1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Scalability test comparing RCU vs other mechanisms
4 // for acquiring references on objects.
5 //
6 // Copyright (C) Google, 2020.
7 //
8 // Author: Joel Fernandes <joel@joelfernandes.org>
9
10 #define pr_fmt(fmt) fmt
11
12 #include <linux/atomic.h>
13 #include <linux/bitops.h>
14 #include <linux/completion.h>
15 #include <linux/cpu.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/kthread.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/notifier.h>
26 #include <linux/percpu.h>
27 #include <linux/rcupdate.h>
28 #include <linux/rcupdate_trace.h>
29 #include <linux/reboot.h>
30 #include <linux/sched.h>
31 #include <linux/spinlock.h>
32 #include <linux/smp.h>
33 #include <linux/stat.h>
34 #include <linux/srcu.h>
35 #include <linux/slab.h>
36 #include <linux/torture.h>
37 #include <linux/types.h>
38
39 #include "rcu.h"
40
41 #define SCALE_FLAG "-ref-scale: "
42
43 #define SCALEOUT(s, x...) \
44 pr_alert("%s" SCALE_FLAG s, scale_type, ## x)
45
46 #define VERBOSE_SCALEOUT(s, x...) \
47 do { \
48 if (verbose) \
49 pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x); \
50 } while (0)
51
52 static atomic_t verbose_batch_ctr;
53
54 #define VERBOSE_SCALEOUT_BATCH(s, x...) \
55 do { \
56 if (verbose && \
57 (verbose_batched <= 0 || \
58 !(atomic_inc_return(&verbose_batch_ctr) % verbose_batched))) { \
59 schedule_timeout_uninterruptible(1); \
60 pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x); \
61 } \
62 } while (0)
63
64 #define SCALEOUT_ERRSTRING(s, x...) pr_alert("%s" SCALE_FLAG "!!! " s "\n", scale_type, ## x)
65
66 MODULE_LICENSE("GPL");
67 MODULE_AUTHOR("Joel Fernandes (Google) <joel@joelfernandes.org>");
68
69 static char *scale_type = "rcu";
70 module_param(scale_type, charp, 0444);
71 MODULE_PARM_DESC(scale_type, "Type of test (rcu, srcu, refcnt, rwsem, rwlock.");
72
73 torture_param(int, verbose, 0, "Enable verbose debugging printk()s");
74 torture_param(int, verbose_batched, 0, "Batch verbose debugging printk()s");
75
76 // Wait until there are multiple CPUs before starting test.
77 torture_param(int, holdoff, IS_BUILTIN(CONFIG_RCU_REF_SCALE_TEST) ? 10 : 0,
78 "Holdoff time before test start (s)");
79 // Number of typesafe_lookup structures, that is, the degree of concurrency.
80 torture_param(long, lookup_instances, 0, "Number of typesafe_lookup structures.");
81 // Number of loops per experiment, all readers execute operations concurrently.
82 torture_param(long, loops, 10000, "Number of loops per experiment.");
83 // Number of readers, with -1 defaulting to about 75% of the CPUs.
84 torture_param(int, nreaders, -1, "Number of readers, -1 for 75% of CPUs.");
85 // Number of runs.
86 torture_param(int, nruns, 30, "Number of experiments to run.");
87 // Reader delay in nanoseconds, 0 for no delay.
88 torture_param(int, readdelay, 0, "Read-side delay in nanoseconds.");
89
90 #ifdef MODULE
91 # define REFSCALE_SHUTDOWN 0
92 #else
93 # define REFSCALE_SHUTDOWN 1
94 #endif
95
96 torture_param(bool, shutdown, REFSCALE_SHUTDOWN,
97 "Shutdown at end of scalability tests.");
98
99 struct reader_task {
100 struct task_struct *task;
101 int start_reader;
102 wait_queue_head_t wq;
103 u64 last_duration_ns;
104 };
105
106 static struct task_struct *shutdown_task;
107 static wait_queue_head_t shutdown_wq;
108
109 static struct task_struct *main_task;
110 static wait_queue_head_t main_wq;
111 static int shutdown_start;
112
113 static struct reader_task *reader_tasks;
114
115 // Number of readers that are part of the current experiment.
116 static atomic_t nreaders_exp;
117
118 // Use to wait for all threads to start.
119 static atomic_t n_init;
120 static atomic_t n_started;
121 static atomic_t n_warmedup;
122 static atomic_t n_cooleddown;
123
124 // Track which experiment is currently running.
125 static int exp_idx;
126
127 // Operations vector for selecting different types of tests.
