * (+++) the mount is propagated to all the mounts in the propagation tree
2168 * of the destination mount and the cloned mount is made slave
2169 * of the same master as that of the source mount. The cloned mount
2170 * is marked as 'shared and slave'.
2171 * (*) the cloned mount is made a slave of the same master as that of the
2172 * source mount.
2173 *
2174 * ---------------------------------------------------------------------------
2175 * | MOVE MOUNT OPERATION |
2176 * |**************************************************************************
2177 * | source-->| shared | private | slave | unbindable |
2178 * | dest | | | | |
2179 * | | | | | | |
2180 * | v | | | | |
2181 * |**************************************************************************
2182 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2183 * | | | | | |
2184 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2185 * ***************************************************************************
2186 *
2187 * (+) the mount is moved to the destination. And is then propagated to
2188 * all the mounts in the propagation tree of the destination mount.
2189 * (+*) the mount is moved to the destination.
2190 * (+++) the mount is moved to the destination and is then propagated to
2191 * all the mounts belonging to the destination mount's propagation tree.
2192 * the mount is marked as 'shared and slave'.
2193 * (*) the mount continues to be a slave at the new location.
2194 *
2195 * if the source mount is a tree, the operations explained above is
2196 * applied to each mount in the tree.
2197 * Must be called without spinlocks held, since this function can sleep
2198 * in allocations.
2199 */
attach_recursive_mnt(struct mount * source_mnt,struct mount * dest_mnt,struct mountpoint * dest_mp,bool moving)2200 static int attach_recursive_mnt(struct mount *source_mnt,
2201 struct mount *dest_mnt,
2202 struct mountpoint *dest_mp,
2203 bool moving)
2204 {
2205 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2206 HLIST_HEAD(tree_list);
2207 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2208 struct mountpoint *smp;
2209 struct mount *child, *p;
2210 struct hlist_node *n;
2211 int err;
2212
2213 /* Preallocate a mountpoint in case the new mounts need
2214 * to be tucked under other mounts.
2215 */
2216 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2217 if (IS_ERR(smp))
2218 return PTR_ERR(smp);
2219
2220 /* Is there space to add these mounts to the mount namespace? */
2221 if (!moving) {
2222 err = count_mounts(ns, source_mnt);
2223 if (err)
2224 goto out;
2225 }
2226
2227 if (IS_MNT_SHARED(dest_mnt)) {
2228 err = invent_group_ids(source_mnt, true);
2229 if (err)
2230 goto out;
2231 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2232 lock_mount_hash();
2233 if (err)
2234 goto out_cleanup_ids;
2235 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2236 set_mnt_shared(p);
2237 } else {
2238 lock_mount_hash();
2239 }
2240 if (moving) {
2241 unhash_mnt(source_mnt);
2242 attach_mnt(source_mnt, dest_mnt, dest_mp);
2243 touch_mnt_namespace(source_mnt->mnt_ns);
2244 } else {
2245 if (source_mnt->mnt_ns) {
2246 /* move from anon - the caller will destroy */
2247 list_del_init(&source_mnt->mnt_ns->list);
2248 }
2249 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2250 commit_tree(source_mnt);
2251 }
2252
2253 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2254 struct mount *q;
2255 hlist_del_init(&child->mnt_hash);
2256 q = __lookup_mnt(&child->mnt_parent->mnt,
2257 child->mnt_mountpoint);
2258 if (q)
2259 mnt_change_mountpoint(child, smp, q);
2260 /* Notice when we are propagating across user namespaces */
2261 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2262 lock_mnt_tree(child);
2263 child->mnt.mnt_flags &= ~MNT_LOCKED;
2264 commit_tree(child);
2265 }
2266 put_mountpoint(smp);
2267 unlock_mount_hash();
2268
2269 return 0;
2270
2271 out_cleanup_ids:
2272 while (!hlist_empty(&tree_list)) {
2273 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2274 child->mnt_parent->mnt_ns->pending_mounts = 0;
2275 umount_tree(child, UMOUNT_SYNC);
2276 }
2277 unlock_mount_hash();
2278 cleanup_group_ids(source_mnt, NULL);
2279 out:
2280 ns->pending_mounts = 0;
2281
2282 read_seqlock_excl(&mount_lock);
2283 put_mountpoint(smp);
2284 read_sequnlock_excl(&mount_lock);
2285
2286 return err;
2287 }
2288
lock_mount(struct path * path)2289 static struct mountpoint *lock_mount(struct path *path)
2290 {
2291 struct vfsmount *mnt;
2292 struct dentry *dentry = path->dentry;
2293 retry:
2294 inode_lock(dentry->d_inode);
2295 if (unlikely(cant_mount(dentry))) {
2296 inode_unlock(dentry->d_inode);
2297 return ERR_PTR(-ENOENT);
2298 }
2299 namespace_lock();
2300 mnt = lookup_mnt(path);
2301 if (likely(!mnt)) {
2302 struct mountpoint *mp = get_mountpoint(dentry);
2303 if (IS_ERR(mp)) {
2304 namespace_unlock();
2305 inode_unlock(dentry->d_inode);
2306 return mp;
2307 }
2308 return mp;
2309 }
2310 namespace_unlock();
2311 inode_unlock(path->dentry->d_inode);
2312 path_put(path);
2313 path->mnt = mnt;
2314 dentry = path->dentry = dget(mnt->mnt_root);
2315 goto retry;
2316 }
2317
unlock_mount(struct mountpoint * where)2318 static void unlock_mount(struct mountpoint *where)
2319 {
2320 struct dentry *dentry = where->m_dentry;
2321
2322 read_seqlock_excl(&mount_lock);
2323 put_mountpoint(where);
2324 read_sequnlock_excl(&mount_lock);
2325
2326 namespace_unlock();
2327 inode_unlock(dentry->d_inode);
2328 }
2329
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)2330 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2331 {
2332 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2333 return -EINVAL;
2334
2335 if (d_is_dir(mp->m_dentry) !=
2336 d_is_dir(mnt->mnt.mnt_root))
2337 return -ENOTDIR;
2338
2339 return attach_recursive_mnt(mnt, p, mp, false);
2340 }
2341
2342 /*
2343 * Sanity check the flags to change_mnt_propagation.
2344 */
2345
flags_to_propagation_type(int ms_flags)2346 static int flags_to_propagation_type(int ms_flags)
2347 {
2348 int type = ms_flags & ~(MS_REC | MS_SILENT);
2349
2350 /* Fail if any non-propagation flags are set */
2351 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2352 return 0;
2353 /* Only one propagation flag should be set */
2354 if (!is_power_of_2(type))
2355 return 0;
2356 return type;
2357 }
2358
2359 /*
2360 * recursively change the type of the mountpoint.
2361 */
do_change_type(struct path * path,int ms_flags)2362 static int do_change_type(struct path *path, int ms_flags)
2363 {
2364 struct mount *m;
2365 struct mount *mnt = real_mount(path->mnt);
2366 int recurse = ms_flags & MS_REC;
2367 int type;
2368 int err = 0;
2369
2370 if (path->dentry != path->mnt->mnt_root)
2371 return -EINVAL;
2372
2373 type = flags_to_propagation_type(ms_flags);
2374 if (!type)
2375 return -EINVAL;
2376
2377 namespace_lock();
2378 if (type == MS_SHARED) {
2379 err = invent_group_ids(mnt, recurse);
2380 if (err)
2381 goto out_unlock;
2382 }
2383
2384 lock_mount_hash();
2385 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2386 change_mnt_propagation(m, type);
2387 unlock_mount_hash();
2388
2389 out_unlock:
2390 namespace_unlock();
2391 return err;
2392 }
2393
__do_loopback(struct path * old_path,int recurse)2394 static struct mount *__do_loopback(struct path *old_path, int recurse)
2395 {
2396 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2397
2398 if (IS_MNT_UNBINDABLE(old))
2399 return mnt;
2400
2401 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2402 return mnt;
2403
2404 if (!recurse && has_locked_children(old, old_path->dentry))
2405 return mnt;
2406
2407 if (recurse)
2408 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2409 else
2410 mnt = clone_mnt(old, old_path->dentry, 0);
2411
2412 if (!IS_ERR(mnt))
2413 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2414
2415 return mnt;
2416 }
2417
2418 /*
2419 * do loopback mount.
