1  /*
2   * Public API and common code for kernel->userspace relay file support.
3   *
4   * See Documentation/filesystems/relay.rst for an overview.
5   *
6   * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7   * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8   *
9   * Moved to kernel/relay.c by Paul Mundt, 2006.
10   * November 2006 - CPU hotplug support by Mathieu Desnoyers
11   * 	(mathieu.desnoyers@polymtl.ca)
12   *
13   * This file is released under the GPL.
14   */
15  #include <linux/errno.h>
16  #include <linux/stddef.h>
17  #include <linux/slab.h>
18  #include <linux/export.h>
19  #include <linux/string.h>
20  #include <linux/relay.h>
21  #include <linux/vmalloc.h>
22  #include <linux/mm.h>
23  #include <linux/cpu.h>
24  #include <linux/splice.h>
25  
26  /* list of open channels, for cpu hotplug */
27  static DEFINE_MUTEX(relay_channels_mutex);
28  static LIST_HEAD(relay_channels);
29  
30  /*
31   * fault() vm_op implementation for relay file mapping.
32   */
relay_buf_fault(struct vm_fault * vmf)33  static vm_fault_t relay_buf_fault(struct vm_fault *vmf)
34  {
35  	struct page *page;
36  	struct rchan_buf *buf = vmf->vma->vm_private_data;
37  	pgoff_t pgoff = vmf->pgoff;
38  
39  	if (!buf)
40  		return VM_FAULT_OOM;
41  
42  	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
43  	if (!page)
44  		return VM_FAULT_SIGBUS;
45  	get_page(page);
46  	vmf->page = page;
47  
48  	return 0;
49  }
50  
51  /*
52   * vm_ops for relay file mappings.
53   */
54  static const struct vm_operations_struct relay_file_mmap_ops = {
55  	.fault = relay_buf_fault,
56  };
57  
58  /*
59   * allocate an array of pointers of struct page
60   */
relay_alloc_page_array(unsigned int n_pages)61  static struct page **relay_alloc_page_array(unsigned int n_pages)
62  {
63  	return kvcalloc(n_pages, sizeof(struct page *), GFP_KERNEL);
64  }
65  
66  /*
67   * free an array of pointers of struct page
68   */
relay_free_page_array(struct page ** array)69  static void relay_free_page_array(struct page **array)
70  {
71  	kvfree(array);
72  }
73  
74  /**
75   *	relay_mmap_buf: - mmap channel buffer to process address space
76   *	@buf: relay channel buffer
77   *	@vma: vm_area_struct describing memory to be mapped
78   *
79   *	Returns 0 if ok, negative on error
80   *
81   *	Caller should already have grabbed mmap_lock.
82   */
relay_mmap_buf(struct rchan_buf * buf,struct vm_area_struct * vma)83  static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
84  {
85  	unsigned long length = vma->vm_end - vma->vm_start;
86  
87  	if (!buf)
88  		return -EBADF;
89  
90  	if (length != (unsigned long)buf->chan->alloc_size)
91  		return -EINVAL;
92  
93  	vma->vm_ops = &relay_file_mmap_ops;
94  	vm_flags_set(vma, VM_DONTEXPAND);
95  	vma->vm_private_data = buf;
96  
97  	return 0;
98  }
99  
100  /**
101   *	relay_alloc_buf - allocate a channel buffer
102   *	@buf: the buffer struct
103   *	@size: total size of the buffer
104   *
105   *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
106   *	passed in size will get page aligned, if it isn't already.
107   */
relay_alloc_buf(struct rchan_buf * buf,size_t * size)108  static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
109  {
110  	void *mem;
111  	unsigned int i, j, n_pages;
112  
113  	*size = PAGE_ALIGN(*size);
114  	n_pages = *size >> PAGE_SHIFT;
115  
116  	buf->page_array = relay_alloc_page_array(n_pages);
117  	if (!buf->page_array)
118  		return NULL;
119  
120  	for (i = 0; i < n_pages; i++) {
121  		buf->page_array[i] = alloc_page(GFP_KERNEL);
122  		if (unlikely(!buf->page_array[i]))
123  			goto depopulate;
124  		set_page_private(buf->page_array[i], (unsigned long)buf);
125  	}
126  	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
127  	if (!mem)
128  		goto depopulate;
129  
130  	memset(mem, 0, *size);
131  	buf->page_count = n_pages;
132  	return mem;
133  
134  depopulate:
135  	for (j = 0; j < i; j++)
136  		__free_page(buf->page_array[j]);
137  	relay_free_page_array(buf->page_array);
138  	return NULL;
139  }
140  
141  /**
142   *	relay_create_buf - allocate and initialize a channel buffer
143   *	@chan: the relay channel
144   *
145   *	Returns channel buffer if successful, %NULL otherwise.
146   */
relay_create_buf(struct rchan * chan)147  static struct rchan_buf *relay_create_buf(struct rchan *chan)
148  {
149  	struct rchan_buf *buf;
150  
151  	if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t))
152  		return NULL;
153  
154  	buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
155  	if (!buf)
156  		return NULL;
157  	buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t),
158  				     GFP_KERNEL);
159  	if (!buf->padding)
160  		goto free_buf;
161  
162  	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
163  	if (!buf->start)
164  		goto free_buf;
165  
166  	buf->chan = chan;
167  	kref_get(&buf->chan->kref);
168  	return buf;
169  
170  free_buf:
171  	kfree(buf->padding);
172  	kfree(buf);
173  	return NULL;
174  }
175  
176  /**
177   *	relay_destroy_channel - free the channel struct
178   *	@kref: target kernel reference that contains the relay channel
179   *
180   *	Should only be called from kref_put().
