1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * DAMON Primitives for Virtual Address Spaces
4 *
5 * Author: SeongJae Park <sjpark@amazon.de>
6 */
7
8 #define pr_fmt(fmt) "damon-va: " fmt
9
10 #include <asm-generic/mman-common.h>
11 #include <linux/highmem.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/page_idle.h>
15 #include <linux/pagewalk.h>
16 #include <linux/sched/mm.h>
17
18 #include "ops-common.h"
19
20 #ifdef CONFIG_DAMON_VADDR_KUNIT_TEST
21 #undef DAMON_MIN_REGION
22 #define DAMON_MIN_REGION 1
23 #endif
24
25 /*
26 * 't->pid' should be the pointer to the relevant 'struct pid' having reference
27 * count. Caller must put the returned task, unless it is NULL.
28 */
damon_get_task_struct(struct damon_target * t)29 static inline struct task_struct *damon_get_task_struct(struct damon_target *t)
30 {
31 return get_pid_task(t->pid, PIDTYPE_PID);
32 }
33
34 /*
35 * Get the mm_struct of the given target
36 *
37 * Caller _must_ put the mm_struct after use, unless it is NULL.
38 *
39 * Returns the mm_struct of the target on success, NULL on failure
40 */
damon_get_mm(struct damon_target * t)41 static struct mm_struct *damon_get_mm(struct damon_target *t)
42 {
43 struct task_struct *task;
44 struct mm_struct *mm;
45
46 task = damon_get_task_struct(t);
47 if (!task)
48 return NULL;
49
50 mm = get_task_mm(task);
51 put_task_struct(task);
52 return mm;
53 }
54
55 /*
56 * Functions for the initial monitoring target regions construction
57 */
58
59 /*
60 * Size-evenly split a region into 'nr_pieces' small regions
61 *
62 * Returns 0 on success, or negative error code otherwise.
63 */
damon_va_evenly_split_region(struct damon_target * t,struct damon_region * r,unsigned int nr_pieces)64 static int damon_va_evenly_split_region(struct damon_target *t,
65 struct damon_region *r, unsigned int nr_pieces)
66 {
67 unsigned long sz_orig, sz_piece, orig_end;
68 struct damon_region *n = NULL, *next;
69 unsigned long start;
70
71 if (!r || !nr_pieces)
72 return -EINVAL;
73
74 orig_end = r->ar.end;
75 sz_orig = damon_sz_region(r);
76 sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
77
78 if (!sz_piece)
79 return -EINVAL;
80
81 r->ar.end = r->ar.start + sz_piece;
82 next = damon_next_region(r);
83 for (start = r->ar.end; start + sz_piece <= orig_end;
84 start += sz_piece) {
85 n = damon_new_region(start, start + sz_piece);
86 if (!n)
87 return -ENOMEM;
88 damon_insert_region(n, r, next, t);
89 r = n;
90 }
91 /* complement last region for possible rounding error */
92 if (n)
93 n->ar.end = orig_end;
94
95 return 0;
96 }
97
sz_range(struct damon_addr_range * r)98 static unsigned long sz_range(struct damon_addr_range *r)
99 {
100 return r->end - r->start;
101 }
102
103 /*
104 * Find three regions separated by two biggest unmapped regions
105 *
106 * vma the head vma of the target address space
107 * regions an array of three address ranges that results will be saved
108 *
109 * This function receives an address space and finds three regions in it which
110 * separated by the two biggest unmapped regions in the space. Please refer to
111 * below comments of '__damon_va_init_regions()' function to know why this is
112 * necessary.
113 *
114 * Returns 0 if success, or negative error code otherwise.
115 */
__damon_va_three_regions(struct mm_struct * mm,struct damon_addr_range regions[3])116 static int __damon_va_three_regions(struct mm_struct *mm,
117 struct damon_addr_range regions[3])
118 {
119 struct damon_addr_range first_gap = {0}, second_gap = {0};
120 VMA_ITERATOR(vmi, mm, 0);
121 struct vm_area_struct *vma, *prev = NULL;
122 unsigned long start;
123
124 /*
125 * Find the two biggest gaps so that first_gap > second_gap > others.