128 struct ref_scale_ops {
129 bool (*init)(void);
130 void (*cleanup)(void);
131 void (*readsection)(const int nloops);
132 void (*delaysection)(const int nloops, const int udl, const int ndl);
133 const char *name;
134 };
135
136 static struct ref_scale_ops *cur_ops;
137
un_delay(const int udl,const int ndl)138 static void un_delay(const int udl, const int ndl)
139 {
140 if (udl)
141 udelay(udl);
142 if (ndl)
143 ndelay(ndl);
144 }
145
ref_rcu_read_section(const int nloops)146 static void ref_rcu_read_section(const int nloops)
147 {
148 int i;
149
150 for (i = nloops; i >= 0; i--) {
151 rcu_read_lock();
152 rcu_read_unlock();
153 }
154 }
155
ref_rcu_delay_section(const int nloops,const int udl,const int ndl)156 static void ref_rcu_delay_section(const int nloops, const int udl, const int ndl)
157 {
158 int i;
159
160 for (i = nloops; i >= 0; i--) {
161 rcu_read_lock();
162 un_delay(udl, ndl);
163 rcu_read_unlock();
164 }
165 }
166
rcu_sync_scale_init(void)167 static bool rcu_sync_scale_init(void)
168 {
169 return true;
170 }
171
172 static struct ref_scale_ops rcu_ops = {
173 .init = rcu_sync_scale_init,
174 .readsection = ref_rcu_read_section,
175 .delaysection = ref_rcu_delay_section,
176 .name = "rcu"
177 };
178
179 // Definitions for SRCU ref scale testing.
180 DEFINE_STATIC_SRCU(srcu_refctl_scale);
181 static struct srcu_struct *srcu_ctlp = &srcu_refctl_scale;
182
srcu_ref_scale_read_section(const int nloops)183 static void srcu_ref_scale_read_section(const int nloops)
184 {
185 int i;
186 int idx;
187
188 for (i = nloops; i >= 0; i--) {
189 idx = srcu_read_lock(srcu_ctlp);
190 srcu_read_unlock(srcu_ctlp, idx);
191 }
192 }
193
srcu_ref_scale_delay_section(const int nloops,const int udl,const int ndl)194 static void srcu_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
195 {
196 int i;
197 int idx;
198
199 for (i = nloops; i >= 0; i--) {
200 idx = srcu_read_lock(srcu_ctlp);
201 un_delay(udl, ndl);
202 srcu_read_unlock(srcu_ctlp, idx);
203 }
204 }
205
206 static struct ref_scale_ops srcu_ops = {
207 .init = rcu_sync_scale_init,
208 .readsection = srcu_ref_scale_read_section,
209 .delaysection = srcu_ref_scale_delay_section,
210 .name = "srcu"
211 };
212
213 #ifdef CONFIG_TASKS_RCU
214
215 // Definitions for RCU Tasks ref scale testing: Empty read markers.
216 // These definitions also work for RCU Rude readers.
rcu_tasks_ref_scale_read_section(const int nloops)217 static void rcu_tasks_ref_scale_read_section(const int nloops)
218 {
219 int i;
220
221 for (i = nloops; i >= 0; i--)
222 continue;
223 }
224
rcu_tasks_ref_scale_delay_section(const int nloops,const int udl,const int ndl)225 static void rcu_tasks_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
226 {
227 int i;
228
229 for (i = nloops; i >= 0; i--)
230 un_delay(udl, ndl);
231 }
232
233 static struct ref_scale_ops rcu_tasks_ops = {
234 .init = rcu_sync_scale_init,
235 .readsection = rcu_tasks_ref_scale_read_section,
236 .delaysection = rcu_tasks_ref_scale_delay_section,
237 .name = "rcu-tasks"
238 };
239
240 #define RCU_TASKS_OPS &rcu_tasks_ops,
241
242 #else // #ifdef CONFIG_TASKS_RCU
243
244 #define RCU_TASKS_OPS
245
246 #endif // #else // #ifdef CONFIG_TASKS_RCU
247
248 #ifdef CONFIG_TASKS_TRACE_RCU
249
250 // Definitions for RCU Tasks Trace ref scale testing.
rcu_trace_ref_scale_read_section(const int nloops)251 static void rcu_trace_ref_scale_read_section(const int nloops)
252 {
253 int i;
254
255 for (i = nloops; i >= 0; i--) {
256 rcu_read_lock_trace();
257 rcu_read_unlock_trace();
258 }
259 }
260
rcu_trace_ref_scale_delay_section(const int nloops,const int udl,const int ndl)261 static void rcu_trace_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
262 {
263 int i;
264
265 for (i = nloops; i >= 0; i--) {
266 rcu_read_lock_trace();
267 un_delay(udl, ndl);
268 rcu_read_unlock_trace();
269 }
270 }
271
272 static struct ref_scale_ops rcu_trace_ops = {
273 .init = rcu_sync_scale_init,
274 .readsection = rcu_trace_ref_scale_read_section,
275 .delaysection = rcu_trace_ref_scale_delay_section,
276 .name = "rcu-trace"
277 };
278
279 #define RCU_TRACE_OPS &rcu_trace_ops,
280
281 #else // #ifdef CONFIG_TASKS_TRACE_RCU
282
283 #define RCU_TRACE_OPS
284
285 #endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU
286
287 // Definitions for reference count
288 static atomic_t refcnt;
289
ref_refcnt_section(const int nloops)290 static void ref_refcnt_section(const int nloops)
