1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_FORTIFY_STRING_H_
3 #define _LINUX_FORTIFY_STRING_H_
4 
5 #include <linux/bug.h>
6 #include <linux/const.h>
7 #include <linux/limits.h>
8 
9 #define __FORTIFY_INLINE extern __always_inline __gnu_inline __overloadable
10 #define __RENAME(x) __asm__(#x)
11 
12 void fortify_panic(const char *name) __noreturn __cold;
13 void __read_overflow(void) __compiletime_error("detected read beyond size of object (1st parameter)");
14 void __read_overflow2(void) __compiletime_error("detected read beyond size of object (2nd parameter)");
15 void __read_overflow2_field(size_t avail, size_t wanted) __compiletime_warning("detected read beyond size of field (2nd parameter); maybe use struct_group()?");
16 void __write_overflow(void) __compiletime_error("detected write beyond size of object (1st parameter)");
17 void __write_overflow_field(size_t avail, size_t wanted) __compiletime_warning("detected write beyond size of field (1st parameter); maybe use struct_group()?");
18 
19 #define __compiletime_strlen(p)					\
20 ({								\
21 	char *__p = (char *)(p);				\
22 	size_t __ret = SIZE_MAX;				\
23 	size_t __p_size = __member_size(p);			\
24 	if (__p_size != SIZE_MAX &&				\
25 	    __builtin_constant_p(*__p)) {			\
26 		size_t __p_len = __p_size - 1;			\
27 		if (__builtin_constant_p(__p[__p_len]) &&	\
28 		    __p[__p_len] == '\0')			\
29 			__ret = __builtin_strlen(__p);		\
30 	}							\
31 	__ret;							\
32 })
33 
34 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
35 extern void *__underlying_memchr(const void *p, int c, __kernel_size_t size) __RENAME(memchr);
36 extern int __underlying_memcmp(const void *p, const void *q, __kernel_size_t size) __RENAME(memcmp);
37 extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(memcpy);
38 extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(memmove);
39 extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(memset);
40 extern char *__underlying_strcat(char *p, const char *q) __RENAME(strcat);
41 extern char *__underlying_strcpy(char *p, const char *q) __RENAME(strcpy);
42 extern __kernel_size_t __underlying_strlen(const char *p) __RENAME(strlen);
43 extern char *__underlying_strncat(char *p, const char *q, __kernel_size_t count) __RENAME(strncat);
44 extern char *__underlying_strncpy(char *p, const char *q, __kernel_size_t size) __RENAME(strncpy);
45 #else
46 
47 #if defined(__SANITIZE_MEMORY__)
48 /*
49  * For KMSAN builds all memcpy/memset/memmove calls should be replaced by the
50  * corresponding __msan_XXX functions.
51  */
52 #include <linux/kmsan_string.h>
53 #define __underlying_memcpy	__msan_memcpy
54 #define __underlying_memmove	__msan_memmove
55 #define __underlying_memset	__msan_memset
56 #else
57 #define __underlying_memcpy	__builtin_memcpy
58 #define __underlying_memmove	__builtin_memmove
59 #define __underlying_memset	__builtin_memset
60 #endif
61 
62 #define __underlying_memchr	__builtin_memchr
63 #define __underlying_memcmp	__builtin_memcmp
64 #define __underlying_strcat	__builtin_strcat
65 #define __underlying_strcpy	__builtin_strcpy
66 #define __underlying_strlen	__builtin_strlen
67 #define __underlying_strncat	__builtin_strncat
68 #define __underlying_strncpy	__builtin_strncpy
69 #endif
70 
71 /**
72  * unsafe_memcpy - memcpy implementation with no FORTIFY bounds checking
73  *
74  * @dst: Destination memory address to write to
75  * @src: Source memory address to read from
76  * @bytes: How many bytes to write to @dst from @src
77  * @justification: Free-form text or comment describing why the use is needed
78  *
79  * This should be used for corner cases where the compiler cannot do the
80  * right thing, or during transitions between APIs, etc. It should be used
81  * very rarely, and includes a place for justification detailing where bounds
82  * checking has happened, and why existing solutions cannot be employed.
