1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2009
4  * Sergey Kubushyn, himself, ksi@koi8.net
5  *
6  * Changes for unified multibus/multiadapter I2C support.
7  *
8  * (C) Copyright 2001
9  * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
10  */
11 
12 /*
13  * I2C Functions similar to the standard memory functions.
14  *
15  * There are several parameters in many of the commands that bear further
16  * explanations:
17  *
18  * {i2c_chip} is the I2C chip address (the first byte sent on the bus).
19  *   Each I2C chip on the bus has a unique address.  On the I2C data bus,
20  *   the address is the upper seven bits and the LSB is the "read/write"
21  *   bit.  Note that the {i2c_chip} address specified on the command
22  *   line is not shifted up: e.g. a typical EEPROM memory chip may have
23  *   an I2C address of 0x50, but the data put on the bus will be 0xA0
24  *   for write and 0xA1 for read.  This "non shifted" address notation
25  *   matches at least half of the data sheets :-/.
26  *
27  * {addr} is the address (or offset) within the chip.  Small memory
28  *   chips have 8 bit addresses.  Large memory chips have 16 bit
29  *   addresses.  Other memory chips have 9, 10, or 11 bit addresses.
30  *   Many non-memory chips have multiple registers and {addr} is used
31  *   as the register index.  Some non-memory chips have only one register
32  *   and therefore don't need any {addr} parameter.
33  *
34  *   The default {addr} parameter is one byte (.1) which works well for
35  *   memories and registers with 8 bits of address space.
36  *
37  *   You can specify the length of the {addr} field with the optional .0,
38  *   .1, or .2 modifier (similar to the .b, .w, .l modifier).  If you are
39  *   manipulating a single register device which doesn't use an address
40  *   field, use "0.0" for the address and the ".0" length field will
41  *   suppress the address in the I2C data stream.  This also works for
42  *   successive reads using the I2C auto-incrementing memory pointer.
43  *
44  *   If you are manipulating a large memory with 2-byte addresses, use
45  *   the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
46  *
47  *   Then there are the unfortunate memory chips that spill the most
48  *   significant 1, 2, or 3 bits of address into the chip address byte.
49  *   This effectively makes one chip (logically) look like 2, 4, or
50  *   8 chips.  This is handled (awkwardly) by #defining
51  *   CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
52  *   {addr} field (since .1 is the default, it doesn't actually have to
53  *   be specified).  Examples: given a memory chip at I2C chip address
54  *   0x50, the following would happen...
55  *     i2c md 50 0 10   display 16 bytes starting at 0x000
56  *                      On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
57  *     i2c md 50 100 10 display 16 bytes starting at 0x100
58  *                      On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
59  *     i2c md 50 210 10 display 16 bytes starting at 0x210
60  *                      On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
61  *   This is awfully ugly.  It would be nice if someone would think up
62  *   a better way of handling this.
63  *
64  * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
65  */
66 
67 #include <common.h>
68 #include <bootretry.h>
69 #include <cli.h>
70 #include <command.h>
71 #include <console.h>
72 #include <dm.h>
73 #include <edid.h>
74 #include <errno.h>
75 #include <i2c.h>
76 #include <log.h>
77 #include <malloc.h>
78 #include <asm/byteorder.h>
79 #include <linux/compiler.h>
80 #include <linux/delay.h>
81 #include <u-boot/crc.h>
82 
83 /* Display values from last command.
84  * Memory modify remembered values are different from display memory.
85  */
86 static uint	i2c_dp_last_chip;
87 static uint	i2c_dp_last_addr;
88 static uint	i2c_dp_last_alen;
89 static uint	i2c_dp_last_length = 0x10;
90 
91 static uint	i2c_mm_last_chip;
92 static uint	i2c_mm_last_addr;
93 static uint	i2c_mm_last_alen;
94 
95 /* If only one I2C bus is present, the list of devices to ignore when
96  * the probe command is issued is represented by a 1D array of addresses.
97  * When multiple buses are present, the list is an array of bus-address
98  * pairs.  The following macros take care of this */
99 
100 #if defined(CONFIG_SYS_I2C_NOPROBES)
101 #if CONFIG_IS_ENABLED(SYS_I2C_LEGACY) || defined(CONFIG_I2C_MULTI_BUS)
102 static struct
103 {
104 	uchar	bus;
105 	uchar	addr;
106 } i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
107 #define GET_BUS_NUM	i2c_get_bus_num()
108 #define COMPARE_BUS(b,i)	(i2c_no_probes[(i)].bus == (b))
109 #define COMPARE_ADDR(a,i)	(i2c_no_probes[(i)].addr == (a))
110 #define NO_PROBE_ADDR(i)	i2c_no_probes[(i)].addr
111 #else		/* single bus */
112 static uchar i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
113 #define GET_BUS_NUM	0
114 #define COMPARE_BUS(b,i)	((b) == 0)	/* Make compiler happy */
115 #define COMPARE_ADDR(a,i)	(i2c_no_probes[(i)] == (a))
116 #define NO_PROBE_ADDR(i)	i2c_no_probes[(i)]
117 #endif	/* CONFIG_IS_ENABLED(SYS_I2C_LEGACY) */
118 #endif
119 
120 #define DISP_LINE_LEN	16
121 
122 /*
123  * Default for driver model is to use the chip's existing address length.
124  * For legacy code, this is not stored, so we need to use a suitable
125  * default.
126  */
127 #if CONFIG_IS_ENABLED(DM_I2C)
128 #define DEFAULT_ADDR_LEN	(-1)
129 #else
130 #define DEFAULT_ADDR_LEN	1
131 #endif
132 
133 #if CONFIG_IS_ENABLED(DM_I2C)
134 static struct udevice *i2c_cur_bus;
135 
cmd_i2c_set_bus_num(unsigned int busnum)136 static int cmd_i2c_set_bus_num(unsigned int busnum)
137 {
138 	struct udevice *bus;
139 	int ret;
140 
141 	ret = uclass_get_device_by_seq(UCLASS_I2C, busnum, &bus);
142 	if (ret) {
143 		debug("%s: No bus %d\n", __func__, busnum);
144 		return ret;
145 	}
146 	i2c_cur_bus = bus;
147 
148 	return 0;
149 }
150 
i2c_get_cur_bus(struct udevice ** busp)151 static int i2c_get_cur_bus(struct udevice **busp)
152 {
153 #ifdef CONFIG_I2C_SET_DEFAULT_BUS_NUM
154 	if (!i2c_cur_bus) {
155 		if (cmd_i2c_set_bus_num(CONFIG_I2C_DEFAULT_BUS_NUMBER)) {
156 			printf("Default I2C bus %d not found\n",
157 			       CONFIG_I2C_DEFAULT_BUS_NUMBER);
158 			return -ENODEV;
159 		}
160 	}
161 #endif
162 
163 	if (!i2c_cur_bus) {
164 		puts("No I2C bus selected\n");
165 		return -ENODEV;
166 	}
167 	*busp = i2c_cur_bus;
168 
169 	return 0;
170 }
171 
i2c_get_cur_bus_chip(uint chip_addr,struct udevice ** devp)172 static int i2c_get_cur_bus_chip(uint chip_addr, struct udevice **devp)
173 {
174 	struct udevice *bus;
175 	int ret;
176 
177 	ret = i2c_get_cur_bus(&bus);
178 	if (ret)
179 		return ret;
180 
181 	return i2c_get_chip(bus, chip_addr, 1, devp);
182 }
183 
184 #endif
185 
186 /**
187  * i2c_init_board() - Board-specific I2C bus init
188  *
189  * This function is the default no-op implementation of I2C bus
190  * initialization. This function can be overridden by board-specific
191  * implementation if needed.
192  */
193 __weak
i2c_init_board(void)194 void i2c_init_board(void)
195 {
196 }
197 
198 /**
199  * get_alen() - Small parser helper function to get address length
200  *
201  * Returns the address length.
202  */
get_alen(char * arg,int default_len)203 static uint get_alen(char *arg, int default_len)
204 {
205 	int	j;
206 	int	alen;
207 
208 	alen = default_len;
209 	for (j = 0; j < 8; j++) {
210 		if (arg[j] == '.') {
211 			alen = arg[j+1] - '0';
212 			break;
213 		} else if (arg[j] == '\0')
214 			break;
215 	}
216 	return alen;
217 }
218 
219 enum i2c_err_op {
220 	I2C_ERR_READ,
221 	I2C_ERR_WRITE,
222 };
223 
i2c_report_err(int ret,enum i2c_err_op op)224 static int i2c_report_err(int ret, enum i2c_err_op op)
225 {
226 	printf("Error %s the chip: %d\n",
227 	       op == I2C_ERR_READ ? "reading" : "writing", ret);
228 
229 	return CMD_RET_FAILURE;
230 }
231 
232 /**
233  * do_i2c_read() - Handle the "i2c read" command-line command
234  * @cmdtp:	Command data struct pointer
235  * @flag:	Command flag
236  * @argc:	Command-line argument count
237  * @argv:	Array of command-line arguments
238  *
239  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
240  * on error.
