1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32
33 #define MAX_LSM_EVM_XATTR 2
34
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37
38 /*
39 * These are descriptions of the reasons that can be passed to the
40 * security_locked_down() LSM hook. Placing this array here allows
41 * all security modules to use the same descriptions for auditing
42 * purposes.
43 */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45 [LOCKDOWN_NONE] = "none",
46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49 [LOCKDOWN_KEXEC] = "kexec of unsigned images",
50 [LOCKDOWN_HIBERNATION] = "hibernation",
51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52 [LOCKDOWN_IOPORT] = "raw io port access",
53 [LOCKDOWN_MSR] = "raw MSR access",
54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
56 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
57 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
58 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
59 [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
60 [LOCKDOWN_DEBUGFS] = "debugfs access",
61 [LOCKDOWN_XMON_WR] = "xmon write access",
62 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
63 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
64 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
65 [LOCKDOWN_INTEGRITY_MAX] = "integrity",
66 [LOCKDOWN_KCORE] = "/proc/kcore access",
67 [LOCKDOWN_KPROBES] = "use of kprobes",
68 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
69 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
70 [LOCKDOWN_PERF] = "unsafe use of perf",
71 [LOCKDOWN_TRACEFS] = "use of tracefs",
72 [LOCKDOWN_XMON_RW] = "xmon read and write access",
73 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
74 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
75 };
76
77 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
78 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
79
80 static struct kmem_cache *lsm_file_cache;
81 static struct kmem_cache *lsm_inode_cache;
82
83 char *lsm_names;
84 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
85
86 /* Boot-time LSM user choice */
87 static __initdata const char *chosen_lsm_order;
88 static __initdata const char *chosen_major_lsm;
89
90 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
91
92 /* Ordered list of LSMs to initialize. */
93 static __initdata struct lsm_info **ordered_lsms;
94 static __initdata struct lsm_info *exclusive;
95
96 static __initdata bool debug;
97 #define init_debug(...) \
98 do { \
99 if (debug) \
100 pr_info(__VA_ARGS__); \
101 } while (0)
102
is_enabled(struct lsm_info * lsm)103 static bool __init is_enabled(struct lsm_info *lsm)
104 {
105 if (!lsm->enabled)
106 return false;
107
108 return *lsm->enabled;
109 }
110
111 /* Mark an LSM's enabled flag. */
112 static int lsm_enabled_true __initdata = 1;
113 static int lsm_enabled_false __initdata = 0;
set_enabled(struct lsm_info * lsm,bool enabled)114 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
115 {
116 /*
117 * When an LSM hasn't configured an enable variable, we can use
118 * a hard-coded location for storing the default enabled state.
119 */
120 if (!lsm->enabled) {
121 if (enabled)
122 lsm->enabled = &lsm_enabled_true;
123 else
124 lsm->enabled = &lsm_enabled_false;
125 } else if (lsm->enabled == &lsm_enabled_true) {
126 if (!enabled)
127 lsm->enabled = &lsm_enabled_false;
128 } else if (lsm->enabled == &lsm_enabled_false) {
129 if (enabled)
130 lsm->enabled = &lsm_enabled_true;
131 } else {
132 *lsm->enabled = enabled;
133 }
134 }
135
136 /* Is an LSM already listed in the ordered LSMs list? */
exists_ordered_lsm(struct lsm_info * lsm)137 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
138 {
139 struct lsm_info **check;
140
141 for (check = ordered_lsms; *check; check++)
142 if (*check == lsm)
143 return true;
144
145 return false;
146 }
147
148 /* Append an LSM to the list of ordered LSMs to initialize. */
149 static int last_lsm __initdata;
append_ordered_lsm(struct lsm_info * lsm,const char * from)150 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
151 {
152 /* Ignore duplicate selections. */
153 if (exists_ordered_lsm(lsm))
154 return;
155
156 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
157 return;
158
159 /* Enable this LSM, if it is not already set. */
160 if (!lsm->enabled)
161 lsm->enabled = &lsm_enabled_true;
162 ordered_lsms[last_lsm++] = lsm;
163
164 init_debug("%s ordered: %s (%s)\n", from, lsm->name,
165 is_enabled(lsm) ? "enabled" : "disabled");
166 }
167
168 /* Is an LSM allowed to be initialized? */
lsm_allowed(struct lsm_info * lsm)169 static bool __init lsm_allowed(struct lsm_info *lsm)
170 {
171 /* Skip if the LSM is disabled. */
172 if (!is_enabled(lsm))
173 return false;
174
175 /* Not allowed if another exclusive LSM already initialized. */
176 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
177 init_debug("exclusive disabled: %s\n", lsm->name);
178 return false;
179 }
180
181 return true;
182 }
183
lsm_set_blob_size(int * need,int * lbs)184 static void __init lsm_set_blob_size(int *need, int *lbs)
185 {
186 int offset;
187
188 if (*need <= 0)
189 return;
190
191 offset = ALIGN(*lbs, sizeof(void *));
192 *lbs = offset + *need;
193 *need = offset;
194 }
195
lsm_set_blob_sizes(struct lsm_blob_sizes * needed)196 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
197 {
198 if (!needed)
199 return;
200
201 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
202 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
203 /*
204 * The inode blob gets an rcu_head in addition to
205 * what the modules might need.
206 */
207 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
208 blob_sizes.lbs_inode = sizeof(struct rcu_head);
209 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
210 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
211 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
212 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
213 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
214 }
215
216 /* Prepare LSM for initialization. */
prepare_lsm(struct lsm_info * lsm)217 static void __init prepare_lsm(struct lsm_info *lsm)
218 {
219 int enabled = lsm_allowed(lsm);
220
221 /* Record enablement (to handle any following exclusive LSMs). */
222 set_enabled(lsm, enabled);
223
224 /* If enabled, do pre-initialization work. */
225 if (enabled) {
226 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
227 exclusive = lsm;
228 init_debug("exclusive chosen: %s\n", lsm->name);
229 }
230
231 lsm_set_blob_sizes(lsm->blobs);
232 }
233 }
234
235 /* Initialize a given LSM, if it is enabled. */
initialize_lsm(struct lsm_info * lsm)236 static void __init initialize_lsm(struct lsm_info *lsm)
237 {
238 if (is_enabled(lsm)) {
239 int ret;
240
241 init_debug("initializing %s\n", lsm->name);
242 ret = lsm->init();
243 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
244 }
245 }
246
247 /* Populate ordered LSMs list from comma-separated LSM name list. */
ordered_lsm_parse(const char * order,const char * origin)248 static void __init ordered_lsm_parse(const char *order, const char *origin)
249 {
250 struct lsm_info *lsm;
251 char *sep, *name, *next;
252
253 /* LSM_ORDER_FIRST is always first. */
254 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
255 if (lsm->order == LSM_ORDER_FIRST)
256 append_ordered_lsm(lsm, " first");
257 }
258
259 /* Process "security=", if given. */
260 if (chosen_major_lsm) {
261 struct lsm_info *major;
262
263 /*
264 * To match the original "security=" behavior, this
265 * explicitly does NOT fallback to another Legacy Major
266 * if the selected one was separately disabled: disable
267 * all non-matching Legacy Major LSMs.
268 */
269 for (major = __start_lsm_info; major < __end_lsm_info;
270 major++) {
271 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
272 strcmp(major->name, chosen_major_lsm) != 0) {
273 set_enabled(major, false);
274 init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
275 chosen_major_lsm, major->name);
276 }
277 }
278 }
279
280 sep = kstrdup(order, GFP_KERNEL);
281 next = sep;
282 /* Walk the list, looking for matching LSMs. */
283 while ((name = strsep(&next, ",")) != NULL) {
284 bool found = false;
285
286 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
287 if (lsm->order == LSM_ORDER_MUTABLE &&
288 strcmp(lsm->name, name) == 0) {
289 append_ordered_lsm(lsm, origin);
290 found = true;
291 }
292 }
293
294 if (!found)
295 init_debug("%s ignored: %s (not built into kernel)\n",
296 origin, name);
297 }
298
299 /* Process "security=", if given. */
300 if (chosen_major_lsm) {
301 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
302 if (exists_ordered_lsm(lsm))
303 continue;
304 if (strcmp(lsm->name, chosen_major_lsm) == 0)
305 append_ordered_lsm(lsm, "security=");
306 }
307 }
308
309 /* Disable all LSMs not in the ordered list. */
310 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
311 if (exists_ordered_lsm(lsm))
312 continue;
313 set_enabled(lsm, false);
314 init_debug("%s skipped: %s (not in requested order)\n",
315 origin, lsm->name);
316 }
317
318 kfree(sep);
319 }
320
321 static void __init lsm_early_cred(struct cred *cred);
322 static void __init lsm_early_task(struct task_struct *task);
323
324 static int lsm_append(const char *new, char **result);
325
report_lsm_order(void)326 static void __init report_lsm_order(void)
327 {
328 struct lsm_info **lsm, *early;
329 int first = 0;
330
331 pr_info("initializing lsm=");
332
333 /* Report each enabled LSM name, comma separated. */
334 for (early = __start_early_lsm_info; early < __end_early_lsm_info; early++)
335 if (is_enabled(early))
336 pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
337 for (lsm = ordered_lsms; *lsm; lsm++)
338 if (is_enabled(*lsm))
339 pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
340
341 pr_cont("\n");
342 }
343
ordered_lsm_init(void)344 static void __init ordered_lsm_init(void)
345 {
346 struct lsm_info **lsm;
347
348 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
349 GFP_KERNEL);
350
351 if (chosen_lsm_order) {
352 if (chosen_major_lsm) {
353 pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
354 chosen_major_lsm, chosen_lsm_order);
355 chosen_major_lsm = NULL;
356 }
357 ordered_lsm_parse(chosen_lsm_order, "cmdline");
358 } else
359 ordered_lsm_parse(builtin_lsm_order, "builtin");
360
361 for (lsm = ordered_lsms; *lsm; lsm++)
362 prepare_lsm(*lsm);
363
364 report_lsm_order();
365
366 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
367 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
368 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
369 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
370 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
371 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
372 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
373
374 /*
375 * Create any kmem_caches needed for blobs
376 */
377 if (blob_sizes.lbs_file)
378 lsm_file_cache = kmem_cache_create("lsm_file_cache",
379 blob_sizes.lbs_file, 0,
380 SLAB_PANIC, NULL);
381 if (blob_sizes.lbs_inode)
382 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
383 blob_sizes.lbs_inode, 0,
384 SLAB_PANIC, NULL);
385
386 lsm_early_cred((struct cred *) current->cred);
387 lsm_early_task(current);
388 for (lsm = ordered_lsms; *lsm; lsm++)
389 initialize_lsm(*lsm);
390
391 kfree(ordered_lsms);
392 }
393
early_security_init(void)394 int __init early_security_init(void)
395 {
396 struct lsm_info *lsm;
397
398 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
399 INIT_HLIST_HEAD(&security_hook_heads.NAME);
400 #include "linux/lsm_hook_defs.h"
401 #undef LSM_HOOK
402
403 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
404 if (!lsm->enabled)
405 lsm->enabled = &lsm_enabled_true;
406 prepare_lsm(lsm);
407 initialize_lsm(lsm);
408 }
409
410 return 0;
411 }
412
413 /**
414 * security_init - initializes the security framework
415 *
416 * This should be called early in the kernel initialization sequence.
