1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2017 NXP
4  *
5  * Peng Fan <peng.fan@nxp.com>
6  */
7 
8 #include <common.h>
9 #include <command.h>
10 #include <asm/arch/clock.h>
11 #include <asm/arch/imx-regs.h>
12 #include <asm/io.h>
13 #include <asm/arch/sys_proto.h>
14 #include <errno.h>
15 #include <linux/delay.h>
16 #include <linux/iopoll.h>
17 
18 static struct anamix_pll *ana_pll = (struct anamix_pll *)ANATOP_BASE_ADDR;
19 
20 static u32 get_root_clk(enum clk_root_index clock_id);
21 
decode_frac_pll(enum clk_root_src frac_pll)22 static u32 decode_frac_pll(enum clk_root_src frac_pll)
23 {
24 	u32 pll_cfg0, pll_cfg1, pllout;
25 	u32 pll_refclk_sel, pll_refclk;
26 	u32 divr_val, divq_val, divf_val, divff, divfi;
27 	u32 pllout_div_shift, pllout_div_mask, pllout_div;
28 
29 	switch (frac_pll) {
30 	case ARM_PLL_CLK:
31 		pll_cfg0 = readl(&ana_pll->arm_pll_cfg0);
32 		pll_cfg1 = readl(&ana_pll->arm_pll_cfg1);
33 		pllout_div_shift = HW_FRAC_ARM_PLL_DIV_SHIFT;
34 		pllout_div_mask = HW_FRAC_ARM_PLL_DIV_MASK;
35 		break;
36 	default:
37 		printf("Frac PLL %d not supporte\n", frac_pll);
38 		return 0;
39 	}
40 
41 	pllout_div = readl(&ana_pll->frac_pllout_div_cfg);
42 	pllout_div = (pllout_div & pllout_div_mask) >> pllout_div_shift;
43 
44 	/* Power down */
45 	if (pll_cfg0 & FRAC_PLL_PD_MASK)
46 		return 0;
47 
48 	/* output not enabled */
49 	if ((pll_cfg0 & FRAC_PLL_CLKE_MASK) == 0)
50 		return 0;
51 
52 	pll_refclk_sel = pll_cfg0 & FRAC_PLL_REFCLK_SEL_MASK;
53 
54 	if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_OSC_25M)
55 		pll_refclk = 25000000u;
56 	else if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_OSC_27M)
57 		pll_refclk = 27000000u;
58 	else if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_HDMI_PHY_27M)
59 		pll_refclk = 27000000u;
60 	else
61 		pll_refclk = 0;
62 
63 	if (pll_cfg0 & FRAC_PLL_BYPASS_MASK)
64 		return pll_refclk;
65 
66 	divr_val = (pll_cfg0 & FRAC_PLL_REFCLK_DIV_VAL_MASK) >>
67 		FRAC_PLL_REFCLK_DIV_VAL_SHIFT;
68 	divq_val = pll_cfg0 & FRAC_PLL_OUTPUT_DIV_VAL_MASK;
69 
70 	divff = (pll_cfg1 & FRAC_PLL_FRAC_DIV_CTL_MASK) >>
71 		FRAC_PLL_FRAC_DIV_CTL_SHIFT;
72 	divfi = pll_cfg1 & FRAC_PLL_INT_DIV_CTL_MASK;
73 
74 	divf_val = 1 + divfi + divff / (1 << 24);
75 
76 	pllout = pll_refclk / (divr_val + 1) * 8 * divf_val /
77 		((divq_val + 1) * 2);
78 
79 	return pllout / (pllout_div + 1);
80 }
81 
decode_sscg_pll(enum clk_root_src sscg_pll)82 static u32 decode_sscg_pll(enum clk_root_src sscg_pll)
83 {
84 	u32 pll_cfg0, pll_cfg1, pll_cfg2;
85 	u32 pll_refclk_sel, pll_refclk;
86 	u32 divr1, divr2, divf1, divf2, divq, div;
87 	u32 sse;
88 	u32 pll_clke;
89 	u32 pllout_div_shift, pllout_div_mask, pllout_div;
90 	u32 pllout;
91 
92 	switch (sscg_pll) {
93 	case SYSTEM_PLL1_800M_CLK:
94 	case SYSTEM_PLL1_400M_CLK:
95 	case SYSTEM_PLL1_266M_CLK:
96 	case SYSTEM_PLL1_200M_CLK:
97 	case SYSTEM_PLL1_160M_CLK:
98 	case SYSTEM_PLL1_133M_CLK:
99 	case SYSTEM_PLL1_100M_CLK:
100 	case SYSTEM_PLL1_80M_CLK:
101 	case SYSTEM_PLL1_40M_CLK:
102 		pll_cfg0 = readl(&ana_pll->sys_pll1_cfg0);
103 		pll_cfg1 = readl(&ana_pll->sys_pll1_cfg1);
104 		pll_cfg2 = readl(&ana_pll->sys_pll1_cfg2);
105 		pllout_div_shift = HW_SSCG_SYSTEM_PLL1_DIV_SHIFT;
106 		pllout_div_mask = HW_SSCG_SYSTEM_PLL1_DIV_MASK;
107 		break;
108 	case SYSTEM_PLL2_1000M_CLK:
109 	case SYSTEM_PLL2_500M_CLK:
110 	case SYSTEM_PLL2_333M_CLK:
111 	case SYSTEM_PLL2_250M_CLK:
112 	case SYSTEM_PLL2_200M_CLK:
113 	case SYSTEM_PLL2_166M_CLK:
