1=pod 2 3=head1 NAME 4 5provider-base 6- The basic OpenSSL library E<lt>-E<gt> provider functions 7 8=head1 SYNOPSIS 9 10 #include <openssl/core_dispatch.h> 11 12 /* 13 * None of these are actual functions, but are displayed like this for 14 * the function signatures for functions that are offered as function 15 * pointers in OSSL_DISPATCH arrays. 16 */ 17 18 /* Functions offered by libcrypto to the providers */ 19 const OSSL_ITEM *core_gettable_params(const OSSL_CORE_HANDLE *handle); 20 int core_get_params(const OSSL_CORE_HANDLE *handle, OSSL_PARAM params[]); 21 22 typedef void (*OSSL_thread_stop_handler_fn)(void *arg); 23 int core_thread_start(const OSSL_CORE_HANDLE *handle, 24 OSSL_thread_stop_handler_fn handfn, 25 void *arg); 26 27 OPENSSL_CORE_CTX *core_get_libctx(const OSSL_CORE_HANDLE *handle); 28 void core_new_error(const OSSL_CORE_HANDLE *handle); 29 void core_set_error_debug(const OSSL_CORE_HANDLE *handle, 30 const char *file, int line, const char *func); 31 void core_vset_error(const OSSL_CORE_HANDLE *handle, 32 uint32_t reason, const char *fmt, va_list args); 33 34 int core_obj_add_sigid(const OSSL_CORE_HANDLE *prov, const char *sign_name, 35 const char *digest_name, const char *pkey_name); 36 int core_obj_create(const OSSL_CORE_HANDLE *handle, const char *oid, 37 const char *sn, const char *ln); 38 39 /* 40 * Some OpenSSL functionality is directly offered to providers via 41 * dispatch 42 */ 43 void *CRYPTO_malloc(size_t num, const char *file, int line); 44 void *CRYPTO_zalloc(size_t num, const char *file, int line); 45 void *CRYPTO_memdup(const void *str, size_t siz, 46 const char *file, int line); 47 char *CRYPTO_strdup(const char *str, const char *file, int line); 48 char *CRYPTO_strndup(const char *str, size_t s, 49 const char *file, int line); 50 void CRYPTO_free(void *ptr, const char *file, int line); 51 void CRYPTO_clear_free(void *ptr, size_t num, 52 const char *file, int line); 53 void *CRYPTO_realloc(void *addr, size_t num, 54 const char *file, int line); 55 void *CRYPTO_clear_realloc(void *addr, size_t old_num, size_t num, 56 const char *file, int line); 57 void *CRYPTO_secure_malloc(size_t num, const char *file, int line); 58 void *CRYPTO_secure_zalloc(size_t num, const char *file, int line); 59 void CRYPTO_secure_free(void *ptr, const char *file, int line); 60 void CRYPTO_secure_clear_free(void *ptr, size_t num, 61 const char *file, int line); 62 int CRYPTO_secure_allocated(const void *ptr); 63 void OPENSSL_cleanse(void *ptr, size_t len); 64 65 unsigned char *OPENSSL_hexstr2buf(const char *str, long *buflen); 66 67 OSSL_CORE_BIO *BIO_new_file(const char *filename, const char *mode); 68 OSSL_CORE_BIO *BIO_new_membuf(const void *buf, int len); 69 int BIO_read_ex(OSSL_CORE_BIO *bio, void *data, size_t data_len, 70 size_t *bytes_read); 71 int BIO_write_ex(OSSL_CORE_BIO *bio, const void *data, size_t data_len, 72 size_t *written); 73 int BIO_up_ref(OSSL_CORE_BIO *bio); 74 int BIO_free(OSSL_CORE_BIO *bio); 75 int BIO_vprintf(OSSL_CORE_BIO *bio, const char *format, va_list args); 76 int BIO_vsnprintf(char *buf, size_t n, const char *fmt, va_list args); 77 78 void OSSL_SELF_TEST_set_callback(OSSL_LIB_CTX *libctx, OSSL_CALLBACK *cb, 79 void *cbarg); 80 81 size_t get_entropy(const OSSL_CORE_HANDLE *handle, 82 unsigned char **pout, int entropy, 83 size_t min_len, size_t max_len); 84 void cleanup_entropy(const OSSL_CORE_HANDLE *handle, 85 unsigned char *buf, size_t len); 86 size_t get_nonce(const OSSL_CORE_HANDLE *handle, 87 unsigned char **pout, size_t min_len, size_t max_len, 88 const void *salt, size_t salt_len); 89 void cleanup_nonce(const OSSL_CORE_HANDLE *handle, 90 unsigned char *buf, size_t len); 91 92 /* Functions for querying the providers in the application library context */ 93 int provider_register_child_cb(const OSSL_CORE_HANDLE *handle, 94 int (*create_cb)(const OSSL_CORE_HANDLE *provider, 95 void *cbdata), 96 int (*remove_cb)(const OSSL_CORE_HANDLE *provider, 97 void *cbdata), 98 int (*global_props_cb)(const char *props, void *cbdata), 99 void *cbdata); 100 void provider_deregister_child_cb(const OSSL_CORE_HANDLE *handle); 101 const char *provider_name(const OSSL_CORE_HANDLE *prov); 102 void *provider_get0_provider_ctx(const OSSL_CORE_HANDLE *prov); 