1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * board.c
4  *
5  * (C) Copyright 2016
6  * Heiko Schocher, DENX Software Engineering, hs@denx.de.
7  *
8  * Based on:
9  * Board functions for TI AM335X based boards
10  *
11  * Copyright (C) 2011, Texas Instruments, Incorporated - http://www.ti.com/
12  */
13 
14 #include <common.h>
15 #include <bootstage.h>
16 #include <cpu_func.h>
17 #include <env.h>
18 #include <errno.h>
19 #include <init.h>
20 #include <irq_func.h>
21 #include <net.h>
22 #include <spl.h>
23 #include <asm/arch/cpu.h>
24 #include <asm/arch/hardware.h>
25 #include <asm/arch/omap.h>
26 #include <asm/arch/ddr_defs.h>
27 #include <asm/arch/clock.h>
28 #include <asm/arch/gpio.h>
29 #include <asm/arch/mmc_host_def.h>
30 #include <asm/arch/sys_proto.h>
31 #include <asm/arch/mem.h>
32 #include <asm/global_data.h>
33 #include <asm/io.h>
34 #include <asm/emif.h>
35 #include <asm/gpio.h>
36 #include <i2c.h>
37 #include <miiphy.h>
38 #include <cpsw.h>
39 #include <linux/delay.h>
40 #include <power/tps65217.h>
41 #include <env_internal.h>
42 #include <watchdog.h>
43 #include "mmc.h"
44 #include "board.h"
45 
46 DECLARE_GLOBAL_DATA_PTR;
47 
48 static struct shc_eeprom __section(".data") header;
49 static int shc_eeprom_valid;
50 
51 /*
52  * Read header information from EEPROM into global structure.
53  */
54 #define EEPROM_ADDR	0x50
read_eeprom(void)55 static int read_eeprom(void)
56 {
57 	/* Check if baseboard eeprom is available */
58 	if (i2c_probe(EEPROM_ADDR)) {
59 		puts("Could not probe the EEPROM; something fundamentally wrong on the I2C bus.\n");
60 		return -ENODEV;
61 	}
62 
63 	/* read the eeprom using i2c */
64 	if (i2c_read(EEPROM_ADDR, 0, 2, (uchar *)&header,
65 		     sizeof(header))) {
66 		puts("Could not read the EEPROM; something fundamentally wrong on the I2C bus.\n");
67 		return -EIO;
68 	}
69 
70 	if (header.magic != HDR_MAGIC) {
71 		printf("Incorrect magic number (0x%x) in EEPROM\n",
72 		       header.magic);
73 		return -EIO;
74 	}
75 
76 	shc_eeprom_valid = 1;
77 
78 	return 0;
79 }
80 
shc_request_gpio(void)81 static void shc_request_gpio(void)
82 {
83 	gpio_request(LED_PWR_BL_GPIO, "LED PWR BL");
84 	gpio_request(LED_PWR_RD_GPIO, "LED PWR RD");
85 	gpio_request(RESET_GPIO, "reset");
86 	gpio_request(WIFI_REGEN_GPIO, "WIFI REGEN");
87 	gpio_request(WIFI_RST_GPIO, "WIFI rst");
88 	gpio_request(ZIGBEE_RST_GPIO, "ZigBee rst");
89 	gpio_request(BIDCOS_RST_GPIO, "BIDCOS rst");
90 	gpio_request(ENOC_RST_GPIO, "ENOC rst");
91 #if defined CONFIG_B_SAMPLE
92 	gpio_request(LED_PWR_GN_GPIO, "LED PWR GN");
93 	gpio_request(LED_CONN_BL_GPIO, "LED CONN BL");
94 	gpio_request(LED_CONN_RD_GPIO, "LED CONN RD");
95 	gpio_request(LED_CONN_GN_GPIO, "LED CONN GN");
96 #else
97 	gpio_request(LED_LAN_BL_GPIO, "LED LAN BL");
98 	gpio_request(LED_LAN_RD_GPIO, "LED LAN RD");
99 	gpio_request(LED_CLOUD_BL_GPIO, "LED CLOUD BL");
100 	gpio_request(LED_CLOUD_RD_GPIO, "LED CLOUD RD");
101 	gpio_request(LED_PWM_GPIO, "LED PWM");
102 	gpio_request(Z_WAVE_RST_GPIO, "Z WAVE rst");
103 #endif
104 	gpio_request(BACK_BUTTON_GPIO, "Back button");
105 	gpio_request(FRONT_BUTTON_GPIO, "Front button");
106 }
107 
108 /*
109  * Function which forces all installed modules into running state for ICT
110  * testing. Called by SPL.