126 * If this is too slow, it can be optimised to examine the maple
127 * tree gaps.
128 */
129 for_each_vma(vmi, vma) {
130 unsigned long gap;
131
132 if (!prev) {
133 start = vma->vm_start;
134 goto next;
135 }
136 gap = vma->vm_start - prev->vm_end;
137
138 if (gap > sz_range(&first_gap)) {
139 second_gap = first_gap;
140 first_gap.start = prev->vm_end;
141 first_gap.end = vma->vm_start;
142 } else if (gap > sz_range(&second_gap)) {
143 second_gap.start = prev->vm_end;
144 second_gap.end = vma->vm_start;
145 }
146 next:
147 prev = vma;
148 }
149
150 if (!sz_range(&second_gap) || !sz_range(&first_gap))
151 return -EINVAL;
152
153 /* Sort the two biggest gaps by address */
154 if (first_gap.start > second_gap.start)
155 swap(first_gap, second_gap);
156
157 /* Store the result */
158 regions[0].start = ALIGN(start, DAMON_MIN_REGION);
159 regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
160 regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
161 regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
162 regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
163 regions[2].end = ALIGN(prev->vm_end, DAMON_MIN_REGION);
164
165 return 0;
166 }
167
168 /*
169 * Get the three regions in the given target (task)
170 *
171 * Returns 0 on success, negative error code otherwise.
172 */
damon_va_three_regions(struct damon_target * t,struct damon_addr_range regions[3])173 static int damon_va_three_regions(struct damon_target *t,
174 struct damon_addr_range regions[3])
175 {
176 struct mm_struct *mm;
177 int rc;
178
179 mm = damon_get_mm(t);
180 if (!mm)
181 return -EINVAL;
182
183 mmap_read_lock(mm);
184 rc = __damon_va_three_regions(mm, regions);
185 mmap_read_unlock(mm);
186
187 mmput(mm);
188 return rc;
189 }
190
191 /*
192 * Initialize the monitoring target regions for the given target (task)
193 *
194 * t the given target
195 *
196 * Because only a number of small portions of the entire address space
197 * is actually mapped to the memory and accessed, monitoring the unmapped
198 * regions is wasteful. That said, because we can deal with small noises,
199 * tracking every mapping is not strictly required but could even incur a high
200 * overhead if the mapping frequently changes or the number of mappings is
201 * high. The adaptive regions adjustment mechanism will further help to deal
202 * with the noise by simply identifying the unmapped areas as a region that
203 * has no access. Moreover, applying the real mappings that would have many
204 * unmapped areas inside will make the adaptive mechanism quite complex. That
205 * said, too huge unmapped areas inside the monitoring target should be removed
206 * to not take the time for the adaptive mechanism.
207 *
208 * For the reason, we convert the complex mappings to three distinct regions
209 * that cover every mapped area of the address space. Also the two gaps
210 * between the three regions are the two biggest unmapped areas in the given
211 * address space. In detail, this function first identifies the start and the
212 * end of the mappings and the two biggest unmapped areas of the address space.
213 * Then, it constructs the three regions as below:
214 *
215 * [mappings[0]->start, big_two_unmapped_areas[0]->start)
216 * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
217 * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
218 *
219 * As usual memory map of processes is as below, the gap between the heap and
220 * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
221 * region and the stack will be two biggest unmapped regions. Because these
222 * gaps are exceptionally huge areas in usual address space, excluding these
223 * two biggest unmapped regions will be sufficient to make a trade-off.