181   */
relay_destroy_channel(struct kref * kref)182  static void relay_destroy_channel(struct kref *kref)
183  {
184  	struct rchan *chan = container_of(kref, struct rchan, kref);
185  	free_percpu(chan->buf);
186  	kfree(chan);
187  }
188  
189  /**
190   *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
191   *	@buf: the buffer struct
192   */
relay_destroy_buf(struct rchan_buf * buf)193  static void relay_destroy_buf(struct rchan_buf *buf)
194  {
195  	struct rchan *chan = buf->chan;
196  	unsigned int i;
197  
198  	if (likely(buf->start)) {
199  		vunmap(buf->start);
200  		for (i = 0; i < buf->page_count; i++)
201  			__free_page(buf->page_array[i]);
202  		relay_free_page_array(buf->page_array);
203  	}
204  	*per_cpu_ptr(chan->buf, buf->cpu) = NULL;
205  	kfree(buf->padding);
206  	kfree(buf);
207  	kref_put(&chan->kref, relay_destroy_channel);
208  }
209  
210  /**
211   *	relay_remove_buf - remove a channel buffer
212   *	@kref: target kernel reference that contains the relay buffer
213   *
214   *	Removes the file from the filesystem, which also frees the
215   *	rchan_buf_struct and the channel buffer.  Should only be called from
216   *	kref_put().
217   */
relay_remove_buf(struct kref * kref)218  static void relay_remove_buf(struct kref *kref)
219  {
220  	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
221  	relay_destroy_buf(buf);
222  }
223  
224  /**
225   *	relay_buf_empty - boolean, is the channel buffer empty?
226   *	@buf: channel buffer
227   *
228   *	Returns 1 if the buffer is empty, 0 otherwise.
229   */
relay_buf_empty(struct rchan_buf * buf)230  static int relay_buf_empty(struct rchan_buf *buf)
231  {
232  	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
233  }
234  
235  /**
236   *	relay_buf_full - boolean, is the channel buffer full?
237   *	@buf: channel buffer
238   *
239   *	Returns 1 if the buffer is full, 0 otherwise.
240   */
relay_buf_full(struct rchan_buf * buf)241  int relay_buf_full(struct rchan_buf *buf)
242  {
243  	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
244  	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
245  }
246  EXPORT_SYMBOL_GPL(relay_buf_full);
247  
248  /*
249   * High-level relay kernel API and associated functions.
250   */
251  
relay_subbuf_start(struct rchan_buf * buf,void * subbuf,void * prev_subbuf,size_t prev_padding)252  static int relay_subbuf_start(struct rchan_buf *buf, void *subbuf,
253  			      void *prev_subbuf, size_t prev_padding)
254  {
255  	if (!buf->chan->cb->subbuf_start)
256  		return !relay_buf_full(buf);
257  
258  	return buf->chan->cb->subbuf_start(buf, subbuf,
259  					   prev_subbuf, prev_padding);
260  }
261  
262  /**
263   *	wakeup_readers - wake up readers waiting on a channel
264   *	@work: contains the channel buffer
265   *
266   *	This is the function used to defer reader waking
267   */
wakeup_readers(struct irq_work * work)268  static void wakeup_readers(struct irq_work *work)
269  {
270  	struct rchan_buf *buf;
271  
272  	buf = container_of(work, struct rchan_buf, wakeup_work);
273  	wake_up_interruptible(&buf->read_wait);
274  }
275  
276  /**
277   *	__relay_reset - reset a channel buffer
278   *	@buf: the channel buffer
279   *	@init: 1 if this is a first-time initialization
280   *
281   *	See relay_reset() for description of effect.
282   */
__relay_reset(struct rchan_buf * buf,unsigned int init)283  static void __relay_reset(struct rchan_buf *buf, unsigned int init)
284  {
285  	size_t i;
286  
287  	if (init) {
288  		init_waitqueue_head(&buf->read_wait);
289  		kref_init(&buf->kref);
290  		init_irq_work(&buf->wakeup_work, wakeup_readers);
291  	} else {
292  		irq_work_sync(&buf->wakeup_work);
293  	}
294  
295  	buf->subbufs_produced = 0;
296  	buf->subbufs_consumed = 0;
297  	buf->bytes_consumed = 0;
298  	buf->finalized = 0;
299  	buf->data = buf->start;
300  	buf->offset = 0;
301  
302  	for (i = 0; i < buf->chan->n_subbufs; i++)
303  		buf->padding[i] = 0;
304  
305  	relay_subbuf_start(buf, buf->data, NULL, 0);
306  }
307  
308  /**
309   *	relay_reset - reset the channel
310   *	@chan: the channel
311   *
312   *	This has the effect of erasing all data from all channel buffers
313   *	and restarting the channel in its initial state.  The buffers
314   *	are not freed, so any mappings are still in effect.
315   *
316   *	NOTE. Care should be taken that the channel isn't actually
317   *	being used by anything when this call is made.