111  */
force_modules_running(void)112 static void __maybe_unused force_modules_running(void)
113 {
114 	/* Wi-Fi power regulator enable - high = enabled */
115 	gpio_direction_output(WIFI_REGEN_GPIO, 1);
116 	/*
117 	 * Wait for Wi-Fi power regulator to reach a stable voltage
118 	 * (soft-start time, max. 350 µs)
119 	 */
120 	__udelay(350);
121 
122 	/* Wi-Fi module reset - high = running */
123 	gpio_direction_output(WIFI_RST_GPIO, 1);
124 
125 	/* ZigBee reset - high = running */
126 	gpio_direction_output(ZIGBEE_RST_GPIO, 1);
127 
128 	/* BidCos reset - high = running */
129 	gpio_direction_output(BIDCOS_RST_GPIO, 1);
130 
131 #if !defined(CONFIG_B_SAMPLE)
132 	/* Z-Wave reset - high = running */
133 	gpio_direction_output(Z_WAVE_RST_GPIO, 1);
134 #endif
135 
136 	/* EnOcean reset - low = running */
137 	gpio_direction_output(ENOC_RST_GPIO, 0);
138 }
139 
140 /*
141  * Function which forces all installed modules into reset - to be released by
142  * the OS, called by SPL
143  */
force_modules_reset(void)144 static void __maybe_unused force_modules_reset(void)
145 {
146 	/* Wi-Fi module reset - low = reset */
147 	gpio_direction_output(WIFI_RST_GPIO, 0);
148 
149 	/* Wi-Fi power regulator enable - low = disabled */
150 	gpio_direction_output(WIFI_REGEN_GPIO, 0);
151 
152 	/* ZigBee reset - low = reset */
153 	gpio_direction_output(ZIGBEE_RST_GPIO, 0);
154 
155 	/* BidCos reset - low = reset */
156 	/*gpio_direction_output(BIDCOS_RST_GPIO, 0);*/
157 
158 #if !defined(CONFIG_B_SAMPLE)
159 	/* Z-Wave reset - low = reset */
160 	gpio_direction_output(Z_WAVE_RST_GPIO, 0);
161 #endif
162 
163 	/* EnOcean reset - high = reset*/
164 	gpio_direction_output(ENOC_RST_GPIO, 1);
165 }
166 
167 /*
168  * Function to set the LEDs in the state "Bootloader booting"
169  */
leds_set_booting(void)170 static void __maybe_unused leds_set_booting(void)
171 {
172 #if defined(CONFIG_B_SAMPLE)
173 
174 	/* Turn all red LEDs on */
175 	gpio_direction_output(LED_PWR_RD_GPIO, 1);
176 	gpio_direction_output(LED_CONN_RD_GPIO, 1);
177 
178 #else /* All other SHCs starting with B2-Sample */
179 	/* Set the PWM GPIO */
180 	gpio_direction_output(LED_PWM_GPIO, 1);
181 	/* Turn all red LEDs on */
182 	gpio_direction_output(LED_PWR_RD_GPIO, 1);
183 	gpio_direction_output(LED_LAN_RD_GPIO, 1);
184 	gpio_direction_output(LED_CLOUD_RD_GPIO, 1);
185 
186 #endif
187 }
188 
189 /*
190  * Function to set the LEDs in the state "Bootloader error"
191  */
leds_set_failure(int state)192 static void __maybe_unused leds_set_failure(int state)
193 {
194 #if defined(CONFIG_B_SAMPLE)
195 	/* Turn all blue and green LEDs off */
196 	gpio_set_value(LED_PWR_BL_GPIO, 0);
197 	gpio_set_value(LED_PWR_GN_GPIO, 0);
198 	gpio_set_value(LED_CONN_BL_GPIO, 0);
199 	gpio_set_value(LED_CONN_GN_GPIO, 0);
200 
201 	/* Turn all red LEDs to 'state' */
202 	gpio_set_value(LED_PWR_RD_GPIO, state);
203 	gpio_set_value(LED_CONN_RD_GPIO, state);
204 
205 #else /* All other SHCs starting with B2-Sample */
206 	/* Set the PWM GPIO */
207 	gpio_direction_output(LED_PWM_GPIO, 1);
208 
209 	/* Turn all blue LEDs off */
210 	gpio_set_value(LED_PWR_BL_GPIO, 0);
211 	gpio_set_value(LED_LAN_BL_GPIO, 0);
