1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2014-2016 Stefan Roese <sr@denx.de>
4  */
5 
6 #include <common.h>
7 #include <ahci.h>
8 #include <cpu_func.h>
9 #include <init.h>
10 #include <linux/bitops.h>
11 #include <linux/delay.h>
12 #include <linux/mbus.h>
13 #include <asm/io.h>
14 #include <asm/pl310.h>
15 #include <asm/arch/cpu.h>
16 #include <asm/arch/soc.h>
17 #include <asm/spl.h>
18 #include <sdhci.h>
19 
20 #define DDR_BASE_CS_OFF(n)	(0x0000 + ((n) << 3))
21 #define DDR_SIZE_CS_OFF(n)	(0x0004 + ((n) << 3))
22 
23 static struct mbus_win windows[] = {
24 	/* SPI */
25 	{ MBUS_SPI_BASE, MBUS_SPI_SIZE,
26 	  CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_SPIFLASH },
27 
28 	/* NOR */
29 	{ MBUS_BOOTROM_BASE, MBUS_BOOTROM_SIZE,
30 	  CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_BOOTROM },
31 
32 #ifdef CONFIG_ARMADA_MSYS
33 	/* DFX */
34 	{ MBUS_DFX_BASE, MBUS_DFX_SIZE, CPU_TARGET_DFX, 0 },
35 #endif
36 };
37 
lowlevel_init(void)38 void lowlevel_init(void)
39 {
40 	/*
41 	 * Dummy implementation, we only need LOWLEVEL_INIT
42 	 * on Armada to configure CP15 in start.S / cpu_init_cp15()
43 	 */
44 }
45 
reset_cpu(void)46 void reset_cpu(void)
47 {
48 	struct mvebu_system_registers *reg =
49 		(struct mvebu_system_registers *)MVEBU_SYSTEM_REG_BASE;
50 
51 	writel(readl(&reg->rstoutn_mask) | 1, &reg->rstoutn_mask);
52 	writel(readl(&reg->sys_soft_rst) | 1, &reg->sys_soft_rst);
53 	while (1)
54 		;
55 }
56 
mvebu_soc_family(void)57 int mvebu_soc_family(void)
58 {
59 	u16 devid = (readl(MVEBU_REG_PCIE_DEVID) >> 16) & 0xffff;
60 
61 	switch (devid) {
62 	case SOC_MV78230_ID:
63 	case SOC_MV78260_ID:
64 	case SOC_MV78460_ID:
65 		return MVEBU_SOC_AXP;
66 
67 	case SOC_88F6720_ID:
68 		return MVEBU_SOC_A375;
69 
70 	case SOC_88F6810_ID:
71 	case SOC_88F6820_ID:
72 	case SOC_88F6828_ID:
73 		return MVEBU_SOC_A38X;
74 
75 	case SOC_98DX3236_ID:
76 	case SOC_98DX3336_ID:
77 	case SOC_98DX4251_ID:
78 		return MVEBU_SOC_MSYS;
79 	}
80 
81 	return MVEBU_SOC_UNKNOWN;
82 }
83 
get_boot_device(void)84 u32 get_boot_device(void)
85 {
86 	u32 val;
87 	u32 boot_device;
88 
89 	/*
90 	 * First check, if UART boot-mode is active. This can only
91 	 * be done, via the bootrom error register. Here the
92 	 * MSB marks if the UART mode is active.
