1  
2  /* @(#)k_rem_pio2.c 1.3 95/01/18 */
3  /*
4   * ====================================================
5   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6   *
7   * Developed at SunSoft, a Sun Microsystems, Inc. business.
8   * Permission to use, copy, modify, and distribute this
9   * software is freely granted, provided that this notice
10   * is preserved.
11   * ====================================================
12   */
13  
14  #include <sys/cdefs.h>
15  __FBSDID("$FreeBSD$");
16  
17  /*
18   * __kernel_rem_pio2(x,y,e0,nx,prec)
19   * double x[],y[]; int e0,nx,prec;
20   *
21   * __kernel_rem_pio2 return the last three digits of N with
22   *      y = x - N*pi/2
23   * so that |y| < pi/2.
24   *
25   * The method is to compute the integer (mod 8) and fraction parts of
26   * (2/pi)*x without doing the full multiplication. In general we
27   * skip the part of the product that are known to be a huge integer (
28   * more accurately, = 0 mod 8 ). Thus the number of operations are
29   * independent of the exponent of the input.
30   *
31   * (2/pi) is represented by an array of 24-bit integers in ipio2[].
32   *
33   * Input parameters:
34   *  x[] The input value (must be positive) is broken into nx
35   *      pieces of 24-bit integers in double precision format.
36   *      x[i] will be the i-th 24 bit of x. The scaled exponent
37   *      of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
38   *      match x's up to 24 bits.
39   *
40   *      Example of breaking a double positive z into x[0]+x[1]+x[2]:
41   *          e0 = ilogb(z)-23
42   *          z  = scalbn(z,-e0)
43   *      for i = 0,1,2
44   *          x[i] = floor(z)
45   *          z    = (z-x[i])*2**24
46   *
47   *
48   *  y[] output result in an array of double precision numbers.
49   *      The dimension of y[] is:
50   *          24-bit  precision   1
51   *          53-bit  precision   2
52   *          64-bit  precision   2
53   *          113-bit precision   3
54   *      The actual value is the sum of them. Thus for 113-bit
55   *      precison, one may have to do something like:
56   *
57   *      long double t,w,r_head, r_tail;
58   *      t = (long double)y[2] + (long double)y[1];
59   *      w = (long double)y[0];
60   *      r_head = t+w;
61   *      r_tail = w - (r_head - t);
62   *
63   *  e0  The exponent of x[0]. Must be <= 16360 or you need to
64   *              expand the ipio2 table.
65   *
66   *  nx  dimension of x[]
67   *
68   *      prec    an integer indicating the precision:
69   *          0   24  bits (single)
70   *          1   53  bits (double)
71   *          2   64  bits (extended)
72   *          3   113 bits (quad)
73   *
74   * External function:
75   *  double scalbn(), floor();
76   *
77   *
78   * Here is the description of some local variables:
79   *
80   *  jk  jk+1 is the initial number of terms of ipio2[] needed
81   *      in the computation. The minimum and recommended value
82   *      for jk is 3,4,4,6 for single, double, extended, and quad.
83   *      jk+1 must be 2 larger than you might expect so that our
84   *      recomputation test works. (Up to 24 bits in the integer
85   *      part (the 24 bits of it that we compute) and 23 bits in
86   *      the fraction part may be lost to cancelation before we
87   *      recompute.)
88   *
89   *  jz  local integer variable indicating the number of
90   *      terms of ipio2[] used.
91   *
92   *  jx  nx - 1
93   *
94   *  jv  index for pointing to the suitable ipio2[] for the
95   *      computation. In general, we want
96   *          ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
97   *      is an integer. Thus
98   *          e0-3-24*jv >= 0 or (e0-3)/24 >= jv
99   *      Hence jv = max(0,(e0-3)/24).
100   *
101   *  jp  jp+1 is the number of terms in PIo2[] needed, jp = jk.
102   *
103   *  q[] double array with integral value, representing the
104   *      24-bits chunk of the product of x and 2/pi.
105   *
106   *  q0  the corresponding exponent of q[0]. Note that the
107   *      exponent for q[i] would be q0-24*i.
108   *
109   *  PIo2[]  double precision array, obtained by cutting pi/2
110   *      into 24 bits chunks.
111   *
112   *  f[] ipio2[] in floating point
113   *
114   *  iq[]    integer array by breaking up q[] in 24-bits chunk.