417 */
security_init(void)418 int __init security_init(void)
419 {
420 struct lsm_info *lsm;
421
422 init_debug("legacy security=%s\n", chosen_major_lsm ?: " *unspecified*");
423 init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order);
424 init_debug("boot arg lsm=%s\n", chosen_lsm_order ?: " *unspecified*");
425
426 /*
427 * Append the names of the early LSM modules now that kmalloc() is
428 * available
429 */
430 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
431 init_debug(" early started: %s (%s)\n", lsm->name,
432 is_enabled(lsm) ? "enabled" : "disabled");
433 if (lsm->enabled)
434 lsm_append(lsm->name, &lsm_names);
435 }
436
437 /* Load LSMs in specified order. */
438 ordered_lsm_init();
439
440 return 0;
441 }
442
443 /* Save user chosen LSM */
choose_major_lsm(char * str)444 static int __init choose_major_lsm(char *str)
445 {
446 chosen_major_lsm = str;
447 return 1;
448 }
449 __setup("security=", choose_major_lsm);
450
451 /* Explicitly choose LSM initialization order. */
choose_lsm_order(char * str)452 static int __init choose_lsm_order(char *str)
453 {
454 chosen_lsm_order = str;
455 return 1;
456 }
457 __setup("lsm=", choose_lsm_order);
458
459 /* Enable LSM order debugging. */
enable_debug(char * str)460 static int __init enable_debug(char *str)
461 {
462 debug = true;
463 return 1;
464 }
465 __setup("lsm.debug", enable_debug);
466
match_last_lsm(const char * list,const char * lsm)467 static bool match_last_lsm(const char *list, const char *lsm)
468 {
469 const char *last;
470
471 if (WARN_ON(!list || !lsm))
472 return false;
473 last = strrchr(list, ',');
474 if (last)
475 /* Pass the comma, strcmp() will check for '\0' */
476 last++;
477 else
478 last = list;
479 return !strcmp(last, lsm);
480 }
481
lsm_append(const char * new,char ** result)482 static int lsm_append(const char *new, char **result)
483 {
484 char *cp;
485
486 if (*result == NULL) {
487 *result = kstrdup(new, GFP_KERNEL);
488 if (*result == NULL)
489 return -ENOMEM;
490 } else {
491 /* Check if it is the last registered name */
492 if (match_last_lsm(*result, new))
493 return 0;
494 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
495 if (cp == NULL)
496 return -ENOMEM;
497 kfree(*result);
498 *result = cp;
499 }
500 return 0;
501 }
502
503 /**
504 * security_add_hooks - Add a modules hooks to the hook lists.
505 * @hooks: the hooks to add
506 * @count: the number of hooks to add
507 * @lsm: the name of the security module
508 *
509 * Each LSM has to register its hooks with the infrastructure.
510 */
security_add_hooks(struct security_hook_list * hooks,int count,const char * lsm)511 void __init security_add_hooks(struct security_hook_list *hooks, int count,
512 const char *lsm)
513 {
514 int i;
515
516 for (i = 0; i < count; i++) {
517 hooks[i].lsm = lsm;
518 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
519 }
520
521 /*
522 * Don't try to append during early_security_init(), we'll come back
523 * and fix this up afterwards.
524 */
525 if (slab_is_available()) {
526 if (lsm_append(lsm, &lsm_names) < 0)
527 panic("%s - Cannot get early memory.\n", __func__);
528 }
529 }
530
call_blocking_lsm_notifier(enum lsm_event event,void * data)531 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
532 {
533 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
534 event, data);
535 }
536 EXPORT_SYMBOL(call_blocking_lsm_notifier);
537
register_blocking_lsm_notifier(struct notifier_block * nb)538 int register_blocking_lsm_notifier(struct notifier_block *nb)
539 {
540 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
541 nb);
542 }
543 EXPORT_SYMBOL(register_blocking_lsm_notifier);
544
unregister_blocking_lsm_notifier(struct notifier_block * nb)545 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
546 {
547 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
548 nb);
549 }
550 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
551
552 /**
553 * lsm_cred_alloc - allocate a composite cred blob
554 * @cred: the cred that needs a blob
555 * @gfp: allocation type
556 *
557 * Allocate the cred blob for all the modules
558 *
559 * Returns 0, or -ENOMEM if memory can't be allocated.
560 */
lsm_cred_alloc(struct cred * cred,gfp_t gfp)561 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
562 {
563 if (blob_sizes.lbs_cred == 0) {
564 cred->security = NULL;
565 return 0;
566 }
567
568 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
569 if (cred->security == NULL)
570 return -ENOMEM;
571 return 0;
572 }
573
574 /**
575 * lsm_early_cred - during initialization allocate a composite cred blob
576 * @cred: the cred that needs a blob
577 *
578 * Allocate the cred blob for all the modules
579 */
lsm_early_cred(struct cred * cred)580 static void __init lsm_early_cred(struct cred *cred)
581 {
582 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
583
584 if (rc)
585 panic("%s: Early cred alloc failed.\n", __func__);
586 }
587
588 /**
589 * lsm_file_alloc - allocate a composite file blob
590 * @file: the file that needs a blob
591 *
592 * Allocate the file blob for all the modules
593 *
594 * Returns 0, or -ENOMEM if memory can't be allocated.
595 */
lsm_file_alloc(struct file * file)596 static int lsm_file_alloc(struct file *file)
597 {
598 if (!lsm_file_cache) {
599 file->f_security = NULL;
600 return 0;
601 }
602
603 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
604 if (file->f_security == NULL)
605 return -ENOMEM;
606 return 0;
607 }
608
609 /**
610 * lsm_inode_alloc - allocate a composite inode blob
611 * @inode: the inode that needs a blob
612 *
613 * Allocate the inode blob for all the modules
614 *
615 * Returns 0, or -ENOMEM if memory can't be allocated.
616 */
lsm_inode_alloc(struct inode * inode)617 int lsm_inode_alloc(struct inode *inode)
618 {
619 if (!lsm_inode_cache) {
620 inode->i_security = NULL;
621 return 0;
622 }
623
624 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
625 if (inode->i_security == NULL)
626 return -ENOMEM;
627 return 0;
628 }
629
630 /**
631 * lsm_task_alloc - allocate a composite task blob
632 * @task: the task that needs a blob
633 *
634 * Allocate the task blob for all the modules
635 *
636 * Returns 0, or -ENOMEM if memory can't be allocated.
637 */
lsm_task_alloc(struct task_struct * task)638 static int lsm_task_alloc(struct task_struct *task)
639 {
640 if (blob_sizes.lbs_task == 0) {
641 task->security = NULL;
642 return 0;
643 }
644
645 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
646 if (task->security == NULL)
647 return -ENOMEM;
648 return 0;
649 }
650
651 /**
652 * lsm_ipc_alloc - allocate a composite ipc blob
653 * @kip: the ipc that needs a blob
654 *
655 * Allocate the ipc blob for all the modules
656 *
657 * Returns 0, or -ENOMEM if memory can't be allocated.
658 */
lsm_ipc_alloc(struct kern_ipc_perm * kip)659 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
660 {
661 if (blob_sizes.lbs_ipc == 0) {
662 kip->security = NULL;
663 return 0;
664 }
665
666 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
667 if (kip->security == NULL)
668 return -ENOMEM;
669 return 0;
670 }
671
672 /**
673 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
674 * @mp: the msg_msg that needs a blob
675 *
676 * Allocate the ipc blob for all the modules
677 *
678 * Returns 0, or -ENOMEM if memory can't be allocated.
679 */
lsm_msg_msg_alloc(struct msg_msg * mp)680 static int lsm_msg_msg_alloc(struct msg_msg *mp)
681 {
682 if (blob_sizes.lbs_msg_msg == 0) {
683 mp->security = NULL;
684 return 0;
685 }
686
687 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
688 if (mp->security == NULL)
689 return -ENOMEM;
690 return 0;
691 }
692
693 /**
694 * lsm_early_task - during initialization allocate a composite task blob
695 * @task: the task that needs a blob
696 *
697 * Allocate the task blob for all the modules
698 */
lsm_early_task(struct task_struct * task)699 static void __init lsm_early_task(struct task_struct *task)
700 {
701 int rc = lsm_task_alloc(task);
702
703 if (rc)
704 panic("%s: Early task alloc failed.\n", __func__);
705 }
706
707 /**
708 * lsm_superblock_alloc - allocate a composite superblock blob
709 * @sb: the superblock that needs a blob
710 *
711 * Allocate the superblock blob for all the modules
712 *
713 * Returns 0, or -ENOMEM if memory can't be allocated.
714 */
lsm_superblock_alloc(struct super_block * sb)715 static int lsm_superblock_alloc(struct super_block *sb)
716 {
717 if (blob_sizes.lbs_superblock == 0) {
718 sb->s_security = NULL;
719 return 0;
720 }
721
722 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
723 if (sb->s_security == NULL)
724 return -ENOMEM;
725 return 0;
726 }
727
728 /*
729 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
730 * can be accessed with:
731 *
732 * LSM_RET_DEFAULT(<hook_name>)
733 *
734 * The macros below define static constants for the default value of each
735 * LSM hook.
736 */
737 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
738 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
739 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
740 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
741 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
742 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
743
744 #include <linux/lsm_hook_defs.h>
745 #undef LSM_HOOK
746
747 /*
748 * Hook list operation macros.
749 *
750 * call_void_hook:
751 * This is a hook that does not return a value.
752 *
753 * call_int_hook:
754 * This is a hook that returns a value.
755 */
756
757 #define call_void_hook(FUNC, ...) \
758 do { \
759 struct security_hook_list *P; \
760 \
761 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
762 P->hook.FUNC(__VA_ARGS__); \
763 } while (0)
764
765 #define call_int_hook(FUNC, IRC, ...) ({ \
766 int RC = IRC; \
767 do { \
768 struct security_hook_list *P; \
769 \
770 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
771 RC = P->hook.FUNC(__VA_ARGS__); \
772 if (RC != 0) \
773 break; \
774 } \
775 } while (0); \
776 RC; \
777 })
778
779 /* Security operations */
780
security_binder_set_context_mgr(const struct cred * mgr)781 int security_binder_set_context_mgr(const struct cred *mgr)
782 {
783 return call_int_hook(binder_set_context_mgr, 0, mgr);
784 }
785
security_binder_transaction(const struct cred * from,const struct cred * to)786 int security_binder_transaction(const struct cred *from,
787 const struct cred *to)
788 {
789 return call_int_hook(binder_transaction, 0, from, to);
790 }
791
security_binder_transfer_binder(const struct cred * from,const struct cred * to)792 int security_binder_transfer_binder(const struct cred *from,
793 const struct cred *to)
794 {
795 return call_int_hook(binder_transfer_binder, 0, from, to);
796 }
797
security_binder_transfer_file(const struct cred * from,const struct cred * to,struct file * file)798 int security_binder_transfer_file(const struct cred *from,
799 const struct cred *to, struct file *file)
800 {
801 return call_int_hook(binder_transfer_file, 0, from, to, file);
802 }
803
security_ptrace_access_check(struct task_struct * child,unsigned int mode)804 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
805 {
806 return call_int_hook(ptrace_access_check, 0, child, mode);
807 }
808
security_ptrace_traceme(struct task_struct * parent)809 int security_ptrace_traceme(struct task_struct *parent)
810 {
811 return call_int_hook(ptrace_traceme, 0, parent);
812 }
813
security_capget(struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)814 int security_capget(struct task_struct *target,
815 kernel_cap_t *effective,
816 kernel_cap_t *inheritable,
817 kernel_cap_t *permitted)
818 {
819 return call_int_hook(capget, 0, target,
820 effective, inheritable, permitted);
821 }
822
security_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)823 int security_capset(struct cred *new, const struct cred *old,
824 const kernel_cap_t *effective,
825 const kernel_cap_t *inheritable,
826 const kernel_cap_t *permitted)
827 {
828 return call_int_hook(capset, 0, new, old,
829 effective, inheritable, permitted);
830 }
831
security_capable(const struct cred * cred,struct user_namespace * ns,int cap,unsigned int opts)832 int security_capable(const struct cred *cred,
833 struct user_namespace *ns,
834 int cap,
835 unsigned int opts)
836 {
837 return call_int_hook(capable, 0, cred, ns, cap, opts);
838 }
839
security_quotactl(int cmds,int type,int id,struct super_block * sb)840 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
841 {
842 return call_int_hook(quotactl, 0, cmds, type, id, sb);
843 }
844
security_quota_on(struct dentry * dentry)845 int security_quota_on(struct dentry *dentry)
846 {
847 return call_int_hook(quota_on, 0, dentry);
848 }
849
security_syslog(int type)850 int security_syslog(int type)
851 {
852 return call_int_hook(syslog, 0, type);
853 }
854
security_settime64(const struct timespec64 * ts,const struct timezone * tz)855 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
856 {
857 return call_int_hook(settime, 0, ts, tz);
858 }
859
security_vm_enough_memory_mm(struct mm_struct * mm,long pages)860 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
861 {
862 struct security_hook_list *hp;
863 int cap_sys_admin = 1;
864 int rc;
865
866 /*
867 * The module will respond with a positive value if
868 * it thinks the __vm_enough_memory() call should be
869 * made with the cap_sys_admin set. If all of the modules
870 * agree that it should be set it will. If any module
871 * thinks it should not be set it won't.