93 	 */
94 	val = readl(CONFIG_BOOTROM_ERR_REG);
95 	boot_device = (val & BOOTROM_ERR_MODE_MASK) >> BOOTROM_ERR_MODE_OFFS;
96 	debug("BOOTROM_REG=0x%08x boot_device=0x%x\n", val, boot_device);
97 	if (boot_device == BOOTROM_ERR_MODE_UART)
98 		return BOOT_DEVICE_UART;
99 
100 #ifdef CONFIG_ARMADA_38X
101 	/*
102 	 * If the bootrom error code contains any other than zeros it's an
103 	 * error condition and the bootROM has fallen back to UART boot
104 	 */
105 	boot_device = (val & BOOTROM_ERR_CODE_MASK) >> BOOTROM_ERR_CODE_OFFS;
106 	if (boot_device)
107 		return BOOT_DEVICE_UART;
108 #endif
109 
110 	/*
111 	 * Now check the SAR register for the strapped boot-device
112 	 */
113 	val = readl(CONFIG_SAR_REG);	/* SAR - Sample At Reset */
114 	boot_device = (val & BOOT_DEV_SEL_MASK) >> BOOT_DEV_SEL_OFFS;
115 	debug("SAR_REG=0x%08x boot_device=0x%x\n", val, boot_device);
116 	switch (boot_device) {
117 #ifdef BOOT_FROM_NAND
118 	case BOOT_FROM_NAND:
119 		return BOOT_DEVICE_NAND;
120 #endif
121 #ifdef BOOT_FROM_MMC
122 	case BOOT_FROM_MMC:
123 	case BOOT_FROM_MMC_ALT:
124 		return BOOT_DEVICE_MMC1;
125 #endif
126 	case BOOT_FROM_UART:
127 #ifdef BOOT_FROM_UART_ALT
128 	case BOOT_FROM_UART_ALT:
129 #endif
130 		return BOOT_DEVICE_UART;
131 #ifdef BOOT_FROM_SATA
132 	case BOOT_FROM_SATA:
133 	case BOOT_FROM_SATA_ALT:
134 		return BOOT_DEVICE_SATA;
135 #endif
136 	case BOOT_FROM_SPI:
137 		return BOOT_DEVICE_SPI;
138 	default:
139 		return BOOT_DEVICE_BOOTROM;
140 	};
141 }
142 
143 #if defined(CONFIG_DISPLAY_CPUINFO)
144 
145 #if defined(CONFIG_ARMADA_375)
146 /* SAR frequency values for Armada 375 */
147 static const struct sar_freq_modes sar_freq_tab[] = {
148 	{  0,  0x0,  266,  133,  266 },
149 	{  1,  0x0,  333,  167,  167 },
150 	{  2,  0x0,  333,  167,  222 },
151 	{  3,  0x0,  333,  167,  333 },
152 	{  4,  0x0,  400,  200,  200 },
153 	{  5,  0x0,  400,  200,  267 },
154 	{  6,  0x0,  400,  200,  400 },
155 	{  7,  0x0,  500,  250,  250 },
156 	{  8,  0x0,  500,  250,  334 },
157 	{  9,  0x0,  500,  250,  500 },
158 	{ 10,  0x0,  533,  267,  267 },
159 	{ 11,  0x0,  533,  267,  356 },
160 	{ 12,  0x0,  533,  267,  533 },
161 	{ 13,  0x0,  600,  300,  300 },
162 	{ 14,  0x0,  600,  300,  400 },
163 	{ 15,  0x0,  600,  300,  600 },
164 	{ 16,  0x0,  666,  333,  333 },
165 	{ 17,  0x0,  666,  333,  444 },
166 	{ 18,  0x0,  666,  333,  666 },
167 	{ 19,  0x0,  800,  400,  267 },
168 	{ 20,  0x0,  800,  400,  400 },
169 	{ 21,  0x0,  800,  400,  534 },
170 	{ 22,  0x0,  900,  450,  300 },
171 	{ 23,  0x0,  900,  450,  450 },
172 	{ 24,  0x0,  900,  450,  600 },
173 	{ 25,  0x0, 1000,  500,  500 },
174 	{ 26,  0x0, 1000,  500,  667 },
175 	{ 27,  0x0, 1000,  333,  500 },