318   */
relay_reset(struct rchan * chan)319  void relay_reset(struct rchan *chan)
320  {
321  	struct rchan_buf *buf;
322  	unsigned int i;
323  
324  	if (!chan)
325  		return;
326  
327  	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
328  		__relay_reset(buf, 0);
329  		return;
330  	}
331  
332  	mutex_lock(&relay_channels_mutex);
333  	for_each_possible_cpu(i)
334  		if ((buf = *per_cpu_ptr(chan->buf, i)))
335  			__relay_reset(buf, 0);
336  	mutex_unlock(&relay_channels_mutex);
337  }
338  EXPORT_SYMBOL_GPL(relay_reset);
339  
relay_set_buf_dentry(struct rchan_buf * buf,struct dentry * dentry)340  static inline void relay_set_buf_dentry(struct rchan_buf *buf,
341  					struct dentry *dentry)
342  {
343  	buf->dentry = dentry;
344  	d_inode(buf->dentry)->i_size = buf->early_bytes;
345  }
346  
relay_create_buf_file(struct rchan * chan,struct rchan_buf * buf,unsigned int cpu)347  static struct dentry *relay_create_buf_file(struct rchan *chan,
348  					    struct rchan_buf *buf,
349  					    unsigned int cpu)
350  {
351  	struct dentry *dentry;
352  	char *tmpname;
353  
354  	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
355  	if (!tmpname)
356  		return NULL;
357  	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
358  
359  	/* Create file in fs */
360  	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
361  					   S_IRUSR, buf,
362  					   &chan->is_global);
363  	if (IS_ERR(dentry))
364  		dentry = NULL;
365  
366  	kfree(tmpname);
367  
368  	return dentry;
369  }
370  
371  /*
372   *	relay_open_buf - create a new relay channel buffer
373   *
374   *	used by relay_open() and CPU hotplug.
375   */
relay_open_buf(struct rchan * chan,unsigned int cpu)376  static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
377  {
378   	struct rchan_buf *buf = NULL;
379  	struct dentry *dentry;
380  
381   	if (chan->is_global)
382  		return *per_cpu_ptr(chan->buf, 0);
383  
384  	buf = relay_create_buf(chan);
385  	if (!buf)
386  		return NULL;
387  
388  	if (chan->has_base_filename) {
389  		dentry = relay_create_buf_file(chan, buf, cpu);
390  		if (!dentry)
391  			goto free_buf;
392  		relay_set_buf_dentry(buf, dentry);
393  	} else {
394  		/* Only retrieve global info, nothing more, nothing less */
395  		dentry = chan->cb->create_buf_file(NULL, NULL,
396  						   S_IRUSR, buf,
397  						   &chan->is_global);
398  		if (IS_ERR_OR_NULL(dentry))
399  			goto free_buf;
400  	}
401  
402   	buf->cpu = cpu;
403   	__relay_reset(buf, 1);
404  
405   	if(chan->is_global) {
406  		*per_cpu_ptr(chan->buf, 0) = buf;
407   		buf->cpu = 0;
408    	}
409  
410  	return buf;
411  
412  free_buf:
413   	relay_destroy_buf(buf);
414  	return NULL;
415  }
416  
417  /**
418   *	relay_close_buf - close a channel buffer
419   *	@buf: channel buffer
420   *
421   *	Marks the buffer finalized and restores the default callbacks.
422   *	The channel buffer and channel buffer data structure are then freed
423   *	automatically when the last reference is given up.
424   */
relay_close_buf(struct rchan_buf * buf)425  static void relay_close_buf(struct rchan_buf *buf)
426  {
427  	buf->finalized = 1;
428  	irq_work_sync(&buf->wakeup_work);
429  	buf->chan->cb->remove_buf_file(buf->dentry);
430  	kref_put(&buf->kref, relay_remove_buf);
431  }
432  
relay_prepare_cpu(unsigned int cpu)433  int relay_prepare_cpu(unsigned int cpu)
434  {
435  	struct rchan *chan;
436  	struct rchan_buf *buf;
437  
438  	mutex_lock(&relay_channels_mutex);
439  	list_for_each_entry(chan, &relay_channels, list) {
440  		if (*per_cpu_ptr(chan->buf, cpu))
441  			continue;
442  		buf = relay_open_buf(chan, cpu);
443  		if (!buf) {
444  			pr_err("relay: cpu %d buffer creation failed\n", cpu);
445  			mutex_unlock(&relay_channels_mutex);
446  			return -ENOMEM;
447  		}
448  		*per_cpu_ptr(chan->buf, cpu) = buf;
449  	}
450  	mutex_unlock(&relay_channels_mutex);
451  	return 0;
452  }
453  
454  /**
455   *	relay_open - create a new relay channel
456   *	@base_filename: base name of files to create, %NULL for buffering only
457   *	@parent: dentry of parent directory, %NULL for root directory or buffer
458   *	@subbuf_size: size of sub-buffers
459   *	@n_subbufs: number of sub-buffers
460   *	@cb: client callback functions
461   *	@private_data: user-defined data
462   *
463   *	Returns channel pointer if successful, %NULL otherwise.
464   *
465   *	Creates a channel buffer for each cpu using the sizes and
466   *	attributes specified.  The created channel buffer files
467   *	will be named base_filename0...base_filenameN-1.  File
468   *	permissions will be %S_IRUSR.
469   *
470   *	If opening a buffer (@parent = NULL) that you later wish to register
471   *	in a filesystem, call relay_late_setup_files() once the @parent dentry
472   *	is available.