872 */
873 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
874 rc = hp->hook.vm_enough_memory(mm, pages);
875 if (rc <= 0) {
876 cap_sys_admin = 0;
877 break;
878 }
879 }
880 return __vm_enough_memory(mm, pages, cap_sys_admin);
881 }
882
security_bprm_creds_for_exec(struct linux_binprm * bprm)883 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
884 {
885 return call_int_hook(bprm_creds_for_exec, 0, bprm);
886 }
887
security_bprm_creds_from_file(struct linux_binprm * bprm,struct file * file)888 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
889 {
890 return call_int_hook(bprm_creds_from_file, 0, bprm, file);
891 }
892
security_bprm_check(struct linux_binprm * bprm)893 int security_bprm_check(struct linux_binprm *bprm)
894 {
895 int ret;
896
897 ret = call_int_hook(bprm_check_security, 0, bprm);
898 if (ret)
899 return ret;
900 return ima_bprm_check(bprm);
901 }
902
security_bprm_committing_creds(struct linux_binprm * bprm)903 void security_bprm_committing_creds(struct linux_binprm *bprm)
904 {
905 call_void_hook(bprm_committing_creds, bprm);
906 }
907
security_bprm_committed_creds(struct linux_binprm * bprm)908 void security_bprm_committed_creds(struct linux_binprm *bprm)
909 {
910 call_void_hook(bprm_committed_creds, bprm);
911 }
912
security_fs_context_dup(struct fs_context * fc,struct fs_context * src_fc)913 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
914 {
915 return call_int_hook(fs_context_dup, 0, fc, src_fc);
916 }
917
security_fs_context_parse_param(struct fs_context * fc,struct fs_parameter * param)918 int security_fs_context_parse_param(struct fs_context *fc,
919 struct fs_parameter *param)
920 {
921 struct security_hook_list *hp;
922 int trc;
923 int rc = -ENOPARAM;
924
925 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
926 list) {
927 trc = hp->hook.fs_context_parse_param(fc, param);
928 if (trc == 0)
929 rc = 0;
930 else if (trc != -ENOPARAM)
931 return trc;
932 }
933 return rc;
934 }
935
security_sb_alloc(struct super_block * sb)936 int security_sb_alloc(struct super_block *sb)
937 {
938 int rc = lsm_superblock_alloc(sb);
939
940 if (unlikely(rc))
941 return rc;
942 rc = call_int_hook(sb_alloc_security, 0, sb);
943 if (unlikely(rc))
944 security_sb_free(sb);
945 return rc;
946 }
947
security_sb_delete(struct super_block * sb)948 void security_sb_delete(struct super_block *sb)
949 {
950 call_void_hook(sb_delete, sb);
951 }
952
security_sb_free(struct super_block * sb)953 void security_sb_free(struct super_block *sb)
954 {
955 call_void_hook(sb_free_security, sb);
956 kfree(sb->s_security);
957 sb->s_security = NULL;
958 }
959
security_free_mnt_opts(void ** mnt_opts)960 void security_free_mnt_opts(void **mnt_opts)
961 {
962 if (!*mnt_opts)
963 return;
964 call_void_hook(sb_free_mnt_opts, *mnt_opts);
965 *mnt_opts = NULL;
966 }
967 EXPORT_SYMBOL(security_free_mnt_opts);
968
security_sb_eat_lsm_opts(char * options,void ** mnt_opts)969 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
970 {
971 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
972 }
973 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
974
security_sb_mnt_opts_compat(struct super_block * sb,void * mnt_opts)975 int security_sb_mnt_opts_compat(struct super_block *sb,
976 void *mnt_opts)
977 {
978 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
979 }
980 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
981
security_sb_remount(struct super_block * sb,void * mnt_opts)982 int security_sb_remount(struct super_block *sb,
983 void *mnt_opts)
984 {
985 return call_int_hook(sb_remount, 0, sb, mnt_opts);
986 }
987 EXPORT_SYMBOL(security_sb_remount);
988
security_sb_kern_mount(struct super_block * sb)989 int security_sb_kern_mount(struct super_block *sb)
990 {
991 return call_int_hook(sb_kern_mount, 0, sb);
992 }
993
security_sb_show_options(struct seq_file * m,struct super_block * sb)994 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
995 {
996 return call_int_hook(sb_show_options, 0, m, sb);
997 }
998
security_sb_statfs(struct dentry * dentry)999 int security_sb_statfs(struct dentry *dentry)
1000 {
1001 return call_int_hook(sb_statfs, 0, dentry);
1002 }
1003
security_sb_mount(const char * dev_name,const struct path * path,const char * type,unsigned long flags,void * data)1004 int security_sb_mount(const char *dev_name, const struct path *path,
1005 const char *type, unsigned long flags, void *data)
1006 {
1007 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
1008 }
1009
security_sb_umount(struct vfsmount * mnt,int flags)1010 int security_sb_umount(struct vfsmount *mnt, int flags)
1011 {
1012 return call_int_hook(sb_umount, 0, mnt, flags);
1013 }
1014
security_sb_pivotroot(const struct path * old_path,const struct path * new_path)1015 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
1016 {
1017 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
1018 }
1019
security_sb_set_mnt_opts(struct super_block * sb,void * mnt_opts,unsigned long kern_flags,unsigned long * set_kern_flags)1020 int security_sb_set_mnt_opts(struct super_block *sb,
1021 void *mnt_opts,
1022 unsigned long kern_flags,
1023 unsigned long *set_kern_flags)
1024 {
1025 return call_int_hook(sb_set_mnt_opts,
1026 mnt_opts ? -EOPNOTSUPP : 0, sb,
1027 mnt_opts, kern_flags, set_kern_flags);
1028 }
1029 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1030
security_sb_clone_mnt_opts(const struct super_block * oldsb,struct super_block * newsb,unsigned long kern_flags,unsigned long * set_kern_flags)1031 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1032 struct super_block *newsb,
1033 unsigned long kern_flags,
1034 unsigned long *set_kern_flags)
1035 {
1036 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
1037 kern_flags, set_kern_flags);
1038 }
1039 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1040
security_move_mount(const struct path * from_path,const struct path * to_path)1041 int security_move_mount(const struct path *from_path, const struct path *to_path)
1042 {
1043 return call_int_hook(move_mount, 0, from_path, to_path);
1044 }
1045
security_path_notify(const struct path * path,u64 mask,unsigned int obj_type)1046 int security_path_notify(const struct path *path, u64 mask,
1047 unsigned int obj_type)
1048 {
1049 return call_int_hook(path_notify, 0, path, mask, obj_type);
1050 }
1051
security_inode_alloc(struct inode * inode)1052 int security_inode_alloc(struct inode *inode)
1053 {
1054 int rc = lsm_inode_alloc(inode);
1055
1056 if (unlikely(rc))
1057 return rc;
1058 rc = call_int_hook(inode_alloc_security, 0, inode);
1059 if (unlikely(rc))
1060 security_inode_free(inode);
1061 return rc;
1062 }
1063
inode_free_by_rcu(struct rcu_head * head)1064 static void inode_free_by_rcu(struct rcu_head *head)
1065 {
1066 /*
1067 * The rcu head is at the start of the inode blob
1068 */
1069 kmem_cache_free(lsm_inode_cache, head);
1070 }
1071
security_inode_free(struct inode * inode)1072 void security_inode_free(struct inode *inode)
1073 {
1074 integrity_inode_free(inode);
1075 call_void_hook(inode_free_security, inode);
1076 /*
1077 * The inode may still be referenced in a path walk and
1078 * a call to security_inode_permission() can be made
1079 * after inode_free_security() is called. Ideally, the VFS
1080 * wouldn't do this, but fixing that is a much harder
1081 * job. For now, simply free the i_security via RCU, and
1082 * leave the current inode->i_security pointer intact.
1083 * The inode will be freed after the RCU grace period too.
1084 */
1085 if (inode->i_security)
1086 call_rcu((struct rcu_head *)inode->i_security,
1087 inode_free_by_rcu);
1088 }
1089
security_dentry_init_security(struct dentry * dentry,int mode,const struct qstr * name,const char ** xattr_name,void ** ctx,u32 * ctxlen)1090 int security_dentry_init_security(struct dentry *dentry, int mode,
1091 const struct qstr *name,
1092 const char **xattr_name, void **ctx,
1093 u32 *ctxlen)
1094 {
1095 struct security_hook_list *hp;
1096 int rc;
1097
1098 /*
1099 * Only one module will provide a security context.