241  *
242  * Syntax:
243  *	i2c read {i2c_chip} {devaddr}{.0, .1, .2} {len} {memaddr}
244  */
do_i2c_read(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])245 static int do_i2c_read(struct cmd_tbl *cmdtp, int flag, int argc,
246 		       char *const argv[])
247 {
248 	uint	chip;
249 	uint	devaddr, length;
250 	int alen;
251 	u_char  *memaddr;
252 	int ret;
253 #if CONFIG_IS_ENABLED(DM_I2C)
254 	struct udevice *dev;
255 #endif
256 
257 	if (argc != 5)
258 		return CMD_RET_USAGE;
259 
260 	/*
261 	 * I2C chip address
262 	 */
263 	chip = hextoul(argv[1], NULL);
264 
265 	/*
266 	 * I2C data address within the chip.  This can be 1 or
267 	 * 2 bytes long.  Some day it might be 3 bytes long :-).
268 	 */
269 	devaddr = hextoul(argv[2], NULL);
270 	alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
271 	if (alen > 3)
272 		return CMD_RET_USAGE;
273 
274 	/*
275 	 * Length is the number of objects, not number of bytes.
276 	 */
277 	length = hextoul(argv[3], NULL);
278 
279 	/*
280 	 * memaddr is the address where to store things in memory
281 	 */
282 	memaddr = (u_char *)hextoul(argv[4], NULL);
283 
284 #if CONFIG_IS_ENABLED(DM_I2C)
285 	ret = i2c_get_cur_bus_chip(chip, &dev);
286 	if (!ret && alen != -1)
287 		ret = i2c_set_chip_offset_len(dev, alen);
288 	if (!ret)
289 		ret = dm_i2c_read(dev, devaddr, memaddr, length);
290 #else
291 	ret = i2c_read(chip, devaddr, alen, memaddr, length);
292 #endif
293 	if (ret)
294 		return i2c_report_err(ret, I2C_ERR_READ);
295 
296 	return 0;
297 }
298 
do_i2c_write(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])299 static int do_i2c_write(struct cmd_tbl *cmdtp, int flag, int argc,
300 			char *const argv[])
301 {
302 	uint	chip;
303 	uint	devaddr, length;
304 	int alen;
305 	u_char  *memaddr;
306 	int ret;
307 #if CONFIG_IS_ENABLED(DM_I2C)
308 	struct udevice *dev;
309 	struct dm_i2c_chip *i2c_chip;
310 #endif
311 
312 	if ((argc < 5) || (argc > 6))
313 		return cmd_usage(cmdtp);
314 
315 	/*
316 	 * memaddr is the address where to store things in memory
317 	 */
318 	memaddr = (u_char *)hextoul(argv[1], NULL);
319 
320 	/*
321 	 * I2C chip address
322 	 */
323 	chip = hextoul(argv[2], NULL);
324 
325 	/*
326 	 * I2C data address within the chip.  This can be 1 or
327 	 * 2 bytes long.  Some day it might be 3 bytes long :-).
328 	 */
329 	devaddr = hextoul(argv[3], NULL);
330 	alen = get_alen(argv[3], DEFAULT_ADDR_LEN);
331 	if (alen > 3)
332 		return cmd_usage(cmdtp);
333 
334 	/*
335 	 * Length is the number of bytes.
336 	 */
337 	length = hextoul(argv[4], NULL);
338 
339 #if CONFIG_IS_ENABLED(DM_I2C)
340 	ret = i2c_get_cur_bus_chip(chip, &dev);
341 	if (!ret && alen != -1)
342 		ret = i2c_set_chip_offset_len(dev, alen);
343 	if (ret)
344 		return i2c_report_err(ret, I2C_ERR_WRITE);
345 	i2c_chip = dev_get_parent_plat(dev);
346 	if (!i2c_chip)
347 		return i2c_report_err(ret, I2C_ERR_WRITE);
348 #endif
349 
350 	if (argc == 6 && !strcmp(argv[5], "-s")) {
351 		/*
352 		 * Write all bytes in a single I2C transaction. If the target
353 		 * device is an EEPROM, it is your responsibility to not cross
354 		 * a page boundary. No write delay upon completion, take this
355 		 * into account if linking commands.
356 		 */
357 #if CONFIG_IS_ENABLED(DM_I2C)
358 		i2c_chip->flags &= ~DM_I2C_CHIP_WR_ADDRESS;
359 		ret = dm_i2c_write(dev, devaddr, memaddr, length);
360 #else
361 		ret = i2c_write(chip, devaddr, alen, memaddr, length);
362 #endif
363 		if (ret)
364 			return i2c_report_err(ret, I2C_ERR_WRITE);
365 	} else {
366 		/*
367 		 * Repeated addressing - perform <length> separate
368 		 * write transactions of one byte each
369 		 */
370 		while (length-- > 0) {
371 #if CONFIG_IS_ENABLED(DM_I2C)
372 			i2c_chip->flags |= DM_I2C_CHIP_WR_ADDRESS;
373 			ret = dm_i2c_write(dev, devaddr++, memaddr++, 1);
374 #else
375 			ret = i2c_write(chip, devaddr++, alen, memaddr++, 1);
376 #endif
377 			if (ret)
378 				return i2c_report_err(ret, I2C_ERR_WRITE);
379 /*
380  * No write delay with FRAM devices.
381  */
382 #if !defined(CONFIG_SYS_I2C_FRAM)
383 			udelay(11000);
384 #endif
385 		}
386 	}
387 	return 0;
388 }
389 
390 #if CONFIG_IS_ENABLED(DM_I2C)
do_i2c_flags(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])391 static int do_i2c_flags(struct cmd_tbl *cmdtp, int flag, int argc,
392 			char *const argv[])
393 {
394 	struct udevice *dev;
395 	uint flags;
396 	int chip;
397 	int ret;
398 
399 	if (argc < 2)
400 		return CMD_RET_USAGE;
401 
402 	chip = hextoul(argv[1], NULL);
403 	ret = i2c_get_cur_bus_chip(chip, &dev);
404 	if (ret)
405 		return i2c_report_err(ret, I2C_ERR_READ);
406 
407 	if (argc > 2) {
408 		flags = hextoul(argv[2], NULL);
409 		ret = i2c_set_chip_flags(dev, flags);
410 	} else  {
411 		ret = i2c_get_chip_flags(dev, &flags);
412 		if (!ret)
413 			printf("%x\n", flags);
414 	}
415 	if (ret)
416 		return i2c_report_err(ret, I2C_ERR_READ);
417 
418 	return 0;
419 }
420 
do_i2c_olen(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])421 static int do_i2c_olen(struct cmd_tbl *cmdtp, int flag, int argc,
422 		       char *const argv[])
423 {
424 	struct udevice *dev;
425 	uint olen;
426 	int chip;
427 	int ret;
428 
429 	if (argc < 2)
430 		return CMD_RET_USAGE;
431 
432 	chip = hextoul(argv[1], NULL);
433 	ret = i2c_get_cur_bus_chip(chip, &dev);
434 	if (ret)
435 		return i2c_report_err(ret, I2C_ERR_READ);
436 
437 	if (argc > 2) {
438 		olen = hextoul(argv[2], NULL);
439 		ret = i2c_set_chip_offset_len(dev, olen);
440 	} else  {
441 		ret = i2c_get_chip_offset_len(dev);
442 		if (ret >= 0) {
443 			printf("%x\n", ret);
444 			ret = 0;
445 		}
446 	}
447 	if (ret)
448 		return i2c_report_err(ret, I2C_ERR_READ);
449 
450 	return 0;
451 }
452 #endif
453 
454 /**
455  * do_i2c_md() - Handle the "i2c md" command-line command
456  * @cmdtp:	Command data struct pointer
457  * @flag:	Command flag
458  * @argc:	Command-line argument count
459  * @argv:	Array of command-line arguments
460  *
461  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
462  * on error.
463  *
464  * Syntax:
465  *	i2c md {i2c_chip} {addr}{.0, .1, .2} {len}
466  */
do_i2c_md(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])467 static int do_i2c_md(struct cmd_tbl *cmdtp, int flag, int argc,
468 		     char *const argv[])
469 {
470 	uint	chip;
471 	uint	addr, length;
472 	int alen;
473 	int	j, nbytes, linebytes;
474 	int ret;
475 #if CONFIG_IS_ENABLED(DM_I2C)
476 	struct udevice *dev;
477 #endif
478 
479 	/* We use the last specified parameters, unless new ones are
480 	 * entered.
481 	 */
482 	chip   = i2c_dp_last_chip;
483 	addr   = i2c_dp_last_addr;
484 	alen   = i2c_dp_last_alen;
485 	length = i2c_dp_last_length;
486 
487 	if (argc < 3)
488 		return CMD_RET_USAGE;
489 
490 	if ((flag & CMD_FLAG_REPEAT) == 0) {
491 		/*
492 		 * New command specified.
493 		 */
494 
495 		/*
496 		 * I2C chip address
497 		 */
498 		chip = hextoul(argv[1], NULL);
499 
500 		/*
501 		 * I2C data address within the chip.  This can be 1 or
502 		 * 2 bytes long.  Some day it might be 3 bytes long :-).
503 		 */
504 		addr = hextoul(argv[2], NULL);
505 		alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
506 		if (alen > 3)
507 			return CMD_RET_USAGE;
508 
509 		/*
510 		 * If another parameter, it is the length to display.
511 		 * Length is the number of objects, not number of bytes.