212 	gpio_set_value(LED_CLOUD_BL_GPIO, 0);
213 
214 	/* Turn all red LEDs to 'state' */
215 	gpio_set_value(LED_PWR_RD_GPIO, state);
216 	gpio_set_value(LED_LAN_RD_GPIO, state);
217 	gpio_set_value(LED_CLOUD_RD_GPIO, state);
218 #endif
219 }
220 
221 /*
222  * Function to set the LEDs in the state "Bootloader finished"
223  */
leds_set_finish(void)224 static void leds_set_finish(void)
225 {
226 #if defined(CONFIG_B_SAMPLE)
227 	/* Turn all LEDs off */
228 	gpio_set_value(LED_PWR_BL_GPIO, 0);
229 	gpio_set_value(LED_PWR_RD_GPIO, 0);
230 	gpio_set_value(LED_PWR_GN_GPIO, 0);
231 	gpio_set_value(LED_CONN_BL_GPIO, 0);
232 	gpio_set_value(LED_CONN_RD_GPIO, 0);
233 	gpio_set_value(LED_CONN_GN_GPIO, 0);
234 #else /* All other SHCs starting with B2-Sample */
235 	/* Turn all LEDs off */
236 	gpio_set_value(LED_PWR_BL_GPIO, 0);
237 	gpio_set_value(LED_PWR_RD_GPIO, 0);
238 	gpio_set_value(LED_LAN_BL_GPIO, 0);
239 	gpio_set_value(LED_LAN_RD_GPIO, 0);
240 	gpio_set_value(LED_CLOUD_BL_GPIO, 0);
241 	gpio_set_value(LED_CLOUD_RD_GPIO, 0);
242 
243 	/* Turn off the PWM GPIO and mux it to EHRPWM */
244 	gpio_set_value(LED_PWM_GPIO, 0);
245 	enable_shc_board_pwm_pin_mux();
246 #endif
247 }
248 
check_button_status(void)249 static void check_button_status(void)
250 {
251 	ulong value;
252 	gpio_direction_input(FRONT_BUTTON_GPIO);
253 	value = gpio_get_value(FRONT_BUTTON_GPIO);
254 
255 	if (value == 0) {
256 		printf("front button activated !\n");
257 		env_set("harakiri", "1");
258 	}
259 }
260 
261 #if defined(CONFIG_SPL_BUILD)
262 #ifdef CONFIG_SPL_OS_BOOT
spl_start_uboot(void)263 int spl_start_uboot(void)
264 {
265 	return 1;
266 }
267 #endif
268 
shc_board_early_init(void)269 static void shc_board_early_init(void)
270 {
271 	shc_request_gpio();
272 # ifdef CONFIG_SHC_ICT
273 	/* Force all modules into enabled state for ICT testing */
274 	force_modules_running();
275 # else
276 	/* Force all modules to enter Reset state until released by the OS */
277 	force_modules_reset();
278 # endif
279 	leds_set_booting();
280 }
281 
282 static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE;
283 
284 #define MPU_SPREADING_PERMILLE 18 /* Spread 1.8 percent */
285 #define OSC	(V_OSCK/1000000)
286 /* Bosch: Predivider must be fixed to 4, so N = 4-1 */
287 #define MPUPLL_N        (4-1)
288 /* Bosch: Fref = 24 MHz / (N+1) = 24 MHz / 4 = 6 MHz */
289 #define MPUPLL_FREF (OSC / (MPUPLL_N + 1))
290 
291 const struct dpll_params dpll_ddr_shc = {
292 		400, OSC-1, 1, -1, -1, -1, -1};
293 
get_dpll_ddr_params(void)294 const struct dpll_params *get_dpll_ddr_params(void)
295 {
296 	return &dpll_ddr_shc;
297 }
298 
299 /*
300  * As we enabled downspread SSC with 1.8%, the values needed to be corrected
301  * such that the 20% overshoot will not lead to too high frequencies.
302  * In all cases, this is achieved by subtracting one from M (6 MHz less).
303  * Example: 600 MHz CPU
304  *   Step size: 24 MHz OSC, N = 4 (fix) --> Fref = 6 MHz
305  *   600 MHz - 6 MHz (1x Fref) = 594 MHz
306  *   SSC: 594 MHz * 1.8% = 10.7 MHz SSC
307  *   Overshoot: 10.7 MHz * 20 % = 2.2 MHz
308  *   --> Fmax = 594 MHz + 2.2 MHz = 596.2 MHz, lower than 600 MHz --> OK!