291 {
292 int i;
293
294 for (i = nloops; i >= 0; i--) {
295 atomic_inc(&refcnt);
296 atomic_dec(&refcnt);
297 }
298 }
299
ref_refcnt_delay_section(const int nloops,const int udl,const int ndl)300 static void ref_refcnt_delay_section(const int nloops, const int udl, const int ndl)
301 {
302 int i;
303
304 for (i = nloops; i >= 0; i--) {
305 atomic_inc(&refcnt);
306 un_delay(udl, ndl);
307 atomic_dec(&refcnt);
308 }
309 }
310
311 static struct ref_scale_ops refcnt_ops = {
312 .init = rcu_sync_scale_init,
313 .readsection = ref_refcnt_section,
314 .delaysection = ref_refcnt_delay_section,
315 .name = "refcnt"
316 };
317
318 // Definitions for rwlock
319 static rwlock_t test_rwlock;
320
ref_rwlock_init(void)321 static bool ref_rwlock_init(void)
322 {
323 rwlock_init(&test_rwlock);
324 return true;
325 }
326
ref_rwlock_section(const int nloops)327 static void ref_rwlock_section(const int nloops)
328 {
329 int i;
330
331 for (i = nloops; i >= 0; i--) {
332 read_lock(&test_rwlock);
333 read_unlock(&test_rwlock);
334 }
335 }
336
ref_rwlock_delay_section(const int nloops,const int udl,const int ndl)337 static void ref_rwlock_delay_section(const int nloops, const int udl, const int ndl)
338 {
339 int i;
340
341 for (i = nloops; i >= 0; i--) {
342 read_lock(&test_rwlock);
343 un_delay(udl, ndl);
344 read_unlock(&test_rwlock);
345 }
346 }
347
348 static struct ref_scale_ops rwlock_ops = {
349 .init = ref_rwlock_init,
350 .readsection = ref_rwlock_section,
351 .delaysection = ref_rwlock_delay_section,
352 .name = "rwlock"
353 };
354
355 // Definitions for rwsem
356 static struct rw_semaphore test_rwsem;
357
ref_rwsem_init(void)358 static bool ref_rwsem_init(void)
359 {
360 init_rwsem(&test_rwsem);
361 return true;
362 }
363
ref_rwsem_section(const int nloops)364 static void ref_rwsem_section(const int nloops)
365 {
366 int i;
367
368 for (i = nloops; i >= 0; i--) {
369 down_read(&test_rwsem);
370 up_read(&test_rwsem);
371 }
372 }
373
ref_rwsem_delay_section(const int nloops,const int udl,const int ndl)374 static void ref_rwsem_delay_section(const int nloops, const int udl, const int ndl)
375 {
376 int i;
377
378 for (i = nloops; i >= 0; i--) {
379 down_read(&test_rwsem);
380 un_delay(udl, ndl);
381 up_read(&test_rwsem);
382 }
383 }
384
385 static struct ref_scale_ops rwsem_ops = {
386 .init = ref_rwsem_init,
387 .readsection = ref_rwsem_section,
388 .delaysection = ref_rwsem_delay_section,
389 .name = "rwsem"
390 };
391
392 // Definitions for global spinlock
393 static DEFINE_RAW_SPINLOCK(test_lock);
394
ref_lock_section(const int nloops)395 static void ref_lock_section(const int nloops)
396 {
397 int i;
398
399 preempt_disable();
400 for (i = nloops; i >= 0; i--) {
401 raw_spin_lock(&test_lock);
402 raw_spin_unlock(&test_lock);
403 }
404 preempt_enable();
405 }
406
ref_lock_delay_section(const int nloops,const int udl,const int ndl)407 static void ref_lock_delay_section(const int nloops, const int udl, const int ndl)
408 {
409 int i;
410
411 preempt_disable();
412 for (i = nloops; i >= 0; i--) {
413 raw_spin_lock(&test_lock);
414 un_delay(udl, ndl);
415 raw_spin_unlock(&test_lock);
416 }
417 preempt_enable();
418 }
419
420 static struct ref_scale_ops lock_ops = {
421 .readsection = ref_lock_section,
422 .delaysection = ref_lock_delay_section,
423 .name = "lock"
424 };
425
426 // Definitions for global irq-save spinlock
427
ref_lock_irq_section(const int nloops)428 static void ref_lock_irq_section(const int nloops)
429 {
430 unsigned long flags;
431 int i;
432
433 preempt_disable();
434 for (i = nloops; i >= 0; i--) {
435 raw_spin_lock_irqsave(&test_lock, flags);
436 raw_spin_unlock_irqrestore(&test_lock, flags);
437 }
438 preempt_enable();
439 }
440
ref_lock_irq_delay_section(const int nloops,const int udl,const int ndl)441 static void ref_lock_irq_delay_section(const int nloops, const int udl, const int ndl)
442 {
443 unsigned long flags;
444 int i;
445
446 preempt_disable();
447 for (i = nloops; i >= 0; i--) {
448 raw_spin_lock_irqsave(&test_lock, flags);
449 un_delay(udl, ndl);
450 raw_spin_unlock_irqrestore(&test_lock, flags);
451 }
452 preempt_enable();
453 }
454
455 static struct ref_scale_ops lock_irq_ops = {
456 .readsection = ref_lock_irq_section,
457 .delaysection = ref_lock_irq_delay_section,
458 .name = "lock-irq"
459 };
460
461 // Definitions acquire-release.