83  */
84 #define unsafe_memcpy(dst, src, bytes, justification)		\
85 	__underlying_memcpy(dst, src, bytes)
86 
87 /*
88  * Clang's use of __builtin_*object_size() within inlines needs hinting via
89  * __pass_*object_size(). The preference is to only ever use type 1 (member
90  * size, rather than struct size), but there remain some stragglers using
91  * type 0 that will be converted in the future.
92  */
93 #if __has_builtin(__builtin_dynamic_object_size)
94 #define POS			__pass_dynamic_object_size(1)
95 #define POS0			__pass_dynamic_object_size(0)
96 #define __struct_size(p)	__builtin_dynamic_object_size(p, 0)
97 #define __member_size(p)	__builtin_dynamic_object_size(p, 1)
98 #else
99 #define POS			__pass_object_size(1)
100 #define POS0			__pass_object_size(0)
101 #define __struct_size(p)	__builtin_object_size(p, 0)
102 #define __member_size(p)	__builtin_object_size(p, 1)
103 #endif
104 
105 #define __compiletime_lessthan(bounds, length)	(	\
106 	__builtin_constant_p((bounds) < (length)) &&	\
107 	(bounds) < (length)				\
108 )
109 
110 /**
111  * strncpy - Copy a string to memory with non-guaranteed NUL padding
112  *
113  * @p: pointer to destination of copy
114  * @q: pointer to NUL-terminated source string to copy
115  * @size: bytes to write at @p
116  *
117  * If strlen(@q) >= @size, the copy of @q will stop after @size bytes,
118  * and @p will NOT be NUL-terminated
119  *
120  * If strlen(@q) < @size, following the copy of @q, trailing NUL bytes
121  * will be written to @p until @size total bytes have been written.
122  *
123  * Do not use this function. While FORTIFY_SOURCE tries to avoid
124  * over-reads of @q, it cannot defend against writing unterminated
125  * results to @p. Using strncpy() remains ambiguous and fragile.
126  * Instead, please choose an alternative, so that the expectation
127  * of @p's contents is unambiguous:
128  *
129  * +--------------------+--------------------+------------+
130  * | **p** needs to be: | padded to **size** | not padded |
131  * +====================+====================+============+
132  * |     NUL-terminated | strscpy_pad()      | strscpy()  |
133  * +--------------------+--------------------+------------+
134  * | not NUL-terminated | strtomem_pad()     | strtomem() |
135  * +--------------------+--------------------+------------+
136  *
137  * Note strscpy*()'s differing return values for detecting truncation,
138  * and strtomem*()'s expectation that the destination is marked with
139  * __nonstring when it is a character array.
140  *
141  */
142 __FORTIFY_INLINE __diagnose_as(__builtin_strncpy, 1, 2, 3)
strncpy(char * const POS p,const char * q,__kernel_size_t size)143 char *strncpy(char * const POS p, const char *q, __kernel_size_t size)
144 {
145 	size_t p_size = __member_size(p);
146 
147 	if (__compiletime_lessthan(p_size, size))
148 		__write_overflow();
149 	if (p_size < size)
150 		fortify_panic(__func__);
151 	return __underlying_strncpy(p, q, size);
152 }
153 
154 /**
155  * strcat - Append a string to an existing string
156  *
157  * @p: pointer to NUL-terminated string to append to
158  * @q: pointer to NUL-terminated source string to append from
159  *
160  * Do not use this function. While FORTIFY_SOURCE tries to avoid
161  * read and write overflows, this is only possible when the
162  * destination buffer size is known to the compiler. Prefer
163  * building the string with formatting, via scnprintf() or similar.
164  * At the very least, use strncat().
165  *
166  * Returns @p.
167  *
168  */
169 __FORTIFY_INLINE __diagnose_as(__builtin_strcat, 1, 2)
strcat(char * const POS p,const char * q)170 char *strcat(char * const POS p, const char *q)
171 {
172 	size_t p_size = __member_size(p);
173 
174 	if (p_size == SIZE_MAX)
175 		return __underlying_strcat(p, q);
176 	if (strlcat(p, q, p_size) >= p_size)
177 		fortify_panic(__func__);
178 	return p;
179 }
180 
181 extern __kernel_size_t __real_strnlen(const char *, __kernel_size_t) __RENAME(strnlen);
182 /**
183  * strnlen - Return bounded count of characters in a NUL-terminated string
184  *
185  * @p: pointer to NUL-terminated string to count.