114 	case SYSTEM_PLL2_125M_CLK:
115 	case SYSTEM_PLL2_100M_CLK:
116 	case SYSTEM_PLL2_50M_CLK:
117 		pll_cfg0 = readl(&ana_pll->sys_pll2_cfg0);
118 		pll_cfg1 = readl(&ana_pll->sys_pll2_cfg1);
119 		pll_cfg2 = readl(&ana_pll->sys_pll2_cfg2);
120 		pllout_div_shift = HW_SSCG_SYSTEM_PLL2_DIV_SHIFT;
121 		pllout_div_mask = HW_SSCG_SYSTEM_PLL2_DIV_MASK;
122 		break;
123 	case SYSTEM_PLL3_CLK:
124 		pll_cfg0 = readl(&ana_pll->sys_pll3_cfg0);
125 		pll_cfg1 = readl(&ana_pll->sys_pll3_cfg1);
126 		pll_cfg2 = readl(&ana_pll->sys_pll3_cfg2);
127 		pllout_div_shift = HW_SSCG_SYSTEM_PLL3_DIV_SHIFT;
128 		pllout_div_mask = HW_SSCG_SYSTEM_PLL3_DIV_MASK;
129 		break;
130 	case DRAM_PLL1_CLK:
131 		pll_cfg0 = readl(&ana_pll->dram_pll_cfg0);
132 		pll_cfg1 = readl(&ana_pll->dram_pll_cfg1);
133 		pll_cfg2 = readl(&ana_pll->dram_pll_cfg2);
134 		pllout_div_shift = HW_SSCG_DRAM_PLL_DIV_SHIFT;
135 		pllout_div_mask = HW_SSCG_DRAM_PLL_DIV_MASK;
136 		break;
137 	default:
138 		printf("sscg pll %d not supporte\n", sscg_pll);
139 		return 0;
140 	}
141 
142 	switch (sscg_pll) {
143 	case DRAM_PLL1_CLK:
144 		pll_clke = SSCG_PLL_DRAM_PLL_CLKE_MASK;
145 		div = 1;
146 		break;
147 	case SYSTEM_PLL3_CLK:
148 		pll_clke = SSCG_PLL_PLL3_CLKE_MASK;
149 		div = 1;
150 		break;
151 	case SYSTEM_PLL2_1000M_CLK:
152 	case SYSTEM_PLL1_800M_CLK:
153 		pll_clke = SSCG_PLL_CLKE_MASK;
154 		div = 1;
155 		break;
156 	case SYSTEM_PLL2_500M_CLK:
157 	case SYSTEM_PLL1_400M_CLK:
158 		pll_clke = SSCG_PLL_DIV2_CLKE_MASK;
159 		div = 2;
160 		break;
161 	case SYSTEM_PLL2_333M_CLK:
162 	case SYSTEM_PLL1_266M_CLK:
163 		pll_clke = SSCG_PLL_DIV3_CLKE_MASK;
164 		div = 3;
165 		break;
166 	case SYSTEM_PLL2_250M_CLK:
167 	case SYSTEM_PLL1_200M_CLK:
168 		pll_clke = SSCG_PLL_DIV4_CLKE_MASK;
169 		div = 4;
170 		break;
171 	case SYSTEM_PLL2_200M_CLK:
172 	case SYSTEM_PLL1_160M_CLK:
173 		pll_clke = SSCG_PLL_DIV5_CLKE_MASK;
174 		div = 5;
175 		break;
176 	case SYSTEM_PLL2_166M_CLK:
177 	case SYSTEM_PLL1_133M_CLK:
178 		pll_clke = SSCG_PLL_DIV6_CLKE_MASK;
179 		div = 6;
180 		break;
181 	case SYSTEM_PLL2_125M_CLK:
182 	case SYSTEM_PLL1_100M_CLK:
183 		pll_clke = SSCG_PLL_DIV8_CLKE_MASK;
184 		div = 8;
185 		break;
186 	case SYSTEM_PLL2_100M_CLK:
187 	case SYSTEM_PLL1_80M_CLK:
188 		pll_clke = SSCG_PLL_DIV10_CLKE_MASK;
189 		div = 10;
190 		break;
191 	case SYSTEM_PLL2_50M_CLK:
192 	case SYSTEM_PLL1_40M_CLK:
193 		pll_clke = SSCG_PLL_DIV20_CLKE_MASK;
194 		div = 20;
195 		break;
196 	default:
197 		printf("sscg pll %d not supporte\n", sscg_pll);
198 		return 0;
199 	}
200 
201 	/* Power down */
202 	if (pll_cfg0 & SSCG_PLL_PD_MASK)
203 		return 0;
204 
205 	/* output not enabled */
206 	if ((pll_cfg0 & pll_clke) == 0)
207 		return 0;
208 
209 	pllout_div = readl(&ana_pll->sscg_pllout_div_cfg);
210 	pllout_div = (pllout_div & pllout_div_mask) >> pllout_div_shift;
211 
212 	pll_refclk_sel = pll_cfg0 & SSCG_PLL_REFCLK_SEL_MASK;
213 
214 	if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_OSC_25M)
215 		pll_refclk = 25000000u;
216 	else if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_OSC_27M)
217 		pll_refclk = 27000000u;
218 	else if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_HDMI_PHY_27M)
219 		pll_refclk = 27000000u;
220 	else
221 		pll_refclk = 0;
222 
223 	/* We assume bypass1/2 are the same value */
224 	if ((pll_cfg0 & SSCG_PLL_BYPASS1_MASK) ||
225 	    (pll_cfg0 & SSCG_PLL_BYPASS2_MASK))
226 		return pll_refclk;
227 