2420 */
do_loopback(struct path * path,const char * old_name,int recurse)2421 static int do_loopback(struct path *path, const char *old_name,
2422 int recurse)
2423 {
2424 struct path old_path;
2425 struct mount *mnt = NULL, *parent;
2426 struct mountpoint *mp;
2427 int err;
2428 if (!old_name || !*old_name)
2429 return -EINVAL;
2430 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2431 if (err)
2432 return err;
2433
2434 err = -EINVAL;
2435 if (mnt_ns_loop(old_path.dentry))
2436 goto out;
2437
2438 mp = lock_mount(path);
2439 if (IS_ERR(mp)) {
2440 err = PTR_ERR(mp);
2441 goto out;
2442 }
2443
2444 parent = real_mount(path->mnt);
2445 if (!check_mnt(parent))
2446 goto out2;
2447
2448 mnt = __do_loopback(&old_path, recurse);
2449 if (IS_ERR(mnt)) {
2450 err = PTR_ERR(mnt);
2451 goto out2;
2452 }
2453
2454 err = graft_tree(mnt, parent, mp);
2455 if (err) {
2456 lock_mount_hash();
2457 umount_tree(mnt, UMOUNT_SYNC);
2458 unlock_mount_hash();
2459 }
2460 out2:
2461 unlock_mount(mp);
2462 out:
2463 path_put(&old_path);
2464 return err;
2465 }
2466
open_detached_copy(struct path * path,bool recursive)2467 static struct file *open_detached_copy(struct path *path, bool recursive)
2468 {
2469 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2470 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2471 struct mount *mnt, *p;
2472 struct file *file;
2473
2474 if (IS_ERR(ns))
2475 return ERR_CAST(ns);
2476
2477 namespace_lock();
2478 mnt = __do_loopback(path, recursive);
2479 if (IS_ERR(mnt)) {
2480 namespace_unlock();
2481 free_mnt_ns(ns);
2482 return ERR_CAST(mnt);
2483 }
2484
2485 lock_mount_hash();
2486 for (p = mnt; p; p = next_mnt(p, mnt)) {
2487 p->mnt_ns = ns;
2488 ns->mounts++;
2489 }
2490 ns->root = mnt;
2491 list_add_tail(&ns->list, &mnt->mnt_list);
2492 mntget(&mnt->mnt);
2493 unlock_mount_hash();
2494 namespace_unlock();
2495
2496 mntput(path->mnt);
2497 path->mnt = &mnt->mnt;
2498 file = dentry_open(path, O_PATH, current_cred());
2499 if (IS_ERR(file))
2500 dissolve_on_fput(path->mnt);
2501 else
2502 file->f_mode |= FMODE_NEED_UNMOUNT;
2503 return file;
2504 }
2505
SYSCALL_DEFINE3(open_tree,int,dfd,const char __user *,filename,unsigned,flags)2506 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2507 {
2508 struct file *file;
2509 struct path path;
2510 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2511 bool detached = flags & OPEN_TREE_CLONE;
2512 int error;
2513 int fd;
2514
2515 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2516
2517 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2518 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2519 OPEN_TREE_CLOEXEC))
2520 return -EINVAL;
2521
2522 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2523 return -EINVAL;
2524
2525 if (flags & AT_NO_AUTOMOUNT)
2526 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2527 if (flags & AT_SYMLINK_NOFOLLOW)
2528 lookup_flags &= ~LOOKUP_FOLLOW;
2529 if (flags & AT_EMPTY_PATH)
2530 lookup_flags |= LOOKUP_EMPTY;
2531
2532 if (detached && !may_mount())
2533 return -EPERM;
2534
2535 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2536 if (fd < 0)
2537 return fd;
2538
2539 error = user_path_at(dfd, filename, lookup_flags, &path);
2540 if (unlikely(error)) {
2541 file = ERR_PTR(error);
2542 } else {
2543 if (detached)
2544 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2545 else
2546 file = dentry_open(&path, O_PATH, current_cred());
2547 path_put(&path);
2548 }
2549 if (IS_ERR(file)) {
2550 put_unused_fd(fd);
2551 return PTR_ERR(file);
2552 }
2553 fd_install(fd, file);
2554 return fd;
2555 }
2556
2557 /*
2558 * Don't allow locked mount flags to be cleared.
2559 *
2560 * No locks need to be held here while testing the various MNT_LOCK
2561 * flags because those flags can never be cleared once they are set.
2562 */
can_change_locked_flags(struct mount * mnt,unsigned int mnt_flags)2563 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2564 {
2565 unsigned int fl = mnt->mnt.mnt_flags;
2566
2567 if ((fl & MNT_LOCK_READONLY) &&
2568 !(mnt_flags & MNT_READONLY))
2569 return false;
2570
2571 if ((fl & MNT_LOCK_NODEV) &&
2572 !(mnt_flags & MNT_NODEV))
2573 return false;
2574
2575 if ((fl & MNT_LOCK_NOSUID) &&
2576 !(mnt_flags & MNT_NOSUID))
2577 return false;
2578
2579 if ((fl & MNT_LOCK_NOEXEC) &&
2580 !(mnt_flags & MNT_NOEXEC))
2581 return false;
2582
2583 if ((fl & MNT_LOCK_ATIME) &&
2584 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2585 return false;
2586
2587 return true;
2588 }
2589
change_mount_ro_state(struct mount * mnt,unsigned int mnt_flags)2590 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2591 {
2592 bool readonly_request = (mnt_flags & MNT_READONLY);
2593
2594 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2595 return 0;
2596
2597 if (readonly_request)
2598 return mnt_make_readonly(mnt);
2599
2600 mnt->mnt.mnt_flags &= ~MNT_READONLY;
2601 return 0;
2602 }
2603
set_mount_attributes(struct mount * mnt,unsigned int mnt_flags)2604 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2605 {
2606 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2607 mnt->mnt.mnt_flags = mnt_flags;
2608 touch_mnt_namespace(mnt->mnt_ns);
2609 }
2610
mnt_warn_timestamp_expiry(struct path * mountpoint,struct vfsmount * mnt)2611 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2612 {
2613 struct super_block *sb = mnt->mnt_sb;
2614
2615 if (!__mnt_is_readonly(mnt) &&
2616 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2617 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2618 char *buf = (char *)__get_free_page(GFP_KERNEL);
2619 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2620 struct tm tm;
2621
2622 time64_to_tm(sb->s_time_max, 0, &tm);
2623
2624 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2625 sb->s_type->name,
2626 is_mounted(mnt) ? "remounted" : "mounted",
2627 mntpath,
2628 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2629
2630 free_page((unsigned long)buf);
2631 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2632 }
2633 }
2634
2635 /*
2636 * Handle reconfiguration of the mountpoint only without alteration of the
2637 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2638 * to mount(2).
2639 */
do_reconfigure_mnt(struct path * path,unsigned int mnt_flags)2640 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2641 {
2642 struct super_block *sb = path->mnt->mnt_sb;
2643 struct mount *mnt = real_mount(path->mnt);
2644 int ret;
2645
2646 if (!check_mnt(mnt))
2647 return -EINVAL;
2648
2649 if (path->dentry != mnt->mnt.mnt_root)
2650 return -EINVAL;
2651
2652 if (!can_change_locked_flags(mnt, mnt_flags))
2653 return -EPERM;
2654
2655 /*
2656 * We're only checking whether the superblock is read-only not
2657 * changing it, so only take down_read(&sb->s_umount).
2658 */
2659 down_read(&sb->s_umount);
2660 lock_mount_hash();
2661 ret = change_mount_ro_state(mnt, mnt_flags);
2662 if (ret == 0)
2663 set_mount_attributes(mnt, mnt_flags);
2664 unlock_mount_hash();
2665 up_read(&sb->s_umount);
2666
2667 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2668
2669 return ret;
2670 }
2671
2672 /*
2673 * change filesystem flags. dir should be a physical root of filesystem.
2674 * If you've mounted a non-root directory somewhere and want to do remount
2675 * on it - tough luck.
2676 */
do_remount(struct path * path,int ms_flags,int sb_flags,int mnt_flags,void * data)2677 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2678 int mnt_flags, void *data)
2679 {
2680 int err;
2681 struct super_block *sb = path->mnt->mnt_sb;
2682 struct mount *mnt = real_mount(path->mnt);
2683 struct fs_context *fc;
2684
2685 if (!check_mnt(mnt))
2686 return -EINVAL;
2687
2688 if (path->dentry != path->mnt->mnt_root)
2689 return -EINVAL;
2690
2691 if (!can_change_locked_flags(mnt, mnt_flags))
2692 return -EPERM;
2693
2694 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2695 if (IS_ERR(fc))
2696 return PTR_ERR(fc);
2697
2698 fc->oldapi = true;
2699 err = parse_monolithic_mount_data(fc, data);
2700 if (!err) {
2701 down_write(&sb->s_umount);
2702 err = -EPERM;
2703 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2704 err = reconfigure_super(fc);
2705 if (!err) {
2706 lock_mount_hash();
2707 set_mount_attributes(mnt, mnt_flags);
2708 unlock_mount_hash();
2709 }
2710 }
2711 up_write(&sb->s_umount);
2712 }
2713
2714 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2715
2716 put_fs_context(fc);
2717 return err;
2718 }
2719
tree_contains_unbindable(struct mount * mnt)2720 static inline int tree_contains_unbindable(struct mount *mnt)
2721 {
2722 struct mount *p;
2723 for (p = mnt; p; p = next_mnt(p, mnt)) {
2724 if (IS_MNT_UNBINDABLE(p))
2725 return 1;
2726 }
2727 return 0;
2728 }
2729
2730 /*
2731 * Check that there aren't references to earlier/same mount namespaces in the
2732 * specified subtree. Such references can act as pins for mount namespaces
2733 * that aren't checked by the mount-cycle checking code, thereby allowing
2734 * cycles to be made.
2735 */
check_for_nsfs_mounts(struct mount * subtree)2736 static bool check_for_nsfs_mounts(struct mount *subtree)
2737 {
2738 struct mount *p;
2739 bool ret = false;
2740
2741 lock_mount_hash();
2742 for (p = subtree; p; p = next_mnt(p, subtree))
2743 if (mnt_ns_loop(p->mnt.mnt_root))
2744 goto out;
2745
2746 ret = true;
2747 out:
2748 unlock_mount_hash();
2749 return ret;
2750 }
2751
do_set_group(struct path * from_path,struct path * to_path)2752 static int do_set_group(struct path *from_path, struct path *to_path)
2753 {
2754 struct mount *from, *to;
2755 int err;
2756
2757 from = real_mount(from_path->mnt);
2758 to = real_mount(to_path->mnt);
2759
2760 namespace_lock();
2761
2762 err = -EINVAL;
2763 /* To and From must be mounted */
2764 if (!is_mounted(&from->mnt))
2765 goto out;
2766 if (!is_mounted(&to->mnt))
2767 goto out;
2768
2769 err = -EPERM;
2770 /* We should be allowed to modify mount namespaces of both mounts */
2771 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2772 goto out;
2773 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2774 goto out;
2775
2776 err = -EINVAL;
2777 /* To and From paths should be mount roots */
2778 if (from_path->dentry != from_path->mnt->mnt_root)
2779 goto out;
2780 if (to_path->dentry != to_path->mnt->mnt_root)
2781 goto out;
2782
2783 /* Setting sharing groups is only allowed across same superblock */
2784 if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2785 goto out;
2786
2787 /* From mount root should be wider than To mount root */
2788 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2789 goto out;
2790
2791 /* From mount should not have locked children in place of To's root */
2792 if (has_locked_children(from, to->mnt.mnt_root))
2793 goto out;
2794
2795 /* Setting sharing groups is only allowed on private mounts */
2796 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2797 goto out;
2798
2799 /* From should not be private */
2800 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2801 goto out;
2802
2803 if (IS_MNT_SLAVE(from)) {
2804 struct mount *m = from->mnt_master;
2805
2806 list_add(&to->mnt_slave, &m->mnt_slave_list);
2807 to->mnt_master = m;
2808 }
2809
2810 if (IS_MNT_SHARED(from)) {
2811 to->mnt_group_id = from->mnt_group_id;
2812 list_add(&to->mnt_share, &from->mnt_share);
2813 lock_mount_hash();
2814 set_mnt_shared(to);
2815 unlock_mount_hash();
2816 }
2817
2818 err = 0;
2819 out:
2820 namespace_unlock();
2821 return err;
2822 }
2823
do_move_mount(struct path * old_path,struct path * new_path)2824 static int do_move_mount(struct path *old_path, struct path *new_path)
2825 {
2826 struct mnt_namespace *ns;
2827 struct mount *p;
2828 struct mount *old;
2829 struct mount *parent;
2830 struct mountpoint *mp, *old_mp;
2831 int err;
2832 bool attached;
2833
2834 mp = lock_mount(new_path);
2835 if (IS_ERR(mp))
2836 return PTR_ERR(mp);
2837
2838 old = real_mount(old_path->mnt);
2839 p = real_mount(new_path->mnt);
2840 parent = old->mnt_parent;
2841 attached = mnt_has_parent(old);
2842 old_mp = old->mnt_mp;
2843 ns = old->mnt_ns;
2844
2845 err = -EINVAL;
2846 /* The mountpoint must be in our namespace. */
2847 if (!check_mnt(p))
2848 goto out;
2849
2850 /* The thing moved must be mounted... */
2851 if (!is_mounted(&old->mnt))
2852 goto out;
2853
2854 /* ... and either ours or the root of anon namespace */
2855 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2856 goto out;
2857
2858 if (old->mnt.mnt_flags & MNT_LOCKED)
2859 goto out;
2860
2861 if (old_path->dentry != old_path->mnt->mnt_root)
2862 goto out;
2863
2864 if (d_is_dir(new_path->dentry) !=
2865 d_is_dir(old_path->dentry))
2866 goto out;
2867 /*
2868 * Don't move a mount residing in a shared parent.