103 const OSSL_DISPATCH *provider_get0_dispatch(const OSSL_CORE_HANDLE *prov); 104 int provider_up_ref(const OSSL_CORE_HANDLE *prov, int activate); 105 int provider_free(const OSSL_CORE_HANDLE *prov, int deactivate); 106 107 /* Functions offered by the provider to libcrypto */ 108 void provider_teardown(void *provctx); 109 const OSSL_ITEM *provider_gettable_params(void *provctx); 110 int provider_get_params(void *provctx, OSSL_PARAM params[]); 111 const OSSL_ALGORITHM *provider_query_operation(void *provctx, 112 int operation_id, 113 const int *no_store); 114 void provider_unquery_operation(void *provctx, int operation_id, 115 const OSSL_ALGORITHM *algs); 116 const OSSL_ITEM *provider_get_reason_strings(void *provctx); 117 int provider_get_capabilities(void *provctx, const char *capability, 118 OSSL_CALLBACK *cb, void *arg); 119 int provider_self_test(void *provctx); 120 121=head1 DESCRIPTION 122 123All "functions" mentioned here are passed as function pointers between 124F<libcrypto> and the provider in B<OSSL_DISPATCH> arrays, in the call 125of the provider initialization function. See L<provider(7)/Provider> 126for a description of the initialization function. They are known as "upcalls". 127 128All these "functions" have a corresponding function type definition 129named B<OSSL_FUNC_{name}_fn>, and a helper function to retrieve the 130function pointer from a B<OSSL_DISPATCH> element named 131B<OSSL_FUNC_{name}>. 132For example, the "function" core_gettable_params() has these: 133 134 typedef OSSL_PARAM * 135 (OSSL_FUNC_core_gettable_params_fn)(const OSSL_CORE_HANDLE *handle); 136 static ossl_inline OSSL_NAME_core_gettable_params_fn 137 OSSL_FUNC_core_gettable_params(const OSSL_DISPATCH *opf); 138 139B<OSSL_DISPATCH> arrays are indexed by numbers that are provided as 140macros in L<openssl-core_dispatch.h(7)>, as follows: 141 142For I<in> (the B<OSSL_DISPATCH> array passed from F<libcrypto> to the 143provider): 144 145 core_gettable_params OSSL_FUNC_CORE_GETTABLE_PARAMS 146 core_get_params OSSL_FUNC_CORE_GET_PARAMS 147 core_thread_start OSSL_FUNC_CORE_THREAD_START 148 core_get_libctx OSSL_FUNC_CORE_GET_LIBCTX 149 core_new_error OSSL_FUNC_CORE_NEW_ERROR 150 core_set_error_debug OSSL_FUNC_CORE_SET_ERROR_DEBUG 151 core_vset_error OSSL_FUNC_CORE_VSET_ERROR 152 core_obj_add_sigid OSSL_FUNC_CORE_OBJ_ADD_SIGID 153 core_obj_create OSSL_FUNC_CORE_OBJ_CREATE 154 CRYPTO_malloc OSSL_FUNC_CRYPTO_MALLOC 155 CRYPTO_zalloc OSSL_FUNC_CRYPTO_ZALLOC 156 CRYPTO_memdup OSSL_FUNC_CRYPTO_MEMDUP 157 CRYPTO_strdup OSSL_FUNC_CRYPTO_STRDUP 158 CRYPTO_strndup OSSL_FUNC_CRYPTO_STRNDUP 159 CRYPTO_free OSSL_FUNC_CRYPTO_FREE 160 CRYPTO_clear_free OSSL_FUNC_CRYPTO_CLEAR_FREE 161 CRYPTO_realloc OSSL_FUNC_CRYPTO_REALLOC 162 CRYPTO_clear_realloc OSSL_FUNC_CRYPTO_CLEAR_REALLOC 163 CRYPTO_secure_malloc OSSL_FUNC_CRYPTO_SECURE_MALLOC 164 CRYPTO_secure_zalloc OSSL_FUNC_CRYPTO_SECURE_ZALLOC 165 CRYPTO_secure_free OSSL_FUNC_CRYPTO_SECURE_FREE 166 CRYPTO_secure_clear_free OSSL_FUNC_CRYPTO_SECURE_CLEAR_FREE 167 CRYPTO_secure_allocated OSSL_FUNC_CRYPTO_SECURE_ALLOCATED 168 BIO_new_file OSSL_FUNC_BIO_NEW_FILE 169 BIO_new_mem_buf OSSL_FUNC_BIO_NEW_MEMBUF 170 BIO_read_ex OSSL_FUNC_BIO_READ_EX 171 BIO_write_ex OSSL_FUNC_BIO_WRITE_EX 172 BIO_up_ref OSSL_FUNC_BIO_UP_REF 173 BIO_free OSSL_FUNC_BIO_FREE 174 BIO_vprintf OSSL_FUNC_BIO_VPRINTF 175 BIO_vsnprintf OSSL_FUNC_BIO_VSNPRINTF 176 BIO_puts OSSL_FUNC_BIO_PUTS 177 BIO_gets OSSL_FUNC_BIO_GETS 178 BIO_ctrl OSSL_FUNC_BIO_CTRL 179 OPENSSL_cleanse OSSL_FUNC_OPENSSL_CLEANSE 180 OSSL_SELF_TEST_set_callback OSSL_FUNC_SELF_TEST_CB 181 ossl_rand_get_entropy OSSL_FUNC_GET_ENTROPY 182 ossl_rand_cleanup_entropy OSSL_FUNC_CLEANUP_ENTROPY 183 ossl_rand_get_nonce OSSL_FUNC_GET_NONCE 184 ossl_rand_cleanup_nonce OSSL_FUNC_CLEANUP_NONCE 185 provider_register_child_cb OSSL_FUNC_PROVIDER_REGISTER_CHILD_CB 186 provider_deregister_child_cb OSSL_FUNC_PROVIDER_DEREGISTER_CHILD_CB 187 provider_name OSSL_FUNC_PROVIDER_NAME 188 provider_get0_provider_ctx OSSL_FUNC_PROVIDER_GET0_PROVIDER_CTX 189 provider_get0_dispatch OSSL_FUNC_PROVIDER_GET0_DISPATCH 190 provider_up_ref OSSL_FUNC_PROVIDER_UP_REF 191 provider_free OSSL_FUNC_PROVIDER_FREE 192 193For I<*out> (the B<OSSL_DISPATCH> array passed from the provider