186  * @maxlen: maximum number of characters to count.
187  *
188  * Returns number of characters in @p (NOT including the final NUL), or
189  * @maxlen, if no NUL has been found up to there.
190  *
191  */
strnlen(const char * const POS p,__kernel_size_t maxlen)192 __FORTIFY_INLINE __kernel_size_t strnlen(const char * const POS p, __kernel_size_t maxlen)
193 {
194 	size_t p_size = __member_size(p);
195 	size_t p_len = __compiletime_strlen(p);
196 	size_t ret;
197 
198 	/* We can take compile-time actions when maxlen is const. */
199 	if (__builtin_constant_p(maxlen) && p_len != SIZE_MAX) {
200 		/* If p is const, we can use its compile-time-known len. */
201 		if (maxlen >= p_size)
202 			return p_len;
203 	}
204 
205 	/* Do not check characters beyond the end of p. */
206 	ret = __real_strnlen(p, maxlen < p_size ? maxlen : p_size);
207 	if (p_size <= ret && maxlen != ret)
208 		fortify_panic(__func__);
209 	return ret;
210 }
211 
212 /*
213  * Defined after fortified strnlen to reuse it. However, it must still be
214  * possible for strlen() to be used on compile-time strings for use in
215  * static initializers (i.e. as a constant expression).
216  */
217 /**
218  * strlen - Return count of characters in a NUL-terminated string
219  *
220  * @p: pointer to NUL-terminated string to count.
221  *
222  * Do not use this function unless the string length is known at
223  * compile-time. When @p is unterminated, this function may crash
224  * or return unexpected counts that could lead to memory content
225  * exposures. Prefer strnlen().
226  *
227  * Returns number of characters in @p (NOT including the final NUL).
228  *
229  */
230 #define strlen(p)							\
231 	__builtin_choose_expr(__is_constexpr(__builtin_strlen(p)),	\
232 		__builtin_strlen(p), __fortify_strlen(p))
233 __FORTIFY_INLINE __diagnose_as(__builtin_strlen, 1)
__fortify_strlen(const char * const POS p)234 __kernel_size_t __fortify_strlen(const char * const POS p)
235 {
236 	__kernel_size_t ret;
237 	size_t p_size = __member_size(p);
238 
239 	/* Give up if we don't know how large p is. */
240 	if (p_size == SIZE_MAX)
241 		return __underlying_strlen(p);
242 	ret = strnlen(p, p_size);
243 	if (p_size <= ret)
244 		fortify_panic(__func__);
245 	return ret;
246 }
247 
248 /* Defined after fortified strlen() to reuse it. */
249 extern size_t __real_strlcpy(char *, const char *, size_t) __RENAME(strlcpy);
250 /**
251  * strlcpy - Copy a string into another string buffer
252  *
253  * @p: pointer to destination of copy
254  * @q: pointer to NUL-terminated source string to copy
255  * @size: maximum number of bytes to write at @p
256  *
257  * If strlen(@q) >= @size, the copy of @q will be truncated at
258  * @size - 1 bytes. @p will always be NUL-terminated.
259  *
260  * Do not use this function. While FORTIFY_SOURCE tries to avoid
261  * over-reads when calculating strlen(@q), it is still possible.
262  * Prefer strscpy(), though note its different return values for
263  * detecting truncation.
264  *
265  * Returns total number of bytes written to @p, including terminating NUL.