2869 */
2870 if (attached && IS_MNT_SHARED(parent))
2871 goto out;
2872 /*
2873 * Don't move a mount tree containing unbindable mounts to a destination
2874 * mount which is shared.
2875 */
2876 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2877 goto out;
2878 err = -ELOOP;
2879 if (!check_for_nsfs_mounts(old))
2880 goto out;
2881 for (; mnt_has_parent(p); p = p->mnt_parent)
2882 if (p == old)
2883 goto out;
2884
2885 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2886 attached);
2887 if (err)
2888 goto out;
2889
2890 /* if the mount is moved, it should no longer be expire
2891 * automatically */
2892 list_del_init(&old->mnt_expire);
2893 if (attached)
2894 put_mountpoint(old_mp);
2895 out:
2896 unlock_mount(mp);
2897 if (!err) {
2898 if (attached)
2899 mntput_no_expire(parent);
2900 else
2901 free_mnt_ns(ns);
2902 }
2903 return err;
2904 }
2905
do_move_mount_old(struct path * path,const char * old_name)2906 static int do_move_mount_old(struct path *path, const char *old_name)
2907 {
2908 struct path old_path;
2909 int err;
2910
2911 if (!old_name || !*old_name)
2912 return -EINVAL;
2913
2914 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2915 if (err)
2916 return err;
2917
2918 err = do_move_mount(&old_path, path);
2919 path_put(&old_path);
2920 return err;
2921 }
2922
2923 /*
2924 * add a mount into a namespace's mount tree
2925 */
do_add_mount(struct mount * newmnt,struct mountpoint * mp,const struct path * path,int mnt_flags)2926 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2927 const struct path *path, int mnt_flags)
2928 {
2929 struct mount *parent = real_mount(path->mnt);
2930
2931 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2932
2933 if (unlikely(!check_mnt(parent))) {
2934 /* that's acceptable only for automounts done in private ns */
2935 if (!(mnt_flags & MNT_SHRINKABLE))
2936 return -EINVAL;
2937 /* ... and for those we'd better have mountpoint still alive */
2938 if (!parent->mnt_ns)
2939 return -EINVAL;
2940 }
2941
2942 /* Refuse the same filesystem on the same mount point */
2943 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2944 path->mnt->mnt_root == path->dentry)
2945 return -EBUSY;
2946
2947 if (d_is_symlink(newmnt->mnt.mnt_root))
2948 return -EINVAL;
2949
2950 newmnt->mnt.mnt_flags = mnt_flags;
2951 return graft_tree(newmnt, parent, mp);
2952 }
2953
2954 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2955
2956 /*
2957 * Create a new mount using a superblock configuration and request it
2958 * be added to the namespace tree.
2959 */
do_new_mount_fc(struct fs_context * fc,struct path * mountpoint,unsigned int mnt_flags)2960 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2961 unsigned int mnt_flags)
2962 {
2963 struct vfsmount *mnt;
2964 struct mountpoint *mp;
2965 struct super_block *sb = fc->root->d_sb;
2966 int error;
2967
2968 error = security_sb_kern_mount(sb);
2969 if (!error && mount_too_revealing(sb, &mnt_flags))
2970 error = -EPERM;
2971
2972 if (unlikely(error)) {
2973 fc_drop_locked(fc);
2974 return error;
2975 }
2976
2977 up_write(&sb->s_umount);
2978
2979 mnt = vfs_create_mount(fc);
2980 if (IS_ERR(mnt))
2981 return PTR_ERR(mnt);
2982
2983 mnt_warn_timestamp_expiry(mountpoint, mnt);
2984
2985 mp = lock_mount(mountpoint);
2986 if (IS_ERR(mp)) {
2987 mntput(mnt);
2988 return PTR_ERR(mp);
2989 }
2990 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2991 unlock_mount(mp);
2992 if (error < 0)
2993 mntput(mnt);
2994 return error;
2995 }
2996
2997 /*
2998 * create a new mount for userspace and request it to be added into the
2999 * namespace's tree
3000 */
do_new_mount(struct path * path,const char * fstype,int sb_flags,int mnt_flags,const char * name,void * data)3001 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3002 int mnt_flags, const char *name, void *data)
3003 {
3004 struct file_system_type *type;
3005 struct fs_context *fc;
3006 const char *subtype = NULL;
3007 int err = 0;
3008
3009 if (!fstype)
3010 return -EINVAL;
3011
3012 type = get_fs_type(fstype);
3013 if (!type)
3014 return -ENODEV;
3015
3016 if (type->fs_flags & FS_HAS_SUBTYPE) {
3017 subtype = strchr(fstype, '.');
3018 if (subtype) {
3019 subtype++;
3020 if (!*subtype) {
3021 put_filesystem(type);
3022 return -EINVAL;
3023 }
3024 }
3025 }
3026
3027 fc = fs_context_for_mount(type, sb_flags);
3028 put_filesystem(type);
3029 if (IS_ERR(fc))
3030 return PTR_ERR(fc);
3031
3032 if (subtype)
3033 err = vfs_parse_fs_string(fc, "subtype",
3034 subtype, strlen(subtype));
3035 if (!err && name)
3036 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3037 if (!err)
3038 err = parse_monolithic_mount_data(fc, data);
3039 if (!err && !mount_capable(fc))
3040 err = -EPERM;
3041 if (!err)
3042 err = vfs_get_tree(fc);
3043 if (!err)
3044 err = do_new_mount_fc(fc, path, mnt_flags);
3045
3046 put_fs_context(fc);
3047 return err;
3048 }
3049
finish_automount(struct vfsmount * m,const struct path * path)3050 int finish_automount(struct vfsmount *m, const struct path *path)
3051 {
3052 struct dentry *dentry = path->dentry;
3053 struct mountpoint *mp;
3054 struct mount *mnt;
3055 int err;
3056
3057 if (!m)
3058 return 0;
3059 if (IS_ERR(m))
3060 return PTR_ERR(m);
3061
3062 mnt = real_mount(m);
3063 /* The new mount record should have at least 2 refs to prevent it being
3064 * expired before we get a chance to add it
3065 */
3066 BUG_ON(mnt_get_count(mnt) < 2);
3067
3068 if (m->mnt_sb == path->mnt->mnt_sb &&
3069 m->mnt_root == dentry) {
3070 err = -ELOOP;
3071 goto discard;
3072 }
3073
3074 /*
3075 * we don't want to use lock_mount() - in this case finding something
3076 * that overmounts our mountpoint to be means "quitely drop what we've
3077 * got", not "try to mount it on top".
3078 */
3079 inode_lock(dentry->d_inode);
3080 namespace_lock();
3081 if (unlikely(cant_mount(dentry))) {
3082 err = -ENOENT;
3083 goto discard_locked;
3084 }
3085 rcu_read_lock();
3086 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3087 rcu_read_unlock();
3088 err = 0;
3089 goto discard_locked;
3090 }
3091 rcu_read_unlock();
3092 mp = get_mountpoint(dentry);
3093 if (IS_ERR(mp)) {
3094 err = PTR_ERR(mp);
3095 goto discard_locked;
3096 }
3097
3098 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3099 unlock_mount(mp);
3100 if (unlikely(err))
3101 goto discard;
3102 mntput(m);
3103 return 0;
3104
3105 discard_locked:
3106 namespace_unlock();
3107 inode_unlock(dentry->d_inode);
3108 discard:
3109 /* remove m from any expiration list it may be on */
3110 if (!list_empty(&mnt->mnt_expire)) {
3111 namespace_lock();
3112 list_del_init(&mnt->mnt_expire);
3113 namespace_unlock();
3114 }
3115 mntput(m);
3116 mntput(m);
3117 return err;
3118 }
3119
3120 /**
3121 * mnt_set_expiry - Put a mount on an expiration list
3122 * @mnt: The mount to list.
3123 * @expiry_list: The list to add the mount to.