1100 */
1101 hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) {
1102 rc = hp->hook.dentry_init_security(dentry, mode, name,
1103 xattr_name, ctx, ctxlen);
1104 if (rc != LSM_RET_DEFAULT(dentry_init_security))
1105 return rc;
1106 }
1107 return LSM_RET_DEFAULT(dentry_init_security);
1108 }
1109 EXPORT_SYMBOL(security_dentry_init_security);
1110
security_dentry_create_files_as(struct dentry * dentry,int mode,struct qstr * name,const struct cred * old,struct cred * new)1111 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1112 struct qstr *name,
1113 const struct cred *old, struct cred *new)
1114 {
1115 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1116 name, old, new);
1117 }
1118 EXPORT_SYMBOL(security_dentry_create_files_as);
1119
security_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const initxattrs initxattrs,void * fs_data)1120 int security_inode_init_security(struct inode *inode, struct inode *dir,
1121 const struct qstr *qstr,
1122 const initxattrs initxattrs, void *fs_data)
1123 {
1124 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1125 struct xattr *lsm_xattr, *evm_xattr, *xattr;
1126 int ret;
1127
1128 if (unlikely(IS_PRIVATE(inode)))
1129 return 0;
1130
1131 if (!initxattrs)
1132 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1133 dir, qstr, NULL, NULL, NULL);
1134 memset(new_xattrs, 0, sizeof(new_xattrs));
1135 lsm_xattr = new_xattrs;
1136 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1137 &lsm_xattr->name,
1138 &lsm_xattr->value,
1139 &lsm_xattr->value_len);
1140 if (ret)
1141 goto out;
1142
1143 evm_xattr = lsm_xattr + 1;
1144 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1145 if (ret)
1146 goto out;
1147 ret = initxattrs(inode, new_xattrs, fs_data);
1148 out:
1149 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1150 kfree(xattr->value);
1151 return (ret == -EOPNOTSUPP) ? 0 : ret;
1152 }
1153 EXPORT_SYMBOL(security_inode_init_security);
1154
security_inode_init_security_anon(struct inode * inode,const struct qstr * name,const struct inode * context_inode)1155 int security_inode_init_security_anon(struct inode *inode,
1156 const struct qstr *name,
1157 const struct inode *context_inode)
1158 {
1159 return call_int_hook(inode_init_security_anon, 0, inode, name,
1160 context_inode);
1161 }
1162
security_old_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const char ** name,void ** value,size_t * len)1163 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1164 const struct qstr *qstr, const char **name,
1165 void **value, size_t *len)
1166 {
1167 if (unlikely(IS_PRIVATE(inode)))
1168 return -EOPNOTSUPP;
1169 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1170 qstr, name, value, len);
1171 }
1172 EXPORT_SYMBOL(security_old_inode_init_security);
1173
1174 #ifdef CONFIG_SECURITY_PATH
security_path_mknod(const struct path * dir,struct dentry * dentry,umode_t mode,unsigned int dev)1175 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1176 unsigned int dev)
1177 {
1178 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1179 return 0;
1180 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1181 }
1182 EXPORT_SYMBOL(security_path_mknod);
1183
security_path_mkdir(const struct path * dir,struct dentry * dentry,umode_t mode)1184 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1185 {
1186 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1187 return 0;
1188 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1189 }
1190 EXPORT_SYMBOL(security_path_mkdir);
1191
security_path_rmdir(const struct path * dir,struct dentry * dentry)1192 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1193 {
1194 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1195 return 0;
1196 return call_int_hook(path_rmdir, 0, dir, dentry);
1197 }
1198
security_path_unlink(const struct path * dir,struct dentry * dentry)1199 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1200 {
1201 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1202 return 0;
1203 return call_int_hook(path_unlink, 0, dir, dentry);
1204 }
1205 EXPORT_SYMBOL(security_path_unlink);
1206
security_path_symlink(const struct path * dir,struct dentry * dentry,const char * old_name)1207 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1208 const char *old_name)
1209 {
1210 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1211 return 0;
1212 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1213 }
1214
security_path_link(struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry)1215 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1216 struct dentry *new_dentry)
1217 {
1218 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1219 return 0;
1220 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1221 }
1222
security_path_rename(const struct path * old_dir,struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry,unsigned int flags)1223 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1224 const struct path *new_dir, struct dentry *new_dentry,
1225 unsigned int flags)
1226 {
1227 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1228 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1229 return 0;
1230
1231 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1232 new_dentry, flags);
1233 }
1234 EXPORT_SYMBOL(security_path_rename);
1235
security_path_truncate(const struct path * path)1236 int security_path_truncate(const struct path *path)
1237 {
1238 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1239 return 0;
1240 return call_int_hook(path_truncate, 0, path);
1241 }
1242
security_path_chmod(const struct path * path,umode_t mode)1243 int security_path_chmod(const struct path *path, umode_t mode)
1244 {
1245 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1246 return 0;
1247 return call_int_hook(path_chmod, 0, path, mode);
1248 }
1249
security_path_chown(const struct path * path,kuid_t uid,kgid_t gid)1250 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1251 {
1252 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1253 return 0;
1254 return call_int_hook(path_chown, 0, path, uid, gid);
1255 }
1256
security_path_chroot(const struct path * path)1257 int security_path_chroot(const struct path *path)
1258 {
1259 return call_int_hook(path_chroot, 0, path);
1260 }
1261 #endif
1262
security_inode_create(struct inode * dir,struct dentry * dentry,umode_t mode)1263 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1264 {
1265 if (unlikely(IS_PRIVATE(dir)))
1266 return 0;
1267 return call_int_hook(inode_create, 0, dir, dentry, mode);
1268 }
1269 EXPORT_SYMBOL_GPL(security_inode_create);
1270
security_inode_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)1271 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1272 struct dentry *new_dentry)
1273 {
1274 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1275 return 0;
1276 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1277 }
1278
security_inode_unlink(struct inode * dir,struct dentry * dentry)1279 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1280 {
1281 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1282 return 0;
1283 return call_int_hook(inode_unlink, 0, dir, dentry);
1284 }
1285
security_inode_symlink(struct inode * dir,struct dentry * dentry,const char * old_name)1286 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1287 const char *old_name)
1288 {
1289 if (unlikely(IS_PRIVATE(dir)))
1290 return 0;
1291 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1292 }
1293
security_inode_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1294 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1295 {
1296 if (unlikely(IS_PRIVATE(dir)))
1297 return 0;
1298 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1299 }
1300 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1301
security_inode_rmdir(struct inode * dir,struct dentry * dentry)1302 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1303 {
1304 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1305 return 0;
1306 return call_int_hook(inode_rmdir, 0, dir, dentry);
1307 }
1308
security_inode_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)1309 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1310 {
1311 if (unlikely(IS_PRIVATE(dir)))
1312 return 0;
1313 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1314 }
1315
security_inode_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1316 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1317 struct inode *new_dir, struct dentry *new_dentry,
1318 unsigned int flags)
1319 {
1320 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1321 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1322 return 0;
1323
1324 if (flags & RENAME_EXCHANGE) {
1325 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1326 old_dir, old_dentry);
1327 if (err)
1328 return err;
1329 }
1330
1331 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1332 new_dir, new_dentry);
1333 }
1334
security_inode_readlink(struct dentry * dentry)1335 int security_inode_readlink(struct dentry *dentry)
1336 {
1337 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1338 return 0;
1339 return call_int_hook(inode_readlink, 0, dentry);
1340 }
1341
security_inode_follow_link(struct dentry * dentry,struct inode * inode,bool rcu)1342 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1343 bool rcu)
1344 {
1345 if (unlikely(IS_PRIVATE(inode)))
1346 return 0;
1347 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1348 }
1349
security_inode_permission(struct inode * inode,int mask)1350 int security_inode_permission(struct inode *inode, int mask)
1351 {
1352 if (unlikely(IS_PRIVATE(inode)))
1353 return 0;
1354 return call_int_hook(inode_permission, 0, inode, mask);
1355 }
1356
security_inode_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1357 int security_inode_setattr(struct mnt_idmap *idmap,
1358 struct dentry *dentry, struct iattr *attr)
1359 {
1360 int ret;
1361
1362 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1363 return 0;
1364 ret = call_int_hook(inode_setattr, 0, dentry, attr);
1365 if (ret)
1366 return ret;
1367 return evm_inode_setattr(idmap, dentry, attr);
1368 }
1369 EXPORT_SYMBOL_GPL(security_inode_setattr);
1370
security_inode_getattr(const struct path * path)1371 int security_inode_getattr(const struct path *path)
1372 {
1373 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1374 return 0;
1375 return call_int_hook(inode_getattr, 0, path);
1376 }
1377
security_inode_setxattr(struct mnt_idmap * idmap,struct dentry * dentry,const char * name,const void * value,size_t size,int flags)1378 int security_inode_setxattr(struct mnt_idmap *idmap,
1379 struct dentry *dentry, const char *name,
1380 const void *value, size_t size, int flags)
1381 {
1382 int ret;
1383
1384 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1385 return 0;
1386 /*
1387 * SELinux and Smack integrate the cap call,
1388 * so assume that all LSMs supplying this call do so.
1389 */
1390 ret = call_int_hook(inode_setxattr, 1, idmap, dentry, name, value,
1391 size, flags);
1392
1393 if (ret == 1)
1394 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1395 if (ret)
1396 return ret;
1397 ret = ima_inode_setxattr(dentry, name, value, size);
1398 if (ret)
1399 return ret;
1400 return evm_inode_setxattr(idmap, dentry, name, value, size);
1401 }
1402
security_inode_set_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name,struct posix_acl * kacl)1403 int security_inode_set_acl(struct mnt_idmap *idmap,
1404 struct dentry *dentry, const char *acl_name,
1405 struct posix_acl *kacl)
1406 {
1407 int ret;
1408
1409 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1410 return 0;
1411 ret = call_int_hook(inode_set_acl, 0, idmap, dentry, acl_name,
1412 kacl);
1413 if (ret)
1414 return ret;
1415 ret = ima_inode_set_acl(idmap, dentry, acl_name, kacl);
1416 if (ret)
1417 return ret;
1418 return evm_inode_set_acl(idmap, dentry, acl_name, kacl);
1419 }
1420
security_inode_get_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name)1421 int security_inode_get_acl(struct mnt_idmap *idmap,
1422 struct dentry *dentry, const char *acl_name)
1423 {
1424 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1425 return 0;
1426 return call_int_hook(inode_get_acl, 0, idmap, dentry, acl_name);
1427 }
1428
security_inode_remove_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name)1429 int security_inode_remove_acl(struct mnt_idmap *idmap,
1430 struct dentry *dentry, const char *acl_name)
1431 {
1432 int ret;
1433
1434 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1435 return 0;
1436 ret = call_int_hook(inode_remove_acl, 0, idmap, dentry, acl_name);
1437 if (ret)
1438 return ret;
1439 ret = ima_inode_remove_acl(idmap, dentry, acl_name);
1440 if (ret)
1441 return ret;
1442 return evm_inode_remove_acl(idmap, dentry, acl_name);
1443 }
1444
security_inode_post_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)1445 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1446 const void *value, size_t size, int flags)
1447 {
1448 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1449 return;
1450 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1451 evm_inode_post_setxattr(dentry, name, value, size);
1452 }
1453
security_inode_getxattr(struct dentry * dentry,const char * name)1454 int security_inode_getxattr(struct dentry *dentry, const char *name)
1455 {
1456 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1457 return 0;
1458 return call_int_hook(inode_getxattr, 0, dentry, name);
1459 }
1460
security_inode_listxattr(struct dentry * dentry)1461 int security_inode_listxattr(struct dentry *dentry)
1462 {
1463 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1464 return 0;
1465 return call_int_hook(inode_listxattr, 0, dentry);
1466 }
1467
security_inode_removexattr(struct mnt_idmap * idmap,struct dentry * dentry,const char * name)1468 int security_inode_removexattr(struct mnt_idmap *idmap,
1469 struct dentry *dentry, const char *name)
1470 {
1471 int ret;
1472
1473 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1474 return 0;
1475 /*
1476 * SELinux and Smack integrate the cap call,
1477 * so assume that all LSMs supplying this call do so.