473   */
relay_open(const char * base_filename,struct dentry * parent,size_t subbuf_size,size_t n_subbufs,const struct rchan_callbacks * cb,void * private_data)474  struct rchan *relay_open(const char *base_filename,
475  			 struct dentry *parent,
476  			 size_t subbuf_size,
477  			 size_t n_subbufs,
478  			 const struct rchan_callbacks *cb,
479  			 void *private_data)
480  {
481  	unsigned int i;
482  	struct rchan *chan;
483  	struct rchan_buf *buf;
484  
485  	if (!(subbuf_size && n_subbufs))
486  		return NULL;
487  	if (subbuf_size > UINT_MAX / n_subbufs)
488  		return NULL;
489  	if (!cb || !cb->create_buf_file || !cb->remove_buf_file)
490  		return NULL;
491  
492  	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
493  	if (!chan)
494  		return NULL;
495  
496  	chan->buf = alloc_percpu(struct rchan_buf *);
497  	if (!chan->buf) {
498  		kfree(chan);
499  		return NULL;
500  	}
501  
502  	chan->version = RELAYFS_CHANNEL_VERSION;
503  	chan->n_subbufs = n_subbufs;
504  	chan->subbuf_size = subbuf_size;
505  	chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
506  	chan->parent = parent;
507  	chan->private_data = private_data;
508  	if (base_filename) {
509  		chan->has_base_filename = 1;
510  		strscpy(chan->base_filename, base_filename, NAME_MAX);
511  	}
512  	chan->cb = cb;
513  	kref_init(&chan->kref);
514  
515  	mutex_lock(&relay_channels_mutex);
516  	for_each_online_cpu(i) {
517  		buf = relay_open_buf(chan, i);
518  		if (!buf)
519  			goto free_bufs;
520  		*per_cpu_ptr(chan->buf, i) = buf;
521  	}
522  	list_add(&chan->list, &relay_channels);
523  	mutex_unlock(&relay_channels_mutex);
524  
525  	return chan;
526  
527  free_bufs:
528  	for_each_possible_cpu(i) {
529  		if ((buf = *per_cpu_ptr(chan->buf, i)))
530  			relay_close_buf(buf);
531  	}
532  
533  	kref_put(&chan->kref, relay_destroy_channel);
534  	mutex_unlock(&relay_channels_mutex);
535  	return NULL;
536  }
537  EXPORT_SYMBOL_GPL(relay_open);
538  
539  struct rchan_percpu_buf_dispatcher {
540  	struct rchan_buf *buf;
541  	struct dentry *dentry;
542  };
543  
544  /* Called in atomic context. */
__relay_set_buf_dentry(void * info)545  static void __relay_set_buf_dentry(void *info)
546  {
547  	struct rchan_percpu_buf_dispatcher *p = info;
548  
549  	relay_set_buf_dentry(p->buf, p->dentry);
550  }
551  
552  /**
553   *	relay_late_setup_files - triggers file creation
554   *	@chan: channel to operate on
555   *	@base_filename: base name of files to create
556   *	@parent: dentry of parent directory, %NULL for root directory
557   *
558   *	Returns 0 if successful, non-zero otherwise.
559   *
560   *	Use to setup files for a previously buffer-only channel created
561   *	by relay_open() with a NULL parent dentry.
562   *
563   *	For example, this is useful for perfomring early tracing in kernel,
564   *	before VFS is up and then exposing the early results once the dentry
565   *	is available.
566   */
relay_late_setup_files(struct rchan * chan,const char * base_filename,struct dentry * parent)567  int relay_late_setup_files(struct rchan *chan,
568  			   const char *base_filename,
569  			   struct dentry *parent)
570  {
571  	int err = 0;
572  	unsigned int i, curr_cpu;
573  	unsigned long flags;
574  	struct dentry *dentry;
575  	struct rchan_buf *buf;
576  	struct rchan_percpu_buf_dispatcher disp;
577  
578  	if (!chan || !base_filename)
579  		return -EINVAL;
580  
581  	strscpy(chan->base_filename, base_filename, NAME_MAX);
582  
583  	mutex_lock(&relay_channels_mutex);
584  	/* Is chan already set up? */
585  	if (unlikely(chan->has_base_filename)) {
586  		mutex_unlock(&relay_channels_mutex);
587  		return -EEXIST;
588  	}
589  	chan->has_base_filename = 1;
590  	chan->parent = parent;
591  
592  	if (chan->is_global) {
593  		err = -EINVAL;
594  		buf = *per_cpu_ptr(chan->buf, 0);
595  		if (!WARN_ON_ONCE(!buf)) {
596  			dentry = relay_create_buf_file(chan, buf, 0);
597  			if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
598  				relay_set_buf_dentry(buf, dentry);
599  				err = 0;
600  			}
601  		}
602  		mutex_unlock(&relay_channels_mutex);
603  		return err;
604  	}
605  
606  	curr_cpu = get_cpu();
607  	/*
608  	 * The CPU hotplug notifier ran before us and created buffers with
609  	 * no files associated. So it's safe to call relay_setup_buf_file()
610  	 * on all currently online CPUs.