266  *
267  */
strlcpy(char * const POS p,const char * const POS q,size_t size)268 __FORTIFY_INLINE size_t strlcpy(char * const POS p, const char * const POS q, size_t size)
269 {
270 	size_t p_size = __member_size(p);
271 	size_t q_size = __member_size(q);
272 	size_t q_len;	/* Full count of source string length. */
273 	size_t len;	/* Count of characters going into destination. */
274 
275 	if (p_size == SIZE_MAX && q_size == SIZE_MAX)
276 		return __real_strlcpy(p, q, size);
277 	q_len = strlen(q);
278 	len = (q_len >= size) ? size - 1 : q_len;
279 	if (__builtin_constant_p(size) && __builtin_constant_p(q_len) && size) {
280 		/* Write size is always larger than destination. */
281 		if (len >= p_size)
282 			__write_overflow();
283 	}
284 	if (size) {
285 		if (len >= p_size)
286 			fortify_panic(__func__);
287 		__underlying_memcpy(p, q, len);
288 		p[len] = '\0';
289 	}
290 	return q_len;
291 }
292 
293 /* Defined after fortified strnlen() to reuse it. */
294 extern ssize_t __real_strscpy(char *, const char *, size_t) __RENAME(strscpy);
295 /**
296  * strscpy - Copy a C-string into a sized buffer
297  *
298  * @p: Where to copy the string to
299  * @q: Where to copy the string from
300  * @size: Size of destination buffer
301  *
302  * Copy the source string @p, or as much of it as fits, into the destination
303  * @q buffer. The behavior is undefined if the string buffers overlap. The
304  * destination @p buffer is always NUL terminated, unless it's zero-sized.
305  *
306  * Preferred to strlcpy() since the API doesn't require reading memory
307  * from the source @q string beyond the specified @size bytes, and since
308  * the return value is easier to error-check than strlcpy()'s.
309  * In addition, the implementation is robust to the string changing out
310  * from underneath it, unlike the current strlcpy() implementation.
311  *
312  * Preferred to strncpy() since it always returns a valid string, and
313  * doesn't unnecessarily force the tail of the destination buffer to be
314  * zero padded. If padding is desired please use strscpy_pad().
315  *
316  * Returns the number of characters copied in @p (not including the
317  * trailing %NUL) or -E2BIG if @size is 0 or the copy of @q was truncated.
318  */
strscpy(char * const POS p,const char * const POS q,size_t size)319 __FORTIFY_INLINE ssize_t strscpy(char * const POS p, const char * const POS q, size_t size)
320 {
321 	size_t len;
322 	/* Use string size rather than possible enclosing struct size. */
323 	size_t p_size = __member_size(p);
324 	size_t q_size = __member_size(q);
325 
326 	/* If we cannot get size of p and q default to call strscpy. */
327 	if (p_size == SIZE_MAX && q_size == SIZE_MAX)
328 		return __real_strscpy(p, q, size);
329 
330 	/*
331 	 * If size can be known at compile time and is greater than
332 	 * p_size, generate a compile time write overflow error.
333 	 */
334 	if (__compiletime_lessthan(p_size, size))
335 		__write_overflow();
336 
337 	/* Short-circuit for compile-time known-safe lengths. */
338 	if (__compiletime_lessthan(p_size, SIZE_MAX)) {
339 		len = __compiletime_strlen(q);
340 
341 		if (len < SIZE_MAX && __compiletime_lessthan(len, size)) {
342 			__underlying_memcpy(p, q, len + 1);
343 			return len;
344 		}
345 	}
346 
347 	/*
348 	 * This call protects from read overflow, because len will default to q
349 	 * length if it smaller than size.
350 	 */
351 	len = strnlen(q, size);
352 	/*
353 	 * If len equals size, we will copy only size bytes which leads to
354 	 * -E2BIG being returned.
355 	 * Otherwise we will copy len + 1 because of the final '\O'.
356 	 */
357 	len = len == size ? size : len + 1;
358 
359 	/*
360 	 * Generate a runtime write overflow error if len is greater than
361 	 * p_size.
362 	 */
363 	if (len > p_size)
364 		fortify_panic(__func__);
365 
366 	/*
367 	 * We can now safely call vanilla strscpy because we are protected from:
368 	 * 1. Read overflow thanks to call to strnlen().
369 	 * 2. Write overflow thanks to above ifs.
370 	 */
371 	return __real_strscpy(p, q, len);
372 }
373 
374 /**
375  * strncat - Append a string to an existing string
376  *
377  * @p: pointer to NUL-terminated string to append to
378  * @q: pointer to source string to append from
379  * @count: Maximum bytes to read from @q
380  *
381  * Appends at most @count bytes from @q (stopping at the first
382  * NUL byte) after the NUL-terminated string at @p. @p will be
383  * NUL-terminated.