462 static DEFINE_PER_CPU(unsigned long, test_acqrel);
463
ref_acqrel_section(const int nloops)464 static void ref_acqrel_section(const int nloops)
465 {
466 unsigned long x;
467 int i;
468
469 preempt_disable();
470 for (i = nloops; i >= 0; i--) {
471 x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
472 smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
473 }
474 preempt_enable();
475 }
476
ref_acqrel_delay_section(const int nloops,const int udl,const int ndl)477 static void ref_acqrel_delay_section(const int nloops, const int udl, const int ndl)
478 {
479 unsigned long x;
480 int i;
481
482 preempt_disable();
483 for (i = nloops; i >= 0; i--) {
484 x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
485 un_delay(udl, ndl);
486 smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
487 }
488 preempt_enable();
489 }
490
491 static struct ref_scale_ops acqrel_ops = {
492 .readsection = ref_acqrel_section,
493 .delaysection = ref_acqrel_delay_section,
494 .name = "acqrel"
495 };
496
497 static volatile u64 stopopts;
498
ref_clock_section(const int nloops)499 static void ref_clock_section(const int nloops)
500 {
501 u64 x = 0;
502 int i;
503
504 preempt_disable();
505 for (i = nloops; i >= 0; i--)
506 x += ktime_get_real_fast_ns();
507 preempt_enable();
508 stopopts = x;
509 }
510
ref_clock_delay_section(const int nloops,const int udl,const int ndl)511 static void ref_clock_delay_section(const int nloops, const int udl, const int ndl)
512 {
513 u64 x = 0;
514 int i;
515
516 preempt_disable();
517 for (i = nloops; i >= 0; i--) {
518 x += ktime_get_real_fast_ns();
519 un_delay(udl, ndl);
520 }
521 preempt_enable();
522 stopopts = x;
523 }
524
525 static struct ref_scale_ops clock_ops = {
526 .readsection = ref_clock_section,
527 .delaysection = ref_clock_delay_section,
528 .name = "clock"
529 };
530
531 ////////////////////////////////////////////////////////////////////////
532 //
533 // Methods leveraging SLAB_TYPESAFE_BY_RCU.
534 //
535
536 // Item to look up in a typesafe manner. Array of pointers to these.
537 struct refscale_typesafe {
538 atomic_t rts_refctr; // Used by all flavors
539 spinlock_t rts_lock;
540 seqlock_t rts_seqlock;
541 unsigned int a;
542 unsigned int b;
543 };
544
545 static struct kmem_cache *typesafe_kmem_cachep;
546 static struct refscale_typesafe **rtsarray;
547 static long rtsarray_size;
548 static DEFINE_TORTURE_RANDOM_PERCPU(refscale_rand);
549 static bool (*rts_acquire)(struct refscale_typesafe *rtsp, unsigned int *start);
550 static bool (*rts_release)(struct refscale_typesafe *rtsp, unsigned int start);
551
552 // Conditionally acquire an explicit in-structure reference count.
typesafe_ref_acquire(struct refscale_typesafe * rtsp,unsigned int * start)553 static bool typesafe_ref_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
554 {
555 return atomic_inc_not_zero(&rtsp->rts_refctr);
556 }
557
558 // Unconditionally release an explicit in-structure reference count.
typesafe_ref_release(struct refscale_typesafe * rtsp,unsigned int start)559 static bool typesafe_ref_release(struct refscale_typesafe *rtsp, unsigned int start)
560 {
561 if (!atomic_dec_return(&rtsp->rts_refctr)) {
562 WRITE_ONCE(rtsp->a, rtsp->a + 1);
563 kmem_cache_free(typesafe_kmem_cachep, rtsp);
564 }
565 return true;
566 }
567
568 // Unconditionally acquire an explicit in-structure spinlock.
typesafe_lock_acquire(struct refscale_typesafe * rtsp,unsigned int * start)569 static bool typesafe_lock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
570 {
571 spin_lock(&rtsp->rts_lock);
572 return true;
573 }
574
575 // Unconditionally release an explicit in-structure spinlock.
typesafe_lock_release(struct refscale_typesafe * rtsp,unsigned int start)576 static bool typesafe_lock_release(struct refscale_typesafe *rtsp, unsigned int start)
577 {
578 spin_unlock(&rtsp->rts_lock);
579 return true;
580 }
581
582 // Unconditionally acquire an explicit in-structure sequence lock.
typesafe_seqlock_acquire(struct refscale_typesafe * rtsp,unsigned int * start)583 static bool typesafe_seqlock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
584 {
585 *start = read_seqbegin(&rtsp->rts_seqlock);
586 return true;
587 }
588
589 // Conditionally release an explicit in-structure sequence lock. Return
590 // true if this release was successful, that is, if no retry is required.
typesafe_seqlock_release(struct refscale_typesafe * rtsp,unsigned int start)591 static bool typesafe_seqlock_release(struct refscale_typesafe *rtsp, unsigned int start)
592 {
593 return !read_seqretry(&rtsp->rts_seqlock, start);
594 }
595
596 // Do a read-side critical section with the specified delay in
597 // microseconds and nanoseconds inserted so as to increase probability
598 // of failure.