512 		 */
513 		if (argc > 3)
514 			length = hextoul(argv[3], NULL);
515 	}
516 
517 #if CONFIG_IS_ENABLED(DM_I2C)
518 	ret = i2c_get_cur_bus_chip(chip, &dev);
519 	if (!ret && alen != -1)
520 		ret = i2c_set_chip_offset_len(dev, alen);
521 	if (ret)
522 		return i2c_report_err(ret, I2C_ERR_READ);
523 #endif
524 
525 	/*
526 	 * Print the lines.
527 	 *
528 	 * We buffer all read data, so we can make sure data is read only
529 	 * once.
530 	 */
531 	nbytes = length;
532 	do {
533 		unsigned char	linebuf[DISP_LINE_LEN];
534 		unsigned char	*cp;
535 
536 		linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
537 
538 #if CONFIG_IS_ENABLED(DM_I2C)
539 		ret = dm_i2c_read(dev, addr, linebuf, linebytes);
540 #else
541 		ret = i2c_read(chip, addr, alen, linebuf, linebytes);
542 #endif
543 		if (ret)
544 			return i2c_report_err(ret, I2C_ERR_READ);
545 		else {
546 			printf("%04x:", addr);
547 			cp = linebuf;
548 			for (j=0; j<linebytes; j++) {
549 				printf(" %02x", *cp++);
550 				addr++;
551 			}
552 			puts ("    ");
553 			cp = linebuf;
554 			for (j=0; j<linebytes; j++) {
555 				if ((*cp < 0x20) || (*cp > 0x7e))
556 					puts (".");
557 				else
558 					printf("%c", *cp);
559 				cp++;
560 			}
561 			putc ('\n');
562 		}
563 		nbytes -= linebytes;
564 	} while (nbytes > 0);
565 
566 	i2c_dp_last_chip   = chip;
567 	i2c_dp_last_addr   = addr;
568 	i2c_dp_last_alen   = alen;
569 	i2c_dp_last_length = length;
570 
571 	return 0;
572 }
573 
574 /**
575  * do_i2c_mw() - Handle the "i2c mw" command-line command
576  * @cmdtp:	Command data struct pointer
577  * @flag:	Command flag
578  * @argc:	Command-line argument count
579  * @argv:	Array of command-line arguments
580  *
581  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
582  * on error.
583  *
584  * Syntax:
585  *	i2c mw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
586  */
do_i2c_mw(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])587 static int do_i2c_mw(struct cmd_tbl *cmdtp, int flag, int argc,
588 		     char *const argv[])
589 {
590 	uint	chip;
591 	ulong	addr;
592 	int	alen;
593 	uchar	byte;
594 	int	count;
595 	int ret;
596 #if CONFIG_IS_ENABLED(DM_I2C)
597 	struct udevice *dev;
598 #endif
599 
600 	if ((argc < 4) || (argc > 5))
601 		return CMD_RET_USAGE;
602 
603 	/*
604 	 * Chip is always specified.
605 	 */
606 	chip = hextoul(argv[1], NULL);
607 
608 	/*
609 	 * Address is always specified.
610 	 */
611 	addr = hextoul(argv[2], NULL);
612 	alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
613 	if (alen > 3)
614 		return CMD_RET_USAGE;
615 
616 #if CONFIG_IS_ENABLED(DM_I2C)
617 	ret = i2c_get_cur_bus_chip(chip, &dev);
618 	if (!ret && alen != -1)
619 		ret = i2c_set_chip_offset_len(dev, alen);
620 	if (ret)
621 		return i2c_report_err(ret, I2C_ERR_WRITE);
622 #endif
623 	/*
624 	 * Value to write is always specified.
625 	 */
626 	byte = hextoul(argv[3], NULL);
627 
628 	/*
629 	 * Optional count
630 	 */
631 	if (argc == 5)
632 		count = hextoul(argv[4], NULL);
633 	else
634 		count = 1;
635 
636 	while (count-- > 0) {
637 #if CONFIG_IS_ENABLED(DM_I2C)
638 		ret = dm_i2c_write(dev, addr++, &byte, 1);
639 #else
640 		ret = i2c_write(chip, addr++, alen, &byte, 1);
641 #endif
642 		if (ret)
643 			return i2c_report_err(ret, I2C_ERR_WRITE);
644 		/*
645 		 * Wait for the write to complete.  The write can take
646 		 * up to 10mSec (we allow a little more time).
647 		 */
648 /*
649  * No write delay with FRAM devices.
650  */
651 #if !defined(CONFIG_SYS_I2C_FRAM)
652 		udelay(11000);
653 #endif
654 	}
655 
656 	return 0;
657 }
658 
659 /**
660  * do_i2c_crc() - Handle the "i2c crc32" command-line command
661  * @cmdtp:	Command data struct pointer
662  * @flag:	Command flag
663  * @argc:	Command-line argument count
664  * @argv:	Array of command-line arguments
665  *
666  * Calculate a CRC on memory
667  *
668  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
669  * on error.
670  *
671  * Syntax:
672  *	i2c crc32 {i2c_chip} {addr}{.0, .1, .2} {count}
673  */
do_i2c_crc(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])674 static int do_i2c_crc(struct cmd_tbl *cmdtp, int flag, int argc,
675 		      char *const argv[])
676 {
677 	uint	chip;
678 	ulong	addr;
679 	int	alen;
680 	int	count;
681 	uchar	byte;
682 	ulong	crc;
683 	ulong	err;
684 	int ret = 0;
685 #if CONFIG_IS_ENABLED(DM_I2C)
686 	struct udevice *dev;
687 #endif
688 
689 	if (argc < 4)
690 		return CMD_RET_USAGE;
691 
692 	/*
693 	 * Chip is always specified.
694 	 */
695 	chip = hextoul(argv[1], NULL);
696 
697 	/*
698 	 * Address is always specified.
699 	 */
700 	addr = hextoul(argv[2], NULL);
701 	alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
702 	if (alen > 3)
703 		return CMD_RET_USAGE;
704 
705 #if CONFIG_IS_ENABLED(DM_I2C)
706 	ret = i2c_get_cur_bus_chip(chip, &dev);
707 	if (!ret && alen != -1)
708 		ret = i2c_set_chip_offset_len(dev, alen);
709 	if (ret)
710 		return i2c_report_err(ret, I2C_ERR_READ);
711 #endif
712 	/*
713 	 * Count is always specified
714 	 */
715 	count = hextoul(argv[3], NULL);
716 
717 	printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
718 	/*
719 	 * CRC a byte at a time.  This is going to be slooow, but hey, the
720 	 * memories are small and slow too so hopefully nobody notices.
721 	 */
722 	crc = 0;
723 	err = 0;
724 	while (count-- > 0) {
725 #if CONFIG_IS_ENABLED(DM_I2C)
726 		ret = dm_i2c_read(dev, addr, &byte, 1);
727 #else
728 		ret = i2c_read(chip, addr, alen, &byte, 1);
729 #endif
730 		if (ret)
731 			err++;
732 		crc = crc32(crc, &byte, 1);
733 		addr++;
734 	}
735 	if (err > 0)
736 		i2c_report_err(ret, I2C_ERR_READ);
737 	else
738 		printf ("%08lx\n", crc);
739 
740 	return 0;
741 }
742 
743 /**
744  * mod_i2c_mem() - Handle the "i2c mm" and "i2c nm" command-line command
745  * @cmdtp:	Command data struct pointer
746  * @flag:	Command flag
747  * @argc:	Command-line argument count
748  * @argv:	Array of command-line arguments
749  *
750  * Modify memory.
751  *
752  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
753  * on error.
754  *
755  * Syntax:
756  *	i2c mm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
757  *	i2c nm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
758  */
mod_i2c_mem(struct cmd_tbl * cmdtp,int incrflag,int flag,int argc,char * const argv[])759 static int mod_i2c_mem(struct cmd_tbl *cmdtp, int incrflag, int flag, int argc,
760 		       char *const argv[])
761 {
762 	uint	chip;
763 	ulong	addr;
764 	int	alen;
765 	ulong	data;
766 	int	size = 1;
767 	int	nbytes;
768 	int ret;
769 #if CONFIG_IS_ENABLED(DM_I2C)
770 	struct udevice *dev;
771 #endif
772 
773 	if (argc != 3)
774 		return CMD_RET_USAGE;
775 
776 	bootretry_reset_cmd_timeout();	/* got a good command to get here */
777 	/*
778 	 * We use the last specified parameters, unless new ones are
779 	 * entered.
780 	 */
781 	chip = i2c_mm_last_chip;
782 	addr = i2c_mm_last_addr;
783 	alen = i2c_mm_last_alen;
784 
785 	if ((flag & CMD_FLAG_REPEAT) == 0) {
786 		/*
787 		 * New command specified.  Check for a size specification.
788 		 * Defaults to byte if no or incorrect specification.
789 		 */
790 		size = cmd_get_data_size(argv[0], 1);
791 
792 		/*
793 		 * Chip is always specified.
794 		 */
795 		chip = hextoul(argv[1], NULL);
796 
797 		/*
798 		 * Address is always specified.
799 		 */
800 		addr = hextoul(argv[2], NULL);
801 		alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
802 		if (alen > 3)
803 			return CMD_RET_USAGE;
804 	}
805 
806 #if CONFIG_IS_ENABLED(DM_I2C)
807 	ret = i2c_get_cur_bus_chip(chip, &dev);
808 	if (!ret && alen != -1)
809 		ret = i2c_set_chip_offset_len(dev, alen);
810 	if (ret)
811 		return i2c_report_err(ret, I2C_ERR_WRITE);
812 #endif
813 
814 	/*
815 	 * Print the address, followed by value.  Then accept input for
816 	 * the next value.  A non-converted value exits.