176 	{ 28,  0x0,  400,  400,  400 },
177 	{ 29,  0x0, 1100,  550,  550 },
178 	{ 0xff, 0xff,    0,   0,   0 }	/* 0xff marks end of array */
179 };
180 #elif defined(CONFIG_ARMADA_38X)
181 /* SAR frequency values for Armada 38x */
182 static const struct sar_freq_modes sar_freq_tab[] = {
183 	{  0x0,  0x0,  666,  333, 333 },
184 	{  0x2,  0x0,  800,  400, 400 },
185 	{  0x4,  0x0, 1066,  533, 533 },
186 	{  0x6,  0x0, 1200,  600, 600 },
187 	{  0x8,  0x0, 1332,  666, 666 },
188 	{  0xc,  0x0, 1600,  800, 800 },
189 	{ 0x10,  0x0, 1866,  933, 933 },
190 	{ 0x13,  0x0, 2000, 1000, 933 },
191 	{ 0xff, 0xff,    0,    0,   0 }	/* 0xff marks end of array */
192 };
193 #elif defined(CONFIG_ARMADA_MSYS)
194 static const struct sar_freq_modes sar_freq_tab[] = {
195 	{  0x0,	0x0,  400,  400, 400 },
196 	{  0x2, 0x0,  667,  333, 667 },
197 	{  0x3, 0x0,  800,  400, 800 },
198 	{  0x5, 0x0,  800,  400, 800 },
199 	{ 0xff, 0xff,    0,   0,   0 }	/* 0xff marks end of array */
200 };
201 #else
202 /* SAR frequency values for Armada XP */
203 static const struct sar_freq_modes sar_freq_tab[] = {
204 	{  0xa,  0x5,  800, 400, 400 },
205 	{  0x1,  0x5, 1066, 533, 533 },
206 	{  0x2,  0x5, 1200, 600, 600 },
207 	{  0x2,  0x9, 1200, 600, 400 },
208 	{  0x3,  0x5, 1333, 667, 667 },
209 	{  0x4,  0x5, 1500, 750, 750 },
210 	{  0x4,  0x9, 1500, 750, 500 },
211 	{  0xb,  0x9, 1600, 800, 533 },
212 	{  0xb,  0xa, 1600, 800, 640 },
213 	{  0xb,  0x5, 1600, 800, 800 },
214 	{ 0xff, 0xff,    0,   0,   0 }	/* 0xff marks end of array */
215 };
216 #endif
217 
get_sar_freq(struct sar_freq_modes * sar_freq)218 void get_sar_freq(struct sar_freq_modes *sar_freq)
219 {
220 	u32 val;
221 	u32 freq;
222 	int i;
223 
224 #if defined(CONFIG_ARMADA_375) || defined(CONFIG_ARMADA_MSYS)
225 	val = readl(CONFIG_SAR2_REG);	/* SAR - Sample At Reset */
226 #else
227 	val = readl(CONFIG_SAR_REG);	/* SAR - Sample At Reset */
228 #endif
229 	freq = (val & SAR_CPU_FREQ_MASK) >> SAR_CPU_FREQ_OFFS;
230 #if defined(SAR2_CPU_FREQ_MASK)
231 	/*
232 	 * Shift CPU0 clock frequency select bit from SAR2 register
233 	 * into correct position
234 	 */
235 	freq |= ((readl(CONFIG_SAR2_REG) & SAR2_CPU_FREQ_MASK)
236 		 >> SAR2_CPU_FREQ_OFFS) << 3;
237 #endif
238 	for (i = 0; sar_freq_tab[i].val != 0xff; i++) {
239 		if (sar_freq_tab[i].val == freq) {
240 #if defined(CONFIG_ARMADA_375) || defined(CONFIG_ARMADA_38X) || defined(CONFIG_ARMADA_MSYS)
241 			*sar_freq = sar_freq_tab[i];
242 			return;
243 #else
244 			int k;
245 			u8 ffc;
246 
247 			ffc = (val & SAR_FFC_FREQ_MASK) >>
248 				SAR_FFC_FREQ_OFFS;
249 			for (k = i; sar_freq_tab[k].ffc != 0xff; k++) {
250 				if (sar_freq_tab[k].ffc == ffc) {
251 					*sar_freq = sar_freq_tab[k];
252 					return;
253 				}