to 194F<libcrypto>): 195 196 provider_teardown OSSL_FUNC_PROVIDER_TEARDOWN 197 provider_gettable_params OSSL_FUNC_PROVIDER_GETTABLE_PARAMS 198 provider_get_params OSSL_FUNC_PROVIDER_GET_PARAMS 199 provider_query_operation OSSL_FUNC_PROVIDER_QUERY_OPERATION 200 provider_unquery_operation OSSL_FUNC_PROVIDER_UNQUERY_OPERATION 201 provider_get_reason_strings OSSL_FUNC_PROVIDER_GET_REASON_STRINGS 202 provider_get_capabilities OSSL_FUNC_PROVIDER_GET_CAPABILITIES 203 provider_self_test OSSL_FUNC_PROVIDER_SELF_TEST 204 205=head2 Core functions 206 207core_gettable_params() returns a constant array of descriptor 208B<OSSL_PARAM>, for parameters that core_get_params() can handle. 209 210core_get_params() retrieves parameters from the core for the given I<handle>. 211See L</Core parameters> below for a description of currently known 212parameters. 213 214The core_thread_start() function informs the core that the provider has stated 215an interest in the current thread. The core will inform the provider when the 216thread eventually stops. It must be passed the I<handle> for this provider, as 217well as a callback I<handfn> which will be called when the thread stops. The 218callback will subsequently be called, with the supplied argument I<arg>, from 219the thread that is stopping and gets passed the provider context as an 220argument. This may be useful to perform thread specific clean up such as 221freeing thread local variables. 222 223core_get_libctx() retrieves the core context in which the library 224object for the current provider is stored, accessible through the I<handle>. 225This function is useful only for built-in providers such as the default 226provider. Never cast this to OSSL_LIB_CTX in a provider that is not 227built-in as the OSSL_LIB_CTX of the library loading the provider might be 228a completely different structure than the OSSL_LIB_CTX of the library the 229provider is linked to. Use L<OSSL_LIB_CTX_new_child(3)> instead to obtain 230a proper library context that is linked to the application library context. 231 232core_new_error(), core_set_error_debug() and core_vset_error() are 233building blocks for reporting an error back to the core, with 234reference to the I<handle>. 235 236=over 4 237 238=item core_new_error() 239 240allocates a new thread specific error record. 241 242This corresponds to the OpenSSL function L<ERR_new(3)>. 243 244=item core_set_error_debug() 245 246sets debugging information in the current thread specific error 247record. 248The debugging information includes the name of the file I<file>, the 249line I<line> and the function name I<func> where the error occurred. 250 251This corresponds to the OpenSSL function L<ERR_set_debug(3)>. 252 253=item core_vset_error() 254 255sets the I<reason> for the error, along with any addition data. 256The I<reason> is a number defined by the provider and used to index 257the reason strings table that's returned by 258provider_get_reason_strings(). 259The additional data is given as a format string I<fmt> and a set of 260arguments I<args>, which are treated in the same manner as with 261BIO_vsnprintf(). 262I<file> and I<line> may also be passed to indicate exactly where the 263error occurred or was reported. 264 265This corresponds to the OpenSSL function L<ERR_vset_error(3)>. 266 267=back 268 269The core_obj_create() function registers a new OID and associated short name 270I<sn> and long name I<ln> for the given I<handle>. It is similar to the OpenSSL 271function L<OBJ_create(3)> except that it returns 1 on success or 0 on failure. 272It will treat as success the case where the OID already exists (even if the 273short name I<sn> or long name I<ln> provided as arguments differ from those 274associated with the existing OID, in which case the new names are not 275associated). 