817 	 */
818 	do {
819 		printf("%08lx:", addr);
820 #if CONFIG_IS_ENABLED(DM_I2C)
821 		ret = dm_i2c_read(dev, addr, (uchar *)&data, size);
822 #else
823 		ret = i2c_read(chip, addr, alen, (uchar *)&data, size);
824 #endif
825 		if (ret)
826 			return i2c_report_err(ret, I2C_ERR_READ);
827 
828 		data = cpu_to_be32(data);
829 		if (size == 1)
830 			printf(" %02lx", (data >> 24) & 0x000000FF);
831 		else if (size == 2)
832 			printf(" %04lx", (data >> 16) & 0x0000FFFF);
833 		else
834 			printf(" %08lx", data);
835 
836 		nbytes = cli_readline(" ? ");
837 		if (nbytes == 0) {
838 			/*
839 			 * <CR> pressed as only input, don't modify current
840 			 * location and move to next.
841 			 */
842 			if (incrflag)
843 				addr += size;
844 			nbytes = size;
845 			/* good enough to not time out */
846 			bootretry_reset_cmd_timeout();
847 		}
848 #ifdef CONFIG_BOOT_RETRY_TIME
849 		else if (nbytes == -2)
850 			break;	/* timed out, exit the command	*/
851 #endif
852 		else {
853 			char *endp;
854 
855 			data = hextoul(console_buffer, &endp);
856 			if (size == 1)
857 				data = data << 24;
858 			else if (size == 2)
859 				data = data << 16;
860 			data = be32_to_cpu(data);
861 			nbytes = endp - console_buffer;
862 			if (nbytes) {
863 				/*
864 				 * good enough to not time out
865 				 */
866 				bootretry_reset_cmd_timeout();
867 #if CONFIG_IS_ENABLED(DM_I2C)
868 				ret = dm_i2c_write(dev, addr, (uchar *)&data,
869 						   size);
870 #else
871 				ret = i2c_write(chip, addr, alen,
872 						(uchar *)&data, size);
873 #endif
874 				if (ret)
875 					return i2c_report_err(ret,
876 							      I2C_ERR_WRITE);
877 #if CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS > 0
878 				udelay(CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS * 1000);
879 #endif
880 				if (incrflag)
881 					addr += size;
882 			}
883 		}
884 	} while (nbytes);
885 
886 	i2c_mm_last_chip = chip;
887 	i2c_mm_last_addr = addr;
888 	i2c_mm_last_alen = alen;
889 
890 	return 0;
891 }
892 
893 /**
894  * do_i2c_probe() - Handle the "i2c probe" command-line command
895  * @cmdtp:	Command data struct pointer
896  * @flag:	Command flag
897  * @argc:	Command-line argument count
898  * @argv:	Array of command-line arguments
899  *
900  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
901  * on error.
902  *
903  * Syntax:
904  *	i2c probe {addr}
905  *
906  * Returns zero (success) if one or more I2C devices was found
907  */
do_i2c_probe(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])908 static int do_i2c_probe(struct cmd_tbl *cmdtp, int flag, int argc,
909 			char *const argv[])
910 {
911 	int j;
912 	int addr = -1;
913 	int found = 0;
914 #if defined(CONFIG_SYS_I2C_NOPROBES)
915 	int k, skip;
916 	unsigned int bus = GET_BUS_NUM;
917 #endif	/* NOPROBES */
918 	int ret;
919 #if CONFIG_IS_ENABLED(DM_I2C)
920 	struct udevice *bus, *dev;
921 
922 	if (i2c_get_cur_bus(&bus))
923 		return CMD_RET_FAILURE;
924 #endif
925 
926 	if (argc == 2)
927 		addr = simple_strtol(argv[1], 0, 16);
928 
929 	puts ("Valid chip addresses:");
930 	for (j = 0; j < 128; j++) {
931 		if ((0 <= addr) && (j != addr))
932 			continue;
933 
934 #if defined(CONFIG_SYS_I2C_NOPROBES)
935 		skip = 0;
936 		for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
937 			if (COMPARE_BUS(bus, k) && COMPARE_ADDR(j, k)) {
938 				skip = 1;
939 				break;
940 			}
941 		}
942 		if (skip)
943 			continue;
944 #endif
945 #if CONFIG_IS_ENABLED(DM_I2C)
946 		ret = dm_i2c_probe(bus, j, 0, &dev);
947 #else
948 		ret = i2c_probe(j);
949 #endif
950 		if (ret == 0) {
951 			printf(" %02X", j);
952 			found++;
953 		}
954 	}
955 	putc ('\n');
956 
957 #if defined(CONFIG_SYS_I2C_NOPROBES)
958 	puts ("Excluded chip addresses:");
959 	for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
960 		if (COMPARE_BUS(bus,k))
961 			printf(" %02X", NO_PROBE_ADDR(k));
962 	}
963 	putc ('\n');
964 #endif
965 
966 	return (0 == found);
967 }
968 
969 /**
970  * do_i2c_loop() - Handle the "i2c loop" command-line command
971  * @cmdtp:	Command data struct pointer
972  * @flag:	Command flag
973  * @argc:	Command-line argument count
974  * @argv:	Array of command-line arguments
975  *
976  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
977  * on error.
978  *
979  * Syntax:
980  *	i2c loop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
981  *	{length} - Number of bytes to read
982  *	{delay}  - A DECIMAL number and defaults to 1000 uSec
983  */
do_i2c_loop(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])984 static int do_i2c_loop(struct cmd_tbl *cmdtp, int flag, int argc,
985 		       char *const argv[])
986 {
987 	uint	chip;
988 	int alen;
989 	uint	addr;
990 	uint	length;
991 	u_char	bytes[16];
992 	int	delay;
993 	int ret;
994 #if CONFIG_IS_ENABLED(DM_I2C)
995 	struct udevice *dev;
996 #endif
997 
998 	if (argc < 3)
999 		return CMD_RET_USAGE;
1000 
1001 	/*
1002 	 * Chip is always specified.
1003 	 */
1004 	chip = hextoul(argv[1], NULL);
1005 
1006 	/*
1007 	 * Address is always specified.
1008 	 */
1009 	addr = hextoul(argv[2], NULL);
1010 	alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
1011 	if (alen > 3)
1012 		return CMD_RET_USAGE;
1013 #if CONFIG_IS_ENABLED(DM_I2C)
1014 	ret = i2c_get_cur_bus_chip(chip, &dev);
1015 	if (!ret && alen != -1)
1016 		ret = i2c_set_chip_offset_len(dev, alen);
1017 	if (ret)
1018 		return i2c_report_err(ret, I2C_ERR_WRITE);
1019 #endif
1020 
1021 	/*
1022 	 * Length is the number of objects, not number of bytes.
1023 	 */
1024 	length = 1;
1025 	length = hextoul(argv[3], NULL);
1026 	if (length > sizeof(bytes))
1027 		length = sizeof(bytes);
1028 
1029 	/*
1030 	 * The delay time (uSec) is optional.
1031 	 */
1032 	delay = 1000;
1033 	if (argc > 3)
1034 		delay = dectoul(argv[4], NULL);
1035 	/*
1036 	 * Run the loop...
1037 	 */
1038 	while (1) {
1039 #if CONFIG_IS_ENABLED(DM_I2C)
1040 		ret = dm_i2c_read(dev, addr, bytes, length);
1041 #else
1042 		ret = i2c_read(chip, addr, alen, bytes, length);
1043 #endif
1044 		if (ret)
1045 			i2c_report_err(ret, I2C_ERR_READ);
1046 		udelay(delay);
1047 	}
1048 
1049 	/* NOTREACHED */
1050 	return 0;
1051 }
1052 
1053 /*
1054  * The SDRAM command is separately configured because many
1055  * (most?) embedded boards don't use SDRAM DIMMs.
1056  *
1057  * FIXME: Document and probably move elsewhere!