309  */
310 const struct dpll_params dpll_mpu_shc_opp100 = {
311 		99, MPUPLL_N, 1, -1, -1, -1, -1};
312 
am33xx_spl_board_init(void)313 void am33xx_spl_board_init(void)
314 {
315 	int sil_rev;
316 	int mpu_vdd;
317 
318 	puts(BOARD_ID_STR);
319 
320 	/*
321 	 * Set CORE Frequency to OPP100
322 	 * Hint: DCDC3 (CORE) defaults to 1.100V (for OPP100)
323 	 */
324 	do_setup_dpll(&dpll_core_regs, &dpll_core_opp100);
325 
326 	sil_rev = readl(&cdev->deviceid) >> 28;
327 	if (sil_rev < 2) {
328 		puts("We do not support Silicon Revisions below 2.0!\n");
329 		return;
330 	}
331 
332 	dpll_mpu_opp100.m = am335x_get_efuse_mpu_max_freq(cdev);
333 	if (i2c_probe(TPS65217_CHIP_PM))
334 		return;
335 
336 	/*
337 	 * Retrieve the CPU max frequency by reading the efuse
338 	 * SHC-Default: 600 MHz
339 	 */
340 	switch (dpll_mpu_opp100.m) {
341 	case MPUPLL_M_1000:
342 		mpu_vdd = TPS65217_DCDC_VOLT_SEL_1325MV;
343 		break;
344 	case MPUPLL_M_800:
345 		mpu_vdd = TPS65217_DCDC_VOLT_SEL_1275MV;
346 		break;
347 	case MPUPLL_M_720:
348 		mpu_vdd = TPS65217_DCDC_VOLT_SEL_1200MV;
349 		break;
350 	case MPUPLL_M_600:
351 		mpu_vdd = TPS65217_DCDC_VOLT_SEL_1100MV;
352 		break;
353 	case MPUPLL_M_300:
354 		mpu_vdd = TPS65217_DCDC_VOLT_SEL_950MV;
355 		break;
356 	default:
357 		puts("Cannot determine the frequency, failing!\n");
358 		return;
359 	}
360 
361 	if (tps65217_voltage_update(TPS65217_DEFDCDC2, mpu_vdd)) {
362 		puts("tps65217_voltage_update failure\n");
363 		return;
364 	}
365 
366 	/* Set MPU Frequency to what we detected */
367 	printf("MPU reference clock runs at %d MHz\n", MPUPLL_FREF);
368 	printf("Setting MPU clock to %d MHz\n", MPUPLL_FREF *
369 	       dpll_mpu_shc_opp100.m);
370 	do_setup_dpll(&dpll_mpu_regs, &dpll_mpu_shc_opp100);
371 
372 	/* Enable Spread Spectrum for this freq to be clean on EMI side */
373 	set_mpu_spreadspectrum(MPU_SPREADING_PERMILLE);
374 
375 	/*
376 	 * Using the default voltages for the PMIC (TPS65217D)
377 	 * LS1 = 1.8V (VDD_1V8)
378 	 * LS2 = 3.3V (VDD_3V3A)
379 	 * LDO1 = 1.8V (VIO and VRTC)
380 	 * LDO2 = 3.3V (VDD_3V3AUX)
381 	 */
382 	shc_board_early_init();
383 }
384 
set_uart_mux_conf(void)385 void set_uart_mux_conf(void)
386 {
387 	enable_uart0_pin_mux();
388 }
389 
set_mux_conf_regs(void)390 void set_mux_conf_regs(void)
391 {
392 	enable_shc_board_pin_mux();
393 }
394 
395 const struct ctrl_ioregs ioregs_evmsk = {
396 	.cm0ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
397 	.cm1ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
398 	.cm2ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
399 	.dt0ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
400 	.dt1ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
401 };
402 
403 static const struct ddr_data ddr3_shc_data = {
404 	.datardsratio0 = MT41K256M16HA125E_RD_DQS,
405 	.datawdsratio0 = MT41K256M16HA125E_WR_DQS,
406 	.datafwsratio0 = MT41K256M16HA125E_PHY_FIFO_WE,
407 	.datawrsratio0 = MT41K256M16HA125E_PHY_WR_DATA,
408 };
409 
410 static const struct cmd_control ddr3_shc_cmd_ctrl_data = {
411 	.cmd0csratio = MT41K256M16HA125E_RATIO,
412 	.cmd0iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
413 
414 	.cmd1csratio = MT41K256M16HA125E_RATIO,
415 	.cmd1iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
416 
417 	.cmd2csratio = MT41K256M16HA125E_RATIO,
418 	.cmd2iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
419 };
420 
421 static struct emif_regs ddr3_shc_emif_reg_data = {
422 	.sdram_config = MT41K256M16HA125E_EMIF_SDCFG,
423 	.ref_ctrl = MT41K256M16HA125E_EMIF_SDREF,
424 	.sdram_tim1 = MT41K256M16HA125E_EMIF_TIM1,
425 	.sdram_tim2 = MT41K256M16HA125E_EMIF_TIM2,
426 	.sdram_tim3 = MT41K256M16HA125E_EMIF_TIM3,
427 	.zq_config = MT41K256M16HA125E_ZQ_CFG,
428 	.emif_ddr_phy_ctlr_1 = MT41K256M16HA125E_EMIF_READ_LATENCY |
429 				PHY_EN_DYN_PWRDN,
430 };
431 
sdram_init(void)432 void sdram_init(void)
433 {
434 	/* Configure the DDR3 RAM */
435 	config_ddr(400, &ioregs_evmsk, &ddr3_shc_data,
436 		   &ddr3_shc_cmd_ctrl_data, &ddr3_shc_emif_reg_data, 0);
437 }
438 #endif
439 
440 /*
441  * Basic board specific setup.  Pinmux has been handled already.