115   *
116   *  fq[]    final product of x*(2/pi) in fq[0],..,fq[jk]
117   *
118   *  ih  integer. If >0 it indicates q[] is >= 0.5, hence
119   *      it also indicates the *sign* of the result.
120   *
121   */
122  
123  
124  /*
125   * Constants:
126   * The hexadecimal values are the intended ones for the following
127   * constants. The decimal values may be used, provided that the
128   * compiler will convert from decimal to binary accurately enough
129   * to produce the hexadecimal values shown.
130   */
131  
132  #include <float.h>
133  
134  #include "math.h"
135  #include "math_private.h"
136  
137  static const int init_jk[] = {3,4,4,6}; /* initial value for jk */
138  
139  /*
140   * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
141   *
142   *      integer array, contains the (24*i)-th to (24*i+23)-th
143   *      bit of 2/pi after binary point. The corresponding
144   *      floating value is
145   *
146   *          ipio2[i] * 2^(-24(i+1)).
147   *
148   * NB: This table must have at least (e0-3)/24 + jk terms.
149   *     For quad precision (e0 <= 16360, jk = 6), this is 686.
150   */
151  static const int32_t ipio2[] = {
152      0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
153      0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
154      0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
155      0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
156      0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
157      0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
158      0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
159      0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
160      0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
161      0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
162      0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
163  
164  #if LDBL_MAX_EXP > 1024
165  #if LDBL_MAX_EXP > 16384
166  #error "ipio2 table needs to be expanded"
167  #endif
168      0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6,
169      0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2,
170      0xDE4F98, 0x327DBB, 0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35,
171      0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30,
172      0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C,
173      0x467D86, 0x2D71E3, 0x9AC69B, 0x006233, 0x7CD2B4, 0x97A7B4,
174      0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770,
175      0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7,
176      0xCB2324, 0x778AD6, 0x23545A, 0xB91F00, 0x1B0AF1, 0xDFCE19,
177      0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522,
178      0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16,
179      0xDE3B58, 0x929BDE, 0x2822D2, 0xE88628, 0x4D58E2, 0x32CAC6,
180      0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E,
181      0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48,
182      0xD36710, 0xD8DDAA, 0x425FAE, 0xCE616A, 0xA4280A, 0xB499D3,
183      0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF,
184      0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55,
185      0x36D9CA, 0xD2A828, 0x8D61C2, 0x77C912, 0x142604, 0x9B4612,
186      0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929,
187      0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC,
188      0xC3E7B3, 0x28F8C7, 0x940593, 0x3E71C1, 0xB3092E, 0xF3450B,
189      0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C,
190      0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4,
191      0x9794E8, 0x84E6E2, 0x973199, 0x6BED88, 0x365F5F, 0x0EFDBB,
192      0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC,
193      0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C,
194      0x90AA47, 0x02E774, 0x24D6BD, 0xA67DF7, 0x72486E, 0xEF169F,
195      0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5,
196      0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437,
197      0x10D86D, 0x324832, 0x754C5B, 0xD4714E, 0x6E5445, 0xC1090B,
198      0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA,
199      0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD,
200      0x6AE290, 0x89D988, 0x50722C, 0xBEA404, 0x940777, 0x7030F3,
201      0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3,
202      0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717,
203      0x3BDF08, 0x2B3715, 0xA0805C, 0x93805A, 0x921110, 0xD8E80F,
204      0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61,
205      0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB,
206      0xAA140A, 0x2F2689, 0x768364, 0x333B09, 0x1A940E, 0xAA3A51,
207      0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0,
208      0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C,
209      0x5BC3D8, 0xC492F5, 0x4BADC6, 0xA5CA4E, 0xCD37A7, 0x36A9E6,
210      0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC,
211      0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED,
212      0x306529, 0xBF5657, 0x3AFF47, 0xB9F96A, 0xF3BE75, 0xDF9328,
213      0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D,