1058  */
1059 #if defined(CONFIG_CMD_SDRAM)
print_ddr2_tcyc(u_char const b)1060 static void print_ddr2_tcyc (u_char const b)
1061 {
1062 	printf ("%d.", (b >> 4) & 0x0F);
1063 	switch (b & 0x0F) {
1064 	case 0x0:
1065 	case 0x1:
1066 	case 0x2:
1067 	case 0x3:
1068 	case 0x4:
1069 	case 0x5:
1070 	case 0x6:
1071 	case 0x7:
1072 	case 0x8:
1073 	case 0x9:
1074 		printf ("%d ns\n", b & 0x0F);
1075 		break;
1076 	case 0xA:
1077 		puts ("25 ns\n");
1078 		break;
1079 	case 0xB:
1080 		puts ("33 ns\n");
1081 		break;
1082 	case 0xC:
1083 		puts ("66 ns\n");
1084 		break;
1085 	case 0xD:
1086 		puts ("75 ns\n");
1087 		break;
1088 	default:
1089 		puts ("?? ns\n");
1090 		break;
1091 	}
1092 }
1093 
decode_bits(u_char const b,char const * str[],int const do_once)1094 static void decode_bits (u_char const b, char const *str[], int const do_once)
1095 {
1096 	u_char mask;
1097 
1098 	for (mask = 0x80; mask != 0x00; mask >>= 1, ++str) {
1099 		if (b & mask) {
1100 			puts (*str);
1101 			if (do_once)
1102 				return;
1103 		}
1104 	}
1105 }
1106 
1107 /*
1108  * Syntax:
1109  *	i2c sdram {i2c_chip}
1110  */
do_sdram(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1111 static int do_sdram(struct cmd_tbl *cmdtp, int flag, int argc,
1112 		    char *const argv[])
1113 {
1114 	enum { unknown, EDO, SDRAM, DDR, DDR2, DDR3, DDR4 } type;
1115 
1116 	uint	chip;
1117 	u_char	data[128];
1118 	u_char	cksum;
1119 	int	j, ret;
1120 #if CONFIG_IS_ENABLED(DM_I2C)
1121 	struct udevice *dev;
1122 #endif
1123 
1124 	static const char *decode_CAS_DDR2[] = {
1125 		" TBD", " 6", " 5", " 4", " 3", " 2", " TBD", " TBD"
1126 	};
1127 
1128 	static const char *decode_CAS_default[] = {
1129 		" TBD", " 7", " 6", " 5", " 4", " 3", " 2", " 1"
1130 	};
1131 
1132 	static const char *decode_CS_WE_default[] = {
1133 		" TBD", " 6", " 5", " 4", " 3", " 2", " 1", " 0"
1134 	};
1135 
1136 	static const char *decode_byte21_default[] = {
1137 		"  TBD (bit 7)\n",
1138 		"  Redundant row address\n",
1139 		"  Differential clock input\n",
1140 		"  Registerd DQMB inputs\n",
1141 		"  Buffered DQMB inputs\n",
1142 		"  On-card PLL\n",
1143 		"  Registered address/control lines\n",
1144 		"  Buffered address/control lines\n"
1145 	};
1146 
1147 	static const char *decode_byte22_DDR2[] = {
1148 		"  TBD (bit 7)\n",
1149 		"  TBD (bit 6)\n",
1150 		"  TBD (bit 5)\n",
1151 		"  TBD (bit 4)\n",
1152 		"  TBD (bit 3)\n",
1153 		"  Supports partial array self refresh\n",
1154 		"  Supports 50 ohm ODT\n",
1155 		"  Supports weak driver\n"
1156 	};
1157 
1158 	static const char *decode_row_density_DDR2[] = {
1159 		"512 MiB", "256 MiB", "128 MiB", "16 GiB",
1160 		"8 GiB", "4 GiB", "2 GiB", "1 GiB"
1161 	};
1162 
1163 	static const char *decode_row_density_default[] = {
1164 		"512 MiB", "256 MiB", "128 MiB", "64 MiB",
1165 		"32 MiB", "16 MiB", "8 MiB", "4 MiB"
1166 	};
1167 
1168 	if (argc < 2)
1169 		return CMD_RET_USAGE;
1170 
1171 	/*
1172 	 * Chip is always specified.
1173 	 */
1174 	chip = hextoul(argv[1], NULL);
1175 
1176 #if CONFIG_IS_ENABLED(DM_I2C)
1177 	ret = i2c_get_cur_bus_chip(chip, &dev);
1178 	if (!ret)
1179 		ret = dm_i2c_read(dev, 0, data, sizeof(data));
1180 #else
1181 	ret = i2c_read(chip, 0, 1, data, sizeof(data));
1182 #endif
1183 	if (ret) {
1184 		puts ("No SDRAM Serial Presence Detect found.\n");
1185 		return 1;
1186 	}
1187 
1188 	cksum = 0;
1189 	for (j = 0; j < 63; j++) {
1190 		cksum += data[j];
1191 	}
1192 	if (cksum != data[63]) {
1193 		printf ("WARNING: Configuration data checksum failure:\n"
1194 			"  is 0x%02x, calculated 0x%02x\n", data[63], cksum);
1195 	}
1196 	printf ("SPD data revision            %d.%d\n",
1197 		(data[62] >> 4) & 0x0F, data[62] & 0x0F);
1198 	printf ("Bytes used                   0x%02X\n", data[0]);
1199 	printf ("Serial memory size           0x%02X\n", 1 << data[1]);
1200 
1201 	puts ("Memory type                  ");
1202 	switch (data[2]) {
1203 	case 2:
1204 		type = EDO;
1205 		puts ("EDO\n");
1206 		break;
1207 	case 4:
1208 		type = SDRAM;
1209 		puts ("SDRAM\n");
1210 		break;
1211 	case 7:
1212 		type = DDR;
1213 		puts("DDR\n");
1214 		break;
1215 	case 8:
1216 		type = DDR2;
1217 		puts ("DDR2\n");
1218 		break;
1219 	case 11:
1220 		type = DDR3;
1221 		puts("DDR3\n");
1222 		break;
1223 	case 12:
1224 		type = DDR4;
1225 		puts("DDR4\n");
1226 		break;
1227 	default:
1228 		type = unknown;
1229 		puts ("unknown\n");
1230 		break;
1231 	}
1232 
1233 	puts ("Row address bits             ");
1234 	if ((data[3] & 0x00F0) == 0)
1235 		printf ("%d\n", data[3] & 0x0F);
1236 	else
1237 		printf ("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
1238 
1239 	puts ("Column address bits          ");
1240 	if ((data[4] & 0x00F0) == 0)
1241 		printf ("%d\n", data[4] & 0x0F);
1242 	else
1243 		printf ("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
1244 
1245 	switch (type) {
1246 	case DDR2:
1247 		printf ("Number of ranks              %d\n",
1248 			(data[5] & 0x07) + 1);
1249 		break;
1250 	default:
1251 		printf ("Module rows                  %d\n", data[5]);
1252 		break;
1253 	}
1254 
1255 	switch (type) {
1256 	case DDR2:
1257 		printf ("Module data width            %d bits\n", data[6]);
1258 		break;
1259 	default:
1260 		printf ("Module data width            %d bits\n",
1261 			(data[7] << 8) | data[6]);
1262 		break;
1263 	}
1264 
1265 	puts ("Interface signal levels      ");
1266 	switch(data[8]) {
1267 		case 0:  puts ("TTL 5.0 V\n");	break;
1268 		case 1:  puts ("LVTTL\n");	break;
1269 		case 2:  puts ("HSTL 1.5 V\n");	break;
1270 		case 3:  puts ("SSTL 3.3 V\n");	break;
1271 		case 4:  puts ("SSTL 2.5 V\n");	break;
1272 		case 5:  puts ("SSTL 1.8 V\n");	break;
1273 		default: puts ("unknown\n");	break;
1274 	}
1275 
1276 	switch (type) {
1277 	case DDR2:
1278 		printf ("SDRAM cycle time             ");
1279 		print_ddr2_tcyc (data[9]);
1280 		break;
1281 	default:
1282 		printf ("SDRAM cycle time             %d.%d ns\n",
1283 			(data[9] >> 4) & 0x0F, data[9] & 0x0F);
1284 		break;
1285 	}
1286 
1287 	switch (type) {
1288 	case DDR2:
1289 		printf ("SDRAM access time            0.%d%d ns\n",
1290 			(data[10] >> 4) & 0x0F, data[10] & 0x0F);
1291 		break;
1292 	default:
1293 		printf ("SDRAM access time            %d.%d ns\n",
1294 			(data[10] >> 4) & 0x0F, data[10] & 0x0F);
1295 		break;
1296 	}
1297 
1298 	puts ("EDC configuration            ");
1299 	switch (data[11]) {
1300 		case 0:  puts ("None\n");	break;
1301 		case 1:  puts ("Parity\n");	break;
1302 		case 2:  puts ("ECC\n");	break;
1303 		default: puts ("unknown\n");	break;
1304 	}
1305 
1306 	if ((data[12] & 0x80) == 0)
1307 		puts ("No self refresh, rate        ");
1308 	else
1309 		puts ("Self refresh, rate           ");
1310 
1311 	switch(data[12] & 0x7F) {
1312 		case 0:  puts ("15.625 us\n");	break;
1313 		case 1:  puts ("3.9 us\n");	break;
1314 		case 2:  puts ("7.8 us\n");	break;
1315 		case 3:  puts ("31.3 us\n");	break;
1316 		case 4:  puts ("62.5 us\n");	break;
1317 		case 5:  puts ("125 us\n");	break;
1318 		default: puts ("unknown\n");	break;
1319 	}
1320 
1321 	switch (type) {
1322 	case DDR2:
1323 		printf ("SDRAM width (primary)        %d\n", data[13]);
1324 		break;
1325 	default:
1326 		printf ("SDRAM width (primary)        %d\n", data[13] & 0x7F);