276 277The core_obj_add_sigid() function registers a new composite signature algorithm 278(I<sign_name>) consisting of an underlying signature algorithm (I<pkey_name>) 279and digest algorithm (I<digest_name>) for the given I<handle>. It assumes that 280the OIDs for the composite signature algorithm as well as for the underlying 281signature and digest algorithms are either already known to OpenSSL or have been 282registered via a call to core_obj_create(). It corresponds to the OpenSSL 283function L<OBJ_add_sigid(3)>, except that the objects are identified by name 284rather than a numeric NID. Any name (OID, short name or long name) can be used 285to identify the object. It will treat as success the case where the composite 286signature algorithm already exists (even if registered against a different 287underlying signature or digest algorithm). For I<digest_name>, NULL or an 288empty string is permissible for signature algorithms that do not need a digest 289to operate correctly. The function returns 1 on success or 0 on failure. 290 291CRYPTO_malloc(), CRYPTO_zalloc(), CRYPTO_memdup(), CRYPTO_strdup(), 292CRYPTO_strndup(), CRYPTO_free(), CRYPTO_clear_free(), 293CRYPTO_realloc(), CRYPTO_clear_realloc(), CRYPTO_secure_malloc(), 294CRYPTO_secure_zalloc(), CRYPTO_secure_free(), 295CRYPTO_secure_clear_free(), CRYPTO_secure_allocated(), 296BIO_new_file(), BIO_new_mem_buf(), BIO_read_ex(), BIO_write_ex(), BIO_up_ref(), 297BIO_free(), BIO_vprintf(), BIO_vsnprintf(), BIO_gets(), BIO_puts(), 298BIO_ctrl(), OPENSSL_cleanse() and 299OPENSSL_hexstr2buf() correspond exactly to the public functions with 300the same name. As a matter of fact, the pointers in the B<OSSL_DISPATCH> 301array are typically direct pointers to those public functions. Note that the BIO 302functions take an B<OSSL_CORE_BIO> type rather than the standard B<BIO> 303type. This is to ensure that a provider does not mix BIOs from the core 304with BIOs used on the provider side (the two are not compatible). 305OSSL_SELF_TEST_set_callback() is used to set an optional callback that can be 306passed into a provider. This may be ignored by a provider. 307 308get_entropy() retrieves seeding material from the operating system. 309The seeding material will have at least I<entropy> bytes of randomness and the 310output will have at least I<min_len> and at most I<max_len> bytes. 311The buffer address is stored in I<*pout> and the buffer length is 312returned to the caller. On error, zero is returned. 313 314cleanup_entropy() is used to clean up and free the buffer returned by 315get_entropy(). The entropy pointer returned by get_entropy() is passed in 316B<buf> and its length in B<len>. 317 318get_nonce() retrieves a nonce using the passed I<salt> parameter 319of length I<salt_len> and operating system specific information. 320The I<salt> should contain uniquely identifying information and this is 321included, in an unspecified manner, as part of the output. 322The output is stored in a buffer which contrains at least I<min_len> and at 323most I<max_len> bytes. The buffer address is stored in I<*pout> and the 324buffer length returned to the caller. On error, zero is returned. 325 326cleanup_nonce() is used to clean up and free the buffer returned by 327get_nonce(). The nonce pointer returned by get_nonce() is passed in 328B<buf> and its length in B<len>. 329 330provider_register_child_cb() registers callbacks for being informed about the 331loading and unloading of providers in the application's library context. 332I<handle> is this provider's handle and I<cbdata> is this provider's data 333that will be passed back to the callbacks. It returns 1 on success or 0 334otherwise. These callbacks may be called while holding locks in libcrypto. In 335order to avoid deadlocks the callback implementation must not be long running 336and must not call other OpenSSL API functions or upcalls. 337 338I<create_cb> is a callback that will be called when a new provider is loaded 339into the application's library context. It is also called for any providers that 340are already loaded at the point that this callback is registered. The callback 341is passed the handle being used for the new provider being loadded and this 342provider's data in I<cbdata>. It should return 1 on success or 0 on failure. 343 344I<remove_cb> is a callback that will be called when a new provider is unloaded 345from the application's library context. It is passed the handle being used for 346the provider being unloaded and this provider's data in I<cbdata>. It should 347return 1 on success or 0 on failure. 348 349I<global_props_cb> is a callback that will be called when the global properties 350from the parent library context are changed. It should return 1 on success 351or 0 on failure. 