228 	divr1 = (pll_cfg2 & SSCG_PLL_REF_DIVR1_MASK) >>
229 		SSCG_PLL_REF_DIVR1_SHIFT;
230 	divr2 = (pll_cfg2 & SSCG_PLL_REF_DIVR2_MASK) >>
231 		SSCG_PLL_REF_DIVR2_SHIFT;
232 	divf1 = (pll_cfg2 & SSCG_PLL_FEEDBACK_DIV_F1_MASK) >>
233 		SSCG_PLL_FEEDBACK_DIV_F1_SHIFT;
234 	divf2 = (pll_cfg2 & SSCG_PLL_FEEDBACK_DIV_F2_MASK) >>
235 		SSCG_PLL_FEEDBACK_DIV_F2_SHIFT;
236 	divq = (pll_cfg2 & SSCG_PLL_OUTPUT_DIV_VAL_MASK) >>
237 		SSCG_PLL_OUTPUT_DIV_VAL_SHIFT;
238 	sse = pll_cfg1 & SSCG_PLL_SSE_MASK;
239 
240 	if (sse)
241 		sse = 8;
242 	else
243 		sse = 2;
244 
245 	pllout = pll_refclk / (divr1 + 1) * sse * (divf1 + 1) /
246 		(divr2 + 1) * (divf2 + 1) / (divq + 1);
247 
248 	return pllout / (pllout_div + 1) / div;
249 }
250 
get_root_src_clk(enum clk_root_src root_src)251 static u32 get_root_src_clk(enum clk_root_src root_src)
252 {
253 	switch (root_src) {
254 	case OSC_25M_CLK:
255 		return 25000000;
256 	case OSC_27M_CLK:
257 		return 27000000;
258 	case OSC_32K_CLK:
259 		return 32768;
260 	case ARM_PLL_CLK:
261 		return decode_frac_pll(root_src);
262 	case SYSTEM_PLL1_800M_CLK:
263 	case SYSTEM_PLL1_400M_CLK:
264 	case SYSTEM_PLL1_266M_CLK:
265 	case SYSTEM_PLL1_200M_CLK:
266 	case SYSTEM_PLL1_160M_CLK:
267 	case SYSTEM_PLL1_133M_CLK:
268 	case SYSTEM_PLL1_100M_CLK:
269 	case SYSTEM_PLL1_80M_CLK:
270 	case SYSTEM_PLL1_40M_CLK:
271 	case SYSTEM_PLL2_1000M_CLK:
272 	case SYSTEM_PLL2_500M_CLK:
273 	case SYSTEM_PLL2_333M_CLK:
274 	case SYSTEM_PLL2_250M_CLK:
275 	case SYSTEM_PLL2_200M_CLK:
276 	case SYSTEM_PLL2_166M_CLK:
277 	case SYSTEM_PLL2_125M_CLK:
278 	case SYSTEM_PLL2_100M_CLK:
279 	case SYSTEM_PLL2_50M_CLK:
280 	case SYSTEM_PLL3_CLK:
281 		return decode_sscg_pll(root_src);
282 	case ARM_A53_ALT_CLK:
283 		return get_root_clk(ARM_A53_CLK_ROOT);
284 	default:
285 		return 0;
286 	}
287 
288 	return 0;
289 }
290 
get_root_clk(enum clk_root_index clock_id)291 static u32 get_root_clk(enum clk_root_index clock_id)
292 {
293 	enum clk_root_src root_src;
294 	u32 post_podf, pre_podf, root_src_clk;
295 
296 	if (clock_root_enabled(clock_id) <= 0)
297 		return 0;
298 
299 	if (clock_get_prediv(clock_id, &pre_podf) < 0)
300 		return 0;
301 
302 	if (clock_get_postdiv(clock_id, &post_podf) < 0)
303 		return 0;
304 
305 	if (clock_get_src(clock_id, &root_src) < 0)
306 		return 0;
307 
308 	root_src_clk = get_root_src_clk(root_src);
309 
310 	return root_src_clk / (post_podf + 1) / (pre_podf + 1);
311 }
312 
313 #ifdef CONFIG_IMX_HAB
hab_caam_clock_enable(unsigned char enable)314 void hab_caam_clock_enable(unsigned char enable)
315 {
316 	/* The CAAM clock is always on for iMX8M */
317 }
318 #endif
319 
320 #ifdef CONFIG_MXC_OCOTP
enable_ocotp_clk(unsigned char enable)321 void enable_ocotp_clk(unsigned char enable)
322 {
323 	clock_enable(CCGR_OCOTP, !!enable);
324 }
325 #endif
326 
enable_i2c_clk(unsigned char enable,unsigned int i2c_num)327 int enable_i2c_clk(unsigned char enable, unsigned int i2c_num)
328 {
329 	/* 0 - 3 is valid i2c num */
330 	if (i2c_num > 3)
331 		return -EINVAL;
332 
333 	clock_enable(CCGR_I2C1 + i2c_num, !!enable);
334 
335 	return 0;
336 }
337 
get_arm_core_clk(void)338 u32 get_arm_core_clk(void)
339 {
340 	enum clk_root_src root_src;
341 	u32 root_src_clk;
342 
343 	if (clock_get_src(CORE_SEL_CFG, &root_src) < 0)
344 		return 0;
345 
346 	root_src_clk = get_root_src_clk(root_src);
347 
348 	return root_src_clk;
349 }
350 
mxc_get_clock(enum mxc_clock clk)351 unsigned int mxc_get_clock(enum mxc_clock clk)
352 {