254 			}
255 			i = k;
256 #endif
257 		}
258 	}
259 
260 	/* SAR value not found, return 0 for frequencies */
261 	*sar_freq = sar_freq_tab[i - 1];
262 }
263 
print_cpuinfo(void)264 int print_cpuinfo(void)
265 {
266 	u16 devid = (readl(MVEBU_REG_PCIE_DEVID) >> 16) & 0xffff;
267 	u8 revid = readl(MVEBU_REG_PCIE_REVID) & 0xff;
268 	struct sar_freq_modes sar_freq;
269 
270 	puts("SoC:   ");
271 
272 	switch (devid) {
273 	case SOC_MV78230_ID:
274 		puts("MV78230-");
275 		break;
276 	case SOC_MV78260_ID:
277 		puts("MV78260-");
278 		break;
279 	case SOC_MV78460_ID:
280 		puts("MV78460-");
281 		break;
282 	case SOC_88F6720_ID:
283 		puts("MV88F6720-");
284 		break;
285 	case SOC_88F6810_ID:
286 		puts("MV88F6810-");
287 		break;
288 	case SOC_88F6820_ID:
289 		puts("MV88F6820-");
290 		break;
291 	case SOC_88F6828_ID:
292 		puts("MV88F6828-");
293 		break;
294 	case SOC_98DX3236_ID:
295 		puts("98DX3236-");
296 		break;
297 	case SOC_98DX3336_ID:
298 		puts("98DX3336-");
299 		break;
300 	case SOC_98DX4251_ID:
301 		puts("98DX4251-");
302 		break;
303 	default:
304 		puts("Unknown-");
305 		break;
306 	}
307 
308 	if (mvebu_soc_family() == MVEBU_SOC_AXP) {
309 		switch (revid) {
310 		case 1:
311 			puts("A0");
312 			break;
313 		case 2:
314 			puts("B0");
315 			break;
316 		default:
317 			printf("?? (%x)", revid);
318 			break;
319 		}
320 	}
321 
322 	if (mvebu_soc_family() == MVEBU_SOC_A375) {
323 		switch (revid) {
324 		case MV_88F67XX_A0_ID:
325 			puts("A0");
326 			break;
327 		default:
328 			printf("?? (%x)", revid);
329 			break;
330 		}
331 	}
332 
333 	if (mvebu_soc_family() == MVEBU_SOC_A38X) {
334 		switch (revid) {
335 		case MV_88F68XX_Z1_ID:
336 			puts("Z1");
337 			break;
338 		case MV_88F68XX_A0_ID:
339 			puts("A0");
340 			break;
341 		case MV_88F68XX_B0_ID:
342 			puts("B0");
343 			break;
344 		default:
345 			printf("?? (%x)", revid);
346 			break;
347 		}
348 	}
349 
350 	if (mvebu_soc_family() == MVEBU_SOC_MSYS) {
351 		switch (revid) {
352 		case 3:
353 			puts("A0");
354 			break;
355 		case 4:
356 			puts("A1");
357 			break;
358 		default:
359 			printf("?? (%x)", revid);
360 			break;
361 		}
362 	}
363 
364 	get_sar_freq(&sar_freq);
365 	printf(" at %d MHz\n", sar_freq.p_clk);
366 
367 	return 0;
368 }
369 #endif /* CONFIG_DISPLAY_CPUINFO */
370 
371 /*
372  * This function initialize Controller DRAM Fastpath windows.
373  * It takes the CS size information from the 0x1500 scratch registers
374  * and sets the correct windows sizes and base addresses accordingly.
375  *
376  * These values are set in the scratch registers by the Marvell
377  * DDR3 training code, which is executed by the SPL before the
378  * main payload (U-Boot) is executed.
