1  // SPDX-License-Identifier: GPL-2.0
2  #include <linux/pagewalk.h>
3  #include <linux/mm_inline.h>
4  #include <linux/hugetlb.h>
5  #include <linux/huge_mm.h>
6  #include <linux/mount.h>
7  #include <linux/seq_file.h>
8  #include <linux/highmem.h>
9  #include <linux/ptrace.h>
10  #include <linux/slab.h>
11  #include <linux/pagemap.h>
12  #include <linux/mempolicy.h>
13  #include <linux/rmap.h>
14  #include <linux/swap.h>
15  #include <linux/sched/mm.h>
16  #include <linux/swapops.h>
17  #include <linux/mmu_notifier.h>
18  #include <linux/page_idle.h>
19  #include <linux/shmem_fs.h>
20  #include <linux/uaccess.h>
21  #include <linux/pkeys.h>
22  
23  #include <asm/elf.h>
24  #include <asm/tlb.h>
25  #include <asm/tlbflush.h>
26  #include "internal.h"
27  
28  #define SEQ_PUT_DEC(str, val) \
29  		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
task_mem(struct seq_file * m,struct mm_struct * mm)30  void task_mem(struct seq_file *m, struct mm_struct *mm)
31  {
32  	unsigned long text, lib, swap, anon, file, shmem;
33  	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34  
35  	anon = get_mm_counter(mm, MM_ANONPAGES);
36  	file = get_mm_counter(mm, MM_FILEPAGES);
37  	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38  
39  	/*
40  	 * Note: to minimize their overhead, mm maintains hiwater_vm and
41  	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
42  	 * collector of these hiwater stats must therefore get total_vm
43  	 * and rss too, which will usually be the higher.  Barriers? not
44  	 * worth the effort, such snapshots can always be inconsistent.
45  	 */
46  	hiwater_vm = total_vm = mm->total_vm;
47  	if (hiwater_vm < mm->hiwater_vm)
48  		hiwater_vm = mm->hiwater_vm;
49  	hiwater_rss = total_rss = anon + file + shmem;
50  	if (hiwater_rss < mm->hiwater_rss)
51  		hiwater_rss = mm->hiwater_rss;
52  
53  	/* split executable areas between text and lib */
54  	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55  	text = min(text, mm->exec_vm << PAGE_SHIFT);
56  	lib = (mm->exec_vm << PAGE_SHIFT) - text;
57  
58  	swap = get_mm_counter(mm, MM_SWAPENTS);
59  	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60  	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61  	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62  	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63  	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64  	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65  	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66  	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67  	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68  	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69  	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70  	seq_put_decimal_ull_width(m,
71  		    " kB\nVmExe:\t", text >> 10, 8);
72  	seq_put_decimal_ull_width(m,
73  		    " kB\nVmLib:\t", lib >> 10, 8);
74  	seq_put_decimal_ull_width(m,
75  		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76  	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77  	seq_puts(m, " kB\n");
78  	hugetlb_report_usage(m, mm);
79  }
80  #undef SEQ_PUT_DEC
81  
task_vsize(struct mm_struct * mm)82  unsigned long task_vsize(struct mm_struct *mm)
83  {
84  	return PAGE_SIZE * mm->total_vm;
85  }
86  
task_statm(struct mm_struct * mm,unsigned long * shared,unsigned long * text,unsigned long * data,unsigned long * resident)87  unsigned long task_statm(struct mm_struct *mm,
88  			 unsigned long *shared, unsigned long *text,
89  			 unsigned long *data, unsigned long *resident)
90  {
91  	*shared = get_mm_counter(mm, MM_FILEPAGES) +
92  			get_mm_counter(mm, MM_SHMEMPAGES);
93  	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94  								>> PAGE_SHIFT;
95  	*data = mm->data_vm + mm->stack_vm;
96  	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97  	return mm->total_vm;
98  }
99  
100  #ifdef CONFIG_NUMA
101  /*
102   * Save get_task_policy() for show_numa_map().
103   */
hold_task_mempolicy(struct proc_maps_private * priv)104  static void hold_task_mempolicy(struct proc_maps_private *priv)
105  {
106  	struct task_struct *task = priv->task;
107  
108  	task_lock(task);
109  	priv->task_mempolicy = get_task_policy(task);
110  	mpol_get(priv->task_mempolicy);
111  	task_unlock(task);
112  }
release_task_mempolicy(struct proc_maps_private * priv)113  static void release_task_mempolicy(struct proc_maps_private *priv)
114  {
115  	mpol_put(priv->task_mempolicy);
116  }
117  #else
hold_task_mempolicy(struct proc_maps_private * priv)118  static void hold_task_mempolicy(struct proc_maps_private *priv)
119  {
120  }
release_task_mempolicy(struct proc_maps_private * priv)121  static void release_task_mempolicy(struct proc_maps_private *priv)
122  {
123  }
124  #endif
125  
proc_get_vma(struct proc_maps_private * priv,loff_t * ppos)126  static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
127  						loff_t *ppos)
128  {
129  	struct vm_area_struct *vma = vma_next(&priv->iter);
130  
131  	if (vma) {
132  		*ppos = vma->vm_start;
133  	} else {
134  		*ppos = -2UL;
135  		vma = get_gate_vma(priv->mm);
136  	}
137  
138  	return vma;
139  }
140  
m_start(struct seq_file * m,loff_t * ppos)141  static void *m_start(struct seq_file *m, loff_t *ppos)
142  {
143  	struct proc_maps_private *priv = m->private;
144  	unsigned long last_addr = *ppos;
145  	struct mm_struct *mm;
146  
147  	/* See m_next(). Zero at the start or after lseek. */
148  	if (last_addr == -1UL)
149  		return NULL;
150  
151  	priv->task = get_proc_task(priv->inode);
152  	if (!priv->task)
153  		return ERR_PTR(-ESRCH);
154  
155  	mm = priv->mm;
156  	if (!mm || !mmget_not_zero(mm)) {
157  		put_task_struct(priv->task);
158  		priv->task = NULL;
159  		return NULL;
160  	}
161  
162  	if (mmap_read_lock_killable(mm)) {
163  		mmput(mm);
164  		put_task_struct(priv->task);
165  		priv->task = NULL;
166  		return ERR_PTR(-EINTR);
167  	}
168  
169  	vma_iter_init(&priv->iter, mm, last_addr);
170  	hold_task_mempolicy(priv);
171  	if (last_addr == -2UL)
172  		return get_gate_vma(mm);
173  
174  	return proc_get_vma(priv, ppos);
175  }
176  
m_next(struct seq_file * m,void * v,loff_t * ppos)177  static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
178  {
179  	if (*ppos == -2UL) {
180  		*ppos = -1UL;
181  		return NULL;
182  	}
183  	return proc_get_vma(m->private, ppos);
184  }
185  
m_stop(struct seq_file * m,void * v)186  static void m_stop(struct seq_file *m, void *v)
187  {
188  	struct proc_maps_private *priv = m->private;
189  	struct mm_struct *mm = priv->mm;
190  
191  	if (!priv->task)
192  		return;
193  
194  	release_task_mempolicy(priv);
195  	mmap_read_unlock(mm);
196  	mmput(mm);
197  	put_task_struct(priv->task);
198  	priv->task = NULL;
199  }
200  
proc_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops,int psize)201  static int proc_maps_open(struct inode *inode, struct file *file,
202  			const struct seq_operations *ops, int psize)
203  {
204  	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
205  
206  	if (!priv)
207  		return -ENOMEM;
208  
209  	priv->inode = inode;
210  	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
211  	if (IS_ERR(priv->mm)) {
212  		int err = PTR_ERR(priv->mm);
213  
214  		seq_release_private(inode, file);
215  		return err;
216  	}
217  
218  	return 0;
219  }
220  
proc_map_release(struct inode * inode,struct file * file)221  static int proc_map_release(struct inode *inode, struct file *file)
222  {
223  	struct seq_file *seq = file->private_data;
224  	struct proc_maps_private *priv = seq->private;
225  
226  	if (priv->mm)
227  		mmdrop(priv->mm);
228  
229  	return seq_release_private(inode, file);
230  }
231  
do_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)232  static int do_maps_open(struct inode *inode, struct file *file,
233  			const struct seq_operations *ops)
234  {
235  	return proc_maps_open(inode, file, ops,
236  				sizeof(struct proc_maps_private));
237  }
238  
239  /*
240   * Indicate if the VMA is a stack for the given task; for
241   * /proc/PID/maps that is the stack of the main task.
242   */
is_stack(struct vm_area_struct * vma)243  static int is_stack(struct vm_area_struct *vma)
244  {
245  	/*
246  	 * We make no effort to guess what a given thread considers to be
247  	 * its "stack".  It's not even well-defined for programs written
248  	 * languages like Go.