611  	 */
612  	for_each_online_cpu(i) {
613  		buf = *per_cpu_ptr(chan->buf, i);
614  		if (unlikely(!buf)) {
615  			WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
616  			err = -EINVAL;
617  			break;
618  		}
619  
620  		dentry = relay_create_buf_file(chan, buf, i);
621  		if (unlikely(!dentry)) {
622  			err = -EINVAL;
623  			break;
624  		}
625  
626  		if (curr_cpu == i) {
627  			local_irq_save(flags);
628  			relay_set_buf_dentry(buf, dentry);
629  			local_irq_restore(flags);
630  		} else {
631  			disp.buf = buf;
632  			disp.dentry = dentry;
633  			smp_mb();
634  			/* relay_channels_mutex must be held, so wait. */
635  			err = smp_call_function_single(i,
636  						       __relay_set_buf_dentry,
637  						       &disp, 1);
638  		}
639  		if (unlikely(err))
640  			break;
641  	}
642  	put_cpu();
643  	mutex_unlock(&relay_channels_mutex);
644  
645  	return err;
646  }
647  EXPORT_SYMBOL_GPL(relay_late_setup_files);
648  
649  /**
650   *	relay_switch_subbuf - switch to a new sub-buffer
651   *	@buf: channel buffer
652   *	@length: size of current event
653   *
654   *	Returns either the length passed in or 0 if full.
655   *
656   *	Performs sub-buffer-switch tasks such as invoking callbacks,
657   *	updating padding counts, waking up readers, etc.
658   */
relay_switch_subbuf(struct rchan_buf * buf,size_t length)659  size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
660  {
661  	void *old, *new;
662  	size_t old_subbuf, new_subbuf;
663  
664  	if (unlikely(length > buf->chan->subbuf_size))
665  		goto toobig;
666  
667  	if (buf->offset != buf->chan->subbuf_size + 1) {
668  		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
669  		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
670  		buf->padding[old_subbuf] = buf->prev_padding;
671  		buf->subbufs_produced++;
672  		if (buf->dentry)
673  			d_inode(buf->dentry)->i_size +=
674  				buf->chan->subbuf_size -
675  				buf->padding[old_subbuf];
676  		else
677  			buf->early_bytes += buf->chan->subbuf_size -
678  					    buf->padding[old_subbuf];
679  		smp_mb();
680  		if (waitqueue_active(&buf->read_wait)) {
681  			/*
682  			 * Calling wake_up_interruptible() from here
683  			 * will deadlock if we happen to be logging
684  			 * from the scheduler (trying to re-grab
685  			 * rq->lock), so defer it.
686  			 */
687  			irq_work_queue(&buf->wakeup_work);
688  		}
689  	}
690  
691  	old = buf->data;
692  	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
693  	new = buf->start + new_subbuf * buf->chan->subbuf_size;
694  	buf->offset = 0;
695  	if (!relay_subbuf_start(buf, new, old, buf->prev_padding)) {
696  		buf->offset = buf->chan->subbuf_size + 1;
697  		return 0;
698  	}
699  	buf->data = new;
700  	buf->padding[new_subbuf] = 0;
701  
702  	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
703  		goto toobig;
704  
705  	return length;
706  
707  toobig:
708  	buf->chan->last_toobig = length;
709  	return 0;
710  }
711  EXPORT_SYMBOL_GPL(relay_switch_subbuf);
712  
713  /**
714   *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
715   *	@chan: the channel
716   *	@cpu: the cpu associated with the channel buffer to update
717   *	@subbufs_consumed: number of sub-buffers to add to current buf's count
718   *
719   *	Adds to the channel buffer's consumed sub-buffer count.
720   *	subbufs_consumed should be the number of sub-buffers newly consumed,
721   *	not the total consumed.
722   *
723   *	NOTE. Kernel clients don't need to call this function if the channel
724   *	mode is 'overwrite'.
725   */
relay_subbufs_consumed(struct rchan * chan,unsigned int cpu,size_t subbufs_consumed)726  void relay_subbufs_consumed(struct rchan *chan,
727  			    unsigned int cpu,
728  			    size_t subbufs_consumed)
729  {
730  	struct rchan_buf *buf;
731  
732  	if (!chan || cpu >= NR_CPUS)
733  		return;
734  
735  	buf = *per_cpu_ptr(chan->buf, cpu);
736  	if (!buf || subbufs_consumed > chan->n_subbufs)
737  		return;
738  
739  	if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
740  		buf->subbufs_consumed = buf->subbufs_produced;
741  	else
742  		buf->subbufs_consumed += subbufs_consumed;
743  }
744  EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
745  
746  /**
747   *	relay_close - close the channel
748   *	@chan: the channel
749   *
750   *	Closes all channel buffers and frees the channel.
751   */
relay_close(struct rchan * chan)752  void relay_close(struct rchan *chan)
753  {
754  	struct rchan_buf *buf;
755  	unsigned int i;
756  
757  	if (!chan)
758  		return;
759  
760  	mutex_lock(&relay_channels_mutex);
761  	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
762  		relay_close_buf(buf);
763  	else
764  		for_each_possible_cpu(i)
765  			if ((buf = *per_cpu_ptr(chan->buf, i)))
766  				relay_close_buf(buf);
767  
768  	if (chan->last_toobig)
769  		printk(KERN_WARNING "relay: one or more items not logged "
770  		       "[item size (%zd) > sub-buffer size (%zd)]\n",
771  		       chan->last_toobig, chan->subbuf_size);
772  
773  	list_del(&chan->list);
774  	kref_put(&chan->kref, relay_destroy_channel);
775  	mutex_unlock(&relay_channels_mutex);
776  }
777  EXPORT_SYMBOL_GPL(relay_close);
778  
779  /**
780   *	relay_flush - close the channel
781   *	@chan: the channel
782   *
783   *	Flushes all channel buffers, i.e. forces buffer switch.