224 *
225 * <heap>
226 * <BIG UNMAPPED REGION 1>
227 * <uppermost mmap()-ed region>
228 * (other mmap()-ed regions and small unmapped regions)
229 * <lowermost mmap()-ed region>
230 * <BIG UNMAPPED REGION 2>
231 * <stack>
232 */
__damon_va_init_regions(struct damon_ctx * ctx,struct damon_target * t)233 static void __damon_va_init_regions(struct damon_ctx *ctx,
234 struct damon_target *t)
235 {
236 struct damon_target *ti;
237 struct damon_region *r;
238 struct damon_addr_range regions[3];
239 unsigned long sz = 0, nr_pieces;
240 int i, tidx = 0;
241
242 if (damon_va_three_regions(t, regions)) {
243 damon_for_each_target(ti, ctx) {
244 if (ti == t)
245 break;
246 tidx++;
247 }
248 pr_debug("Failed to get three regions of %dth target\n", tidx);
249 return;
250 }
251
252 for (i = 0; i < 3; i++)
253 sz += regions[i].end - regions[i].start;
254 if (ctx->attrs.min_nr_regions)
255 sz /= ctx->attrs.min_nr_regions;
256 if (sz < DAMON_MIN_REGION)
257 sz = DAMON_MIN_REGION;
258
259 /* Set the initial three regions of the target */
260 for (i = 0; i < 3; i++) {
261 r = damon_new_region(regions[i].start, regions[i].end);
262 if (!r) {
263 pr_err("%d'th init region creation failed\n", i);
264 return;
265 }
266 damon_add_region(r, t);
267
268 nr_pieces = (regions[i].end - regions[i].start) / sz;
269 damon_va_evenly_split_region(t, r, nr_pieces);
270 }
271 }
272
273 /* Initialize '->regions_list' of every target (task) */
damon_va_init(struct damon_ctx * ctx)274 static void damon_va_init(struct damon_ctx *ctx)
275 {
276 struct damon_target *t;
277
278 damon_for_each_target(t, ctx) {
279 /* the user may set the target regions as they want */
280 if (!damon_nr_regions(t))
281 __damon_va_init_regions(ctx, t);
282 }
283 }
284
285 /*
286 * Update regions for current memory mappings
287 */
damon_va_update(struct damon_ctx * ctx)288 static void damon_va_update(struct damon_ctx *ctx)
289 {
290 struct damon_addr_range three_regions[3];
291 struct damon_target *t;
292
293 damon_for_each_target(t, ctx) {
294 if (damon_va_three_regions(t, three_regions))
295 continue;
296 damon_set_regions(t, three_regions, 3);
297 }
298 }
299
damon_mkold_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)300 static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
301 unsigned long next, struct mm_walk *walk)
302 {
303 pte_t *pte;
304 spinlock_t *ptl;
305
306 if (pmd_trans_huge(*pmd)) {
307 ptl = pmd_lock(walk->mm, pmd);
308 if (!pmd_present(*pmd)) {
309 spin_unlock(ptl);
310 return 0;
311 }
312
313 if (pmd_trans_huge(*pmd)) {
314 damon_pmdp_mkold(pmd, walk->mm, addr);
315 spin_unlock(ptl);
316 return 0;
317 }
318 spin_unlock(ptl);
319 }
320
321 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
322 return 0;
323 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
324 if (!pte_present(*pte))
325 goto out;
326 damon_ptep_mkold(pte, walk->mm, addr);
327 out:
328 pte_unmap_unlock(pte, ptl);
329 return 0;
330 }
331
332 #ifdef CONFIG_HUGETLB_PAGE
damon_hugetlb_mkold(pte_t * pte,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr)333 static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm,
334 struct vm_area_struct *vma, unsigned long addr)
335 {
336 bool referenced = false;
337 pte_t entry = huge_ptep_get(pte);
338 struct folio *folio = pfn_folio(pte_pfn(entry));
339
340 folio_get(folio);
341
342 if (pte_young(entry)) {
343 referenced = true;
344 entry = pte_mkold(entry);
345 set_huge_pte_at(mm, addr, pte, entry);