352 353provider_deregister_child_cb() unregisters callbacks previously registered via 354provider_register_child_cb(). If provider_register_child_cb() has been called 355then provider_deregister_child_cb() should be called at or before the point that 356this provider's teardown function is called. 357 358provider_name() returns a string giving the name of the provider identified by 359I<handle>. 360 361provider_get0_provider_ctx() returns the provider context that is associated 362with the provider identified by I<prov>. 363 364provider_get0_dispatch() gets the dispatch table registered by the provider 365identified by I<prov> when it initialised. 366 367provider_up_ref() increments the reference count on the provider I<prov>. If 368I<activate> is nonzero then the provider is also loaded if it is not already 369loaded. It returns 1 on success or 0 on failure. 370 371provider_free() decrements the reference count on the provider I<prov>. If 372I<deactivate> is nonzero then the provider is also unloaded if it is not 373already loaded. It returns 1 on success or 0 on failure. 374 375=head2 Provider functions 376 377provider_teardown() is called when a provider is shut down and removed 378from the core's provider store. 379It must free the passed I<provctx>. 380 381provider_gettable_params() should return a constant array of 382descriptor B<OSSL_PARAM>, for parameters that provider_get_params() 383can handle. 384 385provider_get_params() should process the B<OSSL_PARAM> array 386I<params>, setting the values of the parameters it understands. 387 388provider_query_operation() should return a constant B<OSSL_ALGORITHM> 389that corresponds to the given I<operation_id>. 390It should indicate if the core may store a reference to this array by 391setting I<*no_store> to 0 (core may store a reference) or 1 (core may 392not store a reference). 393 394provider_unquery_operation() informs the provider that the result of a 395provider_query_operation() is no longer directly required and that the function 396pointers have been copied. The I<operation_id> should match that passed to 397provider_query_operation() and I<algs> should be its return value. 398 399provider_get_reason_strings() should return a constant B<OSSL_ITEM> 400array that provides reason strings for reason codes the provider may 401use when reporting errors using core_put_error(). 402 403The provider_get_capabilities() function should call the callback I<cb> passing 404it a set of B<OSSL_PARAM>s and the caller supplied argument I<arg>. The 405B<OSSL_PARAM>s should provide details about the capability with the name given 406in the I<capability> argument relevant for the provider context I<provctx>. If a 407provider supports multiple capabilities with the given name then it may call the 408callback multiple times (one for each capability). Capabilities can be useful for 409describing the services that a provider can offer. For further details see the 410L</CAPABILITIES> section below. It should return 1 on success or 0 on error. 411 412The provider_self_test() function should perform known answer tests on a subset 413of the algorithms that it uses, and may also verify the integrity of the 414provider module. It should return 1 on success or 0 on error. It will return 1 415if this function is not used. 416 417None of these functions are mandatory, but a provider is fairly 418useless without at least provider_query_operation(), and 419provider_gettable_params() is fairly useless if not accompanied by 420provider_get_params(). 421 422=head2 Provider parameters 423 424provider_get_params() can return the following provider parameters to the core: 425 426=over 4 427 428=item "name" (B<OSSL_PROV_PARAM_NAME>) <UTF8 string ptr> 429 430This points to a string that should give a unique name for the provider. 431 432=item "version" (B<OSSL_PROV_PARAM_VERSION>) <UTF8 string ptr> 433 434This points to a string that is a version number associated with this provider. 435OpenSSL in-built providers use OPENSSL_VERSION_STR, but this may be different 436for any third party provider. This string is for informational purposes only. 437 438=item "buildinfo" (B<OSSL_PROV_PARAM_BUILDINFO>) <UTF8 string ptr> 439 440This points to a string that is a build information associated with this provider. 