384  *
385  * Do not use this function. While FORTIFY_SOURCE tries to avoid
386  * read and write overflows, this is only possible when the sizes
387  * of @p and @q are known to the compiler. Prefer building the
388  * string with formatting, via scnprintf() or similar.
389  *
390  * Returns @p.
391  *
392  */
393 /* Defined after fortified strlen() and strnlen() to reuse them. */
394 __FORTIFY_INLINE __diagnose_as(__builtin_strncat, 1, 2, 3)
strncat(char * const POS p,const char * const POS q,__kernel_size_t count)395 char *strncat(char * const POS p, const char * const POS q, __kernel_size_t count)
396 {
397 	size_t p_len, copy_len;
398 	size_t p_size = __member_size(p);
399 	size_t q_size = __member_size(q);
400 
401 	if (p_size == SIZE_MAX && q_size == SIZE_MAX)
402 		return __underlying_strncat(p, q, count);
403 	p_len = strlen(p);
404 	copy_len = strnlen(q, count);
405 	if (p_size < p_len + copy_len + 1)
406 		fortify_panic(__func__);
407 	__underlying_memcpy(p + p_len, q, copy_len);
408 	p[p_len + copy_len] = '\0';
409 	return p;
410 }
411 
fortify_memset_chk(__kernel_size_t size,const size_t p_size,const size_t p_size_field)412 __FORTIFY_INLINE void fortify_memset_chk(__kernel_size_t size,
413 					 const size_t p_size,
414 					 const size_t p_size_field)
415 {
416 	if (__builtin_constant_p(size)) {
417 		/*
418 		 * Length argument is a constant expression, so we
419 		 * can perform compile-time bounds checking where
420 		 * buffer sizes are also known at compile time.
421 		 */
422 
423 		/* Error when size is larger than enclosing struct. */
424 		if (__compiletime_lessthan(p_size_field, p_size) &&
425 		    __compiletime_lessthan(p_size, size))
426 			__write_overflow();
427 
428 		/* Warn when write size is larger than dest field. */
429 		if (__compiletime_lessthan(p_size_field, size))
430 			__write_overflow_field(p_size_field, size);
431 	}
432 	/*
433 	 * At this point, length argument may not be a constant expression,
434 	 * so run-time bounds checking can be done where buffer sizes are
435 	 * known. (This is not an "else" because the above checks may only
436 	 * be compile-time warnings, and we want to still warn for run-time
437 	 * overflows.)
438 	 */
439 
440 	/*
441 	 * Always stop accesses beyond the struct that contains the
442 	 * field, when the buffer's remaining size is known.
443 	 * (The SIZE_MAX test is to optimize away checks where the buffer
444 	 * lengths are unknown.)
445 	 */
446 	if (p_size != SIZE_MAX && p_size < size)
447 		fortify_panic("memset");
448 }
449 
450 #define __fortify_memset_chk(p, c, size, p_size, p_size_field) ({	\
451 	size_t __fortify_size = (size_t)(size);				\
452 	fortify_memset_chk(__fortify_size, p_size, p_size_field),	\
453 	__underlying_memset(p, c, __fortify_size);			\
454 })
455 
456 /*
457  * __struct_size() vs __member_size() must be captured here to avoid
458  * evaluating argument side-effects further into the macro layers.
459  */
460 #ifndef CONFIG_KMSAN
461 #define memset(p, c, s) __fortify_memset_chk(p, c, s,			\
462 		__struct_size(p), __member_size(p))
463 #endif
464 
465 /*
466  * To make sure the compiler can enforce protection against buffer overflows,
467  * memcpy(), memmove(), and memset() must not be used beyond individual
468  * struct members. If you need to copy across multiple members, please use
469  * struct_group() to create a named mirror of an anonymous struct union.
470  * (e.g. see struct sk_buff.) Read overflow checking is currently only
471  * done when a write overflow is also present, or when building with W=1.