784   */
relay_flush(struct rchan * chan)785  void relay_flush(struct rchan *chan)
786  {
787  	struct rchan_buf *buf;
788  	unsigned int i;
789  
790  	if (!chan)
791  		return;
792  
793  	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
794  		relay_switch_subbuf(buf, 0);
795  		return;
796  	}
797  
798  	mutex_lock(&relay_channels_mutex);
799  	for_each_possible_cpu(i)
800  		if ((buf = *per_cpu_ptr(chan->buf, i)))
801  			relay_switch_subbuf(buf, 0);
802  	mutex_unlock(&relay_channels_mutex);
803  }
804  EXPORT_SYMBOL_GPL(relay_flush);
805  
806  /**
807   *	relay_file_open - open file op for relay files
808   *	@inode: the inode
809   *	@filp: the file
810   *
811   *	Increments the channel buffer refcount.
812   */
relay_file_open(struct inode * inode,struct file * filp)813  static int relay_file_open(struct inode *inode, struct file *filp)
814  {
815  	struct rchan_buf *buf = inode->i_private;
816  	kref_get(&buf->kref);
817  	filp->private_data = buf;
818  
819  	return nonseekable_open(inode, filp);
820  }
821  
822  /**
823   *	relay_file_mmap - mmap file op for relay files
824   *	@filp: the file
825   *	@vma: the vma describing what to map
826   *
827   *	Calls upon relay_mmap_buf() to map the file into user space.
828   */
relay_file_mmap(struct file * filp,struct vm_area_struct * vma)829  static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
830  {
831  	struct rchan_buf *buf = filp->private_data;
832  	return relay_mmap_buf(buf, vma);
833  }
834  
835  /**
836   *	relay_file_poll - poll file op for relay files
837   *	@filp: the file
838   *	@wait: poll table
839   *
840   *	Poll implemention.
841   */
relay_file_poll(struct file * filp,poll_table * wait)842  static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
843  {
844  	__poll_t mask = 0;
845  	struct rchan_buf *buf = filp->private_data;
846  
847  	if (buf->finalized)
848  		return EPOLLERR;
849  
850  	if (filp->f_mode & FMODE_READ) {
851  		poll_wait(filp, &buf->read_wait, wait);
852  		if (!relay_buf_empty(buf))
853  			mask |= EPOLLIN | EPOLLRDNORM;
854  	}
855  
856  	return mask;
857  }
858  
859  /**
860   *	relay_file_release - release file op for relay files
861   *	@inode: the inode
862   *	@filp: the file
863   *
864   *	Decrements the channel refcount, as the filesystem is
865   *	no longer using it.
866   */
relay_file_release(struct inode * inode,struct file * filp)867  static int relay_file_release(struct inode *inode, struct file *filp)
868  {
869  	struct rchan_buf *buf = filp->private_data;
870  	kref_put(&buf->kref, relay_remove_buf);
871  
872  	return 0;
873  }
874  
875  /*
876   *	relay_file_read_consume - update the consumed count for the buffer
877   */
relay_file_read_consume(struct rchan_buf * buf,size_t read_pos,size_t bytes_consumed)878  static void relay_file_read_consume(struct rchan_buf *buf,
879  				    size_t read_pos,
880  				    size_t bytes_consumed)
881  {
882  	size_t subbuf_size = buf->chan->subbuf_size;
883  	size_t n_subbufs = buf->chan->n_subbufs;
884  	size_t read_subbuf;
885  
886  	if (buf->subbufs_produced == buf->subbufs_consumed &&
887  	    buf->offset == buf->bytes_consumed)
888  		return;
889  
890  	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
891  		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
892  		buf->bytes_consumed = 0;
893  	}
894  
895  	buf->bytes_consumed += bytes_consumed;
896  	if (!read_pos)
897  		read_subbuf = buf->subbufs_consumed % n_subbufs;
898  	else
899  		read_subbuf = read_pos / buf->chan->subbuf_size;
900  	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
901  		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
902  		    (buf->offset == subbuf_size))
903  			return;
904  		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
905  		buf->bytes_consumed = 0;
906  	}
907  }
908  
909  /*
910   *	relay_file_read_avail - boolean, are there unconsumed bytes available?