3124 */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)3125 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3126 {
3127 namespace_lock();
3128
3129 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3130
3131 namespace_unlock();
3132 }
3133 EXPORT_SYMBOL(mnt_set_expiry);
3134
3135 /*
3136 * process a list of expirable mountpoints with the intent of discarding any
3137 * mountpoints that aren't in use and haven't been touched since last we came
3138 * here
3139 */
mark_mounts_for_expiry(struct list_head * mounts)3140 void mark_mounts_for_expiry(struct list_head *mounts)
3141 {
3142 struct mount *mnt, *next;
3143 LIST_HEAD(graveyard);
3144
3145 if (list_empty(mounts))
3146 return;
3147
3148 namespace_lock();
3149 lock_mount_hash();
3150
3151 /* extract from the expiration list every vfsmount that matches the
3152 * following criteria:
3153 * - only referenced by its parent vfsmount
3154 * - still marked for expiry (marked on the last call here; marks are
3155 * cleared by mntput())
3156 */
3157 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3158 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3159 propagate_mount_busy(mnt, 1))
3160 continue;
3161 list_move(&mnt->mnt_expire, &graveyard);
3162 }
3163 while (!list_empty(&graveyard)) {
3164 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3165 touch_mnt_namespace(mnt->mnt_ns);
3166 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3167 }
3168 unlock_mount_hash();
3169 namespace_unlock();
3170 }
3171
3172 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3173
3174 /*
3175 * Ripoff of 'select_parent()'
3176 *
3177 * search the list of submounts for a given mountpoint, and move any
3178 * shrinkable submounts to the 'graveyard' list.
3179 */
select_submounts(struct mount * parent,struct list_head * graveyard)3180 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3181 {
3182 struct mount *this_parent = parent;
3183 struct list_head *next;
3184 int found = 0;
3185
3186 repeat:
3187 next = this_parent->mnt_mounts.next;
3188 resume:
3189 while (next != &this_parent->mnt_mounts) {
3190 struct list_head *tmp = next;
3191 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3192
3193 next = tmp->next;
3194 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3195 continue;
3196 /*
3197 * Descend a level if the d_mounts list is non-empty.
3198 */
3199 if (!list_empty(&mnt->mnt_mounts)) {
3200 this_parent = mnt;
3201 goto repeat;
3202 }
3203
3204 if (!propagate_mount_busy(mnt, 1)) {
3205 list_move_tail(&mnt->mnt_expire, graveyard);
3206 found++;
3207 }
3208 }
3209 /*
3210 * All done at this level ... ascend and resume the search
3211 */
3212 if (this_parent != parent) {
3213 next = this_parent->mnt_child.next;
3214 this_parent = this_parent->mnt_parent;
3215 goto resume;
3216 }
3217 return found;
3218 }
3219
3220 /*
3221 * process a list of expirable mountpoints with the intent of discarding any
3222 * submounts of a specific parent mountpoint
3223 *
3224 * mount_lock must be held for write
3225 */
shrink_submounts(struct mount * mnt)3226 static void shrink_submounts(struct mount *mnt)
3227 {
3228 LIST_HEAD(graveyard);
3229 struct mount *m;
3230
3231 /* extract submounts of 'mountpoint' from the expiration list */
3232 while (select_submounts(mnt, &graveyard)) {
3233 while (!list_empty(&graveyard)) {
3234 m = list_first_entry(&graveyard, struct mount,
3235 mnt_expire);
3236 touch_mnt_namespace(m->mnt_ns);
3237 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3238 }
3239 }
3240 }
3241
copy_mount_options(const void __user * data)3242 static void *copy_mount_options(const void __user * data)
3243 {
3244 char *copy;
3245 unsigned left, offset;
3246
3247 if (!data)
3248 return NULL;
3249
3250 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3251 if (!copy)
3252 return ERR_PTR(-ENOMEM);
3253
3254 left = copy_from_user(copy, data, PAGE_SIZE);
3255
3256 /*
3257 * Not all architectures have an exact copy_from_user(). Resort to
3258 * byte at a time.
3259 */
3260 offset = PAGE_SIZE - left;
3261 while (left) {
3262 char c;
3263 if (get_user(c, (const char __user *)data + offset))
3264 break;
3265 copy[offset] = c;
3266 left--;
3267 offset++;
3268 }
3269
3270 if (left == PAGE_SIZE) {
3271 kfree(copy);
3272 return ERR_PTR(-EFAULT);
3273 }
3274
3275 return copy;
3276 }
3277
copy_mount_string(const void __user * data)3278 static char *copy_mount_string(const void __user *data)
3279 {
3280 return data ? strndup_user(data, PATH_MAX) : NULL;
3281 }
3282
3283 /*
3284 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3285 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3286 *
3287 * data is a (void *) that can point to any structure up to
3288 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3289 * information (or be NULL).
3290 *
3291 * Pre-0.97 versions of mount() didn't have a flags word.
3292 * When the flags word was introduced its top half was required
3293 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3294 * Therefore, if this magic number is present, it carries no information
3295 * and must be discarded.
3296 */
path_mount(const char * dev_name,struct path * path,const char * type_page,unsigned long flags,void * data_page)3297 int path_mount(const char *dev_name, struct path *path,
3298 const char *type_page, unsigned long flags, void *data_page)
3299 {
3300 unsigned int mnt_flags = 0, sb_flags;
3301 int ret;
3302
3303 /* Discard magic */
3304 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3305 flags &= ~MS_MGC_MSK;
3306
3307 /* Basic sanity checks */
3308 if (data_page)
3309 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3310
3311 if (flags & MS_NOUSER)
3312 return -EINVAL;
3313
3314 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3315 if (ret)
3316 return ret;
3317 if (!may_mount())
3318 return -EPERM;
3319 if (flags & SB_MANDLOCK)
3320 warn_mandlock();
3321
3322 /* Default to relatime unless overriden */
3323 if (!(flags & MS_NOATIME))
3324 mnt_flags |= MNT_RELATIME;
3325
3326 /* Separate the per-mountpoint flags */
3327 if (flags & MS_NOSUID)
3328 mnt_flags |= MNT_NOSUID;
3329 if (flags & MS_NODEV)
3330 mnt_flags |= MNT_NODEV;
3331 if (flags & MS_NOEXEC)
3332 mnt_flags |= MNT_NOEXEC;
3333 if (flags & MS_NOATIME)
3334 mnt_flags |= MNT_NOATIME;
3335 if (flags & MS_NODIRATIME)
3336 mnt_flags |= MNT_NODIRATIME;
3337 if (flags & MS_STRICTATIME)
3338 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3339 if (flags & MS_RDONLY)
3340 mnt_flags |= MNT_READONLY;
3341 if (flags & MS_NOSYMFOLLOW)
3342 mnt_flags |= MNT_NOSYMFOLLOW;
3343
3344 /* The default atime for remount is preservation */
3345 if ((flags & MS_REMOUNT) &&
3346 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3347 MS_STRICTATIME)) == 0)) {
3348 mnt_flags &= ~MNT_ATIME_MASK;
3349 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3350 }
3351
3352 sb_flags = flags & (SB_RDONLY |
3353 SB_SYNCHRONOUS |
3354 SB_MANDLOCK |
3355 SB_DIRSYNC |
3356 SB_SILENT |
3357 SB_POSIXACL |
3358 SB_LAZYTIME |
3359 SB_I_VERSION);
3360
3361 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3362 return do_reconfigure_mnt(path, mnt_flags);
3363 if (flags & MS_REMOUNT)
3364 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3365 if (flags & MS_BIND)
3366 return do_loopback(path, dev_name, flags & MS_REC);
3367 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3368 return do_change_type(path, flags);
3369 if (flags & MS_MOVE)
3370 return do_move_mount_old(path, dev_name);
3371
3372 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3373 data_page);
3374 }
3375
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)3376 long do_mount(const char *dev_name, const char __user *dir_name,
3377 const char *type_page, unsigned long flags, void *data_page)
3378 {
3379 struct path path;
3380 int ret;
3381
3382 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3383 if (ret)
3384 return ret;
3385 ret = path_mount(dev_name, &path, type_page, flags, data_page);
3386 path_put(&path);
3387 return ret;
3388 }
3389
inc_mnt_namespaces(struct user_namespace * ns)3390 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3391 {
3392 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3393 }
3394
dec_mnt_namespaces(struct ucounts * ucounts)3395 static void dec_mnt_namespaces(struct ucounts *ucounts)
3396 {
3397 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3398 }
3399
free_mnt_ns(struct mnt_namespace * ns)3400 static void free_mnt_ns(struct mnt_namespace *ns)
3401 {
3402 if (!is_anon_ns(ns))
3403 ns_free_inum(&ns->ns);
3404 dec_mnt_namespaces(ns->ucounts);
3405 put_user_ns(ns->user_ns);
3406 kfree(ns);
3407 }
3408
3409 /*
3410 * Assign a sequence number so we can detect when we attempt to bind
3411 * mount a reference to an older mount namespace into the current
3412 * mount namespace, preventing reference counting loops. A 64bit
3413 * number incrementing at 10Ghz will take 12,427 years to wrap which
3414 * is effectively never, so we can ignore the possibility.