353 	u32 val;
354 
355 	switch (clk) {
356 	case MXC_ARM_CLK:
357 		return get_arm_core_clk();
358 	case MXC_IPG_CLK:
359 		clock_get_target_val(IPG_CLK_ROOT, &val);
360 		val = val & 0x3;
361 		return get_root_clk(AHB_CLK_ROOT) / (val + 1);
362 	case MXC_ESDHC_CLK:
363 		return get_root_clk(USDHC1_CLK_ROOT);
364 	case MXC_ESDHC2_CLK:
365 		return get_root_clk(USDHC2_CLK_ROOT);
366 	default:
367 		return get_root_clk(clk);
368 	}
369 }
370 
imx_get_uartclk(void)371 u32 imx_get_uartclk(void)
372 {
373 	return mxc_get_clock(UART1_CLK_ROOT);
374 }
375 
mxs_set_lcdclk(u32 base_addr,u32 freq)376 void mxs_set_lcdclk(u32 base_addr, u32 freq)
377 {
378 	/*
379 	 * LCDIF_PIXEL_CLK: select 800MHz root clock,
380 	 * select pre divider 8, output is 100 MHz
381 	 */
382 	clock_set_target_val(LCDIF_PIXEL_CLK_ROOT, CLK_ROOT_ON |
383 			     CLK_ROOT_SOURCE_SEL(4) |
384 			     CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV8));
385 }
386 
init_wdog_clk(void)387 void init_wdog_clk(void)
388 {
389 	clock_enable(CCGR_WDOG1, 0);
390 	clock_enable(CCGR_WDOG2, 0);
391 	clock_enable(CCGR_WDOG3, 0);
392 	clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
393 			     CLK_ROOT_SOURCE_SEL(0));
394 	clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
395 			     CLK_ROOT_SOURCE_SEL(0));
396 	clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
397 			     CLK_ROOT_SOURCE_SEL(0));
398 	clock_enable(CCGR_WDOG1, 1);
399 	clock_enable(CCGR_WDOG2, 1);
400 	clock_enable(CCGR_WDOG3, 1);
401 }
402 
init_usb_clk(void)403 void init_usb_clk(void)
404 {
405 	if (!is_usb_boot()) {
406 		clock_enable(CCGR_USB_CTRL1, 0);
407 		clock_enable(CCGR_USB_CTRL2, 0);
408 		clock_enable(CCGR_USB_PHY1, 0);
409 		clock_enable(CCGR_USB_PHY2, 0);
410 		/* 500MHz */
411 		clock_set_target_val(USB_BUS_CLK_ROOT, CLK_ROOT_ON |
412 				     CLK_ROOT_SOURCE_SEL(1));
413 		/* 100MHz */
414 		clock_set_target_val(USB_CORE_REF_CLK_ROOT, CLK_ROOT_ON |
415 				     CLK_ROOT_SOURCE_SEL(1));
416 		/* 100MHz */
417 		clock_set_target_val(USB_PHY_REF_CLK_ROOT, CLK_ROOT_ON |
418 				     CLK_ROOT_SOURCE_SEL(1));
419 		clock_enable(CCGR_USB_CTRL1, 1);
420 		clock_enable(CCGR_USB_CTRL2, 1);
421 		clock_enable(CCGR_USB_PHY1, 1);
422 		clock_enable(CCGR_USB_PHY2, 1);
423 	}
424 }
425 
init_nand_clk(void)426 void init_nand_clk(void)
427 {
428 	clock_enable(CCGR_RAWNAND, 0);
429 	clock_set_target_val(NAND_CLK_ROOT,
430 			     CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(3) |
431 			     CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4));
432 	clock_enable(CCGR_RAWNAND, 1);
433 }
434 
init_uart_clk(u32 index)435 void init_uart_clk(u32 index)
436 {
437 	/* Set uart clock root 25M OSC */
438 	switch (index) {
439 	case 0:
440 		clock_enable(CCGR_UART1, 0);
441 		clock_set_target_val(UART1_CLK_ROOT, CLK_ROOT_ON |
442 				     CLK_ROOT_SOURCE_SEL(0));
443 		clock_enable(CCGR_UART1, 1);
444 		return;
445 	case 1:
446 		clock_enable(CCGR_UART2, 0);
447 		clock_set_target_val(UART2_CLK_ROOT, CLK_ROOT_ON |
448 				     CLK_ROOT_SOURCE_SEL(0));
449 		clock_enable(CCGR_UART2, 1);
450 		return;
451 	case 2:
452 		clock_enable(CCGR_UART3, 0);
453 		clock_set_target_val(UART3_CLK_ROOT, CLK_ROOT_ON |
454 				     CLK_ROOT_SOURCE_SEL(0));
455 		clock_enable(CCGR_UART3, 1);
456 		return;
457 	case 3:
458 		clock_enable(CCGR_UART4, 0);
459 		clock_set_target_val(UART4_CLK_ROOT, CLK_ROOT_ON |
460 				     CLK_ROOT_SOURCE_SEL(0));
461 		clock_enable(CCGR_UART4, 1);
462 		return;