911   */
relay_file_read_avail(struct rchan_buf * buf)912  static int relay_file_read_avail(struct rchan_buf *buf)
913  {
914  	size_t subbuf_size = buf->chan->subbuf_size;
915  	size_t n_subbufs = buf->chan->n_subbufs;
916  	size_t produced = buf->subbufs_produced;
917  	size_t consumed;
918  
919  	relay_file_read_consume(buf, 0, 0);
920  
921  	consumed = buf->subbufs_consumed;
922  
923  	if (unlikely(buf->offset > subbuf_size)) {
924  		if (produced == consumed)
925  			return 0;
926  		return 1;
927  	}
928  
929  	if (unlikely(produced - consumed >= n_subbufs)) {
930  		consumed = produced - n_subbufs + 1;
931  		buf->subbufs_consumed = consumed;
932  		buf->bytes_consumed = 0;
933  	}
934  
935  	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
936  	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
937  
938  	if (consumed > produced)
939  		produced += n_subbufs * subbuf_size;
940  
941  	if (consumed == produced) {
942  		if (buf->offset == subbuf_size &&
943  		    buf->subbufs_produced > buf->subbufs_consumed)
944  			return 1;
945  		return 0;
946  	}
947  
948  	return 1;
949  }
950  
951  /**
952   *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
953   *	@read_pos: file read position
954   *	@buf: relay channel buffer
955   */
relay_file_read_subbuf_avail(size_t read_pos,struct rchan_buf * buf)956  static size_t relay_file_read_subbuf_avail(size_t read_pos,
957  					   struct rchan_buf *buf)
958  {
959  	size_t padding, avail = 0;
960  	size_t read_subbuf, read_offset, write_subbuf, write_offset;
961  	size_t subbuf_size = buf->chan->subbuf_size;
962  
963  	write_subbuf = (buf->data - buf->start) / subbuf_size;
964  	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
965  	read_subbuf = read_pos / subbuf_size;
966  	read_offset = read_pos % subbuf_size;
967  	padding = buf->padding[read_subbuf];
968  
969  	if (read_subbuf == write_subbuf) {
970  		if (read_offset + padding < write_offset)
971  			avail = write_offset - (read_offset + padding);
972  	} else
973  		avail = (subbuf_size - padding) - read_offset;
974  
975  	return avail;
976  }
977  
978  /**
979   *	relay_file_read_start_pos - find the first available byte to read
980   *	@buf: relay channel buffer
981   *
982   *	If the read_pos is in the middle of padding, return the
983   *	position of the first actually available byte, otherwise
984   *	return the original value.
985   */
relay_file_read_start_pos(struct rchan_buf * buf)986  static size_t relay_file_read_start_pos(struct rchan_buf *buf)
987  {
988  	size_t read_subbuf, padding, padding_start, padding_end;
989  	size_t subbuf_size = buf->chan->subbuf_size;
990  	size_t n_subbufs = buf->chan->n_subbufs;
991  	size_t consumed = buf->subbufs_consumed % n_subbufs;
992  	size_t read_pos = consumed * subbuf_size + buf->bytes_consumed;
993  
994  	read_subbuf = read_pos / subbuf_size;
995  	padding = buf->padding[read_subbuf];
996  	padding_start = (read_subbuf + 1) * subbuf_size - padding;
997  	padding_end = (read_subbuf + 1) * subbuf_size;
998  	if (read_pos >= padding_start && read_pos < padding_end) {
999  		read_subbuf = (read_subbuf + 1) % n_subbufs;
1000  		read_pos = read_subbuf * subbuf_size;
1001  	}
1002  
1003  	return read_pos;
1004  }
1005  
1006  /**
1007   *	relay_file_read_end_pos - return the new read position
1008   *	@read_pos: file read position
1009   *	@buf: relay channel buffer
1010   *	@count: number of bytes to be read
1011   */
relay_file_read_end_pos(struct rchan_buf * buf,size_t read_pos,size_t count)1012  static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1013  				      size_t read_pos,
1014  				      size_t count)
1015  {
1016  	size_t read_subbuf, padding, end_pos;
1017  	size_t subbuf_size = buf->chan->subbuf_size;
1018  	size_t n_subbufs = buf->chan->n_subbufs;
1019  
1020  	read_subbuf = read_pos / subbuf_size;
1021  	padding = buf->padding[read_subbuf];
1022  	if (read_pos % subbuf_size + count + padding == subbuf_size)
1023  		end_pos = (read_subbuf + 1) * subbuf_size;
1024  	else
1025  		end_pos = read_pos + count;
1026  	if (end_pos >= subbuf_size * n_subbufs)
1027  		end_pos = 0;
1028  
1029  	return end_pos;
1030  }
1031  
relay_file_read(struct file * filp,char __user * buffer,size_t count,loff_t * ppos)1032  static ssize_t relay_file_read(struct file *filp,
1033  			       char __user *buffer,
1034  			       size_t count,
1035  			       loff_t *ppos)
1036  {
1037  	struct rchan_buf *buf = filp->private_data;
1038  	size_t read_start, avail;
1039  	size_t written = 0;
1040  	int ret;
1041  
1042  	if (!count)
1043  		return 0;
1044  
1045  	inode_lock(file_inode(filp));
1046  	do {
1047  		void *from;
1048  
1049  		if (!relay_file_read_avail(buf))
1050  			break;
1051  
1052  		read_start = relay_file_read_start_pos(buf);
1053  		avail = relay_file_read_subbuf_avail(read_start, buf);
1054  		if (!avail)
1055  			break;
1056  
1057  		avail = min(count, avail);
1058  		from = buf->start + read_start;
1059  		ret = avail;
1060  		if (copy_to_user(buffer, from, avail))
1061  			break;
1062  
1063  		buffer += ret;
1064  		written += ret;
1065  		count -= ret;
1066  
1067  		relay_file_read_consume(buf, read_start, ret);
1068  		*ppos = relay_file_read_end_pos(buf, read_start, ret);
1069  	} while (count);
1070  	inode_unlock(file_inode(filp));
1071  
1072  	return written;
1073  }
1074  