1327 		if ((data[13] & 0x80) != 0) {
1328 			printf ("  (second bank)              %d\n",
1329 				2 * (data[13] & 0x7F));
1330 		}
1331 		break;
1332 	}
1333 
1334 	switch (type) {
1335 	case DDR2:
1336 		if (data[14] != 0)
1337 			printf ("EDC width                    %d\n", data[14]);
1338 		break;
1339 	default:
1340 		if (data[14] != 0) {
1341 			printf ("EDC width                    %d\n",
1342 				data[14] & 0x7F);
1343 
1344 			if ((data[14] & 0x80) != 0) {
1345 				printf ("  (second bank)              %d\n",
1346 					2 * (data[14] & 0x7F));
1347 			}
1348 		}
1349 		break;
1350 	}
1351 
1352 	if (DDR2 != type) {
1353 		printf ("Min clock delay, back-to-back random column addresses "
1354 			"%d\n", data[15]);
1355 	}
1356 
1357 	puts ("Burst length(s)             ");
1358 	if (data[16] & 0x80) puts (" Page");
1359 	if (data[16] & 0x08) puts (" 8");
1360 	if (data[16] & 0x04) puts (" 4");
1361 	if (data[16] & 0x02) puts (" 2");
1362 	if (data[16] & 0x01) puts (" 1");
1363 	putc ('\n');
1364 	printf ("Number of banks              %d\n", data[17]);
1365 
1366 	switch (type) {
1367 	case DDR2:
1368 		puts ("CAS latency(s)              ");
1369 		decode_bits (data[18], decode_CAS_DDR2, 0);
1370 		putc ('\n');
1371 		break;
1372 	default:
1373 		puts ("CAS latency(s)              ");
1374 		decode_bits (data[18], decode_CAS_default, 0);
1375 		putc ('\n');
1376 		break;
1377 	}
1378 
1379 	if (DDR2 != type) {
1380 		puts ("CS latency(s)               ");
1381 		decode_bits (data[19], decode_CS_WE_default, 0);
1382 		putc ('\n');
1383 	}
1384 
1385 	if (DDR2 != type) {
1386 		puts ("WE latency(s)               ");
1387 		decode_bits (data[20], decode_CS_WE_default, 0);
1388 		putc ('\n');
1389 	}
1390 
1391 	switch (type) {
1392 	case DDR2:
1393 		puts ("Module attributes:\n");
1394 		if (data[21] & 0x80)
1395 			puts ("  TBD (bit 7)\n");
1396 		if (data[21] & 0x40)
1397 			puts ("  Analysis probe installed\n");
1398 		if (data[21] & 0x20)
1399 			puts ("  TBD (bit 5)\n");
1400 		if (data[21] & 0x10)
1401 			puts ("  FET switch external enable\n");
1402 		printf ("  %d PLLs on DIMM\n", (data[21] >> 2) & 0x03);
1403 		if (data[20] & 0x11) {
1404 			printf ("  %d active registers on DIMM\n",
1405 				(data[21] & 0x03) + 1);
1406 		}
1407 		break;
1408 	default:
1409 		puts ("Module attributes:\n");
1410 		if (!data[21])
1411 			puts ("  (none)\n");
1412 		else
1413 			decode_bits (data[21], decode_byte21_default, 0);
1414 		break;
1415 	}
1416 
1417 	switch (type) {
1418 	case DDR2:
1419 		decode_bits (data[22], decode_byte22_DDR2, 0);
1420 		break;
1421 	default:
1422 		puts ("Device attributes:\n");
1423 		if (data[22] & 0x80) puts ("  TBD (bit 7)\n");
1424 		if (data[22] & 0x40) puts ("  TBD (bit 6)\n");
1425 		if (data[22] & 0x20) puts ("  Upper Vcc tolerance 5%\n");
1426 		else                 puts ("  Upper Vcc tolerance 10%\n");
1427 		if (data[22] & 0x10) puts ("  Lower Vcc tolerance 5%\n");
1428 		else                 puts ("  Lower Vcc tolerance 10%\n");
1429 		if (data[22] & 0x08) puts ("  Supports write1/read burst\n");
1430 		if (data[22] & 0x04) puts ("  Supports precharge all\n");
1431 		if (data[22] & 0x02) puts ("  Supports auto precharge\n");
1432 		if (data[22] & 0x01) puts ("  Supports early RAS# precharge\n");
1433 		break;
1434 	}
1435 
1436 	switch (type) {
1437 	case DDR2:
1438 		printf ("SDRAM cycle time (2nd highest CAS latency)        ");
1439 		print_ddr2_tcyc (data[23]);
1440 		break;
1441 	default:
1442 		printf ("SDRAM cycle time (2nd highest CAS latency)        %d."
1443 			"%d ns\n", (data[23] >> 4) & 0x0F, data[23] & 0x0F);
1444 		break;
1445 	}
1446 
1447 	switch (type) {
1448 	case DDR2:
1449 		printf ("SDRAM access from clock (2nd highest CAS latency) 0."
1450 			"%d%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1451 		break;
1452 	default:
1453 		printf ("SDRAM access from clock (2nd highest CAS latency) %d."
1454 			"%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1455 		break;
1456 	}
1457 
1458 	switch (type) {
1459 	case DDR2:
1460 		printf ("SDRAM cycle time (3rd highest CAS latency)        ");
1461 		print_ddr2_tcyc (data[25]);
1462 		break;
1463 	default:
1464 		printf ("SDRAM cycle time (3rd highest CAS latency)        %d."
1465 			"%d ns\n", (data[25] >> 4) & 0x0F, data[25] & 0x0F);
1466 		break;
1467 	}
1468 
1469 	switch (type) {
1470 	case DDR2:
1471 		printf ("SDRAM access from clock (3rd highest CAS latency) 0."
1472 			"%d%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1473 		break;
1474 	default:
1475 		printf ("SDRAM access from clock (3rd highest CAS latency) %d."
1476 			"%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1477 		break;
1478 	}
1479 
1480 	switch (type) {
1481 	case DDR2:
1482 		printf ("Minimum row precharge        %d.%02d ns\n",
1483 			(data[27] >> 2) & 0x3F, 25 * (data[27] & 0x03));
1484 		break;
1485 	default:
1486 		printf ("Minimum row precharge        %d ns\n", data[27]);
1487 		break;
1488 	}
1489 
1490 	switch (type) {
1491 	case DDR2:
1492 		printf ("Row active to row active min %d.%02d ns\n",
1493 			(data[28] >> 2) & 0x3F, 25 * (data[28] & 0x03));
1494 		break;
1495 	default:
1496 		printf ("Row active to row active min %d ns\n", data[28]);
1497 		break;
1498 	}
1499 
1500 	switch (type) {
1501 	case DDR2:
1502 		printf ("RAS to CAS delay min         %d.%02d ns\n",
1503 			(data[29] >> 2) & 0x3F, 25 * (data[29] & 0x03));
1504 		break;
1505 	default:
1506 		printf ("RAS to CAS delay min         %d ns\n", data[29]);
1507 		break;
1508 	}
1509 
1510 	printf ("Minimum RAS pulse width      %d ns\n", data[30]);
1511 
1512 	switch (type) {
1513 	case DDR2:
1514 		puts ("Density of each row          ");
1515 		decode_bits (data[31], decode_row_density_DDR2, 1);
1516 		putc ('\n');
1517 		break;
1518 	default:
1519 		puts ("Density of each row          ");
1520 		decode_bits (data[31], decode_row_density_default, 1);
1521 		putc ('\n');
1522 		break;
1523 	}
1524 
1525 	switch (type) {
1526 	case DDR2:
1527 		puts ("Command and Address setup    ");
1528 		if (data[32] >= 0xA0) {
1529 			printf ("1.%d%d ns\n",
1530 				((data[32] >> 4) & 0x0F) - 10, data[32] & 0x0F);
1531 		} else {
1532 			printf ("0.%d%d ns\n",
1533 				((data[32] >> 4) & 0x0F), data[32] & 0x0F);
1534 		}
1535 		break;
1536 	default:
1537 		printf ("Command and Address setup    %c%d.%d ns\n",
1538 			(data[32] & 0x80) ? '-' : '+',
1539 			(data[32] >> 4) & 0x07, data[32] & 0x0F);
1540 		break;
1541 	}
1542 
1543 	switch (type) {
1544 	case DDR2:
1545 		puts ("Command and Address hold     ");
1546 		if (data[33] >= 0xA0) {
1547 			printf ("1.%d%d ns\n",
1548 				((data[33] >> 4) & 0x0F) - 10, data[33] & 0x0F);
1549 		} else {
1550 			printf ("0.%d%d ns\n",
1551 				((data[33] >> 4) & 0x0F), data[33] & 0x0F);
1552 		}
1553 		break;
1554 	default:
1555 		printf ("Command and Address hold     %c%d.%d ns\n",
1556 			(data[33] & 0x80) ? '-' : '+',
1557 			(data[33] >> 4) & 0x07, data[33] & 0x0F);
1558 		break;
1559 	}
1560 
1561 	switch (type) {
1562 	case DDR2:
1563 		printf ("Data signal input setup      0.%d%d ns\n",
1564 			(data[34] >> 4) & 0x0F, data[34] & 0x0F);
1565 		break;
1566 	default:
1567 		printf ("Data signal input setup      %c%d.%d ns\n",
1568 			(data[34] & 0x80) ? '-' : '+',
1569 			(data[34] >> 4) & 0x07, data[34] & 0x0F);