3415 */
3416 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3417
alloc_mnt_ns(struct user_namespace * user_ns,bool anon)3418 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3419 {
3420 struct mnt_namespace *new_ns;
3421 struct ucounts *ucounts;
3422 int ret;
3423
3424 ucounts = inc_mnt_namespaces(user_ns);
3425 if (!ucounts)
3426 return ERR_PTR(-ENOSPC);
3427
3428 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3429 if (!new_ns) {
3430 dec_mnt_namespaces(ucounts);
3431 return ERR_PTR(-ENOMEM);
3432 }
3433 if (!anon) {
3434 ret = ns_alloc_inum(&new_ns->ns);
3435 if (ret) {
3436 kfree(new_ns);
3437 dec_mnt_namespaces(ucounts);
3438 return ERR_PTR(ret);
3439 }
3440 }
3441 new_ns->ns.ops = &mntns_operations;
3442 if (!anon)
3443 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3444 refcount_set(&new_ns->ns.count, 1);
3445 INIT_LIST_HEAD(&new_ns->list);
3446 init_waitqueue_head(&new_ns->poll);
3447 spin_lock_init(&new_ns->ns_lock);
3448 new_ns->user_ns = get_user_ns(user_ns);
3449 new_ns->ucounts = ucounts;
3450 return new_ns;
3451 }
3452
3453 __latent_entropy
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)3454 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3455 struct user_namespace *user_ns, struct fs_struct *new_fs)
3456 {
3457 struct mnt_namespace *new_ns;
3458 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3459 struct mount *p, *q;
3460 struct mount *old;
3461 struct mount *new;
3462 int copy_flags;
3463
3464 BUG_ON(!ns);
3465
3466 if (likely(!(flags & CLONE_NEWNS))) {
3467 get_mnt_ns(ns);
3468 return ns;
3469 }
3470
3471 old = ns->root;
3472
3473 new_ns = alloc_mnt_ns(user_ns, false);
3474 if (IS_ERR(new_ns))
3475 return new_ns;
3476
3477 namespace_lock();
3478 /* First pass: copy the tree topology */
3479 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3480 if (user_ns != ns->user_ns)
3481 copy_flags |= CL_SHARED_TO_SLAVE;
3482 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3483 if (IS_ERR(new)) {
3484 namespace_unlock();
3485 free_mnt_ns(new_ns);
3486 return ERR_CAST(new);
3487 }
3488 if (user_ns != ns->user_ns) {
3489 lock_mount_hash();
3490 lock_mnt_tree(new);
3491 unlock_mount_hash();
3492 }
3493 new_ns->root = new;
3494 list_add_tail(&new_ns->list, &new->mnt_list);
3495
3496 /*
3497 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3498 * as belonging to new namespace. We have already acquired a private
3499 * fs_struct, so tsk->fs->lock is not needed.
3500 */
3501 p = old;
3502 q = new;
3503 while (p) {
3504 q->mnt_ns = new_ns;
3505 new_ns->mounts++;
3506 if (new_fs) {
3507 if (&p->mnt == new_fs->root.mnt) {
3508 new_fs->root.mnt = mntget(&q->mnt);
3509 rootmnt = &p->mnt;
3510 }
3511 if (&p->mnt == new_fs->pwd.mnt) {
3512 new_fs->pwd.mnt = mntget(&q->mnt);
3513 pwdmnt = &p->mnt;
3514 }
3515 }
3516 p = next_mnt(p, old);
3517 q = next_mnt(q, new);
3518 if (!q)
3519 break;
3520 // an mntns binding we'd skipped?
3521 while (p->mnt.mnt_root != q->mnt.mnt_root)
3522 p = next_mnt(skip_mnt_tree(p), old);
3523 }
3524 namespace_unlock();
3525
3526 if (rootmnt)
3527 mntput(rootmnt);
3528 if (pwdmnt)
3529 mntput(pwdmnt);
3530
3531 return new_ns;
3532 }
3533
mount_subtree(struct vfsmount * m,const char * name)3534 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3535 {
3536 struct mount *mnt = real_mount(m);
3537 struct mnt_namespace *ns;
3538 struct super_block *s;
3539 struct path path;
3540 int err;
3541
3542 ns = alloc_mnt_ns(&init_user_ns, true);
3543 if (IS_ERR(ns)) {
3544 mntput(m);
3545 return ERR_CAST(ns);
3546 }
3547 mnt->mnt_ns = ns;
3548 ns->root = mnt;
3549 ns->mounts++;
3550 list_add(&mnt->mnt_list, &ns->list);
3551
3552 err = vfs_path_lookup(m->mnt_root, m,
3553 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3554
3555 put_mnt_ns(ns);
3556
3557 if (err)
3558 return ERR_PTR(err);
3559
3560 /* trade a vfsmount reference for active sb one */
3561 s = path.mnt->mnt_sb;
3562 atomic_inc(&s->s_active);
3563 mntput(path.mnt);
3564 /* lock the sucker */
3565 down_write(&s->s_umount);
3566 /* ... and return the root of (sub)tree on it */
3567 return path.dentry;
3568 }
3569 EXPORT_SYMBOL(mount_subtree);
3570
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)3571 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3572 char __user *, type, unsigned long, flags, void __user *, data)
3573 {
3574 int ret;
3575 char *kernel_type;
3576 char *kernel_dev;
3577 void *options;
3578
3579 kernel_type = copy_mount_string(type);
3580 ret = PTR_ERR(kernel_type);
3581 if (IS_ERR(kernel_type))
3582 goto out_type;
3583
3584 kernel_dev = copy_mount_string(dev_name);
3585 ret = PTR_ERR(kernel_dev);
3586 if (IS_ERR(kernel_dev))
3587 goto out_dev;
3588
3589 options = copy_mount_options(data);
3590 ret = PTR_ERR(options);
3591 if (IS_ERR(options))
3592 goto out_data;
3593
3594 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3595
3596 kfree(options);
3597 out_data:
3598 kfree(kernel_dev);
3599 out_dev:
3600 kfree(kernel_type);
3601 out_type:
3602 return ret;
3603 }
3604
3605 #define FSMOUNT_VALID_FLAGS \
3606 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
3607 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
3608 MOUNT_ATTR_NOSYMFOLLOW)
3609
3610 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3611
3612 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3613 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3614
attr_flags_to_mnt_flags(u64 attr_flags)3615 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3616 {
3617 unsigned int mnt_flags = 0;
3618
3619 if (attr_flags & MOUNT_ATTR_RDONLY)
3620 mnt_flags |= MNT_READONLY;
3621 if (attr_flags & MOUNT_ATTR_NOSUID)
3622 mnt_flags |= MNT_NOSUID;
3623 if (attr_flags & MOUNT_ATTR_NODEV)
3624 mnt_flags |= MNT_NODEV;
3625 if (attr_flags & MOUNT_ATTR_NOEXEC)
3626 mnt_flags |= MNT_NOEXEC;
3627 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3628 mnt_flags |= MNT_NODIRATIME;
3629 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3630 mnt_flags |= MNT_NOSYMFOLLOW;
3631
3632 return mnt_flags;
3633 }
3634
3635 /*
3636 * Create a kernel mount representation for a new, prepared superblock
3637 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3638 */
SYSCALL_DEFINE3(fsmount,int,fs_fd,unsigned int,flags,unsigned int,attr_flags)3639 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3640 unsigned int, attr_flags)
3641 {
3642 struct mnt_namespace *ns;
3643 struct fs_context *fc;
3644 struct file *file;
3645 struct path newmount;
3646 struct mount *mnt;
3647 struct fd f;
3648 unsigned int mnt_flags = 0;
3649 long ret;
3650
3651 if (!may_mount())
3652 return -EPERM;
3653
3654 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3655 return -EINVAL;
3656
3657 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3658 return -EINVAL;
3659
3660 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3661
3662 switch (attr_flags & MOUNT_ATTR__ATIME) {
3663 case MOUNT_ATTR_STRICTATIME:
3664 break;
3665 case MOUNT_ATTR_NOATIME:
3666 mnt_flags |= MNT_NOATIME;
3667 break;
3668 case MOUNT_ATTR_RELATIME:
3669 mnt_flags |= MNT_RELATIME;
3670 break;
3671 default:
3672 return -EINVAL;
3673 }
3674
3675 f = fdget(fs_fd);
3676 if (!f.file)
3677 return -EBADF;
3678
3679 ret = -EINVAL;
3680 if (f.file->f_op != &fscontext_fops)
3681 goto err_fsfd;
3682
3683 fc = f.file->private_data;
3684
3685 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3686 if (ret < 0)
3687 goto err_fsfd;
3688
3689 /* There must be a valid superblock or we can't mount it */
3690 ret = -EINVAL;
3691 if (!fc->root)
3692 goto err_unlock;
3693
3694 ret = -EPERM;
3695 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3696 pr_warn("VFS: Mount too revealing\n");
3697 goto err_unlock;
3698 }
3699
3700 ret = -EBUSY;
3701 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3702 goto err_unlock;
3703
3704 if (fc->sb_flags & SB_MANDLOCK)
3705 warn_mandlock();
3706
3707 newmount.mnt = vfs_create_mount(fc);
3708 if (IS_ERR(newmount.mnt)) {
3709 ret = PTR_ERR(newmount.mnt);
3710 goto err_unlock;
3711 }
3712 newmount.dentry = dget(fc->root);
3713 newmount.mnt->mnt_flags = mnt_flags;
3714
3715 /* We've done the mount bit - now move the file context into more or
3716 * less the same state as if we'd done an fspick(). We don't want to
3717 * do any memory allocation or anything like that at this point as we
3718 * don't want to have to handle any errors incurred.
3719 */
3720 vfs_clean_context(fc);
3721
3722 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3723 if (IS_ERR(ns)) {
3724 ret = PTR_ERR(ns);
3725 goto err_path;
3726 }
3727 mnt = real_mount(newmount.mnt);
3728 mnt->mnt_ns = ns;
3729 ns->root = mnt;
3730 ns->mounts = 1;
3731 list_add(&mnt->mnt_list, &ns->list);
3732 mntget(newmount.mnt);
3733
3734 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3735 * it, not just simply put it.
3736 */
3737 file = dentry_open(&newmount, O_PATH, fc->cred);
3738 if (IS_ERR(file)) {
3739 dissolve_on_fput(newmount.mnt);
3740 ret = PTR_ERR(file);
3741 goto err_path;
3742 }
3743 file->f_mode |= FMODE_NEED_UNMOUNT;
3744
3745 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3746 if (ret >= 0)
3747 fd_install(ret, file);
3748 else
3749 fput(file);
3750
3751 err_path:
3752 path_put(&newmount);
3753 err_unlock:
3754 mutex_unlock(&fc->uapi_mutex);
3755 err_fsfd:
3756 fdput(f);
3757 return ret;
3758 }
3759
3760 /*
3761 * Move a mount from one place to another. In combination with
3762 * fsopen()/fsmount() this is used to install a new mount and in combination
3763 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3764 * a mount subtree.