relay_consume_bytes(struct rchan_buf * rbuf,int bytes_consumed)1075  static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1076  {
1077  	rbuf->bytes_consumed += bytes_consumed;
1078  
1079  	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1080  		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1081  		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1082  	}
1083  }
1084  
relay_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)1085  static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1086  				   struct pipe_buffer *buf)
1087  {
1088  	struct rchan_buf *rbuf;
1089  
1090  	rbuf = (struct rchan_buf *)page_private(buf->page);
1091  	relay_consume_bytes(rbuf, buf->private);
1092  }
1093  
1094  static const struct pipe_buf_operations relay_pipe_buf_ops = {
1095  	.release	= relay_pipe_buf_release,
1096  	.try_steal	= generic_pipe_buf_try_steal,
1097  	.get		= generic_pipe_buf_get,
1098  };
1099  
relay_page_release(struct splice_pipe_desc * spd,unsigned int i)1100  static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1101  {
1102  }
1103  
1104  /*
1105   *	subbuf_splice_actor - splice up to one subbuf's worth of data
1106   */
subbuf_splice_actor(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags,int * nonpad_ret)1107  static ssize_t subbuf_splice_actor(struct file *in,
1108  			       loff_t *ppos,
1109  			       struct pipe_inode_info *pipe,
1110  			       size_t len,
1111  			       unsigned int flags,
1112  			       int *nonpad_ret)
1113  {
1114  	unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1115  	struct rchan_buf *rbuf = in->private_data;
1116  	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1117  	uint64_t pos = (uint64_t) *ppos;
1118  	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1119  	size_t read_start = (size_t) do_div(pos, alloc_size);
1120  	size_t read_subbuf = read_start / subbuf_size;
1121  	size_t padding = rbuf->padding[read_subbuf];
1122  	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1123  	struct page *pages[PIPE_DEF_BUFFERS];
1124  	struct partial_page partial[PIPE_DEF_BUFFERS];
1125  	struct splice_pipe_desc spd = {
1126  		.pages = pages,
1127  		.nr_pages = 0,
1128  		.nr_pages_max = PIPE_DEF_BUFFERS,
1129  		.partial = partial,
1130  		.ops = &relay_pipe_buf_ops,
1131  		.spd_release = relay_page_release,
1132  	};
1133  	ssize_t ret;
1134  
1135  	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1136  		return 0;
1137  	if (splice_grow_spd(pipe, &spd))
1138  		return -ENOMEM;
1139  
1140  	/*
1141  	 * Adjust read len, if longer than what is available
1142  	 */
1143  	if (len > (subbuf_size - read_start % subbuf_size))
1144  		len = subbuf_size - read_start % subbuf_size;
1145  
1146  	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1147  	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1148  	poff = read_start & ~PAGE_MASK;
1149  	nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1150  
1151  	for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1152  		unsigned int this_len, this_end, private;
1153  		unsigned int cur_pos = read_start + total_len;
1154  
1155  		if (!len)
1156  			break;
1157  
1158  		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1159  		private = this_len;
1160  
1161  		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1162  		spd.partial[spd.nr_pages].offset = poff;
1163  
1164  		this_end = cur_pos + this_len;
1165  		if (this_end >= nonpad_end) {
1166  			this_len = nonpad_end - cur_pos;
1167  			private = this_len + padding;
1168  		}
1169  		spd.partial[spd.nr_pages].len = this_len;
1170  		spd.partial[spd.nr_pages].private = private;
1171  
1172  		len -= this_len;
1173  		total_len += this_len;
1174  		poff = 0;
1175  		pidx = (pidx + 1) % subbuf_pages;
1176  
1177  		if (this_end >= nonpad_end) {
1178  			spd.nr_pages++;
1179  			break;
1180  		}
1181  	}
1182  
1183  	ret = 0;
1184  	if (!spd.nr_pages)
1185  		goto out;
1186  
1187  	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1188  	if (ret < 0 || ret < total_len)
1189  		goto out;
1190  
1191          if (read_start + ret == nonpad_end)
1192                  ret += padding;
1193  
1194  out:
1195  	splice_shrink_spd(&spd);
1196  	return ret;
1197  }
1198  
relay_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1199  static ssize_t relay_file_splice_read(struct file *in,
1200  				      loff_t *ppos,
1201  				      struct pipe_inode_info *pipe,
1202  				      size_t len,
1203  				      unsigned int flags)
1204  {
1205  	ssize_t spliced;
1206  	int ret;
1207  	int nonpad_ret = 0;
1208  
1209  	ret = 0;
1210  	spliced = 0;
1211  
1212  	while (len && !spliced) {
1213  		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1214  		if (ret < 0)
1215  			break;
1216  		else if (!ret) {
1217  			if (flags & SPLICE_F_NONBLOCK)
1218  				ret = -EAGAIN;
1219  			break;
1220  		}
1221  
1222  		*ppos += ret;
1223  		if (ret > len)
1224  			len = 0;
1225  		else
1226  			len -= ret;
1227  		spliced += nonpad_ret;
1228  		nonpad_ret = 0;
1229  	}
1230  
1231  	if (spliced)
1232  		return spliced;
1233  
1234  	return ret;
1235  }
1236  
1237  const struct file_operations relay_file_operations = {
1238  	.open		= relay_file_open,
1239  	.poll		= relay_file_poll,
1240  	.mmap		= relay_file_mmap,
1241  	.read		= relay_file_read,
1242  	.llseek		= no_llseek,
1243  	.release	= relay_file_release,
1244  	.splice_read	= relay_file_splice_read,
1245  };
1246  EXPORT_SYMBOL_GPL(relay_file_operations);
1247