1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * KMSAN hooks for kernel subsystems.
4   *
5   * These functions handle creation of KMSAN metadata for memory allocations.
6   *
7   * Copyright (C) 2018-2022 Google LLC
8   * Author: Alexander Potapenko <glider@google.com>
9   *
10   */
11  
12  #include <linux/cacheflush.h>
13  #include <linux/dma-direction.h>
14  #include <linux/gfp.h>
15  #include <linux/kmsan.h>
16  #include <linux/mm.h>
17  #include <linux/mm_types.h>
18  #include <linux/scatterlist.h>
19  #include <linux/slab.h>
20  #include <linux/uaccess.h>
21  #include <linux/usb.h>
22  
23  #include "../internal.h"
24  #include "../slab.h"
25  #include "kmsan.h"
26  
27  /*
28   * Instrumented functions shouldn't be called under
29   * kmsan_enter_runtime()/kmsan_leave_runtime(), because this will lead to
30   * skipping effects of functions like memset() inside instrumented code.
31   */
32  
kmsan_task_create(struct task_struct * task)33  void kmsan_task_create(struct task_struct *task)
34  {
35  	kmsan_enter_runtime();
36  	kmsan_internal_task_create(task);
37  	kmsan_leave_runtime();
38  }
39  
kmsan_task_exit(struct task_struct * task)40  void kmsan_task_exit(struct task_struct *task)
41  {
42  	struct kmsan_ctx *ctx = &task->kmsan_ctx;
43  
44  	if (!kmsan_enabled || kmsan_in_runtime())
45  		return;
46  
47  	ctx->allow_reporting = false;
48  }
49  
kmsan_slab_alloc(struct kmem_cache * s,void * object,gfp_t flags)50  void kmsan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags)
51  {
52  	if (unlikely(object == NULL))
53  		return;
54  	if (!kmsan_enabled || kmsan_in_runtime())
55  		return;
56  	/*
57  	 * There's a ctor or this is an RCU cache - do nothing. The memory
58  	 * status hasn't changed since last use.
59  	 */
60  	if (s->ctor || (s->flags & SLAB_TYPESAFE_BY_RCU))
61  		return;
62  
63  	kmsan_enter_runtime();
64  	if (flags & __GFP_ZERO)
65  		kmsan_internal_unpoison_memory(object, s->object_size,
66  					       KMSAN_POISON_CHECK);
67  	else
68  		kmsan_internal_poison_memory(object, s->object_size, flags,
69  					     KMSAN_POISON_CHECK);
70  	kmsan_leave_runtime();
71  }
72  
kmsan_slab_free(struct kmem_cache * s,void * object)73  void kmsan_slab_free(struct kmem_cache *s, void *object)
74  {
75  	if (!kmsan_enabled || kmsan_in_runtime())
76  		return;
77  
78  	/* RCU slabs could be legally used after free within the RCU period */
79  	if (unlikely(s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)))
80  		return;
81  	/*
82  	 * If there's a constructor, freed memory must remain in the same state
83  	 * until the next allocation. We cannot save its state to detect
84  	 * use-after-free bugs, instead we just keep it unpoisoned.