441OpenSSL in-built providers use OPENSSL_FULL_VERSION_STR, but this may be 442different for any third party provider. 443 444=item "status" (B<OSSL_PROV_PARAM_STATUS>) <unsigned integer> 445 446This returns 0 if the provider has entered an error state, otherwise it returns 4471. 448 449=back 450 451provider_gettable_params() should return the above parameters. 452 453 454=head2 Core parameters 455 456core_get_params() can retrieve the following core parameters for each provider: 457 458=over 4 459 460=item "openssl-version" (B<OSSL_PROV_PARAM_CORE_VERSION>) <UTF8 string ptr> 461 462This points to the OpenSSL libraries' full version string, i.e. the string 463expanded from the macro B<OPENSSL_VERSION_STR>. 464 465=item "provider-name" (B<OSSL_PROV_PARAM_CORE_PROV_NAME>) <UTF8 string ptr> 466 467This points to the OpenSSL libraries' idea of what the calling provider is named. 468 469=item "module-filename" (B<OSSL_PROV_PARAM_CORE_MODULE_FILENAME>) <UTF8 string ptr> 470 471This points to a string containing the full filename of the providers 472module file. 473 474=back 475 476Additionally, provider specific configuration parameters from the 477config file are available, in dotted name form. 478The dotted name form is a concatenation of section names and final 479config command name separated by periods. 480 481For example, let's say we have the following config example: 482 483 config_diagnostics = 1 484 openssl_conf = openssl_init 485 486 [openssl_init] 487 providers = providers_sect 488 489 [providers_sect] 490 foo = foo_sect 491 492 [foo_sect] 493 activate = 1 494 data1 = 2 495 data2 = str 496 more = foo_more 497 498 [foo_more] 499 data3 = foo,bar 500 501The provider will have these additional parameters available: 502 503=over 4 504 505=item "activate" 506 507pointing at the string "1" 508 509=item "data1" 510 511pointing at the string "2" 512 513=item "data2" 514 515pointing at the string "str" 516 517=item "more.data3" 518 519pointing at the string "foo,bar" 520 521=back 522 523For more information on handling parameters, see L<OSSL_PARAM(3)> as 524L<OSSL_PARAM_int(3)>. 525 526=head1 CAPABILITIES 527 528Capabilities describe some of the services that a provider can offer. 529Applications can query the capabilities to discover those services. 530 531=head3 "TLS-GROUP" Capability 532 533The "TLS-GROUP" capability can be queried by libssl to discover the list of 534TLS groups that a provider can support. Each group supported can be used for 535I<key exchange> (KEX) or I<key encapsulation method> (KEM) during a TLS 536handshake. 537TLS clients can advertise the list of TLS groups they support in the 538supported_groups extension, and TLS servers can select a group from the offered 539list that they also support. In this way a provider can add to the list of 540groups that libssl already supports with additional ones. 541 542Each TLS group that a provider supports should be described via the callback 543passed in through the provider_get_capabilities function. Each group should have 544the following details supplied (all are mandatory, except 545B<OSSL_CAPABILITY_TLS_GROUP_IS_KEM>): 546 547=over 4 548 549=item "tls-group-name" (B<OSSL_CAPABILITY_TLS_GROUP_NAME>) <UTF8 string> 550 551The name of the group as given in the IANA TLS Supported Groups registry 552L<https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8>. 553 554=item "tls-group-name-internal" (B<OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL>) <UTF8 string> 555 556The name of the group as known by the provider. This could be the same as the 557"tls-group-name", but does not have to be. 558 559=item "tls-group-id" (B<OSSL_CAPABILITY_TLS_GROUP_ID>) <unsigned integer> 560 561The TLS group id value as given in the IANA TLS Supported Groups registry. 562 563=item "tls-group-alg" (B<OSSL_CAPABILITY_TLS_GROUP_ALG>) <UTF8 string> 564 565The name of a Key Management algorithm that the provider offers and that should 566be used with this group. Keys created should be able to support I<key exchange> 567or I<key encapsulation method> (KEM), as implied by the optional 568B<OSSL_CAPABILITY_TLS_GROUP_IS_KEM> flag. 569The algorithm must support key and parameter generation as well as the 570key/parameter generation parameter, B<OSSL_PKEY_PARAM_GROUP_NAME>. The group 571name given via "tls-group-name-internal" above will be passed via 572B<OSSL_PKEY_PARAM_GROUP_NAME> when libssl wishes to generate keys/parameters. 