472  *
473  * Mitigation coverage matrix
474  *					Bounds checking at:
475  *					+-------+-------+-------+-------+
476  *					| Compile time  |   Run time    |
477  * memcpy() argument sizes:		| write | read  | write | read  |
478  *        dest     source   length      +-------+-------+-------+-------+
479  * memcpy(known,   known,   constant)	|   y   |   y   |  n/a  |  n/a  |
480  * memcpy(known,   unknown, constant)	|   y   |   n   |  n/a  |   V   |
481  * memcpy(known,   known,   dynamic)	|   n   |   n   |   B   |   B   |
482  * memcpy(known,   unknown, dynamic)	|   n   |   n   |   B   |   V   |
483  * memcpy(unknown, known,   constant)	|   n   |   y   |   V   |  n/a  |
484  * memcpy(unknown, unknown, constant)	|   n   |   n   |   V   |   V   |
485  * memcpy(unknown, known,   dynamic)	|   n   |   n   |   V   |   B   |
486  * memcpy(unknown, unknown, dynamic)	|   n   |   n   |   V   |   V   |
487  *					+-------+-------+-------+-------+
488  *
489  * y = perform deterministic compile-time bounds checking
490  * n = cannot perform deterministic compile-time bounds checking
491  * n/a = no run-time bounds checking needed since compile-time deterministic
492  * B = can perform run-time bounds checking (currently unimplemented)
493  * V = vulnerable to run-time overflow (will need refactoring to solve)
494  *
495  */
fortify_memcpy_chk(__kernel_size_t size,const size_t p_size,const size_t q_size,const size_t p_size_field,const size_t q_size_field,const char * func)496 __FORTIFY_INLINE bool fortify_memcpy_chk(__kernel_size_t size,
497 					 const size_t p_size,
498 					 const size_t q_size,
499 					 const size_t p_size_field,
500 					 const size_t q_size_field,
501 					 const char *func)
502 {
503 	if (__builtin_constant_p(size)) {
504 		/*
505 		 * Length argument is a constant expression, so we
506 		 * can perform compile-time bounds checking where
507 		 * buffer sizes are also known at compile time.
508 		 */
509 
510 		/* Error when size is larger than enclosing struct. */
511 		if (__compiletime_lessthan(p_size_field, p_size) &&
512 		    __compiletime_lessthan(p_size, size))
513 			__write_overflow();
514 		if (__compiletime_lessthan(q_size_field, q_size) &&
515 		    __compiletime_lessthan(q_size, size))
516 			__read_overflow2();
517 
518 		/* Warn when write size argument larger than dest field. */
519 		if (__compiletime_lessthan(p_size_field, size))
520 			__write_overflow_field(p_size_field, size);
521 		/*
522 		 * Warn for source field over-read when building with W=1
523 		 * or when an over-write happened, so both can be fixed at
524 		 * the same time.
525 		 */
526 		if ((IS_ENABLED(KBUILD_EXTRA_WARN1) ||
527 		     __compiletime_lessthan(p_size_field, size)) &&
528 		    __compiletime_lessthan(q_size_field, size))
529 			__read_overflow2_field(q_size_field, size);
530 	}
531 	/*
532 	 * At this point, length argument may not be a constant expression,
533 	 * so run-time bounds checking can be done where buffer sizes are
534 	 * known. (This is not an "else" because the above checks may only
535 	 * be compile-time warnings, and we want to still warn for run-time
536 	 * overflows.)
537 	 */
538 
539 	/*
540 	 * Always stop accesses beyond the struct that contains the
541 	 * field, when the buffer's remaining size is known.
542 	 * (The SIZE_MAX test is to optimize away checks where the buffer
543 	 * lengths are unknown.)
544 	 */
545 	if ((p_size != SIZE_MAX && p_size < size) ||
546 	    (q_size != SIZE_MAX && q_size < size))
547 		fortify_panic(func);
548 
549 	/*
550 	 * Warn when writing beyond destination field size.
551 	 *
552 	 * We must ignore p_size_field == 0 for existing 0-element
553 	 * fake flexible arrays, until they are all converted to
554 	 * proper flexible arrays.
555 	 *
556 	 * The implementation of __builtin_*object_size() behaves
557 	 * like sizeof() when not directly referencing a flexible
558 	 * array member, which means there will be many bounds checks
559 	 * that will appear at run-time, without a way for them to be
560 	 * detected at compile-time (as can be done when the destination
561 	 * is specifically the flexible array member).