379  */
update_sdram_window_sizes(void)380 static void update_sdram_window_sizes(void)
381 {
382 	u64 base = 0;
383 	u32 size, temp;
384 	int i;
385 
386 	for (i = 0; i < SDRAM_MAX_CS; i++) {
387 		size = readl((MVEBU_SDRAM_SCRATCH + (i * 8))) & SDRAM_ADDR_MASK;
388 		if (size != 0) {
389 			size |= ~(SDRAM_ADDR_MASK);
390 
391 			/* Set Base Address */
392 			temp = (base & 0xFF000000ll) | ((base >> 32) & 0xF);
393 			writel(temp, MVEBU_SDRAM_BASE + DDR_BASE_CS_OFF(i));
394 
395 			/*
396 			 * Check if out of max window size and resize
397 			 * the window
398 			 */
399 			temp = (readl(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i)) &
400 				~(SDRAM_ADDR_MASK)) | 1;
401 			temp |= (size & SDRAM_ADDR_MASK);
402 			writel(temp, MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i));
403 
404 			base += ((u64)size + 1);
405 		} else {
406 			/*
407 			 * Disable window if not used, otherwise this
408 			 * leads to overlapping enabled windows with
409 			 * pretty strange results
410 			 */
411 			clrbits_le32(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i), 1);
412 		}
413 	}
414 }
415 
mmu_disable(void)416 void mmu_disable(void)
417 {
418 	asm volatile(
419 		"mrc p15, 0, r0, c1, c0, 0\n"
420 		"bic r0, #1\n"
421 		"mcr p15, 0, r0, c1, c0, 0\n");
422 }
423 
424 #ifdef CONFIG_ARCH_CPU_INIT
set_cbar(u32 addr)425 static void set_cbar(u32 addr)
426 {
427 	asm("mcr p15, 4, %0, c15, c0" : : "r" (addr));
428 }
429 
430 #define MV_USB_PHY_BASE			(MVEBU_AXP_USB_BASE + 0x800)
431 #define MV_USB_PHY_PLL_REG(reg)		(MV_USB_PHY_BASE | (((reg) & 0xF) << 2))
432 #define MV_USB_X3_BASE(addr)		(MVEBU_AXP_USB_BASE | BIT(11) | \
433 					 (((addr) & 0xF) << 6))
434 #define MV_USB_X3_PHY_CHANNEL(dev, reg)	(MV_USB_X3_BASE((dev) + 1) |	\
435 					 (((reg) & 0xF) << 2))
436 
setup_usb_phys(void)437 static void setup_usb_phys(void)
438 {
439 	int dev;
440 
441 	/*
442 	 * USB PLL init
443 	 */
444 
445 	/* Setup PLL frequency */
446 	/* USB REF frequency = 25 MHz */
447 	clrsetbits_le32(MV_USB_PHY_PLL_REG(1), 0x3ff, 0x605);
448 
449 	/* Power up PLL and PHY channel */
450 	setbits_le32(MV_USB_PHY_PLL_REG(2), BIT(9));
451 
452 	/* Assert VCOCAL_START */
453 	setbits_le32(MV_USB_PHY_PLL_REG(1), BIT(21));
454 
455 	mdelay(1);
456 
457 	/*
458 	 * USB PHY init (change from defaults) specific for 40nm (78X30 78X60)
459 	 */
460 
461 	for (dev = 0; dev < 3; dev++) {
462 		setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 3), BIT(15));
463 
464 		/* Assert REG_RCAL_START in channel REG 1 */
465 		setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12));
466 		udelay(40);
467 		clrbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12));
468 	}
469 }
470 
471 /*
472  * This function is not called from the SPL U-Boot version
473  */
arch_cpu_init(void)474 int arch_cpu_init(void)
475 {
476 	struct pl310_regs *const pl310 =
477 		(struct pl310_regs *)CONFIG_SYS_PL310_BASE;
478 
479 	/*
480 	 * Only with disabled MMU its possible to switch the base
481 	 * register address on Armada 38x. Without this the SDRAM
482 	 * located at >= 0x4000.0000 is also not accessible, as its
483 	 * still locked to cache.