463 	default:
464 		printf("Invalid uart index\n");
465 		return;
466 	}
467 }
468 
init_clk_usdhc(u32 index)469 void init_clk_usdhc(u32 index)
470 {
471 	/*
472 	 * set usdhc clock root
473 	 * sys pll1 400M
474 	 */
475 	switch (index) {
476 	case 0:
477 		clock_enable(CCGR_USDHC1, 0);
478 		clock_set_target_val(USDHC1_CLK_ROOT, CLK_ROOT_ON |
479 				     CLK_ROOT_SOURCE_SEL(1));
480 		clock_enable(CCGR_USDHC1, 1);
481 		return;
482 	case 1:
483 		clock_enable(CCGR_USDHC2, 0);
484 		clock_set_target_val(USDHC2_CLK_ROOT, CLK_ROOT_ON |
485 				     CLK_ROOT_SOURCE_SEL(1));
486 		clock_enable(CCGR_USDHC2, 1);
487 		return;
488 	default:
489 		printf("Invalid usdhc index\n");
490 		return;
491 	}
492 }
493 
set_clk_qspi(void)494 int set_clk_qspi(void)
495 {
496 	/*
497 	 * set qspi root
498 	 * sys pll1 100M
499 	 */
500 	clock_enable(CCGR_QSPI, 0);
501 	clock_set_target_val(QSPI_CLK_ROOT, CLK_ROOT_ON |
502 			     CLK_ROOT_SOURCE_SEL(7));
503 	clock_enable(CCGR_QSPI, 1);
504 
505 	return 0;
506 }
507 
508 #ifdef CONFIG_FEC_MXC
set_clk_enet(enum enet_freq type)509 int set_clk_enet(enum enet_freq type)
510 {
511 	u32 target;
512 	u32 enet1_ref;
513 
514 	switch (type) {
515 	case ENET_125MHZ:
516 		enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_125M_CLK;
517 		break;
518 	case ENET_50MHZ:
519 		enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_50M_CLK;
520 		break;
521 	case ENET_25MHZ:
522 		enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK;
523 		break;
524 	default:
525 		return -EINVAL;
526 	}
527 
528 	/* disable the clock first */
529 	clock_enable(CCGR_ENET1, 0);
530 	clock_enable(CCGR_SIM_ENET, 0);
531 
532 	/* set enet axi clock 266Mhz */
533 	target = CLK_ROOT_ON | ENET_AXI_CLK_ROOT_FROM_SYS1_PLL_266M |
534 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
535 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
536 	clock_set_target_val(ENET_AXI_CLK_ROOT, target);
537 
538 	target = CLK_ROOT_ON | enet1_ref |
539 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
540 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
541 	clock_set_target_val(ENET_REF_CLK_ROOT, target);
542 
543 	target = CLK_ROOT_ON |
544 		ENET1_TIME_CLK_ROOT_FROM_PLL_ENET_MAIN_100M_CLK |
545 		CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
546 		CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
547 	clock_set_target_val(ENET_TIMER_CLK_ROOT, target);
548 
549 	/* enable clock */
550 	clock_enable(CCGR_SIM_ENET, 1);
551 	clock_enable(CCGR_ENET1, 1);
552 
553 	return 0;
554 }
555 #endif
556 
imx_get_fecclk(void)557 u32 imx_get_fecclk(void)
558 {
559 	return get_root_clk(ENET_AXI_CLK_ROOT);
560 }
561 
562 static struct dram_bypass_clk_setting imx8mq_dram_bypass_tbl[] = {
563 	DRAM_BYPASS_ROOT_CONFIG(MHZ(100), 2, CLK_ROOT_PRE_DIV1, 2,
564 				CLK_ROOT_PRE_DIV2),
565 	DRAM_BYPASS_ROOT_CONFIG(MHZ(250), 3, CLK_ROOT_PRE_DIV2, 2,
566 				CLK_ROOT_PRE_DIV2),
567 	DRAM_BYPASS_ROOT_CONFIG(MHZ(400), 1, CLK_ROOT_PRE_DIV2, 3,
568 				CLK_ROOT_PRE_DIV2),
569 };
570 
dram_enable_bypass(ulong clk_val)571 void dram_enable_bypass(ulong clk_val)
572 {
573 	int i;
574 	struct dram_bypass_clk_setting *config;
575 
576 	for (i = 0; i < ARRAY_SIZE(imx8mq_dram_bypass_tbl); i++) {
577 		if (clk_val == imx8mq_dram_bypass_tbl[i].clk)
578 			break;
579 	}
580 
581 	if (i == ARRAY_SIZE(imx8mq_dram_bypass_tbl)) {
582 		printf("No matched freq table %lu\n", clk_val);
583 		return;
584 	}
585 
586 	config = &imx8mq_dram_bypass_tbl[i];