573 574=item "tls-group-sec-bits" (B<OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS>) <unsigned integer> 575 576The number of bits of security offered by keys in this group. The number of bits 577should be comparable with the ones given in table 2 and 3 of the NIST SP800-57 578document. 579 580=item "tls-group-is-kem" (B<OSSL_CAPABILITY_TLS_GROUP_IS_KEM>) <unsigned integer> 581 582Boolean flag to describe if the group should be used in I<key exchange> (KEX) 583mode (0, default) or in I<key encapsulation method> (KEM) mode (1). 584 585This parameter is optional: if not specified, KEX mode is assumed as the default 586mode for the group. 587 588In KEX mode, in a typical Diffie-Hellman fashion, both sides execute I<keygen> 589then I<derive> against the peer public key. To operate in KEX mode, the group 590implementation must support the provider functions as described in 591L<provider-keyexch(7)>. 592 593In KEM mode, the client executes I<keygen> and sends its public key, the server 594executes I<encapsulate> using the client's public key and sends back the 595resulting I<ciphertext>, finally the client executes I<decapsulate> to retrieve 596the same I<shared secret> generated by the server's I<encapsulate>. To operate 597in KEM mode, the group implementation must support the provider functions as 598described in L<provider-kem(7)>. 599 600Both in KEX and KEM mode, the resulting I<shared secret> is then used according 601to the protocol specification. 602 603=item "tls-min-tls" (B<OSSL_CAPABILITY_TLS_GROUP_MIN_TLS>) <integer> 604 605=item "tls-max-tls" (B<OSSL_CAPABILITY_TLS_GROUP_MAX_TLS>) <integer> 606 607=item "tls-min-dtls" (B<OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS>) <integer> 608 609=item "tls-max-dtls" (B<OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS>) <integer> 610 611These parameters can be used to describe the minimum and maximum TLS and DTLS 612versions supported by the group. The values equate to the on-the-wire encoding 613of the various TLS versions. For example TLSv1.3 is 0x0304 (772 decimal), and 614TLSv1.2 is 0x0303 (771 decimal). A 0 indicates that there is no defined minimum 615or maximum. A -1 indicates that the group should not be used in that protocol. 616 617=back 618 619=head1 NOTES 620 621The core_obj_create() and core_obj_add_sigid() functions were not thread safe 622in OpenSSL 3.0. 623 624=head1 EXAMPLES 625 626This is an example of a simple provider made available as a 627dynamically loadable module. 628It implements the fictitious algorithm C<FOO> for the fictitious 629operation C<BAR>. 630 631 #include <malloc.h> 632 #include <openssl/core.h> 633 #include <openssl/core_dispatch.h> 634 635 /* Errors used in this provider */ 636 #define E_MALLOC 1 637 638 static const OSSL_ITEM reasons[] = { 639 { E_MALLOC, "memory allocation failure" }. 640 { 0, NULL } /* Termination */ 641 }; 642 643 /* 644 * To ensure we get the function signature right, forward declare 645 * them using function types provided by openssl/core_dispatch.h 646 */ 647 OSSL_FUNC_bar_newctx_fn foo_newctx; 648 OSSL_FUNC_bar_freectx_fn foo_freectx; 649 OSSL_FUNC_bar_init_fn foo_init; 650 OSSL_FUNC_bar_update_fn foo_update; 651 OSSL_FUNC_bar_final_fn foo_final; 652 653 OSSL_FUNC_provider_query_operation_fn p_query; 654 OSSL_FUNC_provider_get_reason_strings_fn p_reasons; 655 OSSL_FUNC_provider_teardown_fn p_teardown; 656 657 OSSL_provider_init_fn OSSL_provider_init; 658 659 OSSL_FUNC_core_put_error *c_put_error = NULL; 660 661 /* Provider context */ 662 struct prov_ctx_st { 663 OSSL_CORE_HANDLE *handle; 664 } 665 666 /* operation context for the algorithm FOO */ 667 struct foo_ctx_st { 668 struct prov_ctx_st *provctx; 669 int b; 670 }; 671 672 static void *foo_newctx(void *provctx) 673 { 674 struct foo_ctx_st *fooctx = malloc(sizeof(*fooctx)); 675 676 if (fooctx != NULL) 677 fooctx->provctx = provctx; 678 else 679 c_put_error(provctx->handle, E_MALLOC, __FILE__, __LINE__); 