85  	 */
86  	if (s->ctor)
87  		return;
88  	kmsan_enter_runtime();
89  	kmsan_internal_poison_memory(object, s->object_size, GFP_KERNEL,
90  				     KMSAN_POISON_CHECK | KMSAN_POISON_FREE);
91  	kmsan_leave_runtime();
92  }
93  
kmsan_kmalloc_large(const void * ptr,size_t size,gfp_t flags)94  void kmsan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
95  {
96  	if (unlikely(ptr == NULL))
97  		return;
98  	if (!kmsan_enabled || kmsan_in_runtime())
99  		return;
100  	kmsan_enter_runtime();
101  	if (flags & __GFP_ZERO)
102  		kmsan_internal_unpoison_memory((void *)ptr, size,
103  					       /*checked*/ true);
104  	else
105  		kmsan_internal_poison_memory((void *)ptr, size, flags,
106  					     KMSAN_POISON_CHECK);
107  	kmsan_leave_runtime();
108  }
109  
kmsan_kfree_large(const void * ptr)110  void kmsan_kfree_large(const void *ptr)
111  {
112  	struct page *page;
113  
114  	if (!kmsan_enabled || kmsan_in_runtime())
115  		return;
116  	kmsan_enter_runtime();
117  	page = virt_to_head_page((void *)ptr);
118  	KMSAN_WARN_ON(ptr != page_address(page));
119  	kmsan_internal_poison_memory((void *)ptr,
120  				     PAGE_SIZE << compound_order(page),
121  				     GFP_KERNEL,
122  				     KMSAN_POISON_CHECK | KMSAN_POISON_FREE);
123  	kmsan_leave_runtime();
124  }
125  
vmalloc_shadow(unsigned long addr)126  static unsigned long vmalloc_shadow(unsigned long addr)
127  {
128  	return (unsigned long)kmsan_get_metadata((void *)addr,
129  						 KMSAN_META_SHADOW);
130  }
131  
vmalloc_origin(unsigned long addr)132  static unsigned long vmalloc_origin(unsigned long addr)
133  {
134  	return (unsigned long)kmsan_get_metadata((void *)addr,
135  						 KMSAN_META_ORIGIN);
136  }
137  
kmsan_vunmap_range_noflush(unsigned long start,unsigned long end)138  void kmsan_vunmap_range_noflush(unsigned long start, unsigned long end)
139  {
140  	__vunmap_range_noflush(vmalloc_shadow(start), vmalloc_shadow(end));
141  	__vunmap_range_noflush(vmalloc_origin(start), vmalloc_origin(end));
142  	flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
143  	flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
144  }
145  
146  /*
147   * This function creates new shadow/origin pages for the physical pages mapped
148   * into the virtual memory. If those physical pages already had shadow/origin,
149   * those are ignored.
150   */
kmsan_ioremap_page_range(unsigned long start,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int page_shift)151  void kmsan_ioremap_page_range(unsigned long start, unsigned long end,
152  			      phys_addr_t phys_addr, pgprot_t prot,
153  			      unsigned int page_shift)
154  {
155  	gfp_t gfp_mask = GFP_KERNEL | __GFP_ZERO;
156  	struct page *shadow, *origin;
157  	unsigned long off = 0;
158  	int nr;
159  
160  	if (!kmsan_enabled || kmsan_in_runtime())
161  		return;
162  
163  	nr = (end - start) / PAGE_SIZE;
164  	kmsan_enter_runtime();
165  	for (int i = 0; i < nr; i++, off += PAGE_SIZE) {
166  		shadow = alloc_pages(gfp_mask, 1);
167  		origin = alloc_pages(gfp_mask, 1);
168  		__vmap_pages_range_noflush(
169  			vmalloc_shadow(start + off),
170  			vmalloc_shadow(start + off + PAGE_SIZE), prot, &shadow,
171  			PAGE_SHIFT);
172  		__vmap_pages_range_noflush(
173  			vmalloc_origin(start + off),
174  			vmalloc_origin(start + off + PAGE_SIZE), prot, &origin,
175  			PAGE_SHIFT);
176  	}
177  	flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
178  	flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
179  	kmsan_leave_runtime();
180  }
181  
kmsan_iounmap_page_range(unsigned long start,unsigned long end)182  void kmsan_iounmap_page_range(unsigned long start, unsigned long end)
183  {
184  	unsigned long v_shadow, v_origin;
185  	struct page *shadow, *origin;
186  	int nr;
187  
188  	if (!kmsan_enabled || kmsan_in_runtime())
189  		return;
190  
191  	nr = (end - start) / PAGE_SIZE;
192  	kmsan_enter_runtime();
193  	v_shadow = (unsigned long)vmalloc_shadow(start);
194  	v_origin = (unsigned long)vmalloc_origin(start);
195  	for (int i = 0; i < nr;
196  	     i++, v_shadow += PAGE_SIZE, v_origin += PAGE_SIZE) {
197  		shadow = kmsan_vmalloc_to_page_or_null((void *)v_shadow);
198  		origin = kmsan_vmalloc_to_page_or_null((void *)v_origin);
199  		__vunmap_range_noflush(v_shadow, vmalloc_shadow(end));
200  		__vunmap_range_noflush(v_origin, vmalloc_origin(end));
201  		if (shadow)
202  			__free_pages(shadow, 1);
203  		if (origin)
204  			__free_pages(origin, 1);
205  	}
206  	flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
207  	flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
208  	kmsan_leave_runtime();
209  }
210  
kmsan_copy_to_user(void __user * to,const void * from,size_t to_copy,size_t left)211  void kmsan_copy_to_user(void __user *to, const void *from, size_t to_copy,
212  			size_t left)
213  {
214  	unsigned long ua_flags;
215  
216  	if (!kmsan_enabled || kmsan_in_runtime())
217  		return;
218  	/*
219  	 * At this point we've copied the memory already. It's hard to check it
220  	 * before copying, as the size of actually copied buffer is unknown.