484 	 */
485 	mmu_disable();
486 
487 	/* Linux expects the internal registers to be at 0xf1000000 */
488 	writel(SOC_REGS_PHY_BASE, INTREG_BASE_ADDR_REG);
489 	set_cbar(SOC_REGS_PHY_BASE + 0xC000);
490 
491 	/*
492 	 * From this stage on, the SoC detection is working. As we have
493 	 * configured the internal register base to the value used
494 	 * in the macros / defines in the U-Boot header (soc.h).
495 	 */
496 
497 	if (mvebu_soc_family() == MVEBU_SOC_A38X) {
498 		/*
499 		 * To fully release / unlock this area from cache, we need
500 		 * to flush all caches and disable the L2 cache.
501 		 */
502 		icache_disable();
503 		dcache_disable();
504 		clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
505 	}
506 
507 	/*
508 	 * We need to call mvebu_mbus_probe() before calling
509 	 * update_sdram_window_sizes() as it disables all previously
510 	 * configured mbus windows and then configures them as
511 	 * required for U-Boot. Calling update_sdram_window_sizes()
512 	 * without this configuration will not work, as the internal
513 	 * registers can't be accessed reliably because of potenial
514 	 * double mapping.
515 	 * After updating the SDRAM access windows we need to call
516 	 * mvebu_mbus_probe() again, as this now correctly configures
517 	 * the SDRAM areas that are later used by the MVEBU drivers
518 	 * (e.g. USB, NETA).
519 	 */
520 
521 	/*
522 	 * First disable all windows
523 	 */
524 	mvebu_mbus_probe(NULL, 0);
525 
526 	if (mvebu_soc_family() == MVEBU_SOC_AXP) {
527 		/*
528 		 * Now the SDRAM access windows can be reconfigured using
529 		 * the information in the SDRAM scratch pad registers
530 		 */
531 		update_sdram_window_sizes();
532 	}
533 
534 	/*
535 	 * Finally the mbus windows can be configured with the
536 	 * updated SDRAM sizes
537 	 */
538 	mvebu_mbus_probe(windows, ARRAY_SIZE(windows));
539 
540 	if (mvebu_soc_family() == MVEBU_SOC_AXP) {
541 		/* Enable GBE0, GBE1, LCD and NFC PUP */
542 		clrsetbits_le32(ARMADA_XP_PUP_ENABLE, 0,
543 				GE0_PUP_EN | GE1_PUP_EN | LCD_PUP_EN |
544 				NAND_PUP_EN | SPI_PUP_EN);
545 
546 		/* Configure USB PLL and PHYs on AXP */
547 		setup_usb_phys();
548 	}
549 
550 	/* Enable NAND and NAND arbiter */
551 	clrsetbits_le32(MVEBU_SOC_DEV_MUX_REG, 0, NAND_EN | NAND_ARBITER_EN);
552 
553 	/* Disable MBUS error propagation */
554 	clrsetbits_le32(SOC_COHERENCY_FABRIC_CTRL_REG, MBUS_ERR_PROP_EN, 0);
555 
556 	return 0;
557 }
558 #endif /* CONFIG_ARCH_CPU_INIT */
559 
mvebu_get_nand_clock(void)560 u32 mvebu_get_nand_clock(void)
561 {
562 	u32 reg;
563 
564 	if (mvebu_soc_family() == MVEBU_SOC_A38X)
565 		reg = MVEBU_DFX_DIV_CLK_CTRL(1);
566 	else if (mvebu_soc_family() == MVEBU_SOC_MSYS)
567 		reg = MVEBU_DFX_DIV_CLK_CTRL(8);
568 	else