249  	 */
250  	return vma->vm_start <= vma->vm_mm->start_stack &&
251  		vma->vm_end >= vma->vm_mm->start_stack;
252  }
253  
show_vma_header_prefix(struct seq_file * m,unsigned long start,unsigned long end,vm_flags_t flags,unsigned long long pgoff,dev_t dev,unsigned long ino)254  static void show_vma_header_prefix(struct seq_file *m,
255  				   unsigned long start, unsigned long end,
256  				   vm_flags_t flags, unsigned long long pgoff,
257  				   dev_t dev, unsigned long ino)
258  {
259  	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
260  	seq_put_hex_ll(m, NULL, start, 8);
261  	seq_put_hex_ll(m, "-", end, 8);
262  	seq_putc(m, ' ');
263  	seq_putc(m, flags & VM_READ ? 'r' : '-');
264  	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
265  	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
266  	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
267  	seq_put_hex_ll(m, " ", pgoff, 8);
268  	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
269  	seq_put_hex_ll(m, ":", MINOR(dev), 2);
270  	seq_put_decimal_ull(m, " ", ino);
271  	seq_putc(m, ' ');
272  }
273  
274  static void
show_map_vma(struct seq_file * m,struct vm_area_struct * vma)275  show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
276  {
277  	struct anon_vma_name *anon_name = NULL;
278  	struct mm_struct *mm = vma->vm_mm;
279  	struct file *file = vma->vm_file;
280  	vm_flags_t flags = vma->vm_flags;
281  	unsigned long ino = 0;
282  	unsigned long long pgoff = 0;
283  	unsigned long start, end;
284  	dev_t dev = 0;
285  	const char *name = NULL;
286  
287  	if (file) {
288  		struct inode *inode = file_inode(vma->vm_file);
289  		dev = inode->i_sb->s_dev;
290  		ino = inode->i_ino;
291  		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
292  	}
293  
294  	start = vma->vm_start;
295  	end = vma->vm_end;
296  	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
297  	if (mm)
298  		anon_name = anon_vma_name(vma);
299  
300  	/*
301  	 * Print the dentry name for named mappings, and a
302  	 * special [heap] marker for the heap:
303  	 */
304  	if (file) {
305  		seq_pad(m, ' ');
306  		/*
307  		 * If user named this anon shared memory via
308  		 * prctl(PR_SET_VMA ..., use the provided name.
309  		 */
310  		if (anon_name)
311  			seq_printf(m, "[anon_shmem:%s]", anon_name->name);
312  		else
313  			seq_file_path(m, file, "\n");
314  		goto done;
315  	}
316  
317  	if (vma->vm_ops && vma->vm_ops->name) {
318  		name = vma->vm_ops->name(vma);
319  		if (name)
320  			goto done;
321  	}
322  
323  	name = arch_vma_name(vma);
324  	if (!name) {
325  		if (!mm) {
326  			name = "[vdso]";
327  			goto done;
328  		}
329  
330  		if (vma->vm_start <= mm->brk &&
331  		    vma->vm_end >= mm->start_brk) {
332  			name = "[heap]";
333  			goto done;
334  		}
335  
336  		if (is_stack(vma)) {
337  			name = "[stack]";
338  			goto done;
339  		}
340  
341  		if (anon_name) {
342  			seq_pad(m, ' ');
343  			seq_printf(m, "[anon:%s]", anon_name->name);
344  		}
345  	}
346  
347  done:
348  	if (name) {
349  		seq_pad(m, ' ');
350  		seq_puts(m, name);
351  	}
352  	seq_putc(m, '\n');
353  }
354  
show_map(struct seq_file * m,void * v)355  static int show_map(struct seq_file *m, void *v)
356  {
357  	show_map_vma(m, v);
358  	return 0;
359  }
360  
361  static const struct seq_operations proc_pid_maps_op = {
362  	.start	= m_start,
363  	.next	= m_next,
364  	.stop	= m_stop,
365  	.show	= show_map
366  };
367  
pid_maps_open(struct inode * inode,struct file * file)368  static int pid_maps_open(struct inode *inode, struct file *file)
369  {
370  	return do_maps_open(inode, file, &proc_pid_maps_op);
371  }
372  
373  const struct file_operations proc_pid_maps_operations = {
374  	.open		= pid_maps_open,
375  	.read		= seq_read,
376  	.llseek		= seq_lseek,
377  	.release	= proc_map_release,
378  };
379  
380  /*
381   * Proportional Set Size(PSS): my share of RSS.
382   *
383   * PSS of a process is the count of pages it has in memory, where each
384   * page is divided by the number of processes sharing it.  So if a
385   * process has 1000 pages all to itself, and 1000 shared with one other
386   * process, its PSS will be 1500.
387   *
388   * To keep (accumulated) division errors low, we adopt a 64bit
389   * fixed-point pss counter to minimize division errors. So (pss >>
390   * PSS_SHIFT) would be the real byte count.
391   *
392   * A shift of 12 before division means (assuming 4K page size):
393   * 	- 1M 3-user-pages add up to 8KB errors;
394   * 	- supports mapcount up to 2^24, or 16M;
395   * 	- supports PSS up to 2^52 bytes, or 4PB.
396   */
397  #define PSS_SHIFT 12
398  
399  #ifdef CONFIG_PROC_PAGE_MONITOR
400  struct mem_size_stats {
401  	unsigned long resident;
402  	unsigned long shared_clean;
403  	unsigned long shared_dirty;
404  	unsigned long private_clean;
405  	unsigned long private_dirty;
406  	unsigned long referenced;
407  	unsigned long anonymous;
408  	unsigned long lazyfree;
409  	unsigned long anonymous_thp;
410  	unsigned long shmem_thp;
411  	unsigned long file_thp;
412  	unsigned long swap;
413  	unsigned long shared_hugetlb;
414  	unsigned long private_hugetlb;
415  	u64 pss;
416  	u64 pss_anon;
417  	u64 pss_file;
418  	u64 pss_shmem;
419  	u64 pss_dirty;
420  	u64 pss_locked;
421  	u64 swap_pss;
422  };
423  
smaps_page_accumulate(struct mem_size_stats * mss,struct page * page,unsigned long size,unsigned long pss,bool dirty,bool locked,bool private)424  static void smaps_page_accumulate(struct mem_size_stats *mss,
425  		struct page *page, unsigned long size, unsigned long pss,
426  		bool dirty, bool locked, bool private)
427  {
428  	mss->pss += pss;
429  
430  	if (PageAnon(page))
431  		mss->pss_anon += pss;
432  	else if (PageSwapBacked(page))
433  		mss->pss_shmem += pss;
434  	else
435  		mss->pss_file += pss;
436  
437  	if (locked)
438  		mss->pss_locked += pss;
439  
440  	if (dirty || PageDirty(page)) {
441  		mss->pss_dirty += pss;
442  		if (private)
443  			mss->private_dirty += size;
444  		else
445  			mss->shared_dirty += size;
446  	} else {
447  		if (private)
448  			mss->private_clean += size;
449  		else
450  			mss->shared_clean += size;
451  	}
452  }
453  
smaps_account(struct mem_size_stats * mss,struct page * page,bool compound,bool young,bool dirty,bool locked,bool migration)454  static void smaps_account(struct mem_size_stats *mss, struct page *page,
455  		bool compound, bool young, bool dirty, bool locked,
456  		bool migration)
457  {
458  	int i, nr = compound ? compound_nr(page) : 1;
459  	unsigned long size = nr * PAGE_SIZE;
460  
461  	/*
462  	 * First accumulate quantities that depend only on |size| and the type
463  	 * of the compound page.
464  	 */
465  	if (PageAnon(page)) {
466  		mss->anonymous += size;
467  		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
468  			mss->lazyfree += size;
469  	}
470  
471  	mss->resident += size;
472  	/* Accumulate the size in pages that have been accessed. */
473  	if (young || page_is_young(page) || PageReferenced(page))
474  		mss->referenced += size;
475  
476  	/*
477  	 * Then accumulate quantities that may depend on sharing, or that may
478  	 * differ page-by-page.
479  	 *
480  	 * page_count(page) == 1 guarantees the page is mapped exactly once.
481  	 * If any subpage of the compound page mapped with PTE it would elevate
482  	 * page_count().
483  	 *
484  	 * The page_mapcount() is called to get a snapshot of the mapcount.
485  	 * Without holding the page lock this snapshot can be slightly wrong as
486  	 * we cannot always read the mapcount atomically.  It is not safe to
487  	 * call page_mapcount() even with PTL held if the page is not mapped,
488  	 * especially for migration entries.  Treat regular migration entries
489  	 * as mapcount == 1.