3765 *
3766 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3767 */
SYSCALL_DEFINE5(move_mount,int,from_dfd,const char __user *,from_pathname,int,to_dfd,const char __user *,to_pathname,unsigned int,flags)3768 SYSCALL_DEFINE5(move_mount,
3769 int, from_dfd, const char __user *, from_pathname,
3770 int, to_dfd, const char __user *, to_pathname,
3771 unsigned int, flags)
3772 {
3773 struct path from_path, to_path;
3774 unsigned int lflags;
3775 int ret = 0;
3776
3777 if (!may_mount())
3778 return -EPERM;
3779
3780 if (flags & ~MOVE_MOUNT__MASK)
3781 return -EINVAL;
3782
3783 /* If someone gives a pathname, they aren't permitted to move
3784 * from an fd that requires unmount as we can't get at the flag
3785 * to clear it afterwards.
3786 */
3787 lflags = 0;
3788 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3789 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3790 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3791
3792 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3793 if (ret < 0)
3794 return ret;
3795
3796 lflags = 0;
3797 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3798 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3799 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3800
3801 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3802 if (ret < 0)
3803 goto out_from;
3804
3805 ret = security_move_mount(&from_path, &to_path);
3806 if (ret < 0)
3807 goto out_to;
3808
3809 if (flags & MOVE_MOUNT_SET_GROUP)
3810 ret = do_set_group(&from_path, &to_path);
3811 else
3812 ret = do_move_mount(&from_path, &to_path);
3813
3814 out_to:
3815 path_put(&to_path);
3816 out_from:
3817 path_put(&from_path);
3818 return ret;
3819 }
3820
3821 /*
3822 * Return true if path is reachable from root
3823 *
3824 * namespace_sem or mount_lock is held
3825 */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)3826 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3827 const struct path *root)
3828 {
3829 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3830 dentry = mnt->mnt_mountpoint;
3831 mnt = mnt->mnt_parent;
3832 }
3833 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3834 }
3835
path_is_under(const struct path * path1,const struct path * path2)3836 bool path_is_under(const struct path *path1, const struct path *path2)
3837 {
3838 bool res;
3839 read_seqlock_excl(&mount_lock);
3840 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3841 read_sequnlock_excl(&mount_lock);
3842 return res;
3843 }
3844 EXPORT_SYMBOL(path_is_under);
3845
3846 /*
3847 * pivot_root Semantics:
3848 * Moves the root file system of the current process to the directory put_old,
3849 * makes new_root as the new root file system of the current process, and sets
3850 * root/cwd of all processes which had them on the current root to new_root.
3851 *
3852 * Restrictions:
3853 * The new_root and put_old must be directories, and must not be on the
3854 * same file system as the current process root. The put_old must be
3855 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3856 * pointed to by put_old must yield the same directory as new_root. No other
3857 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3858 *
3859 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3860 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3861 * in this situation.
3862 *
3863 * Notes:
3864 * - we don't move root/cwd if they are not at the root (reason: if something
3865 * cared enough to change them, it's probably wrong to force them elsewhere)
3866 * - it's okay to pick a root that isn't the root of a file system, e.g.
3867 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3868 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3869 * first.
3870 */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)3871 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3872 const char __user *, put_old)
3873 {
3874 struct path new, old, root;
3875 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3876 struct mountpoint *old_mp, *root_mp;
3877 int error;
3878
3879 if (!may_mount())
3880 return -EPERM;
3881
3882 error = user_path_at(AT_FDCWD, new_root,
3883 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3884 if (error)
3885 goto out0;
3886
3887 error = user_path_at(AT_FDCWD, put_old,
3888 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3889 if (error)
3890 goto out1;
3891
3892 error = security_sb_pivotroot(&old, &new);
3893 if (error)
3894 goto out2;
3895
3896 get_fs_root(current->fs, &root);
3897 old_mp = lock_mount(&old);
3898 error = PTR_ERR(old_mp);
3899 if (IS_ERR(old_mp))
3900 goto out3;
3901
3902 error = -EINVAL;
3903 new_mnt = real_mount(new.mnt);
3904 root_mnt = real_mount(root.mnt);
3905 old_mnt = real_mount(old.mnt);
3906 ex_parent = new_mnt->mnt_parent;
3907 root_parent = root_mnt->mnt_parent;
3908 if (IS_MNT_SHARED(old_mnt) ||
3909 IS_MNT_SHARED(ex_parent) ||
3910 IS_MNT_SHARED(root_parent))
3911 goto out4;
3912 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3913 goto out4;
3914 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3915 goto out4;
3916 error = -ENOENT;
3917 if (d_unlinked(new.dentry))
3918 goto out4;
3919 error = -EBUSY;
3920 if (new_mnt == root_mnt || old_mnt == root_mnt)
3921 goto out4; /* loop, on the same file system */
3922 error = -EINVAL;
3923 if (root.mnt->mnt_root != root.dentry)
3924 goto out4; /* not a mountpoint */
3925 if (!mnt_has_parent(root_mnt))
3926 goto out4; /* not attached */
3927 if (new.mnt->mnt_root != new.dentry)
3928 goto out4; /* not a mountpoint */
3929 if (!mnt_has_parent(new_mnt))
3930 goto out4; /* not attached */
3931 /* make sure we can reach put_old from new_root */
3932 if (!is_path_reachable(old_mnt, old.dentry, &new))
3933 goto out4;
3934 /* make certain new is below the root */
3935 if (!is_path_reachable(new_mnt, new.dentry, &root))
3936 goto out4;
3937 lock_mount_hash();
3938 umount_mnt(new_mnt);
3939 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
3940 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3941 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3942 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3943 }
3944 /* mount old root on put_old */
3945 attach_mnt(root_mnt, old_mnt, old_mp);
3946 /* mount new_root on / */
3947 attach_mnt(new_mnt, root_parent, root_mp);
3948 mnt_add_count(root_parent, -1);
3949 touch_mnt_namespace(current->nsproxy->mnt_ns);
3950 /* A moved mount should not expire automatically */
3951 list_del_init(&new_mnt->mnt_expire);
3952 put_mountpoint(root_mp);
3953 unlock_mount_hash();
3954 chroot_fs_refs(&root, &new);
3955 error = 0;
3956 out4:
3957 unlock_mount(old_mp);
3958 if (!error)
3959 mntput_no_expire(ex_parent);
3960 out3:
3961 path_put(&root);
3962 out2:
3963 path_put(&old);
3964 out1:
3965 path_put(&new);
3966 out0:
3967 return error;
3968 }
3969
recalc_flags(struct mount_kattr * kattr,struct mount * mnt)3970 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3971 {
3972 unsigned int flags = mnt->mnt.mnt_flags;
3973
3974 /* flags to clear */
3975 flags &= ~kattr->attr_clr;
3976 /* flags to raise */
3977 flags |= kattr->attr_set;
3978
3979 return flags;
3980 }
3981
can_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)3982 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3983 {
3984 struct vfsmount *m = &mnt->mnt;
3985 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
3986
3987 if (!kattr->mnt_idmap)
3988 return 0;
3989
3990 /*
3991 * Creating an idmapped mount with the filesystem wide idmapping
3992 * doesn't make sense so block that. We don't allow mushy semantics.
3993 */
3994 if (!check_fsmapping(kattr->mnt_idmap, m->mnt_sb))
3995 return -EINVAL;
3996
3997 /*
3998 * Once a mount has been idmapped we don't allow it to change its
3999 * mapping. It makes things simpler and callers can just create
4000 * another bind-mount they can idmap if they want to.
4001 */
4002 if (is_idmapped_mnt(m))
4003 return -EPERM;
4004
4005 /* The underlying filesystem doesn't support idmapped mounts yet. */
4006 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4007 return -EINVAL;
4008
4009 /* We're not controlling the superblock. */
4010 if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4011 return -EPERM;
4012
4013 /* Mount has already been visible in the filesystem hierarchy. */
4014 if (!is_anon_ns(mnt->mnt_ns))
4015 return -EINVAL;
4016
4017 return 0;
4018 }
4019
4020 /**
4021 * mnt_allow_writers() - check whether the attribute change allows writers
4022 * @kattr: the new mount attributes
4023 * @mnt: the mount to which @kattr will be applied
4024 *
4025 * Check whether thew new mount attributes in @kattr allow concurrent writers.
4026 *
4027 * Return: true if writers need to be held, false if not
4028 */
mnt_allow_writers(const struct mount_kattr * kattr,const struct mount * mnt)4029 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4030 const struct mount *mnt)
4031 {
4032 return (!(kattr->attr_set & MNT_READONLY) ||
4033 (mnt->mnt.mnt_flags & MNT_READONLY)) &&
4034 !kattr->mnt_idmap;
4035 }
4036
mount_setattr_prepare(struct mount_kattr * kattr,struct mount * mnt)4037 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4038 {
4039 struct mount *m;
4040 int err;
4041
4042 for (m = mnt; m; m = next_mnt(m, mnt)) {
4043 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4044 err = -EPERM;
4045 break;
4046 }
4047
4048 err = can_idmap_mount(kattr, m);
4049 if (err)
4050 break;
4051
4052 if (!mnt_allow_writers(kattr, m)) {
4053 err = mnt_hold_writers(m);
4054 if (err)
4055 break;
4056 }
4057
4058 if (!kattr->recurse)
4059 return 0;
4060 }
4061
4062 if (err) {
4063 struct mount *p;
4064
4065 /*
4066 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4067 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4068 * mounts and needs to take care to include the first mount.
4069 */
4070 for (p = mnt; p; p = next_mnt(p, mnt)) {
4071 /* If we had to hold writers unblock them. */
4072 if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4073 mnt_unhold_writers(p);
4074
4075 /*
4076 * We're done once the first mount we changed got
4077 * MNT_WRITE_HOLD unset.
4078 */
4079 if (p == m)
4080 break;
4081 }
4082 }
4083 return err;
4084 }
4085
do_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4086 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4087 {
4088 if (!kattr->mnt_idmap)
4089 return;
4090
4091 /*
4092 * Pairs with smp_load_acquire() in mnt_idmap().
4093 *
4094 * Since we only allow a mount to change the idmapping once and
4095 * verified this in can_idmap_mount() we know that the mount has
4096 * @nop_mnt_idmap attached to it. So there's no need to drop any
4097 * references.