346 }
347
348 #ifdef CONFIG_MMU_NOTIFIER
349 if (mmu_notifier_clear_young(mm, addr,
350 addr + huge_page_size(hstate_vma(vma))))
351 referenced = true;
352 #endif /* CONFIG_MMU_NOTIFIER */
353
354 if (referenced)
355 folio_set_young(folio);
356
357 folio_set_idle(folio);
358 folio_put(folio);
359 }
360
damon_mkold_hugetlb_entry(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)361 static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask,
362 unsigned long addr, unsigned long end,
363 struct mm_walk *walk)
364 {
365 struct hstate *h = hstate_vma(walk->vma);
366 spinlock_t *ptl;
367 pte_t entry;
368
369 ptl = huge_pte_lock(h, walk->mm, pte);
370 entry = huge_ptep_get(pte);
371 if (!pte_present(entry))
372 goto out;
373
374 damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr);
375
376 out:
377 spin_unlock(ptl);
378 return 0;
379 }
380 #else
381 #define damon_mkold_hugetlb_entry NULL
382 #endif /* CONFIG_HUGETLB_PAGE */
383
384 static const struct mm_walk_ops damon_mkold_ops = {
385 .pmd_entry = damon_mkold_pmd_entry,
386 .hugetlb_entry = damon_mkold_hugetlb_entry,
387 };
388
damon_va_mkold(struct mm_struct * mm,unsigned long addr)389 static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
390 {
391 mmap_read_lock(mm);
392 walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
393 mmap_read_unlock(mm);
394 }
395
396 /*
397 * Functions for the access checking of the regions
398 */
399
__damon_va_prepare_access_check(struct mm_struct * mm,struct damon_region * r)400 static void __damon_va_prepare_access_check(struct mm_struct *mm,
401 struct damon_region *r)
402 {
403 r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
404
405 damon_va_mkold(mm, r->sampling_addr);
406 }
407
damon_va_prepare_access_checks(struct damon_ctx * ctx)408 static void damon_va_prepare_access_checks(struct damon_ctx *ctx)
409 {
410 struct damon_target *t;
411 struct mm_struct *mm;
412 struct damon_region *r;
413
414 damon_for_each_target(t, ctx) {
415 mm = damon_get_mm(t);
416 if (!mm)
417 continue;
418 damon_for_each_region(r, t)
419 __damon_va_prepare_access_check(mm, r);
420 mmput(mm);
421 }
422 }
423
424 struct damon_young_walk_private {
425 /* size of the folio for the access checked virtual memory address */
426 unsigned long *folio_sz;
427 bool young;
428 };
429
damon_young_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)430 static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
431 unsigned long next, struct mm_walk *walk)
432 {
433 pte_t *pte;
434 spinlock_t *ptl;
435 struct folio *folio;
436 struct damon_young_walk_private *priv = walk->private;
437
438 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
439 if (pmd_trans_huge(*pmd)) {
440 ptl = pmd_lock(walk->mm, pmd);
441 if (!pmd_present(*pmd)) {
442 spin_unlock(ptl);
443 return 0;
444 }
445
446 if (!pmd_trans_huge(*pmd)) {
447 spin_unlock(ptl);
448 goto regular_page;
449 }
450 folio = damon_get_folio(pmd_pfn(*pmd));
451 if (!folio)
452 goto huge_out;
453 if (pmd_young(*pmd) || !folio_test_idle(folio) ||
454 mmu_notifier_test_young(walk->mm,
455 addr))
456 priv->young = true;
457 *priv->folio_sz = HPAGE_PMD_SIZE;
458 folio_put(folio);
459 huge_out:
460 spin_unlock(ptl);
461 return 0;
462 }
463
464 regular_page:
465 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
466
467 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
468 return -EINVAL;
469 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