490  	 */
491  	if ((page_count(page) == 1) || migration) {
492  		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
493  			locked, true);
494  		return;
495  	}
496  	for (i = 0; i < nr; i++, page++) {
497  		int mapcount = page_mapcount(page);
498  		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
499  		if (mapcount >= 2)
500  			pss /= mapcount;
501  		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
502  				      mapcount < 2);
503  	}
504  }
505  
506  #ifdef CONFIG_SHMEM
smaps_pte_hole(unsigned long addr,unsigned long end,__always_unused int depth,struct mm_walk * walk)507  static int smaps_pte_hole(unsigned long addr, unsigned long end,
508  			  __always_unused int depth, struct mm_walk *walk)
509  {
510  	struct mem_size_stats *mss = walk->private;
511  	struct vm_area_struct *vma = walk->vma;
512  
513  	mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
514  					      linear_page_index(vma, addr),
515  					      linear_page_index(vma, end));
516  
517  	return 0;
518  }
519  #else
520  #define smaps_pte_hole		NULL
521  #endif /* CONFIG_SHMEM */
522  
smaps_pte_hole_lookup(unsigned long addr,struct mm_walk * walk)523  static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
524  {
525  #ifdef CONFIG_SHMEM
526  	if (walk->ops->pte_hole) {
527  		/* depth is not used */
528  		smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
529  	}
530  #endif
531  }
532  
smaps_pte_entry(pte_t * pte,unsigned long addr,struct mm_walk * walk)533  static void smaps_pte_entry(pte_t *pte, unsigned long addr,
534  		struct mm_walk *walk)
535  {
536  	struct mem_size_stats *mss = walk->private;
537  	struct vm_area_struct *vma = walk->vma;
538  	bool locked = !!(vma->vm_flags & VM_LOCKED);
539  	struct page *page = NULL;
540  	bool migration = false, young = false, dirty = false;
541  
542  	if (pte_present(*pte)) {
543  		page = vm_normal_page(vma, addr, *pte);
544  		young = pte_young(*pte);
545  		dirty = pte_dirty(*pte);
546  	} else if (is_swap_pte(*pte)) {
547  		swp_entry_t swpent = pte_to_swp_entry(*pte);
548  
549  		if (!non_swap_entry(swpent)) {
550  			int mapcount;
551  
552  			mss->swap += PAGE_SIZE;
553  			mapcount = swp_swapcount(swpent);
554  			if (mapcount >= 2) {
555  				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
556  
557  				do_div(pss_delta, mapcount);
558  				mss->swap_pss += pss_delta;
559  			} else {
560  				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
561  			}
562  		} else if (is_pfn_swap_entry(swpent)) {
563  			if (is_migration_entry(swpent))
564  				migration = true;
565  			page = pfn_swap_entry_to_page(swpent);
566  		}
567  	} else {
568  		smaps_pte_hole_lookup(addr, walk);
569  		return;
570  	}
571  
572  	if (!page)
573  		return;
574  
575  	smaps_account(mss, page, false, young, dirty, locked, migration);
576  }
577  
578  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)579  static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
580  		struct mm_walk *walk)
581  {
582  	struct mem_size_stats *mss = walk->private;
583  	struct vm_area_struct *vma = walk->vma;
584  	bool locked = !!(vma->vm_flags & VM_LOCKED);
585  	struct page *page = NULL;
586  	bool migration = false;
587  
588  	if (pmd_present(*pmd)) {
589  		/* FOLL_DUMP will return -EFAULT on huge zero page */
590  		page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
591  	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
592  		swp_entry_t entry = pmd_to_swp_entry(*pmd);
593  
594  		if (is_migration_entry(entry)) {
595  			migration = true;
596  			page = pfn_swap_entry_to_page(entry);
597  		}
598  	}
599  	if (IS_ERR_OR_NULL(page))
600  		return;
601  	if (PageAnon(page))
602  		mss->anonymous_thp += HPAGE_PMD_SIZE;
603  	else if (PageSwapBacked(page))
604  		mss->shmem_thp += HPAGE_PMD_SIZE;
605  	else if (is_zone_device_page(page))
606  		/* pass */;
607  	else
608  		mss->file_thp += HPAGE_PMD_SIZE;
609  
610  	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
611  		      locked, migration);
612  }
613  #else
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)614  static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
615  		struct mm_walk *walk)
616  {
617  }
618  #endif
619  
smaps_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)620  static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
621  			   struct mm_walk *walk)
622  {
623  	struct vm_area_struct *vma = walk->vma;
624  	pte_t *pte;
625  	spinlock_t *ptl;
626  
627  	ptl = pmd_trans_huge_lock(pmd, vma);
628  	if (ptl) {
629  		smaps_pmd_entry(pmd, addr, walk);
630  		spin_unlock(ptl);
631  		goto out;
632  	}
633  
634  	if (pmd_trans_unstable(pmd))
635  		goto out;
636  	/*
637  	 * The mmap_lock held all the way back in m_start() is what
638  	 * keeps khugepaged out of here and from collapsing things
639  	 * in here.
640  	 */
641  	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
642  	for (; addr != end; pte++, addr += PAGE_SIZE)
643  		smaps_pte_entry(pte, addr, walk);
644  	pte_unmap_unlock(pte - 1, ptl);
645  out:
646  	cond_resched();
647  	return 0;
648  }
649  
show_smap_vma_flags(struct seq_file * m,struct vm_area_struct * vma)650  static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
651  {
652  	/*
653  	 * Don't forget to update Documentation/ on changes.
654  	 */
655  	static const char mnemonics[BITS_PER_LONG][2] = {
656  		/*
657  		 * In case if we meet a flag we don't know about.
658  		 */
659  		[0 ... (BITS_PER_LONG-1)] = "??",
660  
661  		[ilog2(VM_READ)]	= "rd",
662  		[ilog2(VM_WRITE)]	= "wr",
663  		[ilog2(VM_EXEC)]	= "ex",
664  		[ilog2(VM_SHARED)]	= "sh",
665  		[ilog2(VM_MAYREAD)]	= "mr",
666  		[ilog2(VM_MAYWRITE)]	= "mw",
667  		[ilog2(VM_MAYEXEC)]	= "me",
668  		[ilog2(VM_MAYSHARE)]	= "ms",
669  		[ilog2(VM_GROWSDOWN)]	= "gd",
670  		[ilog2(VM_PFNMAP)]	= "pf",
671  		[ilog2(VM_LOCKED)]	= "lo",
672  		[ilog2(VM_IO)]		= "io",
673  		[ilog2(VM_SEQ_READ)]	= "sr",
674  		[ilog2(VM_RAND_READ)]	= "rr",
675  		[ilog2(VM_DONTCOPY)]	= "dc",
676  		[ilog2(VM_DONTEXPAND)]	= "de",
677  		[ilog2(VM_LOCKONFAULT)]	= "lf",
678  		[ilog2(VM_ACCOUNT)]	= "ac",
679  		[ilog2(VM_NORESERVE)]	= "nr",
680  		[ilog2(VM_HUGETLB)]	= "ht",
681  		[ilog2(VM_SYNC)]	= "sf",
682  		[ilog2(VM_ARCH_1)]	= "ar",
683  		[ilog2(VM_WIPEONFORK)]	= "wf",
684  		[ilog2(VM_DONTDUMP)]	= "dd",
685  #ifdef CONFIG_ARM64_BTI
686  		[ilog2(VM_ARM64_BTI)]	= "bt",
687  #endif
688  #ifdef CONFIG_MEM_SOFT_DIRTY
689  		[ilog2(VM_SOFTDIRTY)]	= "sd",
690  #endif
691  		[ilog2(VM_MIXEDMAP)]	= "mm",
692  		[ilog2(VM_HUGEPAGE)]	= "hg",
693  		[ilog2(VM_NOHUGEPAGE)]	= "nh",
694  		[ilog2(VM_MERGEABLE)]	= "mg",
695  		[ilog2(VM_UFFD_MISSING)]= "um",
696  		[ilog2(VM_UFFD_WP)]	= "uw",
697  #ifdef CONFIG_ARM64_MTE
698  		[ilog2(VM_MTE)]		= "mt",
699  		[ilog2(VM_MTE_ALLOWED)]	= "",
700  #endif
701  #ifdef CONFIG_ARCH_HAS_PKEYS
702  		/* These come out via ProtectionKey: */
703  		[ilog2(VM_PKEY_BIT0)]	= "",
704  		[ilog2(VM_PKEY_BIT1)]	= "",
705  		[ilog2(VM_PKEY_BIT2)]	= "",
706  		[ilog2(VM_PKEY_BIT3)]	= "",
707  #if VM_PKEY_BIT4
708  		[ilog2(VM_PKEY_BIT4)]	= "",
709  #endif
710  #endif /* CONFIG_ARCH_HAS_PKEYS */
711  #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
712  		[ilog2(VM_UFFD_MINOR)]	= "ui",
713  #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
714  	};
715  	size_t i;
716  
717  	seq_puts(m, "VmFlags: ");
718  	for (i = 0; i < BITS_PER_LONG; i++) {
719  		if (!mnemonics[i][0])
720  			continue;
721  		if (vma->vm_flags & (1UL << i)) {
722  			seq_putc(m, mnemonics[i][0]);
723  			seq_putc(m, mnemonics[i][1]);
724  			seq_putc(m, ' ');
725  		}
726  	}
727  	seq_putc(m, '\n');
728  }
729  
730  #ifdef CONFIG_HUGETLB_PAGE
smaps_hugetlb_range(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)731  static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
732  				 unsigned long addr, unsigned long end,
733  				 struct mm_walk *walk)
734  {
735  	struct mem_size_stats *mss = walk->private;
736  	struct vm_area_struct *vma = walk->vma;
737  	struct page *page = NULL;
738  
739  	if (pte_present(*pte)) {
740  		page = vm_normal_page(vma, addr, *pte);
741  	} else if (is_swap_pte(*pte)) {
742  		swp_entry_t swpent = pte_to_swp_entry(*pte);
743  
744  		if (is_pfn_swap_entry(swpent))
745  			page = pfn_swap_entry_to_page(swpent);
746  	}
747  	if (page) {
748  		if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
749  			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
750  		else
751  			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
752  	}
753  	return 0;
754  }
755  #else
756  #define smaps_hugetlb_range	NULL
757  #endif /* HUGETLB_PAGE */
758  
759  static const struct mm_walk_ops smaps_walk_ops = {
760  	.pmd_entry		= smaps_pte_range,
761  	.hugetlb_entry		= smaps_hugetlb_range,
762  };
763  
764  static const struct mm_walk_ops smaps_shmem_walk_ops = {
765  	.pmd_entry		= smaps_pte_range,
766  	.hugetlb_entry		= smaps_hugetlb_range,
767  	.pte_hole		= smaps_pte_hole,
768  };
769  
770  /*
771   * Gather mem stats from @vma with the indicated beginning
772   * address @start, and keep them in @mss.