569 		reg = MVEBU_CORE_DIV_CLK_CTRL(1);
570 
571 	return CONFIG_SYS_MVEBU_PLL_CLOCK /
572 		((readl(reg) &
573 		  NAND_ECC_DIVCKL_RATIO_MASK) >> NAND_ECC_DIVCKL_RATIO_OFFS);
574 }
575 
576 /*
577  * SOC specific misc init
578  */
579 #if defined(CONFIG_ARCH_MISC_INIT)
arch_misc_init(void)580 int arch_misc_init(void)
581 {
582 	/* Nothing yet, perhaps we need something here later */
583 	return 0;
584 }
585 #endif /* CONFIG_ARCH_MISC_INIT */
586 
587 #if defined(CONFIG_MMC_SDHCI_MV) && !defined(CONFIG_DM_MMC)
board_mmc_init(struct bd_info * bis)588 int board_mmc_init(struct bd_info *bis)
589 {
590 	mv_sdh_init(MVEBU_SDIO_BASE, 0, 0,
591 		    SDHCI_QUIRK_32BIT_DMA_ADDR | SDHCI_QUIRK_WAIT_SEND_CMD);
592 
593 	return 0;
594 }
595 #endif
596 
597 #define AHCI_VENDOR_SPECIFIC_0_ADDR	0xa0
598 #define AHCI_VENDOR_SPECIFIC_0_DATA	0xa4
599 
600 #define AHCI_WINDOW_CTRL(win)		(0x60 + ((win) << 4))
601 #define AHCI_WINDOW_BASE(win)		(0x64 + ((win) << 4))
602 #define AHCI_WINDOW_SIZE(win)		(0x68 + ((win) << 4))
603 
ahci_mvebu_mbus_config(void __iomem * base)604 static void ahci_mvebu_mbus_config(void __iomem *base)
605 {
606 	const struct mbus_dram_target_info *dram;
607 	int i;
608 
609 	/* mbus is not initialized in SPL; keep the ROM settings */
610 	if (IS_ENABLED(CONFIG_SPL_BUILD))
611 		return;
612 
613 	dram = mvebu_mbus_dram_info();
614 
615 	for (i = 0; i < 4; i++) {
616 		writel(0, base + AHCI_WINDOW_CTRL(i));
617 		writel(0, base + AHCI_WINDOW_BASE(i));
618 		writel(0, base + AHCI_WINDOW_SIZE(i));
619 	}
620 
621 	for (i = 0; i < dram->num_cs; i++) {
622 		const struct mbus_dram_window *cs = dram->cs + i;
623 
624 		writel((cs->mbus_attr << 8) |
625 		       (dram->mbus_dram_target_id << 4) | 1,
626 		       base + AHCI_WINDOW_CTRL(i));
627 		writel(cs->base >> 16, base + AHCI_WINDOW_BASE(i));
628 		writel(((cs->size - 1) & 0xffff0000),
629 		       base + AHCI_WINDOW_SIZE(i));
630 	}
631 }
632 
ahci_mvebu_regret_option(void __iomem * base)633 static void ahci_mvebu_regret_option(void __iomem *base)
634 {
635 	/*
636 	 * Enable the regret bit to allow the SATA unit to regret a
637 	 * request that didn't receive an acknowlegde and avoid a
638 	 * deadlock
639 	 */
640 	writel(0x4, base + AHCI_VENDOR_SPECIFIC_0_ADDR);
641 	writel(0x80, base + AHCI_VENDOR_SPECIFIC_0_DATA);
642 }
643 
board_ahci_enable(void)644 int board_ahci_enable(void)
645 {
646 	ahci_mvebu_mbus_config((void __iomem *)MVEBU_SATA0_BASE);
647 	ahci_mvebu_regret_option((void __iomem *)MVEBU_SATA0_BASE);
648 
649 	return 0;
650 }
651 
652 #ifdef CONFIG_SCSI_AHCI_PLAT
scsi_init(void)653 void scsi_init(void)
654 {
655 	printf("MVEBU SATA INIT\n");
656 	board_ahci_enable();
657 	ahci_init((void __iomem *)MVEBU_SATA0_BASE);
658 }
659 #endif
660 
661 #ifdef CONFIG_USB_XHCI_MVEBU