4098 */
4099 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4100 }
4101
mount_setattr_commit(struct mount_kattr * kattr,struct mount * mnt)4102 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4103 {
4104 struct mount *m;
4105
4106 for (m = mnt; m; m = next_mnt(m, mnt)) {
4107 unsigned int flags;
4108
4109 do_idmap_mount(kattr, m);
4110 flags = recalc_flags(kattr, m);
4111 WRITE_ONCE(m->mnt.mnt_flags, flags);
4112
4113 /* If we had to hold writers unblock them. */
4114 if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4115 mnt_unhold_writers(m);
4116
4117 if (kattr->propagation)
4118 change_mnt_propagation(m, kattr->propagation);
4119 if (!kattr->recurse)
4120 break;
4121 }
4122 touch_mnt_namespace(mnt->mnt_ns);
4123 }
4124
do_mount_setattr(struct path * path,struct mount_kattr * kattr)4125 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4126 {
4127 struct mount *mnt = real_mount(path->mnt);
4128 int err = 0;
4129
4130 if (path->dentry != mnt->mnt.mnt_root)
4131 return -EINVAL;
4132
4133 if (kattr->mnt_userns) {
4134 struct mnt_idmap *mnt_idmap;
4135
4136 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4137 if (IS_ERR(mnt_idmap))
4138 return PTR_ERR(mnt_idmap);
4139 kattr->mnt_idmap = mnt_idmap;
4140 }
4141
4142 if (kattr->propagation) {
4143 /*
4144 * Only take namespace_lock() if we're actually changing
4145 * propagation.
4146 */
4147 namespace_lock();
4148 if (kattr->propagation == MS_SHARED) {
4149 err = invent_group_ids(mnt, kattr->recurse);
4150 if (err) {
4151 namespace_unlock();
4152 return err;
4153 }
4154 }
4155 }
4156
4157 err = -EINVAL;
4158 lock_mount_hash();
4159
4160 /* Ensure that this isn't anything purely vfs internal. */
4161 if (!is_mounted(&mnt->mnt))
4162 goto out;
4163
4164 /*
4165 * If this is an attached mount make sure it's located in the callers
4166 * mount namespace. If it's not don't let the caller interact with it.
4167 * If this is a detached mount make sure it has an anonymous mount
4168 * namespace attached to it, i.e. we've created it via OPEN_TREE_CLONE.
4169 */
4170 if (!(mnt_has_parent(mnt) ? check_mnt(mnt) : is_anon_ns(mnt->mnt_ns)))
4171 goto out;
4172
4173 /*
4174 * First, we get the mount tree in a shape where we can change mount
4175 * properties without failure. If we succeeded to do so we commit all
4176 * changes and if we failed we clean up.
4177 */
4178 err = mount_setattr_prepare(kattr, mnt);
4179 if (!err)
4180 mount_setattr_commit(kattr, mnt);
4181
4182 out:
4183 unlock_mount_hash();
4184
4185 if (kattr->propagation) {
4186 namespace_unlock();
4187 if (err)
4188 cleanup_group_ids(mnt, NULL);
4189 }
4190
4191 return err;
4192 }
4193
build_mount_idmapped(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr,unsigned int flags)4194 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4195 struct mount_kattr *kattr, unsigned int flags)
4196 {
4197 int err = 0;
4198 struct ns_common *ns;
4199 struct user_namespace *mnt_userns;
4200 struct file *file;
4201
4202 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4203 return 0;
4204
4205 /*
4206 * We currently do not support clearing an idmapped mount. If this ever
4207 * is a use-case we can revisit this but for now let's keep it simple
4208 * and not allow it.
4209 */
4210 if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4211 return -EINVAL;
4212
4213 if (attr->userns_fd > INT_MAX)
4214 return -EINVAL;
4215
4216 file = fget(attr->userns_fd);
4217 if (!file)
4218 return -EBADF;
4219
4220 if (!proc_ns_file(file)) {
4221 err = -EINVAL;
4222 goto out_fput;
4223 }
4224
4225 ns = get_proc_ns(file_inode(file));
4226 if (ns->ops->type != CLONE_NEWUSER) {
4227 err = -EINVAL;
4228 goto out_fput;
4229 }
4230
4231 /*
4232 * The initial idmapping cannot be used to create an idmapped
4233 * mount. We use the initial idmapping as an indicator of a mount
4234 * that is not idmapped. It can simply be passed into helpers that
4235 * are aware of idmapped mounts as a convenient shortcut. A user
4236 * can just create a dedicated identity mapping to achieve the same
4237 * result.
4238 */
4239 mnt_userns = container_of(ns, struct user_namespace, ns);
4240 if (mnt_userns == &init_user_ns) {
4241 err = -EPERM;
4242 goto out_fput;
4243 }
4244
4245 /* We're not controlling the target namespace. */
4246 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4247 err = -EPERM;
4248 goto out_fput;
4249 }
4250
4251 kattr->mnt_userns = get_user_ns(mnt_userns);
4252
4253 out_fput:
4254 fput(file);
4255 return err;
4256 }
4257
build_mount_kattr(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr,unsigned int flags)4258 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4259 struct mount_kattr *kattr, unsigned int flags)
4260 {
4261 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4262
4263 if (flags & AT_NO_AUTOMOUNT)
4264 lookup_flags &= ~LOOKUP_AUTOMOUNT;
4265 if (flags & AT_SYMLINK_NOFOLLOW)
4266 lookup_flags &= ~LOOKUP_FOLLOW;
4267 if (flags & AT_EMPTY_PATH)
4268 lookup_flags |= LOOKUP_EMPTY;
4269
4270 *kattr = (struct mount_kattr) {
4271 .lookup_flags = lookup_flags,
4272 .recurse = !!(flags & AT_RECURSIVE),
4273 };
4274
4275 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4276 return -EINVAL;
4277 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4278 return -EINVAL;
4279 kattr->propagation = attr->propagation;
4280
4281 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4282 return -EINVAL;
4283
4284 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4285 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4286
4287 /*
4288 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4289 * users wanting to transition to a different atime setting cannot
4290 * simply specify the atime setting in @attr_set, but must also
4291 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4292 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4293 * @attr_clr and that @attr_set can't have any atime bits set if
4294 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4295 */
4296 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4297 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4298 return -EINVAL;
4299
4300 /*
4301 * Clear all previous time settings as they are mutually
4302 * exclusive.
4303 */
4304 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4305 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4306 case MOUNT_ATTR_RELATIME:
4307 kattr->attr_set |= MNT_RELATIME;
4308 break;
4309 case MOUNT_ATTR_NOATIME:
4310 kattr->attr_set |= MNT_NOATIME;
4311 break;
4312 case MOUNT_ATTR_STRICTATIME:
4313 break;
4314 default:
4315 return -EINVAL;
4316 }
4317 } else {
4318 if (attr->attr_set & MOUNT_ATTR__ATIME)
4319 return -EINVAL;
4320 }
4321
4322 return build_mount_idmapped(attr, usize, kattr, flags);
4323 }
4324
finish_mount_kattr(struct mount_kattr * kattr)4325 static void finish_mount_kattr(struct mount_kattr *kattr)
4326 {
4327 put_user_ns(kattr->mnt_userns);
4328 kattr->mnt_userns = NULL;
4329
4330 if (kattr->mnt_idmap)
4331 mnt_idmap_put(kattr->mnt_idmap);
4332 }
4333
SYSCALL_DEFINE5(mount_setattr,int,dfd,const char __user *,path,unsigned int,flags,struct mount_attr __user *,uattr,size_t,usize)4334 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4335 unsigned int, flags, struct mount_attr __user *, uattr,
4336 size_t, usize)
4337 {
4338 int err;
4339 struct path target;
4340 struct mount_attr attr;
4341 struct mount_kattr kattr;
4342
4343 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4344
4345 if (flags & ~(AT_EMPTY_PATH |
4346 AT_RECURSIVE |
4347 AT_SYMLINK_NOFOLLOW |
4348 AT_NO_AUTOMOUNT))
4349 return -EINVAL;
4350
4351 if (unlikely(usize > PAGE_SIZE))
4352 return -E2BIG;
4353 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4354 return -EINVAL;
4355
4356 if (!may_mount())
4357 return -EPERM;
4358
4359 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4360 if (err)
4361 return err;
4362
4363 /* Don't bother walking through the mounts if this is a nop. */
4364 if (attr.attr_set == 0 &&
4365 attr.attr_clr == 0 &&
4366 attr.propagation == 0)
4367 return 0;
4368
4369 err = build_mount_kattr(&attr, usize, &kattr, flags);
4370 if (err)
4371 return err;
4372
4373 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4374 if (!err) {
4375 err = do_mount_setattr(&target, &kattr);
4376 path_put(&target);
4377 }
4378 finish_mount_kattr(&kattr);
4379 return err;
4380 }
4381
init_mount_tree(void)4382 static void __init init_mount_tree(void)
4383 {
4384 struct vfsmount *mnt;
4385 struct mount *m;
4386 struct mnt_namespace *ns;
4387 struct path root;
4388
4389 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4390 if (IS_ERR(mnt))
4391 panic("Can't create rootfs");
4392
4393 ns = alloc_mnt_ns(&init_user_ns, false);
4394 if (IS_ERR(ns))
4395 panic("Can't allocate initial namespace");
4396 m = real_mount(mnt);
4397 m->mnt_ns = ns;
4398 ns->root = m;
4399 ns->mounts = 1;
4400 list_add(&m->mnt_list, &ns->list);
4401 init_task.nsproxy->mnt_ns = ns;
4402 get_mnt_ns(ns);
4403
4404 root.mnt = mnt;
4405 root.dentry = mnt->mnt_root;
4406 mnt->mnt_flags |= MNT_LOCKED;
4407
4408 set_fs_pwd(current->fs, &root);
4409 set_fs_root(current->fs, &root);