1478 */
1479 ret = call_int_hook(inode_removexattr, 1, idmap, dentry, name);
1480 if (ret == 1)
1481 ret = cap_inode_removexattr(idmap, dentry, name);
1482 if (ret)
1483 return ret;
1484 ret = ima_inode_removexattr(dentry, name);
1485 if (ret)
1486 return ret;
1487 return evm_inode_removexattr(idmap, dentry, name);
1488 }
1489
security_inode_need_killpriv(struct dentry * dentry)1490 int security_inode_need_killpriv(struct dentry *dentry)
1491 {
1492 return call_int_hook(inode_need_killpriv, 0, dentry);
1493 }
1494
security_inode_killpriv(struct mnt_idmap * idmap,struct dentry * dentry)1495 int security_inode_killpriv(struct mnt_idmap *idmap,
1496 struct dentry *dentry)
1497 {
1498 return call_int_hook(inode_killpriv, 0, idmap, dentry);
1499 }
1500
security_inode_getsecurity(struct mnt_idmap * idmap,struct inode * inode,const char * name,void ** buffer,bool alloc)1501 int security_inode_getsecurity(struct mnt_idmap *idmap,
1502 struct inode *inode, const char *name,
1503 void **buffer, bool alloc)
1504 {
1505 struct security_hook_list *hp;
1506 int rc;
1507
1508 if (unlikely(IS_PRIVATE(inode)))
1509 return LSM_RET_DEFAULT(inode_getsecurity);
1510 /*
1511 * Only one module will provide an attribute with a given name.
1512 */
1513 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1514 rc = hp->hook.inode_getsecurity(idmap, inode, name, buffer, alloc);
1515 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1516 return rc;
1517 }
1518 return LSM_RET_DEFAULT(inode_getsecurity);
1519 }
1520
security_inode_setsecurity(struct inode * inode,const char * name,const void * value,size_t size,int flags)1521 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1522 {
1523 struct security_hook_list *hp;
1524 int rc;
1525
1526 if (unlikely(IS_PRIVATE(inode)))
1527 return LSM_RET_DEFAULT(inode_setsecurity);
1528 /*
1529 * Only one module will provide an attribute with a given name.
1530 */
1531 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1532 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1533 flags);
1534 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1535 return rc;
1536 }
1537 return LSM_RET_DEFAULT(inode_setsecurity);
1538 }
1539
security_inode_listsecurity(struct inode * inode,char * buffer,size_t buffer_size)1540 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1541 {
1542 if (unlikely(IS_PRIVATE(inode)))
1543 return 0;
1544 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1545 }
1546 EXPORT_SYMBOL(security_inode_listsecurity);
1547
security_inode_getsecid(struct inode * inode,u32 * secid)1548 void security_inode_getsecid(struct inode *inode, u32 *secid)
1549 {
1550 call_void_hook(inode_getsecid, inode, secid);
1551 }
1552
security_inode_copy_up(struct dentry * src,struct cred ** new)1553 int security_inode_copy_up(struct dentry *src, struct cred **new)
1554 {
1555 return call_int_hook(inode_copy_up, 0, src, new);
1556 }
1557 EXPORT_SYMBOL(security_inode_copy_up);
1558
security_inode_copy_up_xattr(const char * name)1559 int security_inode_copy_up_xattr(const char *name)
1560 {
1561 struct security_hook_list *hp;
1562 int rc;
1563
1564 /*
1565 * The implementation can return 0 (accept the xattr), 1 (discard the
1566 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1567 * any other error code incase of an error.
1568 */
1569 hlist_for_each_entry(hp,
1570 &security_hook_heads.inode_copy_up_xattr, list) {
1571 rc = hp->hook.inode_copy_up_xattr(name);
1572 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1573 return rc;
1574 }
1575
1576 return LSM_RET_DEFAULT(inode_copy_up_xattr);
1577 }
1578 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1579
security_kernfs_init_security(struct kernfs_node * kn_dir,struct kernfs_node * kn)1580 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1581 struct kernfs_node *kn)
1582 {
1583 return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1584 }
1585
security_file_permission(struct file * file,int mask)1586 int security_file_permission(struct file *file, int mask)
1587 {
1588 int ret;
1589
1590 ret = call_int_hook(file_permission, 0, file, mask);
1591 if (ret)
1592 return ret;
1593
1594 return fsnotify_perm(file, mask);
1595 }
1596
security_file_alloc(struct file * file)1597 int security_file_alloc(struct file *file)
1598 {
1599 int rc = lsm_file_alloc(file);
1600
1601 if (rc)
1602 return rc;
1603 rc = call_int_hook(file_alloc_security, 0, file);
1604 if (unlikely(rc))
1605 security_file_free(file);
1606 return rc;
1607 }
1608
security_file_free(struct file * file)1609 void security_file_free(struct file *file)
1610 {
1611 void *blob;
1612
1613 call_void_hook(file_free_security, file);
1614
1615 blob = file->f_security;
1616 if (blob) {
1617 file->f_security = NULL;
1618 kmem_cache_free(lsm_file_cache, blob);
1619 }
1620 }
1621
security_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1622 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1623 {
1624 return call_int_hook(file_ioctl, 0, file, cmd, arg);
1625 }
1626 EXPORT_SYMBOL_GPL(security_file_ioctl);
1627
mmap_prot(struct file * file,unsigned long prot)1628 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1629 {
1630 /*
1631 * Does we have PROT_READ and does the application expect
1632 * it to imply PROT_EXEC? If not, nothing to talk about...
1633 */
1634 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1635 return prot;
1636 if (!(current->personality & READ_IMPLIES_EXEC))
1637 return prot;
1638 /*
1639 * if that's an anonymous mapping, let it.
1640 */
1641 if (!file)
1642 return prot | PROT_EXEC;
1643 /*
1644 * ditto if it's not on noexec mount, except that on !MMU we need
1645 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1646 */
1647 if (!path_noexec(&file->f_path)) {
1648 #ifndef CONFIG_MMU
1649 if (file->f_op->mmap_capabilities) {
1650 unsigned caps = file->f_op->mmap_capabilities(file);
1651 if (!(caps & NOMMU_MAP_EXEC))
1652 return prot;
1653 }
1654 #endif
1655 return prot | PROT_EXEC;
1656 }
1657 /* anything on noexec mount won't get PROT_EXEC */
1658 return prot;
1659 }
1660
security_mmap_file(struct file * file,unsigned long prot,unsigned long flags)1661 int security_mmap_file(struct file *file, unsigned long prot,
1662 unsigned long flags)
1663 {
1664 unsigned long prot_adj = mmap_prot(file, prot);
1665 int ret;
1666
1667 ret = call_int_hook(mmap_file, 0, file, prot, prot_adj, flags);
1668 if (ret)
1669 return ret;
1670 return ima_file_mmap(file, prot, prot_adj, flags);
1671 }
1672
security_mmap_addr(unsigned long addr)1673 int security_mmap_addr(unsigned long addr)
1674 {
1675 return call_int_hook(mmap_addr, 0, addr);
1676 }
1677
security_file_mprotect(struct vm_area_struct * vma,unsigned long reqprot,unsigned long prot)1678 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1679 unsigned long prot)
1680 {
1681 int ret;
1682
1683 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1684 if (ret)
1685 return ret;
1686 return ima_file_mprotect(vma, prot);
1687 }
1688
security_file_lock(struct file * file,unsigned int cmd)1689 int security_file_lock(struct file *file, unsigned int cmd)
1690 {
1691 return call_int_hook(file_lock, 0, file, cmd);
1692 }
1693
security_file_fcntl(struct file * file,unsigned int cmd,unsigned long arg)1694 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1695 {
1696 return call_int_hook(file_fcntl, 0, file, cmd, arg);
1697 }
1698
security_file_set_fowner(struct file * file)1699 void security_file_set_fowner(struct file *file)
1700 {
1701 call_void_hook(file_set_fowner, file);
1702 }
1703
security_file_send_sigiotask(struct task_struct * tsk,struct fown_struct * fown,int sig)1704 int security_file_send_sigiotask(struct task_struct *tsk,
1705 struct fown_struct *fown, int sig)
1706 {
1707 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1708 }
1709
security_file_receive(struct file * file)1710 int security_file_receive(struct file *file)
1711 {
1712 return call_int_hook(file_receive, 0, file);
1713 }
1714
security_file_open(struct file * file)1715 int security_file_open(struct file *file)
1716 {
1717 int ret;
1718
1719 ret = call_int_hook(file_open, 0, file);
1720 if (ret)
1721 return ret;
1722
1723 return fsnotify_perm(file, MAY_OPEN);
1724 }
1725
security_file_truncate(struct file * file)1726 int security_file_truncate(struct file *file)
1727 {
1728 return call_int_hook(file_truncate, 0, file);
1729 }
1730
security_task_alloc(struct task_struct * task,unsigned long clone_flags)1731 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1732 {
1733 int rc = lsm_task_alloc(task);
1734
1735 if (rc)
1736 return rc;
1737 rc = call_int_hook(task_alloc, 0, task, clone_flags);
1738 if (unlikely(rc))
1739 security_task_free(task);
1740 return rc;
1741 }
1742
security_task_free(struct task_struct * task)1743 void security_task_free(struct task_struct *task)
1744 {
1745 call_void_hook(task_free, task);
1746
1747 kfree(task->security);
1748 task->security = NULL;
1749 }
1750
security_cred_alloc_blank(struct cred * cred,gfp_t gfp)1751 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1752 {
1753 int rc = lsm_cred_alloc(cred, gfp);
1754
1755 if (rc)
1756 return rc;
1757
1758 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1759 if (unlikely(rc))
1760 security_cred_free(cred);
1761 return rc;
1762 }
1763
security_cred_free(struct cred * cred)1764 void security_cred_free(struct cred *cred)
1765 {
1766 /*
1767 * There is a failure case in prepare_creds() that
1768 * may result in a call here with ->security being NULL.