773   *
774   * Use vm_start of @vma as the beginning address if @start is 0.
775   */
smap_gather_stats(struct vm_area_struct * vma,struct mem_size_stats * mss,unsigned long start)776  static void smap_gather_stats(struct vm_area_struct *vma,
777  		struct mem_size_stats *mss, unsigned long start)
778  {
779  	const struct mm_walk_ops *ops = &smaps_walk_ops;
780  
781  	/* Invalid start */
782  	if (start >= vma->vm_end)
783  		return;
784  
785  #ifdef CONFIG_SHMEM
786  	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
787  		/*
788  		 * For shared or readonly shmem mappings we know that all
789  		 * swapped out pages belong to the shmem object, and we can
790  		 * obtain the swap value much more efficiently. For private
791  		 * writable mappings, we might have COW pages that are
792  		 * not affected by the parent swapped out pages of the shmem
793  		 * object, so we have to distinguish them during the page walk.
794  		 * Unless we know that the shmem object (or the part mapped by
795  		 * our VMA) has no swapped out pages at all.
796  		 */
797  		unsigned long shmem_swapped = shmem_swap_usage(vma);
798  
799  		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
800  					!(vma->vm_flags & VM_WRITE))) {
801  			mss->swap += shmem_swapped;
802  		} else {
803  			ops = &smaps_shmem_walk_ops;
804  		}
805  	}
806  #endif
807  	/* mmap_lock is held in m_start */
808  	if (!start)
809  		walk_page_vma(vma, ops, mss);
810  	else
811  		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
812  }
813  
814  #define SEQ_PUT_DEC(str, val) \
815  		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
816  
817  /* Show the contents common for smaps and smaps_rollup */
__show_smap(struct seq_file * m,const struct mem_size_stats * mss,bool rollup_mode)818  static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
819  	bool rollup_mode)
820  {
821  	SEQ_PUT_DEC("Rss:            ", mss->resident);
822  	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
823  	SEQ_PUT_DEC(" kB\nPss_Dirty:      ", mss->pss_dirty >> PSS_SHIFT);
824  	if (rollup_mode) {
825  		/*
826  		 * These are meaningful only for smaps_rollup, otherwise two of
827  		 * them are zero, and the other one is the same as Pss.
828  		 */
829  		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
830  			mss->pss_anon >> PSS_SHIFT);
831  		SEQ_PUT_DEC(" kB\nPss_File:       ",
832  			mss->pss_file >> PSS_SHIFT);
833  		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
834  			mss->pss_shmem >> PSS_SHIFT);
835  	}
836  	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
837  	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
838  	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
839  	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
840  	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
841  	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
842  	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
843  	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
844  	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
845  	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
846  	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
847  	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
848  				  mss->private_hugetlb >> 10, 7);
849  	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
850  	SEQ_PUT_DEC(" kB\nSwapPss:        ",
851  					mss->swap_pss >> PSS_SHIFT);
852  	SEQ_PUT_DEC(" kB\nLocked:         ",
853  					mss->pss_locked >> PSS_SHIFT);
854  	seq_puts(m, " kB\n");
855  }
856  
show_smap(struct seq_file * m,void * v)857  static int show_smap(struct seq_file *m, void *v)
858  {
859  	struct vm_area_struct *vma = v;
860  	struct mem_size_stats mss;
861  
862  	memset(&mss, 0, sizeof(mss));
863  
864  	smap_gather_stats(vma, &mss, 0);
865  
866  	show_map_vma(m, vma);
867  
868  	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
869  	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
870  	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
871  	seq_puts(m, " kB\n");
872  
873  	__show_smap(m, &mss, false);
874  
875  	seq_printf(m, "THPeligible:    %d\n",
876  		   hugepage_vma_check(vma, vma->vm_flags, true, false, true));
877  
878  	if (arch_pkeys_enabled())
879  		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
880  	show_smap_vma_flags(m, vma);
881  
882  	return 0;
883  }
884  
show_smaps_rollup(struct seq_file * m,void * v)885  static int show_smaps_rollup(struct seq_file *m, void *v)
886  {
887  	struct proc_maps_private *priv = m->private;
888  	struct mem_size_stats mss;
889  	struct mm_struct *mm = priv->mm;
890  	struct vm_area_struct *vma;
891  	unsigned long vma_start = 0, last_vma_end = 0;
892  	int ret = 0;
893  	VMA_ITERATOR(vmi, mm, 0);
894  
895  	priv->task = get_proc_task(priv->inode);
896  	if (!priv->task)
897  		return -ESRCH;
898  
899  	if (!mm || !mmget_not_zero(mm)) {
900  		ret = -ESRCH;
901  		goto out_put_task;
902  	}
903  
904  	memset(&mss, 0, sizeof(mss));
905  
906  	ret = mmap_read_lock_killable(mm);
907  	if (ret)
908  		goto out_put_mm;
909  
910  	hold_task_mempolicy(priv);
911  	vma = vma_next(&vmi);
912  
913  	if (unlikely(!vma))
914  		goto empty_set;
915  
916  	vma_start = vma->vm_start;
917  	do {
918  		smap_gather_stats(vma, &mss, 0);
919  		last_vma_end = vma->vm_end;
920  
921  		/*
922  		 * Release mmap_lock temporarily if someone wants to
923  		 * access it for write request.
924  		 */
925  		if (mmap_lock_is_contended(mm)) {
926  			vma_iter_invalidate(&vmi);
927  			mmap_read_unlock(mm);
928  			ret = mmap_read_lock_killable(mm);
929  			if (ret) {
930  				release_task_mempolicy(priv);
931  				goto out_put_mm;
932  			}
933  
934  			/*
935  			 * After dropping the lock, there are four cases to
936  			 * consider. See the following example for explanation.
937  			 *
938  			 *   +------+------+-----------+
939  			 *   | VMA1 | VMA2 | VMA3      |
940  			 *   +------+------+-----------+
941  			 *   |      |      |           |
942  			 *  4k     8k     16k         400k
943  			 *
944  			 * Suppose we drop the lock after reading VMA2 due to
945  			 * contention, then we get:
946  			 *
947  			 *	last_vma_end = 16k
948  			 *
949  			 * 1) VMA2 is freed, but VMA3 exists:
950  			 *
951  			 *    vma_next(vmi) will return VMA3.
952  			 *    In this case, just continue from VMA3.
953  			 *
954  			 * 2) VMA2 still exists:
955  			 *
956  			 *    vma_next(vmi) will return VMA3.
957  			 *    In this case, just continue from VMA3.
958  			 *
959  			 * 3) No more VMAs can be found:
960  			 *
961  			 *    vma_next(vmi) will return NULL.
962  			 *    No more things to do, just break.
963  			 *
964  			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
965  			 *
966  			 *    vma_next(vmi) will return VMA' whose range
967  			 *    contains last_vma_end.
968  			 *    Iterate VMA' from last_vma_end.