662 #define USB3_MAX_WINDOWS        4
663 #define USB3_WIN_CTRL(w)        (0x0 + ((w) * 8))
664 #define USB3_WIN_BASE(w)        (0x4 + ((w) * 8))
665 
xhci_mvebu_mbus_config(void __iomem * base,const struct mbus_dram_target_info * dram)666 static void xhci_mvebu_mbus_config(void __iomem *base,
667 			const struct mbus_dram_target_info *dram)
668 {
669 	int i;
670 
671 	for (i = 0; i < USB3_MAX_WINDOWS; i++) {
672 		writel(0, base + USB3_WIN_CTRL(i));
673 		writel(0, base + USB3_WIN_BASE(i));
674 	}
675 
676 	for (i = 0; i < dram->num_cs; i++) {
677 		const struct mbus_dram_window *cs = dram->cs + i;
678 
679 		/* Write size, attributes and target id to control register */
680 		writel(((cs->size - 1) & 0xffff0000) | (cs->mbus_attr << 8) |
681 			(dram->mbus_dram_target_id << 4) | 1,
682 			base + USB3_WIN_CTRL(i));
683 
684 		/* Write base address to base register */
685 		writel((cs->base & 0xffff0000), base + USB3_WIN_BASE(i));
686 	}
687 }
688 
board_xhci_enable(fdt_addr_t base)689 int board_xhci_enable(fdt_addr_t base)
690 {
691 	const struct mbus_dram_target_info *dram;
692 
693 	printf("MVEBU XHCI INIT controller @ 0x%lx\n", base);
694 
695 	dram = mvebu_mbus_dram_info();
696 	xhci_mvebu_mbus_config((void __iomem *)base, dram);
697 
698 	return 0;
699 }
700 #endif
701 
enable_caches(void)702 void enable_caches(void)
703 {
704 	/* Avoid problem with e.g. neta ethernet driver */
705 	invalidate_dcache_all();
706 
707 	/*
708 	 * Armada 375 still has some problems with d-cache enabled in the
709 	 * ethernet driver (mvpp2). So lets keep the d-cache disabled
710 	 * until this is solved.
711 	 */
712 	if (mvebu_soc_family() != MVEBU_SOC_A375) {
713 		/* Enable D-cache. I-cache is already enabled in start.S */
714 		dcache_enable();
715 	}
716 }
717 
v7_outer_cache_enable(void)718 void v7_outer_cache_enable(void)
719 {
720 	if (mvebu_soc_family() == MVEBU_SOC_AXP) {
721 		struct pl310_regs *const pl310 =
722 			(struct pl310_regs *)CONFIG_SYS_PL310_BASE;
723 		u32 u;
724 
725 		/* The L2 cache is already disabled at this point */
726 
727 		/*
728 		 * For Aurora cache in no outer mode, enable via the CP15
729 		 * coprocessor broadcasting of cache commands to L2.
730 		 */
731 		asm volatile("mrc p15, 1, %0, c15, c2, 0" : "=r" (u));
732 		u |= BIT(8);		/* Set the FW bit */
733 		asm volatile("mcr p15, 1, %0, c15, c2, 0" : : "r" (u));
734 
735 		isb();
736 
737 		/* Enable the L2 cache */
738 		setbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
739 	}
740 }
741 
v7_outer_cache_disable(void)742 void v7_outer_cache_disable(void)
743 {
744 	struct pl310_regs *const pl310 =
745 		(struct pl310_regs *)CONFIG_SYS_PL310_BASE;
746 
747 	clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
748 }
749