587 
588 	clock_set_target_val(DRAM_ALT_CLK_ROOT, CLK_ROOT_ON |
589 			     CLK_ROOT_SOURCE_SEL(config->alt_root_sel) |
590 			     CLK_ROOT_PRE_DIV(config->alt_pre_div));
591 	clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON |
592 			     CLK_ROOT_SOURCE_SEL(config->apb_root_sel) |
593 			     CLK_ROOT_PRE_DIV(config->apb_pre_div));
594 	clock_set_target_val(DRAM_SEL_CFG, CLK_ROOT_ON |
595 			     CLK_ROOT_SOURCE_SEL(1));
596 }
597 
dram_disable_bypass(void)598 void dram_disable_bypass(void)
599 {
600 	clock_set_target_val(DRAM_SEL_CFG, CLK_ROOT_ON |
601 			     CLK_ROOT_SOURCE_SEL(0));
602 	clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON |
603 			     CLK_ROOT_SOURCE_SEL(4) |
604 			     CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV5));
605 }
606 
607 #ifdef CONFIG_SPL_BUILD
dram_pll_init(ulong pll_val)608 void dram_pll_init(ulong pll_val)
609 {
610 	u32 val;
611 	void __iomem *pll_control_reg = &ana_pll->dram_pll_cfg0;
612 	void __iomem *pll_cfg_reg2 = &ana_pll->dram_pll_cfg2;
613 
614 	/* Bypass */
615 	setbits_le32(pll_control_reg, SSCG_PLL_BYPASS1_MASK);
616 	setbits_le32(pll_control_reg, SSCG_PLL_BYPASS2_MASK);
617 
618 	switch (pll_val) {
619 	case MHZ(800):
620 		val = readl(pll_cfg_reg2);
621 		val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
622 			 SSCG_PLL_FEEDBACK_DIV_F2_MASK |
623 			 SSCG_PLL_FEEDBACK_DIV_F1_MASK |
624 			 SSCG_PLL_REF_DIVR2_MASK);
625 		val |= SSCG_PLL_OUTPUT_DIV_VAL(0);
626 		val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(11);
627 		val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(39);
628 		val |= SSCG_PLL_REF_DIVR2_VAL(29);
629 		writel(val, pll_cfg_reg2);
630 		break;
631 	case MHZ(600):
632 		val = readl(pll_cfg_reg2);
633 		val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
634 			 SSCG_PLL_FEEDBACK_DIV_F2_MASK |
635 			 SSCG_PLL_FEEDBACK_DIV_F1_MASK |
636 			 SSCG_PLL_REF_DIVR2_MASK);
637 		val |= SSCG_PLL_OUTPUT_DIV_VAL(1);
638 		val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(17);
639 		val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(39);
640 		val |= SSCG_PLL_REF_DIVR2_VAL(29);
641 		writel(val, pll_cfg_reg2);
642 		break;
643 	case MHZ(400):
644 		val = readl(pll_cfg_reg2);
645 		val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
646 			 SSCG_PLL_FEEDBACK_DIV_F2_MASK |
647 			 SSCG_PLL_FEEDBACK_DIV_F1_MASK |
648 			 SSCG_PLL_REF_DIVR2_MASK);
649 		val |= SSCG_PLL_OUTPUT_DIV_VAL(1);
650 		val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(11);
651 		val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(39);
652 		val |= SSCG_PLL_REF_DIVR2_VAL(29);
653 		writel(val, pll_cfg_reg2);
654 		break;
655 	case MHZ(167):
656 		val = readl(pll_cfg_reg2);
657 		val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
658 			 SSCG_PLL_FEEDBACK_DIV_F2_MASK |
659 			 SSCG_PLL_FEEDBACK_DIV_F1_MASK |
660 			 SSCG_PLL_REF_DIVR2_MASK);
661 		val |= SSCG_PLL_OUTPUT_DIV_VAL(3);
662 		val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(8);
663 		val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(45);
664 		val |= SSCG_PLL_REF_DIVR2_VAL(30);
665 		writel(val, pll_cfg_reg2);
666 		break;
667 	default:
668 		break;
669 	}
670 
671 	/* Clear power down bit */
672 	clrbits_le32(pll_control_reg, SSCG_PLL_PD_MASK);
673 	/* Eanble ARM_PLL/SYS_PLL  */
674 	setbits_le32(pll_control_reg, SSCG_PLL_DRAM_PLL_CLKE_MASK);
675 
676 	/* Clear bypass */
677 	clrbits_le32(pll_control_reg, SSCG_PLL_BYPASS1_MASK);