470 if (!pte_present(*pte))
471 goto out;
472 folio = damon_get_folio(pte_pfn(*pte));
473 if (!folio)
474 goto out;
475 if (pte_young(*pte) || !folio_test_idle(folio) ||
476 mmu_notifier_test_young(walk->mm, addr))
477 priv->young = true;
478 *priv->folio_sz = folio_size(folio);
479 folio_put(folio);
480 out:
481 pte_unmap_unlock(pte, ptl);
482 return 0;
483 }
484
485 #ifdef CONFIG_HUGETLB_PAGE
damon_young_hugetlb_entry(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)486 static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask,
487 unsigned long addr, unsigned long end,
488 struct mm_walk *walk)
489 {
490 struct damon_young_walk_private *priv = walk->private;
491 struct hstate *h = hstate_vma(walk->vma);
492 struct folio *folio;
493 spinlock_t *ptl;
494 pte_t entry;
495
496 ptl = huge_pte_lock(h, walk->mm, pte);
497 entry = huge_ptep_get(pte);
498 if (!pte_present(entry))
499 goto out;
500
501 folio = pfn_folio(pte_pfn(entry));
502 folio_get(folio);
503
504 if (pte_young(entry) || !folio_test_idle(folio) ||
505 mmu_notifier_test_young(walk->mm, addr))
506 priv->young = true;
507 *priv->folio_sz = huge_page_size(h);
508
509 folio_put(folio);
510
511 out:
512 spin_unlock(ptl);
513 return 0;
514 }
515 #else
516 #define damon_young_hugetlb_entry NULL
517 #endif /* CONFIG_HUGETLB_PAGE */
518
519 static const struct mm_walk_ops damon_young_ops = {
520 .pmd_entry = damon_young_pmd_entry,
521 .hugetlb_entry = damon_young_hugetlb_entry,
522 };
523
damon_va_young(struct mm_struct * mm,unsigned long addr,unsigned long * folio_sz)524 static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
525 unsigned long *folio_sz)
526 {
527 struct damon_young_walk_private arg = {
528 .folio_sz = folio_sz,
529 .young = false,
530 };
531
532 mmap_read_lock(mm);
533 walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
534 mmap_read_unlock(mm);
535 return arg.young;
536 }
537
538 /*
539 * Check whether the region was accessed after the last preparation
540 *
541 * mm 'mm_struct' for the given virtual address space
542 * r the region to be checked
543 */
__damon_va_check_access(struct mm_struct * mm,struct damon_region * r,bool same_target)544 static void __damon_va_check_access(struct mm_struct *mm,
545 struct damon_region *r, bool same_target)
546 {
547 static unsigned long last_addr;
548 static unsigned long last_folio_sz = PAGE_SIZE;
549 static bool last_accessed;
550
551 /* If the region is in the last checked page, reuse the result */
552 if (same_target && (ALIGN_DOWN(last_addr, last_folio_sz) ==
553 ALIGN_DOWN(r->sampling_addr, last_folio_sz))) {
554 if (last_accessed)
555 r->nr_accesses++;
556 return;
557 }
558
559 last_accessed = damon_va_young(mm, r->sampling_addr, &last_folio_sz);
560 if (last_accessed)
561 r->nr_accesses++;
562
563 last_addr = r->sampling_addr;
564 }
565
damon_va_check_accesses(struct damon_ctx * ctx)566 static unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
567 {
568 struct damon_target *t;
569 struct mm_struct *mm;
570 struct damon_region *r;
571 unsigned int max_nr_accesses = 0;
572 bool same_target;
573
574 damon_for_each_target(t, ctx) {
575 mm = damon_get_mm(t);
576 if (!mm)
577 continue;
578 same_target = false;
579 damon_for_each_region(r, t) {
580 __damon_va_check_access(mm, r, same_target);
581 max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
582 same_target = true;
583 }
584 mmput(mm);
585 }
586
587 return max_nr_accesses;
588 }
589