969  			 */
970  			vma = vma_next(&vmi);
971  			/* Case 3 above */
972  			if (!vma)
973  				break;
974  
975  			/* Case 1 and 2 above */
976  			if (vma->vm_start >= last_vma_end)
977  				continue;
978  
979  			/* Case 4 above */
980  			if (vma->vm_end > last_vma_end)
981  				smap_gather_stats(vma, &mss, last_vma_end);
982  		}
983  	} for_each_vma(vmi, vma);
984  
985  empty_set:
986  	show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
987  	seq_pad(m, ' ');
988  	seq_puts(m, "[rollup]\n");
989  
990  	__show_smap(m, &mss, true);
991  
992  	release_task_mempolicy(priv);
993  	mmap_read_unlock(mm);
994  
995  out_put_mm:
996  	mmput(mm);
997  out_put_task:
998  	put_task_struct(priv->task);
999  	priv->task = NULL;
1000  
1001  	return ret;
1002  }
1003  #undef SEQ_PUT_DEC
1004  
1005  static const struct seq_operations proc_pid_smaps_op = {
1006  	.start	= m_start,
1007  	.next	= m_next,
1008  	.stop	= m_stop,
1009  	.show	= show_smap
1010  };
1011  
pid_smaps_open(struct inode * inode,struct file * file)1012  static int pid_smaps_open(struct inode *inode, struct file *file)
1013  {
1014  	return do_maps_open(inode, file, &proc_pid_smaps_op);
1015  }
1016  
smaps_rollup_open(struct inode * inode,struct file * file)1017  static int smaps_rollup_open(struct inode *inode, struct file *file)
1018  {
1019  	int ret;
1020  	struct proc_maps_private *priv;
1021  
1022  	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1023  	if (!priv)
1024  		return -ENOMEM;
1025  
1026  	ret = single_open(file, show_smaps_rollup, priv);
1027  	if (ret)
1028  		goto out_free;
1029  
1030  	priv->inode = inode;
1031  	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1032  	if (IS_ERR(priv->mm)) {
1033  		ret = PTR_ERR(priv->mm);
1034  
1035  		single_release(inode, file);
1036  		goto out_free;
1037  	}
1038  
1039  	return 0;
1040  
1041  out_free:
1042  	kfree(priv);
1043  	return ret;
1044  }
1045  
smaps_rollup_release(struct inode * inode,struct file * file)1046  static int smaps_rollup_release(struct inode *inode, struct file *file)
1047  {
1048  	struct seq_file *seq = file->private_data;
1049  	struct proc_maps_private *priv = seq->private;
1050  
1051  	if (priv->mm)
1052  		mmdrop(priv->mm);
1053  
1054  	kfree(priv);
1055  	return single_release(inode, file);
1056  }
1057  
1058  const struct file_operations proc_pid_smaps_operations = {
1059  	.open		= pid_smaps_open,
1060  	.read		= seq_read,
1061  	.llseek		= seq_lseek,
1062  	.release	= proc_map_release,
1063  };
1064  
1065  const struct file_operations proc_pid_smaps_rollup_operations = {
1066  	.open		= smaps_rollup_open,
1067  	.read		= seq_read,
1068  	.llseek		= seq_lseek,
1069  	.release	= smaps_rollup_release,
1070  };
1071  
1072  enum clear_refs_types {
1073  	CLEAR_REFS_ALL = 1,
1074  	CLEAR_REFS_ANON,
1075  	CLEAR_REFS_MAPPED,
1076  	CLEAR_REFS_SOFT_DIRTY,
1077  	CLEAR_REFS_MM_HIWATER_RSS,
1078  	CLEAR_REFS_LAST,
1079  };
1080  
1081  struct clear_refs_private {
1082  	enum clear_refs_types type;
1083  };
1084  
1085  #ifdef CONFIG_MEM_SOFT_DIRTY
1086  
pte_is_pinned(struct vm_area_struct * vma,unsigned long addr,pte_t pte)1087  static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1088  {
1089  	struct page *page;
1090  
1091  	if (!pte_write(pte))
1092  		return false;
1093  	if (!is_cow_mapping(vma->vm_flags))
1094  		return false;
1095  	if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1096  		return false;
1097  	page = vm_normal_page(vma, addr, pte);
1098  	if (!page)
1099  		return false;
1100  	return page_maybe_dma_pinned(page);
1101  }
1102  
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1103  static inline void clear_soft_dirty(struct vm_area_struct *vma,
1104  		unsigned long addr, pte_t *pte)
1105  {
1106  	/*
1107  	 * The soft-dirty tracker uses #PF-s to catch writes
1108  	 * to pages, so write-protect the pte as well. See the
1109  	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1110  	 * of how soft-dirty works.
1111  	 */
1112  	pte_t ptent = *pte;
1113  
1114  	if (pte_present(ptent)) {
1115  		pte_t old_pte;
1116  
1117  		if (pte_is_pinned(vma, addr, ptent))
1118  			return;
1119  		old_pte = ptep_modify_prot_start(vma, addr, pte);
1120  		ptent = pte_wrprotect(old_pte);
1121  		ptent = pte_clear_soft_dirty(ptent);
1122  		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1123  	} else if (is_swap_pte(ptent)) {
1124  		ptent = pte_swp_clear_soft_dirty(ptent);
1125  		set_pte_at(vma->vm_mm, addr, pte, ptent);
1126  	}
1127  }
1128  #else
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1129  static inline void clear_soft_dirty(struct vm_area_struct *vma,
1130  		unsigned long addr, pte_t *pte)
1131  {
1132  }
1133  #endif
1134  
1135  #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1136  static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1137  		unsigned long addr, pmd_t *pmdp)
1138  {
1139  	pmd_t old, pmd = *pmdp;
1140  
1141  	if (pmd_present(pmd)) {
1142  		/* See comment in change_huge_pmd() */
1143  		old = pmdp_invalidate(vma, addr, pmdp);
1144  		if (pmd_dirty(old))
1145  			pmd = pmd_mkdirty(pmd);
1146  		if (pmd_young(old))
1147  			pmd = pmd_mkyoung(pmd);
1148  
1149  		pmd = pmd_wrprotect(pmd);
1150  		pmd = pmd_clear_soft_dirty(pmd);
1151  
1152  		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1153  	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1154  		pmd = pmd_swp_clear_soft_dirty(pmd);
1155  		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1156  	}
1157  }
1158  #else
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1159  static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1160  		unsigned long addr, pmd_t *pmdp)
1161  {
1162  }
1163  #endif
1164  
clear_refs_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1165  static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1166  				unsigned long end, struct mm_walk *walk)
1167  {
1168  	struct clear_refs_private *cp = walk->private;
1169  	struct vm_area_struct *vma = walk->vma;
1170  	pte_t *pte, ptent;
1171  	spinlock_t *ptl;
1172  	struct page *page;
1173  
1174  	ptl = pmd_trans_huge_lock(pmd, vma);
1175  	if (ptl) {
1176  		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1177  			clear_soft_dirty_pmd(vma, addr, pmd);
1178  			goto out;
1179  		}
1180  
1181  		if (!pmd_present(*pmd))
1182  			goto out;
1183  
1184  		page = pmd_page(*pmd);
1185  
1186  		/* Clear accessed and referenced bits. */
1187  		pmdp_test_and_clear_young(vma, addr, pmd);
1188  		test_and_clear_page_young(page);
1189  		ClearPageReferenced(page);
1190  out:
1191  		spin_unlock(ptl);
1192  		return 0;
1193  	}
1194  
1195  	if (pmd_trans_unstable(pmd))
1196  		return 0;
1197  
1198  	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1199  	for (; addr != end; pte++, addr += PAGE_SIZE) {
1200  		ptent = *pte;
1201  
1202  		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1203  			clear_soft_dirty(vma, addr, pte);
1204  			continue;
1205  		}
1206  
1207  		if (!pte_present(ptent))
1208  			continue;
1209  
1210  		page = vm_normal_page(vma, addr, ptent);
1211  		if (!page)
1212  			continue;
1213  
1214  		/* Clear accessed and referenced bits. */
1215  		ptep_test_and_clear_young(vma, addr, pte);
1216  		test_and_clear_page_young(page);
1217  		ClearPageReferenced(page);
1218  	}
1219  	pte_unmap_unlock(pte - 1, ptl);
1220  	cond_resched();
1221  	return 0;
1222  }
1223  
clear_refs_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)1224  static int clear_refs_test_walk(unsigned long start, unsigned long end,
1225  				struct mm_walk *walk)
1226  {
1227  	struct clear_refs_private *cp = walk->private;
1228  	struct vm_area_struct *vma = walk->vma;
1229  
1230  	if (vma->vm_flags & VM_PFNMAP)
1231  		return 1;
1232  
1233  	/*
1234  	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1235  	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1236  	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1237  	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1238  	 */
1239  	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1240  		return 1;
1241  	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1242  		return 1;
1243  	return 0;
1244  }
1245  
1246  static const struct mm_walk_ops clear_refs_walk_ops = {
1247  	.pmd_entry		= clear_refs_pte_range,
1248  	.test_walk		= clear_refs_test_walk,
1249  };
1250  
clear_refs_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1251  static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1252  				size_t count, loff_t *ppos)
1253  {
1254  	struct task_struct *task;
1255  	char buffer[PROC_NUMBUF];
1256  	struct mm_struct *mm;
1257  	struct vm_area_struct *vma;
1258  	enum clear_refs_types type;
1259  	int itype;
1260  	int rv;
1261  
1262  	memset(buffer, 0, sizeof(buffer));
1263  	if (count > sizeof(buffer) - 1)
1264  		count = sizeof(buffer) - 1;
1265  	if (copy_from_user(buffer, buf, count))
1266  		return -EFAULT;
1267  	rv = kstrtoint(strstrip(buffer), 10, &itype);
1268  	if (rv < 0)
1269  		return rv;
1270  	type = (enum clear_refs_types)itype;
1271  	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1272  		return -EINVAL;
1273  
1274  	task = get_proc_task(file_inode(file));
1275  	if (!task)
1276  		return -ESRCH;
1277  	mm = get_task_mm(task);
1278  	if (mm) {
1279  		VMA_ITERATOR(vmi, mm, 0);
1280  		struct mmu_notifier_range range;
1281  		struct clear_refs_private cp = {
1282  			.type = type,
1283  		};
1284  
1285  		if (mmap_write_lock_killable(mm)) {
1286  			count = -EINTR;
1287  			goto out_mm;
1288  		}
1289  		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1290  			/*
1291  			 * Writing 5 to /proc/pid/clear_refs resets the peak
1292  			 * resident set size to this mm's current rss value.