typesafe_delay_section(const int nloops,const int udl,const int ndl)599 static void typesafe_delay_section(const int nloops, const int udl, const int ndl)
600 {
601 unsigned int a;
602 unsigned int b;
603 int i;
604 long idx;
605 struct refscale_typesafe *rtsp;
606 unsigned int start;
607
608 for (i = nloops; i >= 0; i--) {
609 preempt_disable();
610 idx = torture_random(this_cpu_ptr(&refscale_rand)) % rtsarray_size;
611 preempt_enable();
612 retry:
613 rcu_read_lock();
614 rtsp = rcu_dereference(rtsarray[idx]);
615 a = READ_ONCE(rtsp->a);
616 if (!rts_acquire(rtsp, &start)) {
617 rcu_read_unlock();
618 goto retry;
619 }
620 if (a != READ_ONCE(rtsp->a)) {
621 (void)rts_release(rtsp, start);
622 rcu_read_unlock();
623 goto retry;
624 }
625 un_delay(udl, ndl);
626 // Remember, seqlock read-side release can fail.
627 if (!rts_release(rtsp, start)) {
628 rcu_read_unlock();
629 goto retry;
630 }
631 b = READ_ONCE(rtsp->a);
632 WARN_ONCE(a != b, "Re-read of ->a changed from %u to %u.\n", a, b);
633 b = rtsp->b;
634 rcu_read_unlock();
635 WARN_ON_ONCE(a * a != b);
636 }
637 }
638
639 // Because the acquisition and release methods are expensive, there
640 // is no point in optimizing away the un_delay() function's two checks.
641 // Thus simply define typesafe_read_section() as a simple wrapper around
642 // typesafe_delay_section().
typesafe_read_section(const int nloops)643 static void typesafe_read_section(const int nloops)
644 {
645 typesafe_delay_section(nloops, 0, 0);
646 }
647
648 // Allocate and initialize one refscale_typesafe structure.
typesafe_alloc_one(void)649 static struct refscale_typesafe *typesafe_alloc_one(void)
650 {
651 struct refscale_typesafe *rtsp;
652
653 rtsp = kmem_cache_alloc(typesafe_kmem_cachep, GFP_KERNEL);
654 if (!rtsp)
655 return NULL;
656 atomic_set(&rtsp->rts_refctr, 1);
657 WRITE_ONCE(rtsp->a, rtsp->a + 1);
658 WRITE_ONCE(rtsp->b, rtsp->a * rtsp->a);
659 return rtsp;
660 }
661
662 // Slab-allocator constructor for refscale_typesafe structures created
663 // out of a new slab of system memory.
refscale_typesafe_ctor(void * rtsp_in)664 static void refscale_typesafe_ctor(void *rtsp_in)
665 {
666 struct refscale_typesafe *rtsp = rtsp_in;
667
668 spin_lock_init(&rtsp->rts_lock);
669 seqlock_init(&rtsp->rts_seqlock);
670 preempt_disable();
671 rtsp->a = torture_random(this_cpu_ptr(&refscale_rand));
672 preempt_enable();
673 }
674
675 static struct ref_scale_ops typesafe_ref_ops;
676 static struct ref_scale_ops typesafe_lock_ops;
677 static struct ref_scale_ops typesafe_seqlock_ops;
678
679 // Initialize for a typesafe test.
typesafe_init(void)680 static bool typesafe_init(void)
681 {
682 long idx;
683 long si = lookup_instances;
684
685 typesafe_kmem_cachep = kmem_cache_create("refscale_typesafe",
686 sizeof(struct refscale_typesafe), sizeof(void *),
687 SLAB_TYPESAFE_BY_RCU, refscale_typesafe_ctor);
688 if (!typesafe_kmem_cachep)
689 return false;
690 if (si < 0)
691 si = -si * nr_cpu_ids;
692 else if (si == 0)
693 si = nr_cpu_ids;
694 rtsarray_size = si;
695 rtsarray = kcalloc(si, sizeof(*rtsarray), GFP_KERNEL);
696 if (!rtsarray)
697 return false;
698 for (idx = 0; idx < rtsarray_size; idx++) {
699 rtsarray[idx] = typesafe_alloc_one();
700 if (!rtsarray[idx])
701 return false;
702 }
703 if (cur_ops == &typesafe_ref_ops) {
704 rts_acquire = typesafe_ref_acquire;
705 rts_release = typesafe_ref_release;
706 } else if (cur_ops == &typesafe_lock_ops) {
707 rts_acquire = typesafe_lock_acquire;
708 rts_release = typesafe_lock_release;
709 } else if (cur_ops == &typesafe_seqlock_ops) {
710 rts_acquire = typesafe_seqlock_acquire;
711 rts_release = typesafe_seqlock_release;
712 } else {
713 WARN_ON_ONCE(1);
714 return false;
715 }
716 return true;
717 }
718
719 // Clean up after a typesafe test.
typesafe_cleanup(void)720 static void typesafe_cleanup(void)
721 {
722 long idx;
723
724 if (rtsarray) {
725 for (idx = 0; idx < rtsarray_size; idx++)
726 kmem_cache_free(typesafe_kmem_cachep, rtsarray[idx]);
727 kfree(rtsarray);
728 rtsarray = NULL;
729 rtsarray_size = 0;
730 }
731 kmem_cache_destroy(typesafe_kmem_cachep);
732 typesafe_kmem_cachep = NULL;
733 rts_acquire = NULL;
734 rts_release = NULL;
735 }
736
737 // The typesafe_init() function distinguishes these structures by address.