678 	__udelay(100);
679 	clrbits_le32(pll_control_reg, SSCG_PLL_BYPASS2_MASK);
680 	/* Wait lock */
681 	while (!(readl(pll_control_reg) & SSCG_PLL_LOCK_MASK))
682 		;
683 }
684 
frac_pll_init(u32 pll,enum frac_pll_out_val val)685 static int frac_pll_init(u32 pll, enum frac_pll_out_val val)
686 {
687 	void __iomem *pll_cfg0, __iomem *pll_cfg1;
688 	u32 val_cfg0, val_cfg1, divq;
689 	int ret;
690 
691 	switch (pll) {
692 	case ANATOP_ARM_PLL:
693 		pll_cfg0 = &ana_pll->arm_pll_cfg0;
694 		pll_cfg1 = &ana_pll->arm_pll_cfg1;
695 
696 		if (val == FRAC_PLL_OUT_1000M) {
697 			val_cfg1 = FRAC_PLL_INT_DIV_CTL_VAL(49);
698 			divq = 0;
699 		} else {
700 			val_cfg1 = FRAC_PLL_INT_DIV_CTL_VAL(79);
701 			divq = 1;
702 		}
703 		val_cfg0 = FRAC_PLL_CLKE_MASK | FRAC_PLL_REFCLK_SEL_OSC_25M |
704 			FRAC_PLL_LOCK_SEL_MASK | FRAC_PLL_NEWDIV_VAL_MASK |
705 			FRAC_PLL_REFCLK_DIV_VAL(4) |
706 			FRAC_PLL_OUTPUT_DIV_VAL(divq);
707 		break;
708 	default:
709 		return -EINVAL;
710 	}
711 
712 	/* bypass the clock */
713 	setbits_le32(pll_cfg0, FRAC_PLL_BYPASS_MASK);
714 	/* Set the value */
715 	writel(val_cfg1, pll_cfg1);
716 	writel(val_cfg0 | FRAC_PLL_BYPASS_MASK, pll_cfg0);
717 	val_cfg0 = readl(pll_cfg0);
718 	/* unbypass the clock */
719 	clrbits_le32(pll_cfg0, FRAC_PLL_BYPASS_MASK);
720 	ret = readl_poll_timeout(pll_cfg0, val_cfg0,
721 				 val_cfg0 & FRAC_PLL_LOCK_MASK, 1);
722 	if (ret)
723 		printf("%s timeout\n", __func__);
724 	clrbits_le32(pll_cfg0, FRAC_PLL_NEWDIV_VAL_MASK);
725 
726 	return 0;
727 }
728 
729 
clock_init(void)730 int clock_init(void)
731 {
732 	u32 grade;
733 
734 	clock_set_target_val(ARM_A53_CLK_ROOT, CLK_ROOT_ON |
735 			     CLK_ROOT_SOURCE_SEL(0));
736 
737 	/*
738 	 * 8MQ only supports two grades: consumer and industrial.
739 	 * We set ARM clock to 1Ghz for consumer, 800Mhz for industrial
740 	 */
741 	grade = get_cpu_temp_grade(NULL, NULL);
742 	if (!grade)
743 		frac_pll_init(ANATOP_ARM_PLL, FRAC_PLL_OUT_1000M);
744 	else
745 		frac_pll_init(ANATOP_ARM_PLL, FRAC_PLL_OUT_800M);
746 
747 	/* Bypass CCM A53 ROOT, Switch to ARM PLL -> MUX-> CPU */
748 	clock_set_target_val(CORE_SEL_CFG, CLK_ROOT_SOURCE_SEL(1));
749 
750 	/*
751 	 * According to ANAMIX SPEC
752 	 * sys pll1 fixed at 800MHz
753 	 * sys pll2 fixed at 1GHz
754 	 * Here we only enable the outputs.
755 	 */
756 	setbits_le32(&ana_pll->sys_pll1_cfg0, SSCG_PLL_CLKE_MASK |
757 		     SSCG_PLL_DIV2_CLKE_MASK | SSCG_PLL_DIV3_CLKE_MASK |
758 		     SSCG_PLL_DIV4_CLKE_MASK | SSCG_PLL_DIV5_CLKE_MASK |
759 		     SSCG_PLL_DIV6_CLKE_MASK | SSCG_PLL_DIV8_CLKE_MASK |
760 		     SSCG_PLL_DIV10_CLKE_MASK | SSCG_PLL_DIV20_CLKE_MASK);
761 
762 	setbits_le32(&ana_pll->sys_pll2_cfg0, SSCG_PLL_CLKE_MASK |
763 		     SSCG_PLL_DIV2_CLKE_MASK | SSCG_PLL_DIV3_CLKE_MASK |
764 		     SSCG_PLL_DIV4_CLKE_MASK | SSCG_PLL_DIV5_CLKE_MASK |
765 		     SSCG_PLL_DIV6_CLKE_MASK | SSCG_PLL_DIV8_CLKE_MASK |
766 		     SSCG_PLL_DIV10_CLKE_MASK | SSCG_PLL_DIV20_CLKE_MASK);
767 
768 	clock_set_target_val(NAND_USDHC_BUS_CLK_ROOT, CLK_ROOT_ON |
769 			     CLK_ROOT_SOURCE_SEL(1));
770 
771 	init_wdog_clk();
772 	clock_enable(CCGR_TSENSOR, 1);
773 	clock_enable(CCGR_OCOTP, 1);
774 
775 	/* config GIC ROOT to sys_pll2_200m */
776 	clock_enable(CCGR_GIC, 0);
777 	clock_set_target_val(GIC_CLK_ROOT,
778 			     CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(1));
779 	clock_enable(CCGR_GIC, 1);
780 
781 	return 0;
782 }
783 #endif
784 
785 /*
786  * Dump some clockes.
