1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2016
4 * Author: Chen-Yu Tsai <wens@csie.org>
5 *
6 * Based on assembly code by Marc Zyngier <marc.zyngier@arm.com>,
7 * which was based on code by Carl van Schaik <carl@ok-labs.com>.
8 */
9 #include <config.h>
10 #include <common.h>
11 #include <asm/cache.h>
12
13 #include <asm/arch/cpu.h>
14 #include <asm/arch/cpucfg.h>
15 #include <asm/arch/prcm.h>
16 #include <asm/armv7.h>
17 #include <asm/gic.h>
18 #include <asm/io.h>
19 #include <asm/psci.h>
20 #include <asm/secure.h>
21 #include <asm/system.h>
22
23 #include <linux/bitops.h>
24
25 #define __irq __attribute__ ((interrupt ("IRQ")))
26
27 #define GICD_BASE (SUNXI_GIC400_BASE + GIC_DIST_OFFSET)
28 #define GICC_BASE (SUNXI_GIC400_BASE + GIC_CPU_OFFSET_A15)
29
30 /*
31 * R40 is different from other single cluster SoCs.
32 *
33 * The power clamps are located in the unused space after the per-core
34 * reset controls for core 3. The secondary core entry address register
35 * is in the SRAM controller address range.
36 */
37 #define SUN8I_R40_PWROFF (0x110)
38 #define SUN8I_R40_PWR_CLAMP(cpu) (0x120 + (cpu) * 0x4)
39 #define SUN8I_R40_SRAMC_SOFT_ENTRY_REG0 (0xbc)
40
cp15_write_cntp_tval(u32 tval)41 static void __secure cp15_write_cntp_tval(u32 tval)
42 {
43 asm volatile ("mcr p15, 0, %0, c14, c2, 0" : : "r" (tval));
44 }
45
cp15_write_cntp_ctl(u32 val)46 static void __secure cp15_write_cntp_ctl(u32 val)
47 {
48 asm volatile ("mcr p15, 0, %0, c14, c2, 1" : : "r" (val));
49 }
50
cp15_read_cntp_ctl(void)51 static u32 __secure cp15_read_cntp_ctl(void)
52 {
53 u32 val;
54
55 asm volatile ("mrc p15, 0, %0, c14, c2, 1" : "=r" (val));
56
57 return val;
58 }
59
60 #define ONE_MS (COUNTER_FREQUENCY / 1000)
61
__mdelay(u32 ms)62 static void __secure __mdelay(u32 ms)
63 {
64 u32 reg = ONE_MS * ms;
65
66 cp15_write_cntp_tval(reg);
67 isb();
68 cp15_write_cntp_ctl(3);
69
70 do {
71 isb();
72 reg = cp15_read_cntp_ctl();
73 } while (!(reg & BIT(2)));
74
75 cp15_write_cntp_ctl(0);
76 isb();
77 }
78
clamp_release(u32 __maybe_unused * clamp)79 static void __secure clamp_release(u32 __maybe_unused *clamp)
80 {
81 #if defined(CONFIG_MACH_SUN6I) || defined(CONFIG_MACH_SUN7I) || \
82 defined(CONFIG_MACH_SUN8I_H3) || \
83 defined(CONFIG_MACH_SUN8I_R40)
84 u32 tmp = 0x1ff;
85 do {
86 tmp >>= 1;
87 writel(tmp, clamp);
88 } while (tmp);
89
90 __mdelay(10);
91 #endif
92 }
93
clamp_set(u32 __maybe_unused * clamp)94 static void __secure clamp_set(u32 __maybe_unused *clamp)
95 {
96 #if defined(CONFIG_MACH_SUN6I) || defined(CONFIG_MACH_SUN7I) || \
97 defined(CONFIG_MACH_SUN8I_H3) || \
98 defined(CONFIG_MACH_SUN8I_R40)
99 writel(0xff, clamp);
100 #endif
101 }
102
sunxi_power_switch(u32 * clamp,u32 * pwroff,bool on,int cpu)103 static void __secure sunxi_power_switch(u32 *clamp, u32 *pwroff, bool on,
104 int cpu)
105 {
106 if (on) {
107 /* Release power clamp */
108 clamp_release(clamp);
109
110 /* Clear power gating */
111 clrbits_le32(pwroff, BIT(cpu));
112 } else {
113 /* Set power gating */
114 setbits_le32(pwroff, BIT(cpu));
115