738 static struct ref_scale_ops typesafe_ref_ops = {
739 .init = typesafe_init,
740 .cleanup = typesafe_cleanup,
741 .readsection = typesafe_read_section,
742 .delaysection = typesafe_delay_section,
743 .name = "typesafe_ref"
744 };
745
746 static struct ref_scale_ops typesafe_lock_ops = {
747 .init = typesafe_init,
748 .cleanup = typesafe_cleanup,
749 .readsection = typesafe_read_section,
750 .delaysection = typesafe_delay_section,
751 .name = "typesafe_lock"
752 };
753
754 static struct ref_scale_ops typesafe_seqlock_ops = {
755 .init = typesafe_init,
756 .cleanup = typesafe_cleanup,
757 .readsection = typesafe_read_section,
758 .delaysection = typesafe_delay_section,
759 .name = "typesafe_seqlock"
760 };
761
rcu_scale_one_reader(void)762 static void rcu_scale_one_reader(void)
763 {
764 if (readdelay <= 0)
765 cur_ops->readsection(loops);
766 else
767 cur_ops->delaysection(loops, readdelay / 1000, readdelay % 1000);
768 }
769
770 // Reader kthread. Repeatedly does empty RCU read-side
771 // critical section, minimizing update-side interference.
772 static int
ref_scale_reader(void * arg)773 ref_scale_reader(void *arg)
774 {
775 unsigned long flags;
776 long me = (long)arg;
777 struct reader_task *rt = &(reader_tasks[me]);
778 u64 start;
779 s64 duration;
780
781 VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: task started", me);
782 WARN_ON_ONCE(set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)));
783 set_user_nice(current, MAX_NICE);
784 atomic_inc(&n_init);
785 if (holdoff)
786 schedule_timeout_interruptible(holdoff * HZ);
787 repeat:
788 VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: waiting to start next experiment on cpu %d", me, raw_smp_processor_id());
789
790 // Wait for signal that this reader can start.
791 wait_event(rt->wq, (atomic_read(&nreaders_exp) && smp_load_acquire(&rt->start_reader)) ||
792 torture_must_stop());
793
794 if (torture_must_stop())
795 goto end;
796
797 // Make sure that the CPU is affinitized appropriately during testing.
798 WARN_ON_ONCE(raw_smp_processor_id() != me);
799
800 WRITE_ONCE(rt->start_reader, 0);
801 if (!atomic_dec_return(&n_started))
802 while (atomic_read_acquire(&n_started))
803 cpu_relax();
804
805 VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d started", me, exp_idx);
806
807
808 // To reduce noise, do an initial cache-warming invocation, check
809 // in, and then keep warming until everyone has checked in.
810 rcu_scale_one_reader();
811 if (!atomic_dec_return(&n_warmedup))
812 while (atomic_read_acquire(&n_warmedup))
813 rcu_scale_one_reader();
814 // Also keep interrupts disabled. This also has the effect
815 // of preventing entries into slow path for rcu_read_unlock().
816 local_irq_save(flags);
817 start = ktime_get_mono_fast_ns();
818
819 rcu_scale_one_reader();
820
821 duration = ktime_get_mono_fast_ns() - start;
822 local_irq_restore(flags);
823
824 rt->last_duration_ns = WARN_ON_ONCE(duration < 0) ? 0 : duration;
825 // To reduce runtime-skew noise, do maintain-load invocations until
826 // everyone is done.
827 if (!atomic_dec_return(&n_cooleddown))
828 while (atomic_read_acquire(&n_cooleddown))
829 rcu_scale_one_reader();
830
831 if (atomic_dec_and_test(&nreaders_exp))
832 wake_up(&main_wq);
833
834 VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d ended, (readers remaining=%d)",
835 me, exp_idx, atomic_read(&nreaders_exp));
836
837 if (!torture_must_stop())
838 goto repeat;
839 end:
840 torture_kthread_stopping("ref_scale_reader");
841 return 0;
842 }
843
reset_readers(void)844 static void reset_readers(void)
845 {
846 int i;
847 struct reader_task *rt;
848
849 for (i = 0; i < nreaders; i++) {
850 rt = &(reader_tasks[i]);
851
852 rt->last_duration_ns = 0;
853 }
854 }
855
856 // Print the results of each reader and return the sum of all their durations.