680 return fooctx; 681 } 682 683 static void foo_freectx(void *fooctx) 684 { 685 free(fooctx); 686 } 687 688 static int foo_init(void *vfooctx) 689 { 690 struct foo_ctx_st *fooctx = vfooctx; 691 692 fooctx->b = 0x33; 693 } 694 695 static int foo_update(void *vfooctx, unsigned char *in, size_t inl) 696 { 697 struct foo_ctx_st *fooctx = vfooctx; 698 699 /* did you expect something serious? */ 700 if (inl == 0) 701 return 1; 702 for (; inl-- > 0; in++) 703 *in ^= fooctx->b; 704 return 1; 705 } 706 707 static int foo_final(void *vfooctx) 708 { 709 struct foo_ctx_st *fooctx = vfooctx; 710 711 fooctx->b = 0x66; 712 } 713 714 static const OSSL_DISPATCH foo_fns[] = { 715 { OSSL_FUNC_BAR_NEWCTX, (void (*)(void))foo_newctx }, 716 { OSSL_FUNC_BAR_FREECTX, (void (*)(void))foo_freectx }, 717 { OSSL_FUNC_BAR_INIT, (void (*)(void))foo_init }, 718 { OSSL_FUNC_BAR_UPDATE, (void (*)(void))foo_update }, 719 { OSSL_FUNC_BAR_FINAL, (void (*)(void))foo_final }, 720 { 0, NULL } 721 }; 722 723 static const OSSL_ALGORITHM bars[] = { 724 { "FOO", "provider=chumbawamba", foo_fns }, 725 { NULL, NULL, NULL } 726 }; 727 728 static const OSSL_ALGORITHM *p_query(void *provctx, int operation_id, 729 int *no_store) 730 { 731 switch (operation_id) { 732 case OSSL_OP_BAR: 733 return bars; 734 } 735 return NULL; 736 } 737 738 static const OSSL_ITEM *p_reasons(void *provctx) 739 { 740 return reasons; 741 } 742 743 static void p_teardown(void *provctx) 744 { 745 free(provctx); 746 } 747 748 static const OSSL_DISPATCH prov_fns[] = { 749 { OSSL_FUNC_PROVIDER_TEARDOWN, (void (*)(void))p_teardown }, 750 { OSSL_FUNC_PROVIDER_QUERY_OPERATION, (void (*)(void))p_query }, 751 { OSSL_FUNC_PROVIDER_GET_REASON_STRINGS, (void (*)(void))p_reasons }, 752 { 0, NULL } 753 }; 754 755 int OSSL_provider_init(const OSSL_CORE_HANDLE *handle, 756 const OSSL_DISPATCH *in, 757 const OSSL_DISPATCH **out, 758 void **provctx) 759 { 760 struct prov_ctx_st *pctx = NULL; 761 762 for (; in->function_id != 0; in++) 763 switch (in->function_id) { 764 case OSSL_FUNC_CORE_PUT_ERROR: 765 c_put_error = OSSL_FUNC_core_put_error(in); 766 break; 767 } 768 769 *out = prov_fns; 770 771 if ((pctx = malloc(sizeof(*pctx))) == NULL) { 772 /* 773 * ALEA IACTA EST, if the core retrieves the reason table 774 * regardless, that string will be displayed, otherwise not. 775 */ 776 c_put_error(handle, E_MALLOC, __FILE__, __LINE__); 777 return 0; 778 } 779 pctx->handle = handle; 780 return 1; 781 } 782 783This relies on a few things existing in F<openssl/core_dispatch.h>: 784 785 #define OSSL_OP_BAR 4711 786 787 #define OSSL_FUNC_BAR_NEWCTX 1 788 typedef void *(OSSL_FUNC_bar_newctx_fn)(void *provctx); 789 static ossl_inline OSSL_FUNC_bar_newctx(const OSSL_DISPATCH *opf) 790 { return (OSSL_FUNC_bar_newctx_fn *)opf->function; } 791 792 #define OSSL_FUNC_BAR_FREECTX 2 793 typedef void (OSSL_FUNC_bar_freectx_fn)(void *ctx); 794 static ossl_inline OSSL_FUNC_bar_newctx(const OSSL_DISPATCH *opf) 795 { return (OSSL_FUNC_bar_freectx_fn *)opf->function; } 796 797 #define OSSL_FUNC_BAR_INIT 3 798 typedef void *(OSSL_FUNC_bar_init_fn)(void *ctx); 799 static ossl_inline OSSL_FUNC_bar_init(const OSSL_DISPATCH *opf) 800 { return (OSSL_FUNC_bar_init_fn *)opf->function; } 801 802 #define OSSL_FUNC_BAR_UPDATE 4 803 typedef void *(OSSL_FUNC_bar_update_fn)(void *ctx, 804 unsigned char *in, size_t inl); 805 static ossl_inline OSSL_FUNC_bar_update(const OSSL_DISPATCH *opf) 806 { return (OSSL_FUNC_bar_update_fn *)opf->function; } 807 808 #define OSSL_FUNC_BAR_FINAL 5 809 typedef void *(OSSL_FUNC_bar_final_fn)(void *ctx); 810 static ossl_inline OSSL_FUNC_bar_final(const OSSL_DISPATCH *opf) 811 { return (OSSL_FUNC_bar_final_fn *)opf->function; } 812 813=head1 SEE ALSO 814 815L<provider(7)> 816 817=head1 HISTORY 818 819The concept of providers and everything surrounding them was 820introduced in OpenSSL 3.0. 821 822=head1 COPYRIGHT 823 824Copyright 2019-2021 The OpenSSL Project Authors. All Rights Reserved. 825 826Licensed under the Apache License 2.0 (the "License"). You may not use 827this file except in compliance with the License. You can obtain a copy 828in the file LICENSE in the source distribution or at 829L<https://www.openssl.org/source/license.html>. 830 831=cut 832