1769 */
1770 if (unlikely(cred->security == NULL))
1771 return;
1772
1773 call_void_hook(cred_free, cred);
1774
1775 kfree(cred->security);
1776 cred->security = NULL;
1777 }
1778
security_prepare_creds(struct cred * new,const struct cred * old,gfp_t gfp)1779 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1780 {
1781 int rc = lsm_cred_alloc(new, gfp);
1782
1783 if (rc)
1784 return rc;
1785
1786 rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1787 if (unlikely(rc))
1788 security_cred_free(new);
1789 return rc;
1790 }
1791
security_transfer_creds(struct cred * new,const struct cred * old)1792 void security_transfer_creds(struct cred *new, const struct cred *old)
1793 {
1794 call_void_hook(cred_transfer, new, old);
1795 }
1796
security_cred_getsecid(const struct cred * c,u32 * secid)1797 void security_cred_getsecid(const struct cred *c, u32 *secid)
1798 {
1799 *secid = 0;
1800 call_void_hook(cred_getsecid, c, secid);
1801 }
1802 EXPORT_SYMBOL(security_cred_getsecid);
1803
security_kernel_act_as(struct cred * new,u32 secid)1804 int security_kernel_act_as(struct cred *new, u32 secid)
1805 {
1806 return call_int_hook(kernel_act_as, 0, new, secid);
1807 }
1808
security_kernel_create_files_as(struct cred * new,struct inode * inode)1809 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1810 {
1811 return call_int_hook(kernel_create_files_as, 0, new, inode);
1812 }
1813
security_kernel_module_request(char * kmod_name)1814 int security_kernel_module_request(char *kmod_name)
1815 {
1816 int ret;
1817
1818 ret = call_int_hook(kernel_module_request, 0, kmod_name);
1819 if (ret)
1820 return ret;
1821 return integrity_kernel_module_request(kmod_name);
1822 }
1823
security_kernel_read_file(struct file * file,enum kernel_read_file_id id,bool contents)1824 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1825 bool contents)
1826 {
1827 int ret;
1828
1829 ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1830 if (ret)
1831 return ret;
1832 return ima_read_file(file, id, contents);
1833 }
1834 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1835
security_kernel_post_read_file(struct file * file,char * buf,loff_t size,enum kernel_read_file_id id)1836 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1837 enum kernel_read_file_id id)
1838 {
1839 int ret;
1840
1841 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1842 if (ret)
1843 return ret;
1844 return ima_post_read_file(file, buf, size, id);
1845 }
1846 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1847
security_kernel_load_data(enum kernel_load_data_id id,bool contents)1848 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1849 {
1850 int ret;
1851
1852 ret = call_int_hook(kernel_load_data, 0, id, contents);
1853 if (ret)
1854 return ret;
1855 return ima_load_data(id, contents);
1856 }
1857 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1858
security_kernel_post_load_data(char * buf,loff_t size,enum kernel_load_data_id id,char * description)1859 int security_kernel_post_load_data(char *buf, loff_t size,
1860 enum kernel_load_data_id id,
1861 char *description)
1862 {
1863 int ret;
1864
1865 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1866 description);
1867 if (ret)
1868 return ret;
1869 return ima_post_load_data(buf, size, id, description);
1870 }
1871 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1872
security_task_fix_setuid(struct cred * new,const struct cred * old,int flags)1873 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1874 int flags)
1875 {
1876 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1877 }
1878
security_task_fix_setgid(struct cred * new,const struct cred * old,int flags)1879 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1880 int flags)
1881 {
1882 return call_int_hook(task_fix_setgid, 0, new, old, flags);
1883 }
1884
security_task_fix_setgroups(struct cred * new,const struct cred * old)1885 int security_task_fix_setgroups(struct cred *new, const struct cred *old)
1886 {
1887 return call_int_hook(task_fix_setgroups, 0, new, old);
1888 }
1889
security_task_setpgid(struct task_struct * p,pid_t pgid)1890 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1891 {
1892 return call_int_hook(task_setpgid, 0, p, pgid);
1893 }
1894
security_task_getpgid(struct task_struct * p)1895 int security_task_getpgid(struct task_struct *p)
1896 {
1897 return call_int_hook(task_getpgid, 0, p);
1898 }
1899
security_task_getsid(struct task_struct * p)1900 int security_task_getsid(struct task_struct *p)
1901 {
1902 return call_int_hook(task_getsid, 0, p);
1903 }
1904
security_current_getsecid_subj(u32 * secid)1905 void security_current_getsecid_subj(u32 *secid)
1906 {
1907 *secid = 0;
1908 call_void_hook(current_getsecid_subj, secid);
1909 }
1910 EXPORT_SYMBOL(security_current_getsecid_subj);
1911
security_task_getsecid_obj(struct task_struct * p,u32 * secid)1912 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1913 {
1914 *secid = 0;
1915 call_void_hook(task_getsecid_obj, p, secid);
1916 }
1917 EXPORT_SYMBOL(security_task_getsecid_obj);
1918
security_task_setnice(struct task_struct * p,int nice)1919 int security_task_setnice(struct task_struct *p, int nice)
1920 {
1921 return call_int_hook(task_setnice, 0, p, nice);
1922 }
1923
security_task_setioprio(struct task_struct * p,int ioprio)1924 int security_task_setioprio(struct task_struct *p, int ioprio)
1925 {
1926 return call_int_hook(task_setioprio, 0, p, ioprio);
1927 }
1928
security_task_getioprio(struct task_struct * p)1929 int security_task_getioprio(struct task_struct *p)
1930 {
1931 return call_int_hook(task_getioprio, 0, p);
1932 }
1933
security_task_prlimit(const struct cred * cred,const struct cred * tcred,unsigned int flags)1934 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1935 unsigned int flags)
1936 {
1937 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1938 }
1939
security_task_setrlimit(struct task_struct * p,unsigned int resource,struct rlimit * new_rlim)1940 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1941 struct rlimit *new_rlim)
1942 {
1943 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1944 }
1945
security_task_setscheduler(struct task_struct * p)1946 int security_task_setscheduler(struct task_struct *p)
1947 {
1948 return call_int_hook(task_setscheduler, 0, p);
1949 }
1950
security_task_getscheduler(struct task_struct * p)1951 int security_task_getscheduler(struct task_struct *p)
1952 {
1953 return call_int_hook(task_getscheduler, 0, p);
1954 }
1955
security_task_movememory(struct task_struct * p)1956 int security_task_movememory(struct task_struct *p)
1957 {
1958 return call_int_hook(task_movememory, 0, p);
1959 }
1960
security_task_kill(struct task_struct * p,struct kernel_siginfo * info,int sig,const struct cred * cred)1961 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1962 int sig, const struct cred *cred)
1963 {
1964 return call_int_hook(task_kill, 0, p, info, sig, cred);
1965 }
1966
security_task_prctl(int option,unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)1967 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1968 unsigned long arg4, unsigned long arg5)
1969 {
1970 int thisrc;
1971 int rc = LSM_RET_DEFAULT(task_prctl);
1972 struct security_hook_list *hp;
1973
1974 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1975 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1976 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1977 rc = thisrc;
1978 if (thisrc != 0)
1979 break;
1980 }
1981 }
1982 return rc;
1983 }
1984
security_task_to_inode(struct task_struct * p,struct inode * inode)1985 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1986 {
1987 call_void_hook(task_to_inode, p, inode);
1988 }
1989
security_create_user_ns(const struct cred * cred)1990 int security_create_user_ns(const struct cred *cred)
1991 {
1992 return call_int_hook(userns_create, 0, cred);
1993 }
1994
security_ipc_permission(struct kern_ipc_perm * ipcp,short flag)1995 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1996 {
1997 return call_int_hook(ipc_permission, 0, ipcp, flag);
1998 }
1999
security_ipc_getsecid(struct kern_ipc_perm * ipcp,u32 * secid)2000 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
2001 {
2002 *secid = 0;
2003 call_void_hook(ipc_getsecid, ipcp, secid);
2004 }
2005
security_msg_msg_alloc(struct msg_msg * msg)2006 int security_msg_msg_alloc(struct msg_msg *msg)
2007 {
2008 int rc = lsm_msg_msg_alloc(msg);
2009
2010 if (unlikely(rc))
2011 return rc;
2012 rc = call_int_hook(msg_msg_alloc_security, 0, msg);
2013 if (unlikely(rc))
2014 security_msg_msg_free(msg);
2015 return rc;
2016 }
2017
security_msg_msg_free(struct msg_msg * msg)2018 void security_msg_msg_free(struct msg_msg *msg)
2019 {
2020 call_void_hook(msg_msg_free_security, msg);
2021 kfree(msg->security);
2022 msg->security = NULL;
2023 }
2024
security_msg_queue_alloc(struct kern_ipc_perm * msq)2025 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
2026 {
2027 int rc = lsm_ipc_alloc(msq);
2028
2029 if (unlikely(rc))
2030 return rc;
2031 rc = call_int_hook(msg_queue_alloc_security, 0, msq);
2032 if (unlikely(rc))
2033 security_msg_queue_free(msq);
2034 return rc;
2035 }
2036
security_msg_queue_free(struct kern_ipc_perm * msq)2037 void security_msg_queue_free(struct kern_ipc_perm *msq)
2038 {
2039 call_void_hook(msg_queue_free_security, msq);
2040 kfree(msq->security);
2041 msq->security = NULL;
2042 }
2043
security_msg_queue_associate(struct kern_ipc_perm * msq,int msqflg)2044 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
2045 {
2046 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
2047 }
2048
security_msg_queue_msgctl(struct kern_ipc_perm * msq,int cmd)2049 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
2050 {
2051 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
2052 }
2053
security_msg_queue_msgsnd(struct kern_ipc_perm * msq,struct msg_msg * msg,int msqflg)2054 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
2055 struct msg_msg *msg, int msqflg)
2056 {
2057 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
2058 }
2059
security_msg_queue_msgrcv(struct kern_ipc_perm * msq,struct msg_msg * msg,struct task_struct * target,long type,int mode)2060 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
2061 struct task_struct *target, long type, int mode)
2062 {
2063 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
2064 }
2065
security_shm_alloc(struct kern_ipc_perm * shp)2066 int security_shm_alloc(struct kern_ipc_perm *shp)
2067 {
2068 int rc = lsm_ipc_alloc(shp);
2069
2070 if (unlikely(rc))
2071 return rc;
2072 rc = call_int_hook(shm_alloc_security, 0, shp);
2073 if (unlikely(rc))
2074 security_shm_free(shp);
2075 return rc;
2076 }
2077
security_shm_free(struct kern_ipc_perm * shp)2078 void security_shm_free(struct kern_ipc_perm *shp)
2079 {
2080 call_void_hook(shm_free_security, shp);
2081 kfree(shp->security);
2082 shp->security = NULL;
2083 }
2084
security_shm_associate(struct kern_ipc_perm * shp,int shmflg)2085 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
2086 {
2087 return call_int_hook(shm_associate, 0, shp, shmflg);
2088 }
2089
security_shm_shmctl(struct kern_ipc_perm * shp,int cmd)2090 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
2091 {
2092 return call_int_hook(shm_shmctl, 0, shp, cmd);
2093 }
2094
security_shm_shmat(struct kern_ipc_perm * shp,char __user * shmaddr,int shmflg)2095 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
2096 {
2097 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
2098 }
2099
security_sem_alloc(struct kern_ipc_perm * sma)2100 int security_sem_alloc(struct kern_ipc_perm *sma)
2101 {
2102 int rc = lsm_ipc_alloc(sma);
2103
2104 if (unlikely(rc))
2105 return rc;
2106 rc = call_int_hook(sem_alloc_security, 0, sma);
2107 if (unlikely(rc))
2108 security_sem_free(sma);
2109 return rc;
2110 }
2111
security_sem_free(struct kern_ipc_perm * sma)2112 void security_sem_free(struct kern_ipc_perm *sma)
2113 {
2114 call_void_hook(sem_free_security, sma);
2115 kfree(sma->security);
2116 sma->security = NULL;
2117 }
2118
security_sem_associate(struct kern_ipc_perm * sma,int semflg)2119 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2120 {
2121 return call_int_hook(sem_associate, 0, sma, semflg);
2122 }
2123
security_sem_semctl(struct kern_ipc_perm * sma,int cmd)2124 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2125 {
2126 return call_int_hook(sem_semctl, 0, sma, cmd);
2127 }
2128
security_sem_semop(struct kern_ipc_perm * sma,struct sembuf * sops,unsigned nsops,int alter)2129 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2130 unsigned nsops, int alter)
2131 {
2132 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2133 }
2134
security_d_instantiate(struct dentry * dentry,struct inode * inode)2135 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2136 {
2137 if (unlikely(inode && IS_PRIVATE(inode)))
2138 return;
2139 call_void_hook(d_instantiate, dentry, inode);
2140 }
2141 EXPORT_SYMBOL(security_d_instantiate);
2142
security_getprocattr(struct task_struct * p,const char * lsm,const char * name,char ** value)2143 int security_getprocattr(struct task_struct *p, const char *lsm,
2144 const char *name, char **value)
2145 {
2146 struct security_hook_list *hp;
2147
2148 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2149 if (lsm != NULL && strcmp(lsm, hp->lsm))
2150 continue;
2151 return hp->hook.getprocattr(p, name, value);
2152 }
2153 return LSM_RET_DEFAULT(getprocattr);
2154 }
2155
security_setprocattr(const char * lsm,const char * name,void * value,size_t size)2156 int security_setprocattr(const char *lsm, const char *name, void *value,
2157 size_t size)
2158 {
2159 struct security_hook_list *hp;
2160
2161 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2162 if (lsm != NULL && strcmp(lsm, hp->lsm))
2163 continue;
2164 return hp->hook.setprocattr(name, value, size);
2165 }
2166 return LSM_RET_DEFAULT(setprocattr);
2167 }
2168
security_netlink_send(struct sock * sk,struct sk_buff * skb)2169 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2170 {
2171 return call_int_hook(netlink_send, 0, sk, skb);
2172 }
2173
security_ismaclabel(const char * name)2174 int security_ismaclabel(const char *name)
2175 {
2176 return call_int_hook(ismaclabel, 0, name);
2177 }
2178 EXPORT_SYMBOL(security_ismaclabel);
2179
security_secid_to_secctx(u32 secid,char ** secdata,u32 * seclen)2180 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2181 {
2182 struct security_hook_list *hp;
2183 int rc;
2184
2185 /*
2186 * Currently, only one LSM can implement secid_to_secctx (i.e this
2187 * LSM hook is not "stackable").