442  */
board_init(void)443 int board_init(void)
444 {
445 #if defined(CONFIG_HW_WATCHDOG)
446 	hw_watchdog_init();
447 #endif
448 	i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
449 	if (read_eeprom() < 0)
450 		puts("EEPROM Content Invalid.\n");
451 
452 	gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100;
453 #if defined(CONFIG_NOR) || defined(CONFIG_MTD_RAW_NAND)
454 	gpmc_init();
455 #endif
456 	shc_request_gpio();
457 
458 	return 0;
459 }
460 
461 #ifdef CONFIG_BOARD_LATE_INIT
board_late_init(void)462 int board_late_init(void)
463 {
464 	check_button_status();
465 #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
466 	if (shc_eeprom_valid)
467 		if (is_valid_ethaddr(header.mac_addr))
468 			eth_env_set_enetaddr("ethaddr", header.mac_addr);
469 #endif
470 
471 	return 0;
472 }
473 #endif
474 
475 #if defined(CONFIG_USB_ETHER) && \
476 	(!defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_USB_ETHER))
board_eth_init(struct bd_info * bis)477 int board_eth_init(struct bd_info *bis)
478 {
479 	return usb_eth_initialize(bis);
480 }
481 #endif
482 
483 #if CONFIG_IS_ENABLED(BOOTSTAGE)
bosch_check_reset_pin(void)484 static void bosch_check_reset_pin(void)
485 {
486 	if (readl(GPIO1_BASE + OMAP_GPIO_IRQSTATUS_SET_0) & RESET_MASK) {
487 		printf("Resetting ...\n");
488 		writel(RESET_MASK, GPIO1_BASE + OMAP_GPIO_IRQSTATUS_SET_0);
489 		disable_interrupts();
490 		reset_cpu();
491 		/*NOTREACHED*/
492 	}
493 }
494 
hang_bosch(const char * cause,int code)495 static void hang_bosch(const char *cause, int code)
496 {
497 	int lv;
498 
499 	gpio_direction_input(RESET_GPIO);
500 
501 	/* Enable reset pin interrupt on falling edge */
502 	writel(RESET_MASK, GPIO1_BASE + OMAP_GPIO_IRQSTATUS_SET_0);
503 	writel(RESET_MASK, GPIO1_BASE + OMAP_GPIO_FALLINGDETECT);
504 	enable_interrupts();
505 
506 	puts(cause);
507 	for (;;) {
508 		for (lv = 0; lv < code; lv++) {
509 			bosch_check_reset_pin();
510 			leds_set_failure(1);
511 			__udelay(150 * 1000);
512 			leds_set_failure(0);
513 			__udelay(150 * 1000);
514 		}
515 #if defined(BLINK_CODE)
516 		__udelay(300 * 1000);
517 #endif
518 	}
519 }
520 
show_boot_progress(int val)521 void show_boot_progress(int val)
522 {
523 	switch (val) {
524 	case BOOTSTAGE_ID_NEED_RESET:
525 		hang_bosch("need reset", 4);
526 		break;
527 	}
528 }
529 #endif
530 
arch_preboot_os(void)531 void arch_preboot_os(void)
532 {
533 	leds_set_finish();
534 }
535