116 /* Activate power clamp */
117 clamp_set(clamp);
118 }
119 }
120
121 #ifdef CONFIG_MACH_SUN8I_R40
122 /* secondary core entry address is programmed differently on R40 */
sunxi_set_entry_address(void * entry)123 static void __secure sunxi_set_entry_address(void *entry)
124 {
125 writel((u32)entry,
126 SUNXI_SRAMC_BASE + SUN8I_R40_SRAMC_SOFT_ENTRY_REG0);
127 }
128 #else
sunxi_set_entry_address(void * entry)129 static void __secure sunxi_set_entry_address(void *entry)
130 {
131 struct sunxi_cpucfg_reg *cpucfg =
132 (struct sunxi_cpucfg_reg *)SUNXI_CPUCFG_BASE;
133
134 writel((u32)entry, &cpucfg->priv0);
135 }
136 #endif
137
138 #ifdef CONFIG_MACH_SUN7I
139 /* sun7i (A20) is different from other single cluster SoCs */
sunxi_cpu_set_power(int __always_unused cpu,bool on)140 static void __secure sunxi_cpu_set_power(int __always_unused cpu, bool on)
141 {
142 struct sunxi_cpucfg_reg *cpucfg =
143 (struct sunxi_cpucfg_reg *)SUNXI_CPUCFG_BASE;
144
145 sunxi_power_switch(&cpucfg->cpu1_pwr_clamp, &cpucfg->cpu1_pwroff,
146 on, 0);
147 }
148 #elif defined CONFIG_MACH_SUN8I_R40
sunxi_cpu_set_power(int cpu,bool on)149 static void __secure sunxi_cpu_set_power(int cpu, bool on)
150 {
151 struct sunxi_cpucfg_reg *cpucfg =
152 (struct sunxi_cpucfg_reg *)SUNXI_CPUCFG_BASE;
153
154 sunxi_power_switch((void *)cpucfg + SUN8I_R40_PWR_CLAMP(cpu),
155 (void *)cpucfg + SUN8I_R40_PWROFF,
156 on, 0);
157 }
158 #else /* ! CONFIG_MACH_SUN7I && ! CONFIG_MACH_SUN8I_R40 */
sunxi_cpu_set_power(int cpu,bool on)159 static void __secure sunxi_cpu_set_power(int cpu, bool on)
160 {
161 struct sunxi_prcm_reg *prcm =
162 (struct sunxi_prcm_reg *)SUNXI_PRCM_BASE;
163
164 sunxi_power_switch(&prcm->cpu_pwr_clamp[cpu], &prcm->cpu_pwroff,
165 on, cpu);
166 }
167 #endif /* CONFIG_MACH_SUN7I */
168
sunxi_cpu_power_off(u32 cpuid)169 void __secure sunxi_cpu_power_off(u32 cpuid)
170 {
171 struct sunxi_cpucfg_reg *cpucfg =
172 (struct sunxi_cpucfg_reg *)SUNXI_CPUCFG_BASE;
173 u32 cpu = cpuid & 0x3;
174
175 /* Wait for the core to enter WFI */
176 while (1) {
177 if (readl(&cpucfg->cpu[cpu].status) & BIT(2))
178 break;
179 __mdelay(1);
180 }
181
182 /* Assert reset on target CPU */
183 writel(0, &cpucfg->cpu[cpu].rst);
184
185 /* Lock CPU (Disable external debug access) */
186 clrbits_le32(&cpucfg->dbg_ctrl1, BIT(cpu));
187
188 /* Power down CPU */
189 sunxi_cpu_set_power(cpuid, false);
190
191 /* Unlock CPU (Disable external debug access) */
192 setbits_le32(&cpucfg->dbg_ctrl1, BIT(cpu));
193 }
194
cp15_read_scr(void)195 static u32 __secure cp15_read_scr(void)
196 {
197 u32 scr;
198
199 asm volatile ("mrc p15, 0, %0, c1, c1, 0" : "=r" (scr));
200
201 return scr;
202 }
203
cp15_write_scr(u32 scr)204 static void __secure cp15_write_scr(u32 scr)
205 {
206 asm volatile ("mcr p15, 0, %0, c1, c1, 0" : : "r" (scr));
207 isb();
208 }
209
210 /*
211 * Although this is an FIQ handler, the FIQ is processed in monitor mode,
212 * which means there's no FIQ banked registers. This is the same as IRQ
213 * mode, so use the IRQ attribute to ask the compiler to handler entry
214 * and return.