4410 }
4411
mnt_init(void)4412 void __init mnt_init(void)
4413 {
4414 int err;
4415
4416 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4417 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4418
4419 mount_hashtable = alloc_large_system_hash("Mount-cache",
4420 sizeof(struct hlist_head),
4421 mhash_entries, 19,
4422 HASH_ZERO,
4423 &m_hash_shift, &m_hash_mask, 0, 0);
4424 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4425 sizeof(struct hlist_head),
4426 mphash_entries, 19,
4427 HASH_ZERO,
4428 &mp_hash_shift, &mp_hash_mask, 0, 0);
4429
4430 if (!mount_hashtable || !mountpoint_hashtable)
4431 panic("Failed to allocate mount hash table\n");
4432
4433 kernfs_init();
4434
4435 err = sysfs_init();
4436 if (err)
4437 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4438 __func__, err);
4439 fs_kobj = kobject_create_and_add("fs", NULL);
4440 if (!fs_kobj)
4441 printk(KERN_WARNING "%s: kobj create error\n", __func__);
4442 shmem_init();
4443 init_rootfs();
4444 init_mount_tree();
4445 }
4446
put_mnt_ns(struct mnt_namespace * ns)4447 void put_mnt_ns(struct mnt_namespace *ns)
4448 {
4449 if (!refcount_dec_and_test(&ns->ns.count))
4450 return;
4451 drop_collected_mounts(&ns->root->mnt);
4452 free_mnt_ns(ns);
4453 }
4454
kern_mount(struct file_system_type * type)4455 struct vfsmount *kern_mount(struct file_system_type *type)
4456 {
4457 struct vfsmount *mnt;
4458 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4459 if (!IS_ERR(mnt)) {
4460 /*
4461 * it is a longterm mount, don't release mnt until
4462 * we unmount before file sys is unregistered
4463 */
4464 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4465 }
4466 return mnt;
4467 }
4468 EXPORT_SYMBOL_GPL(kern_mount);
4469
kern_unmount(struct vfsmount * mnt)4470 void kern_unmount(struct vfsmount *mnt)
4471 {
4472 /* release long term mount so mount point can be released */
4473 if (!IS_ERR(mnt)) {
4474 mnt_make_shortterm(mnt);
4475 synchronize_rcu(); /* yecchhh... */
4476 mntput(mnt);
4477 }
4478 }
4479 EXPORT_SYMBOL(kern_unmount);
4480
kern_unmount_array(struct vfsmount * mnt[],unsigned int num)4481 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4482 {
4483 unsigned int i;
4484
4485 for (i = 0; i < num; i++)
4486 mnt_make_shortterm(mnt[i]);
4487 synchronize_rcu_expedited();
4488 for (i = 0; i < num; i++)
4489 mntput(mnt[i]);
4490 }
4491 EXPORT_SYMBOL(kern_unmount_array);
4492
our_mnt(struct vfsmount * mnt)4493 bool our_mnt(struct vfsmount *mnt)
4494 {
4495 return check_mnt(real_mount(mnt));
4496 }
4497
current_chrooted(void)4498 bool current_chrooted(void)
4499 {
4500 /* Does the current process have a non-standard root */
4501 struct path ns_root;
4502 struct path fs_root;
4503 bool chrooted;
4504
4505 /* Find the namespace root */
4506 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
4507 ns_root.dentry = ns_root.mnt->mnt_root;
4508 path_get(&ns_root);
4509 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4510 ;
4511
4512 get_fs_root(current->fs, &fs_root);
4513
4514 chrooted = !path_equal(&fs_root, &ns_root);
4515
4516 path_put(&fs_root);
4517 path_put(&ns_root);
4518
4519 return chrooted;
4520 }
4521
mnt_already_visible(struct mnt_namespace * ns,const struct super_block * sb,int * new_mnt_flags)4522 static bool mnt_already_visible(struct mnt_namespace *ns,
4523 const struct super_block *sb,
4524 int *new_mnt_flags)
4525 {
4526 int new_flags = *new_mnt_flags;
4527 struct mount *mnt;
4528 bool visible = false;
4529
4530 down_read(&namespace_sem);
4531 lock_ns_list(ns);
4532 list_for_each_entry(mnt, &ns->list, mnt_list) {
4533 struct mount *child;
4534 int mnt_flags;
4535
4536 if (mnt_is_cursor(mnt))
4537 continue;
4538
4539 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4540 continue;
4541
4542 /* This mount is not fully visible if it's root directory
4543 * is not the root directory of the filesystem.
4544 */
4545 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4546 continue;
4547
4548 /* A local view of the mount flags */
4549 mnt_flags = mnt->mnt.mnt_flags;
4550
4551 /* Don't miss readonly hidden in the superblock flags */
4552 if (sb_rdonly(mnt->mnt.mnt_sb))
4553 mnt_flags |= MNT_LOCK_READONLY;
4554
4555 /* Verify the mount flags are equal to or more permissive
4556 * than the proposed new mount.
4557 */
4558 if ((mnt_flags & MNT_LOCK_READONLY) &&
4559 !(new_flags & MNT_READONLY))
4560 continue;
4561 if ((mnt_flags & MNT_LOCK_ATIME) &&
4562 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4563 continue;
4564
4565 /* This mount is not fully visible if there are any
4566 * locked child mounts that cover anything except for
4567 * empty directories.
4568 */
4569 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4570 struct inode *inode = child->mnt_mountpoint->d_inode;
4571 /* Only worry about locked mounts */
4572 if (!(child->mnt.mnt_flags & MNT_LOCKED))
4573 continue;
4574 /* Is the directory permanetly empty? */
4575 if (!is_empty_dir_inode(inode))
4576 goto next;
4577 }
4578 /* Preserve the locked attributes */
4579 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4580 MNT_LOCK_ATIME);
4581 visible = true;
4582 goto found;
4583 next: ;
4584 }
4585 found:
4586 unlock_ns_list(ns);
4587 up_read(&namespace_sem);
4588 return visible;
4589 }
4590
mount_too_revealing(const struct super_block * sb,int * new_mnt_flags)4591 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4592 {
4593 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4594 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4595 unsigned long s_iflags;
4596
4597 if (ns->user_ns == &init_user_ns)
4598 return false;
4599
4600 /* Can this filesystem be too revealing? */
4601 s_iflags = sb->s_iflags;
4602 if (!(s_iflags & SB_I_USERNS_VISIBLE))
4603 return false;
4604
4605 if ((s_iflags & required_iflags) != required_iflags) {
4606 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4607 required_iflags);
4608 return true;
4609 }
4610
4611 return !mnt_already_visible(ns, sb, new_mnt_flags);
4612 }
4613
mnt_may_suid(struct vfsmount * mnt)4614 bool mnt_may_suid(struct vfsmount *mnt)
4615 {
4616 /*
4617 * Foreign mounts (accessed via fchdir or through /proc
4618 * symlinks) are always treated as if they are nosuid. This
4619 * prevents namespaces from trusting potentially unsafe
4620 * suid/sgid bits, file caps, or security labels that originate
4621 * in other namespaces.
4622 */
4623 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4624 current_in_userns(mnt->mnt_sb->s_user_ns);
4625 }
4626
mntns_get(struct task_struct * task)4627 static struct ns_common *mntns_get(struct task_struct *task)
4628 {
4629 struct ns_common *ns = NULL;
4630 struct nsproxy *nsproxy;
4631
4632 task_lock(task);
4633 nsproxy = task->nsproxy;
4634 if (nsproxy) {
4635 ns = &nsproxy->mnt_ns->ns;
4636 get_mnt_ns(to_mnt_ns(ns));
4637 }
4638 task_unlock(task);
4639
4640 return ns;
4641 }
4642
mntns_put(struct ns_common * ns)4643 static void mntns_put(struct ns_common *ns)
4644 {
4645 put_mnt_ns(to_mnt_ns(ns));
4646 }
4647
mntns_install(struct nsset * nsset,struct ns_common * ns)4648 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4649 {
4650 struct nsproxy *nsproxy = nsset->nsproxy;
4651 struct fs_struct *fs = nsset->fs;
4652 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4653 struct user_namespace *user_ns = nsset->cred->user_ns;
4654 struct path root;
4655 int err;
4656
4657 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4658 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4659 !ns_capable(user_ns, CAP_SYS_ADMIN))
4660 return -EPERM;
4661
4662 if (is_anon_ns(mnt_ns))
4663 return -EINVAL;
4664
4665 if (fs->users != 1)
4666 return -EINVAL;
4667
4668 get_mnt_ns(mnt_ns);
4669 old_mnt_ns = nsproxy->mnt_ns;
4670 nsproxy->mnt_ns = mnt_ns;
4671
4672 /* Find the root */
4673 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4674 "/", LOOKUP_DOWN, &root);
4675 if (err) {
4676 /* revert to old namespace */
4677 nsproxy->mnt_ns = old_mnt_ns;
4678 put_mnt_ns(mnt_ns);
4679 return err;
4680 }
4681
4682 put_mnt_ns(old_mnt_ns);
4683
4684 /* Update the pwd and root */
4685 set_fs_pwd(fs, &root);
4686 set_fs_root(fs, &root);
4687
4688 path_put(&root);
4689 return 0;
4690 }
4691
mntns_owner(struct ns_common * ns)4692 static struct user_namespace *mntns_owner(struct ns_common *ns)
4693 {
4694 return to_mnt_ns(ns)->user_ns;
4695 }
4696
4697 const struct proc_ns_operations mntns_operations = {
4698 .name = "mnt",
4699 .type = CLONE_NEWNS,
4700 .get = mntns_get,
4701 .put = mntns_put,
4702 .install = mntns_install,
4703 .owner = mntns_owner,
4704 };
4705
4706 #ifdef CONFIG_SYSCTL
4707 static struct ctl_table fs_namespace_sysctls[] = {
4708 {
4709 .procname = "mount-max",
4710 .data = &sysctl_mount_max,
4711 .maxlen = sizeof(unsigned int),
4712 .mode = 0644,
4713 .proc_handler = proc_dointvec_minmax,
4714 .extra1 = SYSCTL_ONE,
4715 },
4716 { }
4717 };
4718
init_fs_namespace_sysctls(void)4719 static int __init init_fs_namespace_sysctls(void)
4720 {
4721 register_sysctl_init("fs", fs_namespace_sysctls);
4722 return 0;
4723 }
4724 fs_initcall(init_fs_namespace_sysctls);
4725
4726 #endif /* CONFIG_SYSCTL */
4727