process_durations(int n)857 static u64 process_durations(int n)
858 {
859 int i;
860 struct reader_task *rt;
861 char buf1[64];
862 char *buf;
863 u64 sum = 0;
864
865 buf = kmalloc(800 + 64, GFP_KERNEL);
866 if (!buf)
867 return 0;
868 buf[0] = 0;
869 sprintf(buf, "Experiment #%d (Format: <THREAD-NUM>:<Total loop time in ns>)",
870 exp_idx);
871
872 for (i = 0; i < n && !torture_must_stop(); i++) {
873 rt = &(reader_tasks[i]);
874 sprintf(buf1, "%d: %llu\t", i, rt->last_duration_ns);
875
876 if (i % 5 == 0)
877 strcat(buf, "\n");
878 if (strlen(buf) >= 800) {
879 pr_alert("%s", buf);
880 buf[0] = 0;
881 }
882 strcat(buf, buf1);
883
884 sum += rt->last_duration_ns;
885 }
886 pr_alert("%s\n", buf);
887
888 kfree(buf);
889 return sum;
890 }
891
892 // The main_func is the main orchestrator, it performs a bunch of
893 // experiments. For every experiment, it orders all the readers
894 // involved to start and waits for them to finish the experiment. It
895 // then reads their timestamps and starts the next experiment. Each
896 // experiment progresses from 1 concurrent reader to N of them at which
897 // point all the timestamps are printed.
main_func(void * arg)898 static int main_func(void *arg)
899 {
900 int exp, r;
901 char buf1[64];
902 char *buf;
903 u64 *result_avg;
904
905 set_cpus_allowed_ptr(current, cpumask_of(nreaders % nr_cpu_ids));
906 set_user_nice(current, MAX_NICE);
907
908 VERBOSE_SCALEOUT("main_func task started");
909 result_avg = kzalloc(nruns * sizeof(*result_avg), GFP_KERNEL);
910 buf = kzalloc(800 + 64, GFP_KERNEL);
911 if (!result_avg || !buf) {
912 SCALEOUT_ERRSTRING("out of memory");
913 goto oom_exit;
914 }
915 if (holdoff)
916 schedule_timeout_interruptible(holdoff * HZ);
917
918 // Wait for all threads to start.
919 atomic_inc(&n_init);
920 while (atomic_read(&n_init) < nreaders + 1)
921 schedule_timeout_uninterruptible(1);
922
923 // Start exp readers up per experiment
924 for (exp = 0; exp < nruns && !torture_must_stop(); exp++) {
925 if (torture_must_stop())
926 goto end;
927
928 reset_readers();
929 atomic_set(&nreaders_exp, nreaders);
930 atomic_set(&n_started, nreaders);
931 atomic_set(&n_warmedup, nreaders);
932 atomic_set(&n_cooleddown, nreaders);
933
934 exp_idx = exp;
935
936 for (r = 0; r < nreaders; r++) {
937 smp_store_release(&reader_tasks[r].start_reader, 1);
938 wake_up(&reader_tasks[r].wq);
939 }
940
941 VERBOSE_SCALEOUT("main_func: experiment started, waiting for %d readers",
942 nreaders);
943
944 wait_event(main_wq,
945 !atomic_read(&nreaders_exp) || torture_must_stop());
946
947 VERBOSE_SCALEOUT("main_func: experiment ended");
948
949 if (torture_must_stop())
950 goto end;
951
952 result_avg[exp] = div_u64(1000 * process_durations(nreaders), nreaders * loops);
953 }
954
955 // Print the average of all experiments
956 SCALEOUT("END OF TEST. Calculating average duration per loop (nanoseconds)...\n");
957
958 pr_alert("Runs\tTime(ns)\n");
959 for (exp = 0; exp < nruns; exp++) {
960 u64 avg;
961 u32 rem;
962
963 avg = div_u64_rem(result_avg[exp], 1000, &rem);
964 sprintf(buf1, "%d\t%llu.%03u\n", exp + 1, avg, rem);
965 strcat(buf, buf1);
966 if (strlen(buf) >= 800) {
967 pr_alert("%s", buf);
968 buf[0] = 0;
969 }
970 }
971
972 pr_alert("%s", buf);
973
974 oom_exit:
975 // This will shutdown everything including us.
976 if (shutdown) {
977 shutdown_start = 1;
978 wake_up(&shutdown_wq);
979 }
980
981 // Wait for torture to stop us
982 while (!torture_must_stop())
983 schedule_timeout_uninterruptible(1);
984
985 end:
986 torture_kthread_stopping("main_func");
987 kfree(result_avg);
988 kfree(buf);
989 return 0;
990 }
991
992 static void
ref_scale_print_module_parms(struct ref_scale_ops * cur_ops,const char * tag)993 ref_scale_print_module_parms(struct ref_scale_ops *cur_ops, const char *tag)
994 {
995 pr_alert("%s" SCALE_FLAG
996 "--- %s: verbose=%d shutdown=%d holdoff=%d loops=%ld nreaders=%d nruns=%d readdelay=%d\n", scale_type, tag,
997 verbose, shutdown, holdoff, loops, nreaders, nruns, readdelay);
998 }
999
1000 static void
ref_scale_cleanup(void)1001 ref_scale_cleanup(void)
1002 {
1003 int i;
1004
1005 if (torture_cleanup_begin())
1006 return;
1007
1008 if (!cur_ops) {
1009 torture_cleanup_end();
1010 return;
1011 }
1012
1013 if (reader_tasks) {
1014 for (i = 0; i < nreaders; i++)
1015 torture_stop_kthread("ref_scale_reader",
1016 reader_tasks[i].task);
1017 }
1018 kfree(reader_tasks);
1019
1020 torture_stop_kthread("main_task", main_task);
1021 kfree(main_task);
1022
1023 // Do scale-type-specific cleanup operations.