215 */
psci_fiq_enter(void)216 void __secure __irq psci_fiq_enter(void)
217 {
218 u32 scr, reg, cpu;
219
220 /* Switch to secure mode */
221 scr = cp15_read_scr();
222 cp15_write_scr(scr & ~BIT(0));
223
224 /* Validate reason based on IAR and acknowledge */
225 reg = readl(GICC_BASE + GICC_IAR);
226
227 /* Skip spurious interrupts 1022 and 1023 */
228 if (reg == 1023 || reg == 1022)
229 goto out;
230
231 /* End of interrupt */
232 writel(reg, GICC_BASE + GICC_EOIR);
233 dsb();
234
235 /* Get CPU number */
236 cpu = (reg >> 10) & 0x7;
237
238 /* Power off the CPU */
239 sunxi_cpu_power_off(cpu);
240
241 out:
242 /* Restore security level */
243 cp15_write_scr(scr);
244 }
245
psci_cpu_on(u32 __always_unused unused,u32 mpidr,u32 pc,u32 context_id)246 int __secure psci_cpu_on(u32 __always_unused unused, u32 mpidr, u32 pc,
247 u32 context_id)
248 {
249 struct sunxi_cpucfg_reg *cpucfg =
250 (struct sunxi_cpucfg_reg *)SUNXI_CPUCFG_BASE;
251 u32 cpu = (mpidr & 0x3);
252
253 /* store target PC and context id */
254 psci_save(cpu, pc, context_id);
255
256 /* Set secondary core power on PC */
257 sunxi_set_entry_address(&psci_cpu_entry);
258
259 /* Assert reset on target CPU */
260 writel(0, &cpucfg->cpu[cpu].rst);
261
262 /* Invalidate L1 cache */
263 clrbits_le32(&cpucfg->gen_ctrl, BIT(cpu));
264
265 /* Lock CPU (Disable external debug access) */
266 clrbits_le32(&cpucfg->dbg_ctrl1, BIT(cpu));
267
268 /* Power up target CPU */
269 sunxi_cpu_set_power(cpu, true);
270
271 /* De-assert reset on target CPU */
272 writel(BIT(1) | BIT(0), &cpucfg->cpu[cpu].rst);
273
274 /* Unlock CPU (Disable external debug access) */
275 setbits_le32(&cpucfg->dbg_ctrl1, BIT(cpu));
276
277 return ARM_PSCI_RET_SUCCESS;
278 }
279
psci_cpu_off(void)280 s32 __secure psci_cpu_off(void)
281 {
282 psci_cpu_off_common();
283
284 /* Ask CPU0 via SGI15 to pull the rug... */
285 writel(BIT(16) | 15, GICD_BASE + GICD_SGIR);
286 dsb();
287
288 /* Wait to be turned off */
289 while (1)
290 wfi();
291 }
292
psci_arch_init(void)293 void __secure psci_arch_init(void)
294 {
295 u32 reg;
296
297 /* SGI15 as Group-0 */
298 clrbits_le32(GICD_BASE + GICD_IGROUPRn, BIT(15));
299
300 /* Set SGI15 priority to 0 */
301 writeb(0, GICD_BASE + GICD_IPRIORITYRn + 15);
302
303 /* Be cool with non-secure */
304 writel(0xff, GICC_BASE + GICC_PMR);
305
306 /* Switch FIQEn on */
307 setbits_le32(GICC_BASE + GICC_CTLR, BIT(3));
308
309 reg = cp15_read_scr();
310 reg |= BIT(2); /* Enable FIQ in monitor mode */
311 reg &= ~BIT(0); /* Secure mode */
312 cp15_write_scr(reg);
313 }
314