562 	 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101832
563 	 */
564 	if (p_size_field != 0 && p_size_field != SIZE_MAX &&
565 	    p_size != p_size_field && p_size_field < size)
566 		return true;
567 
568 	return false;
569 }
570 
571 #define __fortify_memcpy_chk(p, q, size, p_size, q_size,		\
572 			     p_size_field, q_size_field, op) ({		\
573 	const size_t __fortify_size = (size_t)(size);			\
574 	const size_t __p_size = (p_size);				\
575 	const size_t __q_size = (q_size);				\
576 	const size_t __p_size_field = (p_size_field);			\
577 	const size_t __q_size_field = (q_size_field);			\
578 	WARN_ONCE(fortify_memcpy_chk(__fortify_size, __p_size,		\
579 				     __q_size, __p_size_field,		\
580 				     __q_size_field, #op),		\
581 		  #op ": detected field-spanning write (size %zu) of single %s (size %zu)\n", \
582 		  __fortify_size,					\
583 		  "field \"" #p "\" at " __FILE__ ":" __stringify(__LINE__), \
584 		  __p_size_field);					\
585 	__underlying_##op(p, q, __fortify_size);			\
586 })
587 
588 /*
589  * Notes about compile-time buffer size detection:
590  *
591  * With these types...
592  *
593  *	struct middle {
594  *		u16 a;
595  *		u8 middle_buf[16];
596  *		int b;
597  *	};
598  *	struct end {
599  *		u16 a;
600  *		u8 end_buf[16];
601  *	};
602  *	struct flex {
603  *		int a;
604  *		u8 flex_buf[];
605  *	};
606  *
607  *	void func(TYPE *ptr) { ... }
608  *
609  * Cases where destination size cannot be currently detected:
610  * - the size of ptr's object (seemingly by design, gcc & clang fail):
611  *	__builtin_object_size(ptr, 1) == SIZE_MAX
612  * - the size of flexible arrays in ptr's obj (by design, dynamic size):
613  *	__builtin_object_size(ptr->flex_buf, 1) == SIZE_MAX
614  * - the size of ANY array at the end of ptr's obj (gcc and clang bug):
615  *	__builtin_object_size(ptr->end_buf, 1) == SIZE_MAX
616  *	https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836
617  *
618  * Cases where destination size is currently detected:
619  * - the size of non-array members within ptr's object:
620  *	__builtin_object_size(ptr->a, 1) == 2
621  * - the size of non-flexible-array in the middle of ptr's obj:
622  *	__builtin_object_size(ptr->middle_buf, 1) == 16
623  *
624  */
625 
626 /*
627  * __struct_size() vs __member_size() must be captured here to avoid
628  * evaluating argument side-effects further into the macro layers.
629  */
630 #define memcpy(p, q, s)  __fortify_memcpy_chk(p, q, s,			\
631 		__struct_size(p), __struct_size(q),			\
632 		__member_size(p), __member_size(q),			\
633 		memcpy)
634 #define memmove(p, q, s)  __fortify_memcpy_chk(p, q, s,			\
635 		__struct_size(p), __struct_size(q),			\
636 		__member_size(p), __member_size(q),			\
637 		memmove)
638 
639 extern void *__real_memscan(void *, int, __kernel_size_t) __RENAME(memscan);
memscan(void * const POS0 p,int c,__kernel_size_t size)640 __FORTIFY_INLINE void *memscan(void * const POS0 p, int c, __kernel_size_t size)
641 {
642 	size_t p_size = __struct_size(p);
643 
644 	if (__compiletime_lessthan(p_size, size))
645 		__read_overflow();
646 	if (p_size < size)
647 		fortify_panic(__func__);
648 	return __real_memscan(p, c, size);
649 }
650 
651 __FORTIFY_INLINE __diagnose_as(__builtin_memcmp, 1, 2, 3)
memcmp(const void * const POS0 p,const void * const POS0 q,__kernel_size_t size)652 int memcmp(const void * const POS0 p, const void * const POS0 q, __kernel_size_t size)
653 {
654 	size_t p_size = __struct_size(p);