787  */
788 #ifndef CONFIG_SPL_BUILD
do_imx8m_showclocks(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])789 static int do_imx8m_showclocks(struct cmd_tbl *cmdtp, int flag, int argc,
790 			       char *const argv[])
791 {
792 	u32 freq;
793 
794 	freq = decode_frac_pll(ARM_PLL_CLK);
795 	printf("ARM_PLL    %8d MHz\n", freq / 1000000);
796 	freq = decode_sscg_pll(DRAM_PLL1_CLK);
797 	printf("DRAM_PLL    %8d MHz\n", freq / 1000000);
798 	freq = decode_sscg_pll(SYSTEM_PLL1_800M_CLK);
799 	printf("SYS_PLL1_800    %8d MHz\n", freq / 1000000);
800 	freq = decode_sscg_pll(SYSTEM_PLL1_400M_CLK);
801 	printf("SYS_PLL1_400    %8d MHz\n", freq / 1000000);
802 	freq = decode_sscg_pll(SYSTEM_PLL1_266M_CLK);
803 	printf("SYS_PLL1_266    %8d MHz\n", freq / 1000000);
804 	freq = decode_sscg_pll(SYSTEM_PLL1_200M_CLK);
805 	printf("SYS_PLL1_200    %8d MHz\n", freq / 1000000);
806 	freq = decode_sscg_pll(SYSTEM_PLL1_160M_CLK);
807 	printf("SYS_PLL1_160    %8d MHz\n", freq / 1000000);
808 	freq = decode_sscg_pll(SYSTEM_PLL1_133M_CLK);
809 	printf("SYS_PLL1_133    %8d MHz\n", freq / 1000000);
810 	freq = decode_sscg_pll(SYSTEM_PLL1_100M_CLK);
811 	printf("SYS_PLL1_100    %8d MHz\n", freq / 1000000);
812 	freq = decode_sscg_pll(SYSTEM_PLL1_80M_CLK);
813 	printf("SYS_PLL1_80    %8d MHz\n", freq / 1000000);
814 	freq = decode_sscg_pll(SYSTEM_PLL1_40M_CLK);
815 	printf("SYS_PLL1_40    %8d MHz\n", freq / 1000000);
816 	freq = decode_sscg_pll(SYSTEM_PLL2_1000M_CLK);
817 	printf("SYS_PLL2_1000    %8d MHz\n", freq / 1000000);
818 	freq = decode_sscg_pll(SYSTEM_PLL2_500M_CLK);
819 	printf("SYS_PLL2_500    %8d MHz\n", freq / 1000000);
820 	freq = decode_sscg_pll(SYSTEM_PLL2_333M_CLK);
821 	printf("SYS_PLL2_333    %8d MHz\n", freq / 1000000);
822 	freq = decode_sscg_pll(SYSTEM_PLL2_250M_CLK);
823 	printf("SYS_PLL2_250    %8d MHz\n", freq / 1000000);
824 	freq = decode_sscg_pll(SYSTEM_PLL2_200M_CLK);
825 	printf("SYS_PLL2_200    %8d MHz\n", freq / 1000000);
826 	freq = decode_sscg_pll(SYSTEM_PLL2_166M_CLK);
827 	printf("SYS_PLL2_166    %8d MHz\n", freq / 1000000);
828 	freq = decode_sscg_pll(SYSTEM_PLL2_125M_CLK);
829 	printf("SYS_PLL2_125    %8d MHz\n", freq / 1000000);
830 	freq = decode_sscg_pll(SYSTEM_PLL2_100M_CLK);
831 	printf("SYS_PLL2_100    %8d MHz\n", freq / 1000000);
832 	freq = decode_sscg_pll(SYSTEM_PLL2_50M_CLK);
833 	printf("SYS_PLL2_50    %8d MHz\n", freq / 1000000);
834 	freq = decode_sscg_pll(SYSTEM_PLL3_CLK);
835 	printf("SYS_PLL3       %8d MHz\n", freq / 1000000);
836 	freq = mxc_get_clock(UART1_CLK_ROOT);
837 	printf("UART1          %8d MHz\n", freq / 1000000);
838 	freq = mxc_get_clock(USDHC1_CLK_ROOT);
839 	printf("USDHC1         %8d MHz\n", freq / 1000000);
840 	freq = mxc_get_clock(QSPI_CLK_ROOT);
841 	printf("QSPI           %8d MHz\n", freq / 1000000);
842 	return 0;
843 }
844 
845 U_BOOT_CMD(
846 	clocks,	CONFIG_SYS_MAXARGS, 1, do_imx8m_showclocks,
847 	"display clocks",
848 	""
849 );
850 #endif
851