2188 */
2189 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2190 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2191 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2192 return rc;
2193 }
2194
2195 return LSM_RET_DEFAULT(secid_to_secctx);
2196 }
2197 EXPORT_SYMBOL(security_secid_to_secctx);
2198
security_secctx_to_secid(const char * secdata,u32 seclen,u32 * secid)2199 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2200 {
2201 *secid = 0;
2202 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2203 }
2204 EXPORT_SYMBOL(security_secctx_to_secid);
2205
security_release_secctx(char * secdata,u32 seclen)2206 void security_release_secctx(char *secdata, u32 seclen)
2207 {
2208 call_void_hook(release_secctx, secdata, seclen);
2209 }
2210 EXPORT_SYMBOL(security_release_secctx);
2211
security_inode_invalidate_secctx(struct inode * inode)2212 void security_inode_invalidate_secctx(struct inode *inode)
2213 {
2214 call_void_hook(inode_invalidate_secctx, inode);
2215 }
2216 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2217
security_inode_notifysecctx(struct inode * inode,void * ctx,u32 ctxlen)2218 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2219 {
2220 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2221 }
2222 EXPORT_SYMBOL(security_inode_notifysecctx);
2223
security_inode_setsecctx(struct dentry * dentry,void * ctx,u32 ctxlen)2224 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2225 {
2226 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2227 }
2228 EXPORT_SYMBOL(security_inode_setsecctx);
2229
security_inode_getsecctx(struct inode * inode,void ** ctx,u32 * ctxlen)2230 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2231 {
2232 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2233 }
2234 EXPORT_SYMBOL(security_inode_getsecctx);
2235
2236 #ifdef CONFIG_WATCH_QUEUE
security_post_notification(const struct cred * w_cred,const struct cred * cred,struct watch_notification * n)2237 int security_post_notification(const struct cred *w_cred,
2238 const struct cred *cred,
2239 struct watch_notification *n)
2240 {
2241 return call_int_hook(post_notification, 0, w_cred, cred, n);
2242 }
2243 #endif /* CONFIG_WATCH_QUEUE */
2244
2245 #ifdef CONFIG_KEY_NOTIFICATIONS
security_watch_key(struct key * key)2246 int security_watch_key(struct key *key)
2247 {
2248 return call_int_hook(watch_key, 0, key);
2249 }
2250 #endif
2251
2252 #ifdef CONFIG_SECURITY_NETWORK
2253
security_unix_stream_connect(struct sock * sock,struct sock * other,struct sock * newsk)2254 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2255 {
2256 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2257 }
2258 EXPORT_SYMBOL(security_unix_stream_connect);
2259
security_unix_may_send(struct socket * sock,struct socket * other)2260 int security_unix_may_send(struct socket *sock, struct socket *other)
2261 {
2262 return call_int_hook(unix_may_send, 0, sock, other);
2263 }
2264 EXPORT_SYMBOL(security_unix_may_send);
2265
security_socket_create(int family,int type,int protocol,int kern)2266 int security_socket_create(int family, int type, int protocol, int kern)
2267 {
2268 return call_int_hook(socket_create, 0, family, type, protocol, kern);
2269 }
2270
security_socket_post_create(struct socket * sock,int family,int type,int protocol,int kern)2271 int security_socket_post_create(struct socket *sock, int family,
2272 int type, int protocol, int kern)
2273 {
2274 return call_int_hook(socket_post_create, 0, sock, family, type,
2275 protocol, kern);
2276 }
2277
security_socket_socketpair(struct socket * socka,struct socket * sockb)2278 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2279 {
2280 return call_int_hook(socket_socketpair, 0, socka, sockb);
2281 }
2282 EXPORT_SYMBOL(security_socket_socketpair);
2283
security_socket_bind(struct socket * sock,struct sockaddr * address,int addrlen)2284 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2285 {
2286 return call_int_hook(socket_bind, 0, sock, address, addrlen);
2287 }
2288
security_socket_connect(struct socket * sock,struct sockaddr * address,int addrlen)2289 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2290 {
2291 return call_int_hook(socket_connect, 0, sock, address, addrlen);
2292 }
2293
security_socket_listen(struct socket * sock,int backlog)2294 int security_socket_listen(struct socket *sock, int backlog)
2295 {
2296 return call_int_hook(socket_listen, 0, sock, backlog);
2297 }
2298
security_socket_accept(struct socket * sock,struct socket * newsock)2299 int security_socket_accept(struct socket *sock, struct socket *newsock)
2300 {
2301 return call_int_hook(socket_accept, 0, sock, newsock);
2302 }
2303
security_socket_sendmsg(struct socket * sock,struct msghdr * msg,int size)2304 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2305 {
2306 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2307 }
2308
security_socket_recvmsg(struct socket * sock,struct msghdr * msg,int size,int flags)2309 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2310 int size, int flags)
2311 {
2312 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2313 }
2314
security_socket_getsockname(struct socket * sock)2315 int security_socket_getsockname(struct socket *sock)
2316 {
2317 return call_int_hook(socket_getsockname, 0, sock);
2318 }
2319
security_socket_getpeername(struct socket * sock)2320 int security_socket_getpeername(struct socket *sock)
2321 {
2322 return call_int_hook(socket_getpeername, 0, sock);
2323 }
2324
security_socket_getsockopt(struct socket * sock,int level,int optname)2325 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2326 {
2327 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2328 }
2329
security_socket_setsockopt(struct socket * sock,int level,int optname)2330 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2331 {
2332 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2333 }
2334
security_socket_shutdown(struct socket * sock,int how)2335 int security_socket_shutdown(struct socket *sock, int how)
2336 {
2337 return call_int_hook(socket_shutdown, 0, sock, how);
2338 }
2339
security_sock_rcv_skb(struct sock * sk,struct sk_buff * skb)2340 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2341 {
2342 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2343 }
2344 EXPORT_SYMBOL(security_sock_rcv_skb);
2345
security_socket_getpeersec_stream(struct socket * sock,sockptr_t optval,sockptr_t optlen,unsigned int len)2346 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
2347 sockptr_t optlen, unsigned int len)
2348 {
2349 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2350 optval, optlen, len);
2351 }
2352
security_socket_getpeersec_dgram(struct socket * sock,struct sk_buff * skb,u32 * secid)2353 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2354 {
2355 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2356 skb, secid);
2357 }
2358 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2359
security_sk_alloc(struct sock * sk,int family,gfp_t priority)2360 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2361 {
2362 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2363 }
2364
security_sk_free(struct sock * sk)2365 void security_sk_free(struct sock *sk)
2366 {
2367 call_void_hook(sk_free_security, sk);
2368 }
2369
security_sk_clone(const struct sock * sk,struct sock * newsk)2370 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2371 {
2372 call_void_hook(sk_clone_security, sk, newsk);
2373 }
2374 EXPORT_SYMBOL(security_sk_clone);
2375
security_sk_classify_flow(struct sock * sk,struct flowi_common * flic)2376 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2377 {
2378 call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2379 }
2380 EXPORT_SYMBOL(security_sk_classify_flow);
2381
security_req_classify_flow(const struct request_sock * req,struct flowi_common * flic)2382 void security_req_classify_flow(const struct request_sock *req,
2383 struct flowi_common *flic)
2384 {
2385 call_void_hook(req_classify_flow, req, flic);
2386 }
2387 EXPORT_SYMBOL(security_req_classify_flow);
2388
security_sock_graft(struct sock * sk,struct socket * parent)2389 void security_sock_graft(struct sock *sk, struct socket *parent)
2390 {
2391 call_void_hook(sock_graft, sk, parent);
2392 }
2393 EXPORT_SYMBOL(security_sock_graft);
2394
security_inet_conn_request(const struct sock * sk,struct sk_buff * skb,struct request_sock * req)2395 int security_inet_conn_request(const struct sock *sk,
2396 struct sk_buff *skb, struct request_sock *req)
2397 {
2398 return call_int_hook(inet_conn_request, 0, sk, skb, req);
2399 }
2400 EXPORT_SYMBOL(security_inet_conn_request);
2401
security_inet_csk_clone(struct sock * newsk,const struct request_sock * req)2402 void security_inet_csk_clone(struct sock *newsk,
2403 const struct request_sock *req)
2404 {
2405 call_void_hook(inet_csk_clone, newsk, req);
2406 }
2407
security_inet_conn_established(struct sock * sk,struct sk_buff * skb)2408 void security_inet_conn_established(struct sock *sk,
2409 struct sk_buff *skb)
2410 {
2411 call_void_hook(inet_conn_established, sk, skb);
2412 }
2413 EXPORT_SYMBOL(security_inet_conn_established);
2414
security_secmark_relabel_packet(u32 secid)2415 int security_secmark_relabel_packet(u32 secid)
2416 {
2417 return call_int_hook(secmark_relabel_packet, 0, secid);
2418 }
2419 EXPORT_SYMBOL(security_secmark_relabel_packet);
2420
security_secmark_refcount_inc(void)2421 void security_secmark_refcount_inc(void)
2422 {
2423 call_void_hook(secmark_refcount_inc);
2424 }
2425 EXPORT_SYMBOL(security_secmark_refcount_inc);
2426
security_secmark_refcount_dec(void)2427 void security_secmark_refcount_dec(void)
2428 {
2429 call_void_hook(secmark_refcount_dec);
2430 }
2431 EXPORT_SYMBOL(security_secmark_refcount_dec);
2432
security_tun_dev_alloc_security(void ** security)2433 int security_tun_dev_alloc_security(void **security)
2434 {
2435 return call_int_hook(tun_dev_alloc_security, 0, security);
2436 }
2437 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2438
security_tun_dev_free_security(void * security)2439 void security_tun_dev_free_security(void *security)
2440 {
2441 call_void_hook(tun_dev_free_security, security);
2442 }
2443 EXPORT_SYMBOL(security_tun_dev_free_security);
2444
security_tun_dev_create(void)2445 int security_tun_dev_create(void)
2446 {
2447 return call_int_hook(tun_dev_create, 0);
2448 }
2449 EXPORT_SYMBOL(security_tun_dev_create);
2450
security_tun_dev_attach_queue(void * security)2451 int security_tun_dev_attach_queue(void *security)
2452 {
2453 return call_int_hook(tun_dev_attach_queue, 0, security);
2454 }
2455 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2456
security_tun_dev_attach(struct sock * sk,void * security)2457 int security_tun_dev_attach(struct sock *sk, void *security)
2458 {
2459 return call_int_hook(tun_dev_attach, 0, sk, security);
2460 }
2461 EXPORT_SYMBOL(security_tun_dev_attach);
2462
security_tun_dev_open(void * security)2463 int security_tun_dev_open(void *security)