214      0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0,
215      0xA8654F, 0xA5C1D2, 0x0F3F0B, 0xCD785B, 0x76F923, 0x048B7B,
216      0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4,
217      0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3,
218      0xDA4886, 0xA05DF7, 0xF480C6, 0x2FF0AC, 0x9AECDD, 0xBC5C3F,
219      0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD,
220      0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B,
221      0x2A1216, 0x2DB7DC, 0xFDE5FA, 0xFEDB89, 0xFDBE89, 0x6C76E4,
222      0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761,
223      0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31,
224      0x48D784, 0x16DF30, 0x432DC7, 0x356125, 0xCE70C9, 0xB8CB30,
225      0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262,
226      0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E,
227      0xC4F133, 0x5F6E13, 0xE4305D, 0xA92E85, 0xC3B21D, 0x3632A1,
228      0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C,
229      0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4,
230      0xCBDA11, 0xD0BE7D, 0xC1DB9B, 0xBD17AB, 0x81A2CA, 0x5C6A08,
231      0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196,
232      0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9,
233      0x4F6A68, 0xA82A4A, 0x5AC44F, 0xBCF82D, 0x985AD7, 0x95C7F4,
234      0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC,
235      0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C,
236      0xD0C0B2, 0x485551, 0x0EFB1E, 0xC37295, 0x3B06A3, 0x3540C0,
237      0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C,
238      0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0,
239      0x3C3ABA, 0x461846, 0x5F7555, 0xF5BDD2, 0xC6926E, 0x5D2EAC,
240      0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22,
241      0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893,
242      0x745D7C, 0xB2AD6B, 0x9D6ECD, 0x7B723E, 0x6A11C6, 0xA9CFF7,
243      0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5,
244      0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F,
245      0xBEFDFD, 0xEF4556, 0x367ED9, 0x13D9EC, 0xB9BA8B, 0xFC97C4,
246      0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF,
247      0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B,
248      0x9C2A3E, 0xCC5F11, 0x4A0BFD, 0xFBF4E1, 0x6D3B8E, 0x2C86E2,
249      0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138,
250      0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E,
251      0xCC2254, 0xDC552A, 0xD6C6C0, 0x96190B, 0xB8701A, 0x649569,
252      0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34,
253      0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9,
254      0x9B5861, 0xBC57E1, 0xC68351, 0x103ED8, 0x4871DD, 0xDD1C2D,
255      0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F,
256      0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855,
257      0x382682, 0x9BE7CA, 0xA40D51, 0xB13399, 0x0ED7A9, 0x480569,
258      0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B,
259      0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE,
260      0x5FD45E, 0xA4677B, 0x7AACBA, 0xA2F655, 0x23882B, 0x55BA41,
261      0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49,
262      0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F,
263      0xAE5ADB, 0x86C547, 0x624385, 0x3B8621, 0x94792C, 0x876110,
264      0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8,
265      0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365,
266      0xB1933D, 0x0B7CBD, 0xDC51A4, 0x63DD27, 0xDDE169, 0x19949A,
267      0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270,
268      0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5,
269      0x4D7E6F, 0x5119A5, 0xABF9B5, 0xD6DF82, 0x61DD96, 0x023616,
270      0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B,
271      0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0,
272  #endif
273  
274  };
275  
276  static const double PIo2[] = {
277      1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
278      7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
279      5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
280      3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
281      1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
282      1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
283      2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
284      2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
285  };
286  
287  static const double
288  zero   = 0.0,
289  one    = 1.0,
290  two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
291  twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
292  
293  int
__kernel_rem_pio2(double * x,double * y,int e0,int nx,int prec)294  __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec)
295  {
296      int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
297      double z,fw,f[20],fq[20],q[20];
298  
299      /* initialize jk*/
300      jk = init_jk[prec];
301      jp = jk;
302  