221  	 */
222  
223  	/* copy_to_user() may copy zero bytes. No need to check. */
224  	if (!to_copy)
225  		return;
226  	/* Or maybe copy_to_user() failed to copy anything. */
227  	if (to_copy <= left)
228  		return;
229  
230  	ua_flags = user_access_save();
231  	if ((u64)to < TASK_SIZE) {
232  		/* This is a user memory access, check it. */
233  		kmsan_internal_check_memory((void *)from, to_copy - left, to,
234  					    REASON_COPY_TO_USER);
235  	} else {
236  		/* Otherwise this is a kernel memory access. This happens when a
237  		 * compat syscall passes an argument allocated on the kernel
238  		 * stack to a real syscall.
239  		 * Don't check anything, just copy the shadow of the copied
240  		 * bytes.
241  		 */
242  		kmsan_internal_memmove_metadata((void *)to, (void *)from,
243  						to_copy - left);
244  	}
245  	user_access_restore(ua_flags);
246  }
247  EXPORT_SYMBOL(kmsan_copy_to_user);
248  
249  /* Helper function to check an URB. */
kmsan_handle_urb(const struct urb * urb,bool is_out)250  void kmsan_handle_urb(const struct urb *urb, bool is_out)
251  {
252  	if (!urb)
253  		return;
254  	if (is_out)
255  		kmsan_internal_check_memory(urb->transfer_buffer,
256  					    urb->transfer_buffer_length,
257  					    /*user_addr*/ 0, REASON_SUBMIT_URB);
258  	else
259  		kmsan_internal_unpoison_memory(urb->transfer_buffer,
260  					       urb->transfer_buffer_length,
261  					       /*checked*/ false);
262  }
263  EXPORT_SYMBOL_GPL(kmsan_handle_urb);
264  
kmsan_handle_dma_page(const void * addr,size_t size,enum dma_data_direction dir)265  static void kmsan_handle_dma_page(const void *addr, size_t size,
266  				  enum dma_data_direction dir)
267  {
268  	switch (dir) {
269  	case DMA_BIDIRECTIONAL:
270  		kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
271  					    REASON_ANY);
272  		kmsan_internal_unpoison_memory((void *)addr, size,
273  					       /*checked*/ false);
274  		break;
275  	case DMA_TO_DEVICE:
276  		kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
277  					    REASON_ANY);
278  		break;
279  	case DMA_FROM_DEVICE:
280  		kmsan_internal_unpoison_memory((void *)addr, size,
281  					       /*checked*/ false);
282  		break;
283  	case DMA_NONE:
284  		break;
285  	}
286  }
287  
288  /* Helper function to handle DMA data transfers. */
kmsan_handle_dma(struct page * page,size_t offset,size_t size,enum dma_data_direction dir)289  void kmsan_handle_dma(struct page *page, size_t offset, size_t size,
290  		      enum dma_data_direction dir)
291  {
292  	u64 page_offset, to_go, addr;
293  
294  	if (PageHighMem(page))
295  		return;
296  	addr = (u64)page_address(page) + offset;
297  	/*
298  	 * The kernel may occasionally give us adjacent DMA pages not belonging
299  	 * to the same allocation. Process them separately to avoid triggering
300  	 * internal KMSAN checks.