1024 if (cur_ops->cleanup != NULL)
1025 cur_ops->cleanup();
1026
1027 torture_cleanup_end();
1028 }
1029
1030 // Shutdown kthread. Just waits to be awakened, then shuts down system.
1031 static int
ref_scale_shutdown(void * arg)1032 ref_scale_shutdown(void *arg)
1033 {
1034 wait_event(shutdown_wq, shutdown_start);
1035
1036 smp_mb(); // Wake before output.
1037 ref_scale_cleanup();
1038 kernel_power_off();
1039
1040 return -EINVAL;
1041 }
1042
1043 static int __init
ref_scale_init(void)1044 ref_scale_init(void)
1045 {
1046 long i;
1047 int firsterr = 0;
1048 static struct ref_scale_ops *scale_ops[] = {
1049 &rcu_ops, &srcu_ops, RCU_TRACE_OPS RCU_TASKS_OPS &refcnt_ops, &rwlock_ops,
1050 &rwsem_ops, &lock_ops, &lock_irq_ops, &acqrel_ops, &clock_ops,
1051 &typesafe_ref_ops, &typesafe_lock_ops, &typesafe_seqlock_ops,
1052 };
1053
1054 if (!torture_init_begin(scale_type, verbose))
1055 return -EBUSY;
1056
1057 for (i = 0; i < ARRAY_SIZE(scale_ops); i++) {
1058 cur_ops = scale_ops[i];
1059 if (strcmp(scale_type, cur_ops->name) == 0)
1060 break;
1061 }
1062 if (i == ARRAY_SIZE(scale_ops)) {
1063 pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type);
1064 pr_alert("rcu-scale types:");
1065 for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
1066 pr_cont(" %s", scale_ops[i]->name);
1067 pr_cont("\n");
1068 firsterr = -EINVAL;
1069 cur_ops = NULL;
1070 goto unwind;
1071 }
1072 if (cur_ops->init)
1073 if (!cur_ops->init()) {
1074 firsterr = -EUCLEAN;
1075 goto unwind;
1076 }
1077
1078 ref_scale_print_module_parms(cur_ops, "Start of test");
1079
1080 // Shutdown task
1081 if (shutdown) {
1082 init_waitqueue_head(&shutdown_wq);
1083 firsterr = torture_create_kthread(ref_scale_shutdown, NULL,
1084 shutdown_task);
1085 if (torture_init_error(firsterr))
1086 goto unwind;
1087 schedule_timeout_uninterruptible(1);
1088 }
1089
1090 // Reader tasks (default to ~75% of online CPUs).
1091 if (nreaders < 0)
1092 nreaders = (num_online_cpus() >> 1) + (num_online_cpus() >> 2);
1093 if (WARN_ONCE(loops <= 0, "%s: loops = %ld, adjusted to 1\n", __func__, loops))
1094 loops = 1;
1095 if (WARN_ONCE(nreaders <= 0, "%s: nreaders = %d, adjusted to 1\n", __func__, nreaders))
1096 nreaders = 1;
1097 if (WARN_ONCE(nruns <= 0, "%s: nruns = %d, adjusted to 1\n", __func__, nruns))
1098 nruns = 1;
1099 reader_tasks = kcalloc(nreaders, sizeof(reader_tasks[0]),
1100 GFP_KERNEL);
1101 if (!reader_tasks) {
1102 SCALEOUT_ERRSTRING("out of memory");
1103 firsterr = -ENOMEM;
1104 goto unwind;
1105 }
1106
1107 VERBOSE_SCALEOUT("Starting %d reader threads", nreaders);
1108
1109 for (i = 0; i < nreaders; i++) {
1110 firsterr = torture_create_kthread(ref_scale_reader, (void *)i,
1111 reader_tasks[i].task);
1112 if (torture_init_error(firsterr))
1113 goto unwind;
1114
1115 init_waitqueue_head(&(reader_tasks[i].wq));
1116 }
1117
1118 // Main Task
1119 init_waitqueue_head(&main_wq);
1120 firsterr = torture_create_kthread(main_func, NULL, main_task);
1121 if (torture_init_error(firsterr))
1122 goto unwind;
1123
1124 torture_init_end();
1125 return 0;
1126
1127 unwind:
1128 torture_init_end();
1129 ref_scale_cleanup();
1130 if (shutdown) {
1131 WARN_ON(!IS_MODULE(CONFIG_RCU_REF_SCALE_TEST));
1132 kernel_power_off();
1133 }
1134 return firsterr;
1135 }
1136
1137 module_init(ref_scale_init);
1138 module_exit(ref_scale_cleanup);
1139