1570 		break;
1571 	}
1572 
1573 	switch (type) {
1574 	case DDR2:
1575 		printf ("Data signal input hold       0.%d%d ns\n",
1576 			(data[35] >> 4) & 0x0F, data[35] & 0x0F);
1577 		break;
1578 	default:
1579 		printf ("Data signal input hold       %c%d.%d ns\n",
1580 			(data[35] & 0x80) ? '-' : '+',
1581 			(data[35] >> 4) & 0x07, data[35] & 0x0F);
1582 		break;
1583 	}
1584 
1585 	puts ("Manufacturer's JEDEC ID      ");
1586 	for (j = 64; j <= 71; j++)
1587 		printf ("%02X ", data[j]);
1588 	putc ('\n');
1589 	printf ("Manufacturing Location       %02X\n", data[72]);
1590 	puts ("Manufacturer's Part Number   ");
1591 	for (j = 73; j <= 90; j++)
1592 		printf ("%02X ", data[j]);
1593 	putc ('\n');
1594 	printf ("Revision Code                %02X %02X\n", data[91], data[92]);
1595 	printf ("Manufacturing Date           %02X %02X\n", data[93], data[94]);
1596 	puts ("Assembly Serial Number       ");
1597 	for (j = 95; j <= 98; j++)
1598 		printf ("%02X ", data[j]);
1599 	putc ('\n');
1600 
1601 	if (DDR2 != type) {
1602 		printf ("Speed rating                 PC%d\n",
1603 			data[126] == 0x66 ? 66 : data[126]);
1604 	}
1605 	return 0;
1606 }
1607 #endif
1608 
1609 /*
1610  * Syntax:
1611  *	i2c edid {i2c_chip}
1612  */
1613 #if defined(CONFIG_I2C_EDID)
do_edid(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1614 int do_edid(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[])
1615 {
1616 	uint chip;
1617 	struct edid1_info edid;
1618 	int ret;
1619 #if CONFIG_IS_ENABLED(DM_I2C)
1620 	struct udevice *dev;
1621 #endif
1622 
1623 	if (argc < 2) {
1624 		cmd_usage(cmdtp);
1625 		return 1;
1626 	}
1627 
1628 	chip = hextoul(argv[1], NULL);
1629 #if CONFIG_IS_ENABLED(DM_I2C)
1630 	ret = i2c_get_cur_bus_chip(chip, &dev);
1631 	if (!ret)
1632 		ret = dm_i2c_read(dev, 0, (uchar *)&edid, sizeof(edid));
1633 #else
1634 	ret = i2c_read(chip, 0, 1, (uchar *)&edid, sizeof(edid));
1635 #endif
1636 	if (ret)
1637 		return i2c_report_err(ret, I2C_ERR_READ);
1638 
1639 	if (edid_check_info(&edid)) {
1640 		puts("Content isn't valid EDID.\n");
1641 		return 1;
1642 	}
1643 
1644 	edid_print_info(&edid);
1645 	return 0;
1646 
1647 }
1648 #endif /* CONFIG_I2C_EDID */
1649 
1650 #if CONFIG_IS_ENABLED(DM_I2C)
show_bus(struct udevice * bus)1651 static void show_bus(struct udevice *bus)
1652 {
1653 	struct udevice *dev;
1654 
1655 	printf("Bus %d:\t%s", dev_seq(bus), bus->name);
1656 	if (device_active(bus))
1657 		printf("  (active %d)", dev_seq(bus));
1658 	printf("\n");
1659 	for (device_find_first_child(bus, &dev);
1660 	     dev;
1661 	     device_find_next_child(&dev)) {
1662 		struct dm_i2c_chip *chip = dev_get_parent_plat(dev);
1663 
1664 		printf("   %02x: %s, offset len %x, flags %x\n",
1665 		       chip->chip_addr, dev->name, chip->offset_len,
1666 		       chip->flags);
1667 	}
1668 }
1669 #endif
1670 
1671 /**
1672  * do_i2c_show_bus() - Handle the "i2c bus" command-line command
1673  * @cmdtp:	Command data struct pointer
1674  * @flag:	Command flag
1675  * @argc:	Command-line argument count
1676  * @argv:	Array of command-line arguments
1677  *
1678  * Returns zero always.
1679  */
1680 #if CONFIG_IS_ENABLED(SYS_I2C_LEGACY) || CONFIG_IS_ENABLED(DM_I2C)
do_i2c_show_bus(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1681 static int do_i2c_show_bus(struct cmd_tbl *cmdtp, int flag, int argc,
1682 			   char *const argv[])
1683 {
1684 	if (argc == 1) {
1685 		/* show all busses */
1686 #if CONFIG_IS_ENABLED(DM_I2C)
1687 		struct udevice *bus;
1688 		struct uclass *uc;
1689 		int ret;
1690 
1691 		ret = uclass_get(UCLASS_I2C, &uc);
1692 		if (ret)
1693 			return CMD_RET_FAILURE;
1694 		uclass_foreach_dev(bus, uc)
1695 			show_bus(bus);
1696 #else
1697 		int i;
1698 
1699 		for (i = 0; i < CONFIG_SYS_NUM_I2C_BUSES; i++) {
1700 			printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
1701 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1702 			int j;
1703 
1704 			for (j = 0; j < CONFIG_SYS_I2C_MAX_HOPS; j++) {
1705 				if (i2c_bus[i].next_hop[j].chip == 0)
1706 					break;
1707 				printf("->%s@0x%2x:%d",
1708 				       i2c_bus[i].next_hop[j].mux.name,
1709 				       i2c_bus[i].next_hop[j].chip,
1710 				       i2c_bus[i].next_hop[j].channel);
1711 			}
1712 #endif
1713 			printf("\n");
1714 		}
1715 #endif
1716 	} else {
1717 		int i;
1718 
1719 		/* show specific bus */
1720 		i = dectoul(argv[1], NULL);
1721 #if CONFIG_IS_ENABLED(DM_I2C)
1722 		struct udevice *bus;
1723 		int ret;
1724 
1725 		ret = uclass_get_device_by_seq(UCLASS_I2C, i, &bus);
1726 		if (ret) {
1727 			printf("Invalid bus %d: err=%d\n", i, ret);
1728 			return CMD_RET_FAILURE;
1729 		}
1730 		show_bus(bus);
1731 #else
1732 		if (i >= CONFIG_SYS_NUM_I2C_BUSES) {
1733 			printf("Invalid bus %d\n", i);
1734 			return -1;
1735 		}
1736 		printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
1737 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1738 			int j;
1739 			for (j = 0; j < CONFIG_SYS_I2C_MAX_HOPS; j++) {
1740 				if (i2c_bus[i].next_hop[j].chip == 0)
1741 					break;
1742 				printf("->%s@0x%2x:%d",
1743 				       i2c_bus[i].next_hop[j].mux.name,
1744 				       i2c_bus[i].next_hop[j].chip,
1745 				       i2c_bus[i].next_hop[j].channel);
1746 			}
1747 #endif
1748 		printf("\n");
1749 #endif
1750 	}
1751 
1752 	return 0;
1753 }
1754 #endif
1755 
1756 /**
1757  * do_i2c_bus_num() - Handle the "i2c dev" command-line command
1758  * @cmdtp:	Command data struct pointer
1759  * @flag:	Command flag
1760  * @argc:	Command-line argument count
1761  * @argv:	Array of command-line arguments
1762  *
1763  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1764  * on error.
1765  */
1766 #if CONFIG_IS_ENABLED(SYS_I2C_LEGACY) || defined(CONFIG_I2C_MULTI_BUS) || \
1767 		CONFIG_IS_ENABLED(DM_I2C)
do_i2c_bus_num(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1768 static int do_i2c_bus_num(struct cmd_tbl *cmdtp, int flag, int argc,
1769 			  char *const argv[])
1770 {
1771 	int		ret = 0;
1772 	int	bus_no;
1773 
1774 	if (argc == 1) {
1775 		/* querying current setting */
1776 #if CONFIG_IS_ENABLED(DM_I2C)
1777 		struct udevice *bus;
1778 
1779 		if (!i2c_get_cur_bus(&bus))
1780 			bus_no = dev_seq(bus);
1781 		else
1782 			bus_no = -1;
1783 #else
1784 		bus_no = i2c_get_bus_num();
1785 #endif
1786 		printf("Current bus is %d\n", bus_no);
1787 	} else {
1788 		bus_no = dectoul(argv[1], NULL);
1789 #if CONFIG_IS_ENABLED(SYS_I2C_LEGACY)
1790 		if (bus_no >= CONFIG_SYS_NUM_I2C_BUSES) {
1791 			printf("Invalid bus %d\n", bus_no);
1792 			return -1;
1793 		}
1794 #endif
1795 		printf("Setting bus to %d\n", bus_no);
1796 #if CONFIG_IS_ENABLED(DM_I2C)
1797 		ret = cmd_i2c_set_bus_num(bus_no);
1798 #else
1799 		ret = i2c_set_bus_num(bus_no);
1800 #endif
1801 		if (ret)
1802 			printf("Failure changing bus number (%d)\n", ret);
1803 	}
1804 
1805 	return ret ? CMD_RET_FAILURE : 0;
1806 }
1807 #endif  /* CONFIG_IS_ENABLED(SYS_I2C_LEGACY) */
1808 
1809 /**
1810  * do_i2c_bus_speed() - Handle the "i2c speed" command-line command
1811  * @cmdtp:	Command data struct pointer
1812  * @flag:	Command flag
1813  * @argc:	Command-line argument count
1814  * @argv:	Array of command-line arguments
1815  *
1816  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1817  * on error.