2464 {
2465 return call_int_hook(tun_dev_open, 0, security);
2466 }
2467 EXPORT_SYMBOL(security_tun_dev_open);
2468
security_sctp_assoc_request(struct sctp_association * asoc,struct sk_buff * skb)2469 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb)
2470 {
2471 return call_int_hook(sctp_assoc_request, 0, asoc, skb);
2472 }
2473 EXPORT_SYMBOL(security_sctp_assoc_request);
2474
security_sctp_bind_connect(struct sock * sk,int optname,struct sockaddr * address,int addrlen)2475 int security_sctp_bind_connect(struct sock *sk, int optname,
2476 struct sockaddr *address, int addrlen)
2477 {
2478 return call_int_hook(sctp_bind_connect, 0, sk, optname,
2479 address, addrlen);
2480 }
2481 EXPORT_SYMBOL(security_sctp_bind_connect);
2482
security_sctp_sk_clone(struct sctp_association * asoc,struct sock * sk,struct sock * newsk)2483 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
2484 struct sock *newsk)
2485 {
2486 call_void_hook(sctp_sk_clone, asoc, sk, newsk);
2487 }
2488 EXPORT_SYMBOL(security_sctp_sk_clone);
2489
security_sctp_assoc_established(struct sctp_association * asoc,struct sk_buff * skb)2490 int security_sctp_assoc_established(struct sctp_association *asoc,
2491 struct sk_buff *skb)
2492 {
2493 return call_int_hook(sctp_assoc_established, 0, asoc, skb);
2494 }
2495 EXPORT_SYMBOL(security_sctp_assoc_established);
2496
2497 #endif /* CONFIG_SECURITY_NETWORK */
2498
2499 #ifdef CONFIG_SECURITY_INFINIBAND
2500
security_ib_pkey_access(void * sec,u64 subnet_prefix,u16 pkey)2501 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2502 {
2503 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2504 }
2505 EXPORT_SYMBOL(security_ib_pkey_access);
2506
security_ib_endport_manage_subnet(void * sec,const char * dev_name,u8 port_num)2507 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2508 {
2509 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2510 }
2511 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2512
security_ib_alloc_security(void ** sec)2513 int security_ib_alloc_security(void **sec)
2514 {
2515 return call_int_hook(ib_alloc_security, 0, sec);
2516 }
2517 EXPORT_SYMBOL(security_ib_alloc_security);
2518
security_ib_free_security(void * sec)2519 void security_ib_free_security(void *sec)
2520 {
2521 call_void_hook(ib_free_security, sec);
2522 }
2523 EXPORT_SYMBOL(security_ib_free_security);
2524 #endif /* CONFIG_SECURITY_INFINIBAND */
2525
2526 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2527
security_xfrm_policy_alloc(struct xfrm_sec_ctx ** ctxp,struct xfrm_user_sec_ctx * sec_ctx,gfp_t gfp)2528 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2529 struct xfrm_user_sec_ctx *sec_ctx,
2530 gfp_t gfp)
2531 {
2532 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2533 }
2534 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2535
security_xfrm_policy_clone(struct xfrm_sec_ctx * old_ctx,struct xfrm_sec_ctx ** new_ctxp)2536 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2537 struct xfrm_sec_ctx **new_ctxp)
2538 {
2539 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2540 }
2541
security_xfrm_policy_free(struct xfrm_sec_ctx * ctx)2542 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2543 {
2544 call_void_hook(xfrm_policy_free_security, ctx);
2545 }
2546 EXPORT_SYMBOL(security_xfrm_policy_free);
2547
security_xfrm_policy_delete(struct xfrm_sec_ctx * ctx)2548 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2549 {
2550 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2551 }
2552
security_xfrm_state_alloc(struct xfrm_state * x,struct xfrm_user_sec_ctx * sec_ctx)2553 int security_xfrm_state_alloc(struct xfrm_state *x,
2554 struct xfrm_user_sec_ctx *sec_ctx)
2555 {
2556 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2557 }
2558 EXPORT_SYMBOL(security_xfrm_state_alloc);
2559
security_xfrm_state_alloc_acquire(struct xfrm_state * x,struct xfrm_sec_ctx * polsec,u32 secid)2560 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2561 struct xfrm_sec_ctx *polsec, u32 secid)
2562 {
2563 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2564 }
2565
security_xfrm_state_delete(struct xfrm_state * x)2566 int security_xfrm_state_delete(struct xfrm_state *x)
2567 {
2568 return call_int_hook(xfrm_state_delete_security, 0, x);
2569 }
2570 EXPORT_SYMBOL(security_xfrm_state_delete);
2571
security_xfrm_state_free(struct xfrm_state * x)2572 void security_xfrm_state_free(struct xfrm_state *x)
2573 {
2574 call_void_hook(xfrm_state_free_security, x);
2575 }
2576
security_xfrm_policy_lookup(struct xfrm_sec_ctx * ctx,u32 fl_secid)2577 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2578 {
2579 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2580 }
2581
security_xfrm_state_pol_flow_match(struct xfrm_state * x,struct xfrm_policy * xp,const struct flowi_common * flic)2582 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2583 struct xfrm_policy *xp,
2584 const struct flowi_common *flic)
2585 {
2586 struct security_hook_list *hp;
2587 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2588
2589 /*
2590 * Since this function is expected to return 0 or 1, the judgment
2591 * becomes difficult if multiple LSMs supply this call. Fortunately,
2592 * we can use the first LSM's judgment because currently only SELinux
2593 * supplies this call.
2594 *
2595 * For speed optimization, we explicitly break the loop rather than
2596 * using the macro
2597 */
2598 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2599 list) {
2600 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2601 break;
2602 }
2603 return rc;
2604 }
2605
security_xfrm_decode_session(struct sk_buff * skb,u32 * secid)2606 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2607 {
2608 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2609 }
2610
security_skb_classify_flow(struct sk_buff * skb,struct flowi_common * flic)2611 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2612 {
2613 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2614 0);
2615
2616 BUG_ON(rc);
2617 }
2618 EXPORT_SYMBOL(security_skb_classify_flow);
2619
2620 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
2621
2622 #ifdef CONFIG_KEYS
2623
security_key_alloc(struct key * key,const struct cred * cred,unsigned long flags)2624 int security_key_alloc(struct key *key, const struct cred *cred,
2625 unsigned long flags)
2626 {
2627 return call_int_hook(key_alloc, 0, key, cred, flags);
2628 }
2629
security_key_free(struct key * key)2630 void security_key_free(struct key *key)
2631 {
2632 call_void_hook(key_free, key);
2633 }
2634
security_key_permission(key_ref_t key_ref,const struct cred * cred,enum key_need_perm need_perm)2635 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2636 enum key_need_perm need_perm)
2637 {
2638 return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2639 }
2640
security_key_getsecurity(struct key * key,char ** _buffer)2641 int security_key_getsecurity(struct key *key, char **_buffer)
2642 {
2643 *_buffer = NULL;
2644 return call_int_hook(key_getsecurity, 0, key, _buffer);
2645 }
2646
2647 #endif /* CONFIG_KEYS */
2648
2649 #ifdef CONFIG_AUDIT
2650
security_audit_rule_init(u32 field,u32 op,char * rulestr,void ** lsmrule)2651 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2652 {
2653 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2654 }
2655
security_audit_rule_known(struct audit_krule * krule)2656 int security_audit_rule_known(struct audit_krule *krule)
2657 {
2658 return call_int_hook(audit_rule_known, 0, krule);
2659 }
2660
security_audit_rule_free(void * lsmrule)2661 void security_audit_rule_free(void *lsmrule)
2662 {
2663 call_void_hook(audit_rule_free, lsmrule);
2664 }
2665
security_audit_rule_match(u32 secid,u32 field,u32 op,void * lsmrule)2666 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2667 {
2668 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2669 }
2670 #endif /* CONFIG_AUDIT */
2671
2672 #ifdef CONFIG_BPF_SYSCALL
security_bpf(int cmd,union bpf_attr * attr,unsigned int size)2673 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2674 {
2675 return call_int_hook(bpf, 0, cmd, attr, size);
2676 }
security_bpf_map(struct bpf_map * map,fmode_t fmode)2677 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2678 {
2679 return call_int_hook(bpf_map, 0, map, fmode);
2680 }
security_bpf_prog(struct bpf_prog * prog)2681 int security_bpf_prog(struct bpf_prog *prog)
2682 {
2683 return call_int_hook(bpf_prog, 0, prog);
2684 }
security_bpf_map_alloc(struct bpf_map * map)2685 int security_bpf_map_alloc(struct bpf_map *map)
2686 {
2687 return call_int_hook(bpf_map_alloc_security, 0, map);
2688 }
security_bpf_prog_alloc(struct bpf_prog_aux * aux)2689 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2690 {
2691 return call_int_hook(bpf_prog_alloc_security, 0, aux);
2692 }
security_bpf_map_free(struct bpf_map * map)2693 void security_bpf_map_free(struct bpf_map *map)
2694 {
2695 call_void_hook(bpf_map_free_security, map);
2696 }
security_bpf_prog_free(struct bpf_prog_aux * aux)2697 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2698 {
2699 call_void_hook(bpf_prog_free_security, aux);
2700 }
2701 #endif /* CONFIG_BPF_SYSCALL */
2702
security_locked_down(enum lockdown_reason what)2703 int security_locked_down(enum lockdown_reason what)
2704 {
2705 return call_int_hook(locked_down, 0, what);
2706 }
2707 EXPORT_SYMBOL(security_locked_down);
2708
2709 #ifdef CONFIG_PERF_EVENTS
security_perf_event_open(struct perf_event_attr * attr,int type)2710 int security_perf_event_open(struct perf_event_attr *attr, int type)
2711 {
2712 return call_int_hook(perf_event_open, 0, attr, type);
2713 }
2714
security_perf_event_alloc(struct perf_event * event)2715 int security_perf_event_alloc(struct perf_event *event)
2716 {
2717 return call_int_hook(perf_event_alloc, 0, event);
2718 }
2719
security_perf_event_free(struct perf_event * event)2720 void security_perf_event_free(struct perf_event *event)
2721 {
2722 call_void_hook(perf_event_free, event);
2723 }
2724
security_perf_event_read(struct perf_event * event)2725 int security_perf_event_read(struct perf_event *event)
2726 {
2727 return call_int_hook(perf_event_read, 0, event);
2728 }
2729
security_perf_event_write(struct perf_event * event)2730 int security_perf_event_write(struct perf_event *event)
2731 {
2732 return call_int_hook(perf_event_write, 0, event);
2733 }
2734 #endif /* CONFIG_PERF_EVENTS */
2735
2736 #ifdef CONFIG_IO_URING
security_uring_override_creds(const struct cred * new)2737 int security_uring_override_creds(const struct cred *new)
2738 {
2739 return call_int_hook(uring_override_creds, 0, new);
2740 }
2741
security_uring_sqpoll(void)2742 int security_uring_sqpoll(void)
2743 {
2744 return call_int_hook(uring_sqpoll, 0);
2745 }
security_uring_cmd(struct io_uring_cmd * ioucmd)2746 int security_uring_cmd(struct io_uring_cmd *ioucmd)
2747 {
2748 return call_int_hook(uring_cmd, 0, ioucmd);
2749 }
2750 #endif /* CONFIG_IO_URING */
2751