655 	size_t q_size = __struct_size(q);
656 
657 	if (__builtin_constant_p(size)) {
658 		if (__compiletime_lessthan(p_size, size))
659 			__read_overflow();
660 		if (__compiletime_lessthan(q_size, size))
661 			__read_overflow2();
662 	}
663 	if (p_size < size || q_size < size)
664 		fortify_panic(__func__);
665 	return __underlying_memcmp(p, q, size);
666 }
667 
668 __FORTIFY_INLINE __diagnose_as(__builtin_memchr, 1, 2, 3)
memchr(const void * const POS0 p,int c,__kernel_size_t size)669 void *memchr(const void * const POS0 p, int c, __kernel_size_t size)
670 {
671 	size_t p_size = __struct_size(p);
672 
673 	if (__compiletime_lessthan(p_size, size))
674 		__read_overflow();
675 	if (p_size < size)
676 		fortify_panic(__func__);
677 	return __underlying_memchr(p, c, size);
678 }
679 
680 void *__real_memchr_inv(const void *s, int c, size_t n) __RENAME(memchr_inv);
memchr_inv(const void * const POS0 p,int c,size_t size)681 __FORTIFY_INLINE void *memchr_inv(const void * const POS0 p, int c, size_t size)
682 {
683 	size_t p_size = __struct_size(p);
684 
685 	if (__compiletime_lessthan(p_size, size))
686 		__read_overflow();
687 	if (p_size < size)
688 		fortify_panic(__func__);
689 	return __real_memchr_inv(p, c, size);
690 }
691 
692 extern void *__real_kmemdup(const void *src, size_t len, gfp_t gfp) __RENAME(kmemdup)
693 								    __realloc_size(2);
kmemdup(const void * const POS0 p,size_t size,gfp_t gfp)694 __FORTIFY_INLINE void *kmemdup(const void * const POS0 p, size_t size, gfp_t gfp)
695 {
696 	size_t p_size = __struct_size(p);
697 
698 	if (__compiletime_lessthan(p_size, size))
699 		__read_overflow();
700 	if (p_size < size)
701 		fortify_panic(__func__);
702 	return __real_kmemdup(p, size, gfp);
703 }
704 
705 /**
706  * strcpy - Copy a string into another string buffer
707  *
708  * @p: pointer to destination of copy
709  * @q: pointer to NUL-terminated source string to copy
710  *
711  * Do not use this function. While FORTIFY_SOURCE tries to avoid
712  * overflows, this is only possible when the sizes of @q and @p are
713  * known to the compiler. Prefer strscpy(), though note its different
714  * return values for detecting truncation.
715  *
716  * Returns @p.
717  *
718  */
719 /* Defined after fortified strlen to reuse it. */
720 __FORTIFY_INLINE __diagnose_as(__builtin_strcpy, 1, 2)
strcpy(char * const POS p,const char * const POS q)721 char *strcpy(char * const POS p, const char * const POS q)
722 {
723 	size_t p_size = __member_size(p);
724 	size_t q_size = __member_size(q);
725 	size_t size;
726 
727 	/* If neither buffer size is known, immediately give up. */
728 	if (__builtin_constant_p(p_size) &&
729 	    __builtin_constant_p(q_size) &&
730 	    p_size == SIZE_MAX && q_size == SIZE_MAX)
731 		return __underlying_strcpy(p, q);
732 	size = strlen(q) + 1;
733 	/* Compile-time check for const size overflow. */
734 	if (__compiletime_lessthan(p_size, size))
735 		__write_overflow();
736 	/* Run-time check for dynamic size overflow. */
737 	if (p_size < size)
738 		fortify_panic(__func__);
739 	__underlying_memcpy(p, q, size);
740 	return p;
741 }
742 
743 /* Don't use these outside the FORITFY_SOURCE implementation */
744 #undef __underlying_memchr
745 #undef __underlying_memcmp
746 #undef __underlying_strcat
747 #undef __underlying_strcpy
748 #undef __underlying_strlen
749 #undef __underlying_strncat
750 #undef __underlying_strncpy
751 
752 #undef POS
753 #undef POS0
754 
755 #endif /* _LINUX_FORTIFY_STRING_H_ */
756