1293  			 */
1294  			reset_mm_hiwater_rss(mm);
1295  			goto out_unlock;
1296  		}
1297  
1298  		if (type == CLEAR_REFS_SOFT_DIRTY) {
1299  			for_each_vma(vmi, vma) {
1300  				if (!(vma->vm_flags & VM_SOFTDIRTY))
1301  					continue;
1302  				vm_flags_clear(vma, VM_SOFTDIRTY);
1303  				vma_set_page_prot(vma);
1304  			}
1305  
1306  			inc_tlb_flush_pending(mm);
1307  			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1308  						0, mm, 0, -1UL);
1309  			mmu_notifier_invalidate_range_start(&range);
1310  		}
1311  		walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1312  		if (type == CLEAR_REFS_SOFT_DIRTY) {
1313  			mmu_notifier_invalidate_range_end(&range);
1314  			flush_tlb_mm(mm);
1315  			dec_tlb_flush_pending(mm);
1316  		}
1317  out_unlock:
1318  		mmap_write_unlock(mm);
1319  out_mm:
1320  		mmput(mm);
1321  	}
1322  	put_task_struct(task);
1323  
1324  	return count;
1325  }
1326  
1327  const struct file_operations proc_clear_refs_operations = {
1328  	.write		= clear_refs_write,
1329  	.llseek		= noop_llseek,
1330  };
1331  
1332  typedef struct {
1333  	u64 pme;
1334  } pagemap_entry_t;
1335  
1336  struct pagemapread {
1337  	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1338  	pagemap_entry_t *buffer;
1339  	bool show_pfn;
1340  };
1341  
1342  #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1343  #define PAGEMAP_WALK_MASK	(PMD_MASK)
1344  
1345  #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1346  #define PM_PFRAME_BITS		55
1347  #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1348  #define PM_SOFT_DIRTY		BIT_ULL(55)
1349  #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1350  #define PM_UFFD_WP		BIT_ULL(57)
1351  #define PM_FILE			BIT_ULL(61)
1352  #define PM_SWAP			BIT_ULL(62)
1353  #define PM_PRESENT		BIT_ULL(63)
1354  
1355  #define PM_END_OF_BUFFER    1
1356  
make_pme(u64 frame,u64 flags)1357  static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1358  {
1359  	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1360  }
1361  
add_to_pagemap(unsigned long addr,pagemap_entry_t * pme,struct pagemapread * pm)1362  static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1363  			  struct pagemapread *pm)
1364  {
1365  	pm->buffer[pm->pos++] = *pme;
1366  	if (pm->pos >= pm->len)
1367  		return PM_END_OF_BUFFER;
1368  	return 0;
1369  }
1370  
pagemap_pte_hole(unsigned long start,unsigned long end,__always_unused int depth,struct mm_walk * walk)1371  static int pagemap_pte_hole(unsigned long start, unsigned long end,
1372  			    __always_unused int depth, struct mm_walk *walk)
1373  {
1374  	struct pagemapread *pm = walk->private;
1375  	unsigned long addr = start;
1376  	int err = 0;
1377  
1378  	while (addr < end) {
1379  		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1380  		pagemap_entry_t pme = make_pme(0, 0);
1381  		/* End of address space hole, which we mark as non-present. */
1382  		unsigned long hole_end;
1383  
1384  		if (vma)
1385  			hole_end = min(end, vma->vm_start);
1386  		else
1387  			hole_end = end;
1388  
1389  		for (; addr < hole_end; addr += PAGE_SIZE) {
1390  			err = add_to_pagemap(addr, &pme, pm);
1391  			if (err)
1392  				goto out;
1393  		}
1394  
1395  		if (!vma)
1396  			break;
1397  
1398  		/* Addresses in the VMA. */
1399  		if (vma->vm_flags & VM_SOFTDIRTY)
1400  			pme = make_pme(0, PM_SOFT_DIRTY);
1401  		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1402  			err = add_to_pagemap(addr, &pme, pm);
1403  			if (err)
1404  				goto out;
1405  		}
1406  	}
1407  out:
1408  	return err;
1409  }
1410  
pte_to_pagemap_entry(struct pagemapread * pm,struct vm_area_struct * vma,unsigned long addr,pte_t pte)1411  static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1412  		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1413  {
1414  	u64 frame = 0, flags = 0;
1415  	struct page *page = NULL;
1416  	bool migration = false;
1417  
1418  	if (pte_present(pte)) {
1419  		if (pm->show_pfn)
1420  			frame = pte_pfn(pte);
1421  		flags |= PM_PRESENT;
1422  		page = vm_normal_page(vma, addr, pte);
1423  		if (pte_soft_dirty(pte))
1424  			flags |= PM_SOFT_DIRTY;
1425  		if (pte_uffd_wp(pte))
1426  			flags |= PM_UFFD_WP;
1427  	} else if (is_swap_pte(pte)) {
1428  		swp_entry_t entry;
1429  		if (pte_swp_soft_dirty(pte))
1430  			flags |= PM_SOFT_DIRTY;
1431  		if (pte_swp_uffd_wp(pte))
1432  			flags |= PM_UFFD_WP;
1433  		entry = pte_to_swp_entry(pte);
1434  		if (pm->show_pfn) {
1435  			pgoff_t offset;
1436  			/*
1437  			 * For PFN swap offsets, keeping the offset field
1438  			 * to be PFN only to be compatible with old smaps.
1439  			 */
1440  			if (is_pfn_swap_entry(entry))
1441  				offset = swp_offset_pfn(entry);
1442  			else
1443  				offset = swp_offset(entry);
1444  			frame = swp_type(entry) |
1445  			    (offset << MAX_SWAPFILES_SHIFT);
1446  		}
1447  		flags |= PM_SWAP;
1448  		migration = is_migration_entry(entry);
1449  		if (is_pfn_swap_entry(entry))
1450  			page = pfn_swap_entry_to_page(entry);
1451  		if (pte_marker_entry_uffd_wp(entry))
1452  			flags |= PM_UFFD_WP;
1453  	}
1454  
1455  	if (page && !PageAnon(page))
1456  		flags |= PM_FILE;
1457  	if (page && !migration && page_mapcount(page) == 1)
1458  		flags |= PM_MMAP_EXCLUSIVE;
1459  	if (vma->vm_flags & VM_SOFTDIRTY)
1460  		flags |= PM_SOFT_DIRTY;
1461  
1462  	return make_pme(frame, flags);
1463  }
1464  
pagemap_pmd_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)1465  static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1466  			     struct mm_walk *walk)
1467  {
1468  	struct vm_area_struct *vma = walk->vma;
1469  	struct pagemapread *pm = walk->private;
1470  	spinlock_t *ptl;
1471  	pte_t *pte, *orig_pte;
1472  	int err = 0;
1473  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1474  	bool migration = false;
1475  
1476  	ptl = pmd_trans_huge_lock(pmdp, vma);
1477  	if (ptl) {
1478  		u64 flags = 0, frame = 0;
1479  		pmd_t pmd = *pmdp;
1480  		struct page *page = NULL;
1481  
1482  		if (vma->vm_flags & VM_SOFTDIRTY)
1483  			flags |= PM_SOFT_DIRTY;
1484  
1485  		if (pmd_present(pmd)) {
1486  			page = pmd_page(pmd);
1487  
1488  			flags |= PM_PRESENT;
1489  			if (pmd_soft_dirty(pmd))
1490  				flags |= PM_SOFT_DIRTY;
1491  			if (pmd_uffd_wp(pmd))
1492  				flags |= PM_UFFD_WP;
1493  			if (pm->show_pfn)
1494  				frame = pmd_pfn(pmd) +
1495  					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1496  		}
1497  #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1498  		else if (is_swap_pmd(pmd)) {
1499  			swp_entry_t entry = pmd_to_swp_entry(pmd);
1500  			unsigned long offset;
1501  
1502  			if (pm->show_pfn) {
1503  				if (is_pfn_swap_entry(entry))
1504  					offset = swp_offset_pfn(entry);
1505  				else
1506  					offset = swp_offset(entry);
1507  				offset = offset +
1508  					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1509  				frame = swp_type(entry) |
1510  					(offset << MAX_SWAPFILES_SHIFT);
1511  			}
1512  			flags |= PM_SWAP;
1513  			if (pmd_swp_soft_dirty(pmd))
1514  				flags |= PM_SOFT_DIRTY;
1515  			if (pmd_swp_uffd_wp(pmd))
1516  				flags |= PM_UFFD_WP;
1517  			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1518  			migration = is_migration_entry(entry);
1519  			page = pfn_swap_entry_to_page(entry);
1520  		}
1521  #endif
1522  
1523  		if (page && !migration && page_mapcount(page) == 1)
1524  			flags |= PM_MMAP_EXCLUSIVE;
1525  
1526  		for (; addr != end; addr += PAGE_SIZE) {
1527  			pagemap_entry_t pme = make_pme(frame, flags);
1528  
1529  			err = add_to_pagemap(addr, &pme, pm);
1530  			if (err)
1531  				break;
1532  			if (pm->show_pfn) {
1533  				if (flags & PM_PRESENT)
1534  					frame++;
1535  				else if (flags & PM_SWAP)
1536  					frame += (1 << MAX_SWAPFILES_SHIFT);
1537  			}
1538  		}
1539  		spin_unlock(ptl);
1540  		return err;
1541  	}
1542  
1543  	if (pmd_trans_unstable(pmdp))
1544  		return 0;
1545  #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1546  
1547  	/*
1548  	 * We can assume that @vma always points to a valid one and @end never
1549  	 * goes beyond vma->vm_end.