303      /* determine jx,jv,q0, note that 3>q0 */
304      jx =  nx-1;
305      jv = (e0-3)/24;
306      if (jv<0) jv=0;
307      q0 =  e0-24*(jv+1);
308  
309      /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
310      j = jv-jx;
311      m = jx+jk;
312      for (i=0; i<=m; i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
313  
314      /* compute q[0],q[1],...q[jk] */
315      for (i=0; i<=jk; i++) {
316          for (j=0,fw=0.0; j<=jx; j++) fw += x[j]*f[jx+i-j];
317          q[i] = fw;
318      }
319  
320      jz = jk;
321  recompute:
322      /* distill q[] into iq[] reversingly */
323      for (i=0,j=jz,z=q[jz]; j>0; i++,j--) {
324          fw    =  (double)((int32_t)(twon24* z));
325          iq[i] =  (int32_t)(z-two24*fw);
326          z     =  q[j-1]+fw;
327      }
328  
329      /* compute n */
330      z  = scalbn(z,q0);      /* actual value of z */
331      z -= 8.0*floor(z*0.125);        /* trim off integer >= 8 */
332      n  = (int32_t) z;
333      z -= (double)n;
334      ih = 0;
335      if (q0>0) { /* need iq[jz-1] to determine n */
336          i  = (iq[jz-1]>>(24-q0));
337          n += i;
338          iq[jz-1] -= i<<(24-q0);
339          ih = iq[jz-1]>>(23-q0);
340      } else if (q0==0) ih = iq[jz-1]>>23;
341      else if (z>=0.5) ih=2;
342  
343      if (ih>0) { /* q > 0.5 */
344          n += 1;
345          carry = 0;
346          for (i=0; i<jz ; i++) { /* compute 1-q */
347              j = iq[i];
348              if (carry==0) {
349                  if (j!=0) {
350                      carry = 1;
351                      iq[i] = 0x1000000- j;
352                  }
353              } else  iq[i] = 0xffffff - j;
354          }
355          if (q0>0) {     /* rare case: chance is 1 in 12 */
356              switch (q0) {
357                  case 1:
358                      iq[jz-1] &= 0x7fffff;
359                      break;
360                  case 2:
361                      iq[jz-1] &= 0x3fffff;
362                      break;
363              }
364          }
365          if (ih==2) {
366              z = one - z;
367              if (carry!=0) z -= scalbn(one,q0);
368          }
369      }
370  
371      /* check if recomputation is needed */
372      if (z==zero) {
373          j = 0;
374          for (i=jz-1; i>=jk; i--) j |= iq[i];
375          if (j==0) { /* need recomputation */
376              for (k=1; iq[jk-k]==0; k++); /* k = no. of terms needed */
377  
378              for (i=jz+1; i<=jz+k; i++) { /* add q[jz+1] to q[jz+k] */
379                  f[jx+i] = (double) ipio2[jv+i];
380                  for (j=0,fw=0.0; j<=jx; j++) fw += x[j]*f[jx+i-j];
381                  q[i] = fw;
382              }
383              jz += k;
384              goto recompute;
385          }
386      }
387  
388      /* chop off zero terms */
389      if (z==0.0) {
390          jz -= 1;
391          q0 -= 24;
392          while (iq[jz]==0) { jz--; q0-=24;}
393      } else { /* break z into 24-bit if necessary */
394          z = scalbn(z,-q0);
395          if (z>=two24) {
396              fw = (double)((int32_t)(twon24*z));
397              iq[jz] = (int32_t)(z-two24*fw);
398              jz += 1;
399              q0 += 24;
400              iq[jz] = (int32_t) fw;
401          } else iq[jz] = (int32_t) z ;
402      }
403  
404      /* convert integer "bit" chunk to floating-point value */
405      fw = scalbn(one,q0);
406      for (i=jz; i>=0; i--) {
407          q[i] = fw*(double)iq[i];
408          fw*=twon24;
409      }
410  
411      /* compute PIo2[0,...,jp]*q[jz,...,0] */
412      for (i=jz; i>=0; i--) {
413          for (fw=0.0,k=0; k<=jp&&k<=jz-i; k++) fw += PIo2[k]*q[i+k];
414          fq[jz-i] = fw;
415      }
416  
417      /* compress fq[] into y[] */
418      switch (prec) {
419          case 0:
420              fw = 0.0;
421              for (i=jz; i>=0; i--) fw += fq[i];
422              y[0] = (ih==0)? fw: -fw;
423              break;
424          case 1:
425          case 2:
426              fw = 0.0;
427              for (i=jz; i>=0; i--) fw += fq[i];
428              STRICT_ASSIGN(double,fw,fw);
429              y[0] = (ih==0)? fw: -fw;
430              fw = fq[0]-fw;
431              for (i=1; i<=jz; i++) fw += fq[i];
432              y[1] = (ih==0)? fw: -fw;
433              break;
434          case 3: /* painful */
435              for (i=jz; i>0; i--) {
436                  fw      = fq[i-1]+fq[i];
437                  fq[i]  += fq[i-1]-fw;
438                  fq[i-1] = fw;
439              }
440              for (i=jz; i>1; i--) {
441                  fw      = fq[i-1]+fq[i];
442                  fq[i]  += fq[i-1]-fw;
443                  fq[i-1] = fw;
444              }
445              for (fw=0.0,i=jz; i>=2; i--) fw += fq[i];
446              if (ih==0) {
447                  y[0] =  fq[0];
448                  y[1] =  fq[1];
449                  y[2] =  fw;
450              } else {
451                  y[0] = -fq[0];
452                  y[1] = -fq[1];
453                  y[2] = -fw;
454              }
455      }
456      return n&7;
457  }
458