301  	 */
302  	while (size > 0) {
303  		page_offset = addr % PAGE_SIZE;
304  		to_go = min(PAGE_SIZE - page_offset, (u64)size);
305  		kmsan_handle_dma_page((void *)addr, to_go, dir);
306  		addr += to_go;
307  		size -= to_go;
308  	}
309  }
310  
kmsan_handle_dma_sg(struct scatterlist * sg,int nents,enum dma_data_direction dir)311  void kmsan_handle_dma_sg(struct scatterlist *sg, int nents,
312  			 enum dma_data_direction dir)
313  {
314  	struct scatterlist *item;
315  	int i;
316  
317  	for_each_sg(sg, item, nents, i)
318  		kmsan_handle_dma(sg_page(item), item->offset, item->length,
319  				 dir);
320  }
321  
322  /* Functions from kmsan-checks.h follow. */
kmsan_poison_memory(const void * address,size_t size,gfp_t flags)323  void kmsan_poison_memory(const void *address, size_t size, gfp_t flags)
324  {
325  	if (!kmsan_enabled || kmsan_in_runtime())
326  		return;
327  	kmsan_enter_runtime();
328  	/* The users may want to poison/unpoison random memory. */
329  	kmsan_internal_poison_memory((void *)address, size, flags,
330  				     KMSAN_POISON_NOCHECK);
331  	kmsan_leave_runtime();
332  }
333  EXPORT_SYMBOL(kmsan_poison_memory);
334  
kmsan_unpoison_memory(const void * address,size_t size)335  void kmsan_unpoison_memory(const void *address, size_t size)
336  {
337  	unsigned long ua_flags;
338  
339  	if (!kmsan_enabled || kmsan_in_runtime())
340  		return;
341  
342  	ua_flags = user_access_save();
343  	kmsan_enter_runtime();
344  	/* The users may want to poison/unpoison random memory. */
345  	kmsan_internal_unpoison_memory((void *)address, size,
346  				       KMSAN_POISON_NOCHECK);
347  	kmsan_leave_runtime();
348  	user_access_restore(ua_flags);
349  }
350  EXPORT_SYMBOL(kmsan_unpoison_memory);
351  
352  /*
353   * Version of kmsan_unpoison_memory() that can be called from within the KMSAN
354   * runtime.
355   *
356   * Non-instrumented IRQ entry functions receive struct pt_regs from assembly
357   * code. Those regs need to be unpoisoned, otherwise using them will result in
358   * false positives.
359   * Using kmsan_unpoison_memory() is not an option in entry code, because the
360   * return value of in_task() is inconsistent - as a result, certain calls to
361   * kmsan_unpoison_memory() are ignored. kmsan_unpoison_entry_regs() ensures that
362   * the registers are unpoisoned even if kmsan_in_runtime() is true in the early
363   * entry code.
364   */
kmsan_unpoison_entry_regs(const struct pt_regs * regs)365  void kmsan_unpoison_entry_regs(const struct pt_regs *regs)
366  {
367  	unsigned long ua_flags;
368  
369  	if (!kmsan_enabled)
370  		return;
371  
372  	ua_flags = user_access_save();
373  	kmsan_internal_unpoison_memory((void *)regs, sizeof(*regs),
374  				       KMSAN_POISON_NOCHECK);
375  	user_access_restore(ua_flags);
376  }
377  
kmsan_check_memory(const void * addr,size_t size)378  void kmsan_check_memory(const void *addr, size_t size)
379  {
380  	if (!kmsan_enabled)
381  		return;
382  	return kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
383  					   REASON_ANY);
384  }
385  EXPORT_SYMBOL(kmsan_check_memory);
386