1550  	 */
1551  	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1552  	for (; addr < end; pte++, addr += PAGE_SIZE) {
1553  		pagemap_entry_t pme;
1554  
1555  		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1556  		err = add_to_pagemap(addr, &pme, pm);
1557  		if (err)
1558  			break;
1559  	}
1560  	pte_unmap_unlock(orig_pte, ptl);
1561  
1562  	cond_resched();
1563  
1564  	return err;
1565  }
1566  
1567  #ifdef CONFIG_HUGETLB_PAGE
1568  /* This function walks within one hugetlb entry in the single call */
pagemap_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1569  static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1570  				 unsigned long addr, unsigned long end,
1571  				 struct mm_walk *walk)
1572  {
1573  	struct pagemapread *pm = walk->private;
1574  	struct vm_area_struct *vma = walk->vma;
1575  	u64 flags = 0, frame = 0;
1576  	int err = 0;
1577  	pte_t pte;
1578  
1579  	if (vma->vm_flags & VM_SOFTDIRTY)
1580  		flags |= PM_SOFT_DIRTY;
1581  
1582  	pte = huge_ptep_get(ptep);
1583  	if (pte_present(pte)) {
1584  		struct page *page = pte_page(pte);
1585  
1586  		if (!PageAnon(page))
1587  			flags |= PM_FILE;
1588  
1589  		if (page_mapcount(page) == 1)
1590  			flags |= PM_MMAP_EXCLUSIVE;
1591  
1592  		if (huge_pte_uffd_wp(pte))
1593  			flags |= PM_UFFD_WP;
1594  
1595  		flags |= PM_PRESENT;
1596  		if (pm->show_pfn)
1597  			frame = pte_pfn(pte) +
1598  				((addr & ~hmask) >> PAGE_SHIFT);
1599  	} else if (pte_swp_uffd_wp_any(pte)) {
1600  		flags |= PM_UFFD_WP;
1601  	}
1602  
1603  	for (; addr != end; addr += PAGE_SIZE) {
1604  		pagemap_entry_t pme = make_pme(frame, flags);
1605  
1606  		err = add_to_pagemap(addr, &pme, pm);
1607  		if (err)
1608  			return err;
1609  		if (pm->show_pfn && (flags & PM_PRESENT))
1610  			frame++;
1611  	}
1612  
1613  	cond_resched();
1614  
1615  	return err;
1616  }
1617  #else
1618  #define pagemap_hugetlb_range	NULL
1619  #endif /* HUGETLB_PAGE */
1620  
1621  static const struct mm_walk_ops pagemap_ops = {
1622  	.pmd_entry	= pagemap_pmd_range,
1623  	.pte_hole	= pagemap_pte_hole,
1624  	.hugetlb_entry	= pagemap_hugetlb_range,
1625  };
1626  
1627  /*
1628   * /proc/pid/pagemap - an array mapping virtual pages to pfns
1629   *
1630   * For each page in the address space, this file contains one 64-bit entry
1631   * consisting of the following:
1632   *
1633   * Bits 0-54  page frame number (PFN) if present
1634   * Bits 0-4   swap type if swapped
1635   * Bits 5-54  swap offset if swapped
1636   * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1637   * Bit  56    page exclusively mapped
1638   * Bit  57    pte is uffd-wp write-protected
1639   * Bits 58-60 zero
1640   * Bit  61    page is file-page or shared-anon
1641   * Bit  62    page swapped
1642   * Bit  63    page present
1643   *
1644   * If the page is not present but in swap, then the PFN contains an
1645   * encoding of the swap file number and the page's offset into the
1646   * swap. Unmapped pages return a null PFN. This allows determining
1647   * precisely which pages are mapped (or in swap) and comparing mapped
1648   * pages between processes.
1649   *
1650   * Efficient users of this interface will use /proc/pid/maps to
1651   * determine which areas of memory are actually mapped and llseek to
1652   * skip over unmapped regions.
1653   */
pagemap_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1654  static ssize_t pagemap_read(struct file *file, char __user *buf,
1655  			    size_t count, loff_t *ppos)
1656  {
1657  	struct mm_struct *mm = file->private_data;
1658  	struct pagemapread pm;
1659  	unsigned long src;
1660  	unsigned long svpfn;
1661  	unsigned long start_vaddr;
1662  	unsigned long end_vaddr;
1663  	int ret = 0, copied = 0;
1664  
1665  	if (!mm || !mmget_not_zero(mm))
1666  		goto out;
1667  
1668  	ret = -EINVAL;
1669  	/* file position must be aligned */
1670  	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1671  		goto out_mm;
1672  
1673  	ret = 0;
1674  	if (!count)
1675  		goto out_mm;
1676  
1677  	/* do not disclose physical addresses: attack vector */
1678  	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1679  
1680  	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1681  	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1682  	ret = -ENOMEM;
1683  	if (!pm.buffer)
1684  		goto out_mm;
1685  
1686  	src = *ppos;
1687  	svpfn = src / PM_ENTRY_BYTES;
1688  	end_vaddr = mm->task_size;
1689  
1690  	/* watch out for wraparound */
1691  	start_vaddr = end_vaddr;
1692  	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1693  		start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1694  
1695  	/* Ensure the address is inside the task */
1696  	if (start_vaddr > mm->task_size)
1697  		start_vaddr = end_vaddr;
1698  
1699  	/*
1700  	 * The odds are that this will stop walking way
1701  	 * before end_vaddr, because the length of the
1702  	 * user buffer is tracked in "pm", and the walk
1703  	 * will stop when we hit the end of the buffer.