590 /*
591 * Functions for the target validity check and cleanup
592 */
593
damon_va_target_valid(struct damon_target * t)594 static bool damon_va_target_valid(struct damon_target *t)
595 {
596 struct task_struct *task;
597
598 task = damon_get_task_struct(t);
599 if (task) {
600 put_task_struct(task);
601 return true;
602 }
603
604 return false;
605 }
606
607 #ifndef CONFIG_ADVISE_SYSCALLS
damos_madvise(struct damon_target * target,struct damon_region * r,int behavior)608 static unsigned long damos_madvise(struct damon_target *target,
609 struct damon_region *r, int behavior)
610 {
611 return 0;
612 }
613 #else
damos_madvise(struct damon_target * target,struct damon_region * r,int behavior)614 static unsigned long damos_madvise(struct damon_target *target,
615 struct damon_region *r, int behavior)
616 {
617 struct mm_struct *mm;
618 unsigned long start = PAGE_ALIGN(r->ar.start);
619 unsigned long len = PAGE_ALIGN(damon_sz_region(r));
620 unsigned long applied;
621
622 mm = damon_get_mm(target);
623 if (!mm)
624 return 0;
625
626 applied = do_madvise(mm, start, len, behavior) ? 0 : len;
627 mmput(mm);
628
629 return applied;
630 }
631 #endif /* CONFIG_ADVISE_SYSCALLS */
632
damon_va_apply_scheme(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos * scheme)633 static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx,
634 struct damon_target *t, struct damon_region *r,
635 struct damos *scheme)
636 {
637 int madv_action;
638
639 switch (scheme->action) {
640 case DAMOS_WILLNEED:
641 madv_action = MADV_WILLNEED;
642 break;
643 case DAMOS_COLD:
644 madv_action = MADV_COLD;
645 break;
646 case DAMOS_PAGEOUT:
647 madv_action = MADV_PAGEOUT;
648 break;
649 case DAMOS_HUGEPAGE:
650 madv_action = MADV_HUGEPAGE;
651 break;
652 case DAMOS_NOHUGEPAGE:
653 madv_action = MADV_NOHUGEPAGE;
654 break;
655 case DAMOS_STAT:
656 return 0;
657 default:
658 /*
659 * DAMOS actions that are not yet supported by 'vaddr'.
660 */
661 return 0;
662 }
663
664 return damos_madvise(t, r, madv_action);
665 }
666
damon_va_scheme_score(struct damon_ctx * context,struct damon_target * t,struct damon_region * r,struct damos * scheme)667 static int damon_va_scheme_score(struct damon_ctx *context,
668 struct damon_target *t, struct damon_region *r,
669 struct damos *scheme)
670 {
671
672 switch (scheme->action) {
673 case DAMOS_PAGEOUT:
674 return damon_cold_score(context, r, scheme);
675 default:
676 break;
677 }
678
679 return DAMOS_MAX_SCORE;
680 }
681
damon_va_initcall(void)682 static int __init damon_va_initcall(void)
683 {
684 struct damon_operations ops = {
685 .id = DAMON_OPS_VADDR,
686 .init = damon_va_init,
687 .update = damon_va_update,
688 .prepare_access_checks = damon_va_prepare_access_checks,
689 .check_accesses = damon_va_check_accesses,
690 .reset_aggregated = NULL,
691 .target_valid = damon_va_target_valid,
692 .cleanup = NULL,
693 .apply_scheme = damon_va_apply_scheme,
694 .get_scheme_score = damon_va_scheme_score,
695 };
696 /* ops for fixed virtual address ranges */
697 struct damon_operations ops_fvaddr = ops;
698 int err;
699
700 /* Don't set the monitoring target regions for the entire mapping */
701 ops_fvaddr.id = DAMON_OPS_FVADDR;
702 ops_fvaddr.init = NULL;
703 ops_fvaddr.update = NULL;
704
705 err = damon_register_ops(&ops);
706 if (err)
707 return err;
708 return damon_register_ops(&ops_fvaddr);
709 };
710
711 subsys_initcall(damon_va_initcall);
712
713 #include "vaddr-test.h"
714