1704  	 */
1705  	ret = 0;
1706  	while (count && (start_vaddr < end_vaddr)) {
1707  		int len;
1708  		unsigned long end;
1709  
1710  		pm.pos = 0;
1711  		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1712  		/* overflow ? */
1713  		if (end < start_vaddr || end > end_vaddr)
1714  			end = end_vaddr;
1715  		ret = mmap_read_lock_killable(mm);
1716  		if (ret)
1717  			goto out_free;
1718  		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1719  		mmap_read_unlock(mm);
1720  		start_vaddr = end;
1721  
1722  		len = min(count, PM_ENTRY_BYTES * pm.pos);
1723  		if (copy_to_user(buf, pm.buffer, len)) {
1724  			ret = -EFAULT;
1725  			goto out_free;
1726  		}
1727  		copied += len;
1728  		buf += len;
1729  		count -= len;
1730  	}
1731  	*ppos += copied;
1732  	if (!ret || ret == PM_END_OF_BUFFER)
1733  		ret = copied;
1734  
1735  out_free:
1736  	kfree(pm.buffer);
1737  out_mm:
1738  	mmput(mm);
1739  out:
1740  	return ret;
1741  }
1742  
pagemap_open(struct inode * inode,struct file * file)1743  static int pagemap_open(struct inode *inode, struct file *file)
1744  {
1745  	struct mm_struct *mm;
1746  
1747  	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1748  	if (IS_ERR(mm))
1749  		return PTR_ERR(mm);
1750  	file->private_data = mm;
1751  	return 0;
1752  }
1753  
pagemap_release(struct inode * inode,struct file * file)1754  static int pagemap_release(struct inode *inode, struct file *file)
1755  {
1756  	struct mm_struct *mm = file->private_data;
1757  
1758  	if (mm)
1759  		mmdrop(mm);
1760  	return 0;
1761  }
1762  
1763  const struct file_operations proc_pagemap_operations = {
1764  	.llseek		= mem_lseek, /* borrow this */
1765  	.read		= pagemap_read,
1766  	.open		= pagemap_open,
1767  	.release	= pagemap_release,
1768  };
1769  #endif /* CONFIG_PROC_PAGE_MONITOR */
1770  
1771  #ifdef CONFIG_NUMA
1772  
1773  struct numa_maps {
1774  	unsigned long pages;
1775  	unsigned long anon;
1776  	unsigned long active;
1777  	unsigned long writeback;
1778  	unsigned long mapcount_max;
1779  	unsigned long dirty;
1780  	unsigned long swapcache;
1781  	unsigned long node[MAX_NUMNODES];
1782  };
1783  
1784  struct numa_maps_private {
1785  	struct proc_maps_private proc_maps;
1786  	struct numa_maps md;
1787  };
1788  
gather_stats(struct page * page,struct numa_maps * md,int pte_dirty,unsigned long nr_pages)1789  static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1790  			unsigned long nr_pages)
1791  {
1792  	int count = page_mapcount(page);
1793  
1794  	md->pages += nr_pages;
1795  	if (pte_dirty || PageDirty(page))
1796  		md->dirty += nr_pages;
1797  
1798  	if (PageSwapCache(page))
1799  		md->swapcache += nr_pages;
1800  
1801  	if (PageActive(page) || PageUnevictable(page))
1802  		md->active += nr_pages;
1803  
1804  	if (PageWriteback(page))
1805  		md->writeback += nr_pages;
1806  
1807  	if (PageAnon(page))
1808  		md->anon += nr_pages;
1809  
1810  	if (count > md->mapcount_max)
1811  		md->mapcount_max = count;
1812  
1813  	md->node[page_to_nid(page)] += nr_pages;
1814  }
1815  
can_gather_numa_stats(pte_t pte,struct vm_area_struct * vma,unsigned long addr)1816  static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1817  		unsigned long addr)
1818  {
1819  	struct page *page;
1820  	int nid;
1821  
1822  	if (!pte_present(pte))
1823  		return NULL;
1824  
1825  	page = vm_normal_page(vma, addr, pte);
1826  	if (!page || is_zone_device_page(page))
1827  		return NULL;
1828  
1829  	if (PageReserved(page))
1830  		return NULL;
1831  
1832  	nid = page_to_nid(page);
1833  	if (!node_isset(nid, node_states[N_MEMORY]))
1834  		return NULL;
1835  
1836  	return page;
1837  }
1838  
1839  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
can_gather_numa_stats_pmd(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)1840  static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1841  					      struct vm_area_struct *vma,
1842  					      unsigned long addr)
1843  {
1844  	struct page *page;
1845  	int nid;
1846  
1847  	if (!pmd_present(pmd))
1848  		return NULL;
1849  
1850  	page = vm_normal_page_pmd(vma, addr, pmd);
1851  	if (!page)
1852  		return NULL;
1853  
1854  	if (PageReserved(page))
1855  		return NULL;
1856  
1857  	nid = page_to_nid(page);
1858  	if (!node_isset(nid, node_states[N_MEMORY]))
1859  		return NULL;
1860  
1861  	return page;
1862  }
1863  #endif
1864  
gather_pte_stats(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1865  static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1866  		unsigned long end, struct mm_walk *walk)
1867  {
1868  	struct numa_maps *md = walk->private;
1869  	struct vm_area_struct *vma = walk->vma;
1870  	spinlock_t *ptl;
1871  	pte_t *orig_pte;
1872  	pte_t *pte;
1873  
1874  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1875  	ptl = pmd_trans_huge_lock(pmd, vma);
1876  	if (ptl) {
1877  		struct page *page;
1878  
1879  		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1880  		if (page)
1881  			gather_stats(page, md, pmd_dirty(*pmd),
1882  				     HPAGE_PMD_SIZE/PAGE_SIZE);
1883  		spin_unlock(ptl);
1884  		return 0;
1885  	}
1886  
1887  	if (pmd_trans_unstable(pmd))
1888  		return 0;
1889  #endif
1890  	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1891  	do {
1892  		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1893  		if (!page)
1894  			continue;
1895  		gather_stats(page, md, pte_dirty(*pte), 1);
1896  
1897  	} while (pte++, addr += PAGE_SIZE, addr != end);
1898  	pte_unmap_unlock(orig_pte, ptl);
1899  	cond_resched();
1900  	return 0;
1901  }
1902  #ifdef CONFIG_HUGETLB_PAGE
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1903  static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1904  		unsigned long addr, unsigned long end, struct mm_walk *walk)
1905  {
1906  	pte_t huge_pte = huge_ptep_get(pte);
1907  	struct numa_maps *md;
1908  	struct page *page;
1909  
1910  	if (!pte_present(huge_pte))
1911  		return 0;
1912  
1913  	page = pte_page(huge_pte);
1914  
1915  	md = walk->private;
1916  	gather_stats(page, md, pte_dirty(huge_pte), 1);
1917  	return 0;
1918  }
1919  
1920  #else
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1921  static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1922  		unsigned long addr, unsigned long end, struct mm_walk *walk)
1923  {
1924  	return 0;
1925  }
1926  #endif
1927  
1928  static const struct mm_walk_ops show_numa_ops = {
1929  	.hugetlb_entry = gather_hugetlb_stats,
1930  	.pmd_entry = gather_pte_stats,
1931  };
1932  
1933  /*
1934   * Display pages allocated per node and memory policy via /proc.
1935   */
show_numa_map(struct seq_file * m,void * v)1936  static int show_numa_map(struct seq_file *m, void *v)
1937  {
1938  	struct numa_maps_private *numa_priv = m->private;
1939  	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1940  	struct vm_area_struct *vma = v;
1941  	struct numa_maps *md = &numa_priv->md;
1942  	struct file *file = vma->vm_file;
1943  	struct mm_struct *mm = vma->vm_mm;
1944  	struct mempolicy *pol;
1945  	char buffer[64];
1946  	int nid;
1947  
1948  	if (!mm)
1949  		return 0;
1950  
1951  	/* Ensure we start with an empty set of numa_maps statistics. */
1952  	memset(md, 0, sizeof(*md));
1953  
1954  	pol = __get_vma_policy(vma, vma->vm_start);
1955  	if (pol) {
1956  		mpol_to_str(buffer, sizeof(buffer), pol);
1957  		mpol_cond_put(pol);
1958  	} else {
1959  		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1960  	}
1961  
1962  	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1963  
1964  	if (file) {
1965  		seq_puts(m, " file=");
1966  		seq_file_path(m, file, "\n\t= ");
1967  	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1968  		seq_puts(m, " heap");
1969  	} else if (is_stack(vma)) {
1970  		seq_puts(m, " stack");
1971  	}
1972  
1973  	if (is_vm_hugetlb_page(vma))
1974  		seq_puts(m, " huge");
1975  
1976  	/* mmap_lock is held by m_start */
1977  	walk_page_vma(vma, &show_numa_ops, md);
1978  
1979  	if (!md->pages)
1980  		goto out;
1981  
1982  	if (md->anon)
1983  		seq_printf(m, " anon=%lu", md->anon);
1984  
1985  	if (md->dirty)
1986  		seq_printf(m, " dirty=%lu", md->dirty);
1987  
1988  	if (md->pages != md->anon && md->pages != md->dirty)
1989  		seq_printf(m, " mapped=%lu", md->pages);
1990  
1991  	if (md->mapcount_max > 1)
1992  		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1993  
1994  	if (md->swapcache)
1995  		seq_printf(m, " swapcache=%lu", md->swapcache);
1996  
1997  	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1998  		seq_printf(m, " active=%lu", md->active);
1999  
2000  	if (md->writeback)
2001  		seq_printf(m, " writeback=%lu", md->writeback);
2002  
2003  	for_each_node_state(nid, N_MEMORY)
2004  		if (md->node[nid])
2005  			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
2006  
2007  	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
2008  out:
2009  	seq_putc(m, '\n');
2010  	return 0;
2011  }
2012  
2013  static const struct seq_operations proc_pid_numa_maps_op = {
2014  	.start  = m_start,
2015  	.next   = m_next,
2016  	.stop   = m_stop,
2017  	.show   = show_numa_map,
2018  };
2019  
pid_numa_maps_open(struct inode * inode,struct file * file)2020  static int pid_numa_maps_open(struct inode *inode, struct file *file)
2021  {
2022  	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
2023  				sizeof(struct numa_maps_private));
2024  }
2025  
2026  const struct file_operations proc_pid_numa_maps_operations = {
2027  	.open		= pid_numa_maps_open,
2028  	.read		= seq_read,
2029  	.llseek		= seq_lseek,
2030  	.release	= proc_map_release,
2031  };
2032  
2033  #endif /* CONFIG_NUMA */
2034