1818  */
do_i2c_bus_speed(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1819 static int do_i2c_bus_speed(struct cmd_tbl *cmdtp, int flag, int argc,
1820 			    char *const argv[])
1821 {
1822 	int speed, ret=0;
1823 
1824 #if CONFIG_IS_ENABLED(DM_I2C)
1825 	struct udevice *bus;
1826 
1827 	if (i2c_get_cur_bus(&bus))
1828 		return 1;
1829 #endif
1830 	if (argc == 1) {
1831 #if CONFIG_IS_ENABLED(DM_I2C)
1832 		speed = dm_i2c_get_bus_speed(bus);
1833 #else
1834 		speed = i2c_get_bus_speed();
1835 #endif
1836 		/* querying current speed */
1837 		printf("Current bus speed=%d\n", speed);
1838 	} else {
1839 		speed = dectoul(argv[1], NULL);
1840 		printf("Setting bus speed to %d Hz\n", speed);
1841 #if CONFIG_IS_ENABLED(DM_I2C)
1842 		ret = dm_i2c_set_bus_speed(bus, speed);
1843 #else
1844 		ret = i2c_set_bus_speed(speed);
1845 #endif
1846 		if (ret)
1847 			printf("Failure changing bus speed (%d)\n", ret);
1848 	}
1849 
1850 	return ret ? CMD_RET_FAILURE : 0;
1851 }
1852 
1853 /**
1854  * do_i2c_mm() - Handle the "i2c mm" command-line command
1855  * @cmdtp:	Command data struct pointer
1856  * @flag:	Command flag
1857  * @argc:	Command-line argument count
1858  * @argv:	Array of command-line arguments
1859  *
1860  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1861  * on error.
1862  */
do_i2c_mm(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1863 static int do_i2c_mm(struct cmd_tbl *cmdtp, int flag, int argc,
1864 		     char *const argv[])
1865 {
1866 	return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
1867 }
1868 
1869 /**
1870  * do_i2c_nm() - Handle the "i2c nm" command-line command
1871  * @cmdtp:	Command data struct pointer
1872  * @flag:	Command flag
1873  * @argc:	Command-line argument count
1874  * @argv:	Array of command-line arguments
1875  *
1876  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1877  * on error.
1878  */
do_i2c_nm(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1879 static int do_i2c_nm(struct cmd_tbl *cmdtp, int flag, int argc,
1880 		     char *const argv[])
1881 {
1882 	return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
1883 }
1884 
1885 /**
1886  * do_i2c_reset() - Handle the "i2c reset" command-line command
1887  * @cmdtp:	Command data struct pointer
1888  * @flag:	Command flag
1889  * @argc:	Command-line argument count
1890  * @argv:	Array of command-line arguments
1891  *
1892  * Returns zero always.
1893  */
do_i2c_reset(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1894 static int do_i2c_reset(struct cmd_tbl *cmdtp, int flag, int argc,
1895 			char *const argv[])
1896 {
1897 #if CONFIG_IS_ENABLED(DM_I2C)
1898 	struct udevice *bus;
1899 
1900 	if (i2c_get_cur_bus(&bus))
1901 		return CMD_RET_FAILURE;
1902 	if (i2c_deblock(bus)) {
1903 		printf("Error: Not supported by the driver\n");
1904 		return CMD_RET_FAILURE;
1905 	}
1906 #elif CONFIG_IS_ENABLED(SYS_I2C_LEGACY)
1907 	i2c_init(I2C_ADAP->speed, I2C_ADAP->slaveaddr);
1908 #endif
1909 	return 0;
1910 }
1911 
1912 static struct cmd_tbl cmd_i2c_sub[] = {
1913 #if CONFIG_IS_ENABLED(SYS_I2C_LEGACY) || CONFIG_IS_ENABLED(DM_I2C)
1914 	U_BOOT_CMD_MKENT(bus, 1, 1, do_i2c_show_bus, "", ""),
1915 #endif
1916 	U_BOOT_CMD_MKENT(crc32, 3, 1, do_i2c_crc, "", ""),
1917 #if CONFIG_IS_ENABLED(SYS_I2C_LEGACY) || \
1918 	defined(CONFIG_I2C_MULTI_BUS) || CONFIG_IS_ENABLED(DM_I2C)
1919 	U_BOOT_CMD_MKENT(dev, 1, 1, do_i2c_bus_num, "", ""),
1920 #endif  /* CONFIG_I2C_MULTI_BUS */
1921 #if defined(CONFIG_I2C_EDID)
1922 	U_BOOT_CMD_MKENT(edid, 1, 1, do_edid, "", ""),
1923 #endif  /* CONFIG_I2C_EDID */
1924 	U_BOOT_CMD_MKENT(loop, 3, 1, do_i2c_loop, "", ""),
1925 	U_BOOT_CMD_MKENT(md, 3, 1, do_i2c_md, "", ""),
1926 	U_BOOT_CMD_MKENT(mm, 2, 1, do_i2c_mm, "", ""),
1927 	U_BOOT_CMD_MKENT(mw, 3, 1, do_i2c_mw, "", ""),
1928 	U_BOOT_CMD_MKENT(nm, 2, 1, do_i2c_nm, "", ""),
1929 	U_BOOT_CMD_MKENT(probe, 0, 1, do_i2c_probe, "", ""),
1930 	U_BOOT_CMD_MKENT(read, 5, 1, do_i2c_read, "", ""),
1931 	U_BOOT_CMD_MKENT(write, 6, 0, do_i2c_write, "", ""),
1932 #if CONFIG_IS_ENABLED(DM_I2C)
1933 	U_BOOT_CMD_MKENT(flags, 2, 1, do_i2c_flags, "", ""),
1934 	U_BOOT_CMD_MKENT(olen, 2, 1, do_i2c_olen, "", ""),
1935 #endif
1936 	U_BOOT_CMD_MKENT(reset, 0, 1, do_i2c_reset, "", ""),
1937 #if defined(CONFIG_CMD_SDRAM)
1938 	U_BOOT_CMD_MKENT(sdram, 1, 1, do_sdram, "", ""),
1939 #endif
1940 	U_BOOT_CMD_MKENT(speed, 1, 1, do_i2c_bus_speed, "", ""),
1941 };
1942 
i2c_reloc(void)1943 static __maybe_unused void i2c_reloc(void)
1944 {
1945 	static int relocated;
1946 
1947 	if (!relocated) {
1948 		fixup_cmdtable(cmd_i2c_sub, ARRAY_SIZE(cmd_i2c_sub));
1949 		relocated = 1;
1950 	};
1951 }
1952 
1953 /**
1954  * do_i2c() - Handle the "i2c" command-line command
1955  * @cmdtp:	Command data struct pointer
1956  * @flag:	Command flag
1957  * @argc:	Command-line argument count
1958  * @argv:	Array of command-line arguments
1959  *
1960  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1961  * on error.
1962  */
do_i2c(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1963 static int do_i2c(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[])
1964 {
1965 	struct cmd_tbl *c;
1966 
1967 #ifdef CONFIG_NEEDS_MANUAL_RELOC
1968 	i2c_reloc();
1969 #endif
1970 
1971 	if (argc < 2)
1972 		return CMD_RET_USAGE;
1973 
1974 	/* Strip off leading 'i2c' command argument */
1975 	argc--;
1976 	argv++;
1977 
1978 	c = find_cmd_tbl(argv[0], &cmd_i2c_sub[0], ARRAY_SIZE(cmd_i2c_sub));
1979 
1980 	if (c)
1981 		return c->cmd(cmdtp, flag, argc, argv);
1982 	else
1983 		return CMD_RET_USAGE;
1984 }
1985 
1986 /***************************************************/
1987 #ifdef CONFIG_SYS_LONGHELP
1988 static char i2c_help_text[] =
1989 #if CONFIG_IS_ENABLED(SYS_I2C_LEGACY) || CONFIG_IS_ENABLED(DM_I2C)
1990 	"bus [muxtype:muxaddr:muxchannel] - show I2C bus info\n"
1991 	"i2c " /* That's the prefix for the crc32 command below. */
1992 #endif
1993 	"crc32 chip address[.0, .1, .2] count - compute CRC32 checksum\n"
1994 #if CONFIG_IS_ENABLED(SYS_I2C_LEGACY) || \
1995 	defined(CONFIG_I2C_MULTI_BUS) || CONFIG_IS_ENABLED(DM_I2C)
1996 	"i2c dev [dev] - show or set current I2C bus\n"
1997 #endif  /* CONFIG_I2C_MULTI_BUS */
1998 #if defined(CONFIG_I2C_EDID)
1999 	"i2c edid chip - print EDID configuration information\n"
2000 #endif  /* CONFIG_I2C_EDID */
2001 	"i2c loop chip address[.0, .1, .2] [# of objects] - looping read of device\n"
2002 	"i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device\n"
2003 	"i2c mm chip address[.0, .1, .2] - write to I2C device (auto-incrementing)\n"
2004 	"i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)\n"
2005 	"i2c nm chip address[.0, .1, .2] - write to I2C device (constant address)\n"
2006 	"i2c probe [address] - test for and show device(s) on the I2C bus\n"
2007 	"i2c read chip address[.0, .1, .2] length memaddress - read to memory\n"
2008 	"i2c write memaddress chip address[.0, .1, .2] length [-s] - write memory\n"
2009 	"          to I2C; the -s option selects bulk write in a single transaction\n"
2010 #if CONFIG_IS_ENABLED(DM_I2C)
2011 	"i2c flags chip [flags] - set or get chip flags\n"
2012 	"i2c olen chip [offset_length] - set or get chip offset length\n"
2013 #endif
2014 	"i2c reset - re-init the I2C Controller\n"
2015 #if defined(CONFIG_CMD_SDRAM)
2016 	"i2c sdram chip - print SDRAM configuration information\n"
2017 #endif
2018 	"i2c speed [speed] - show or set I2C bus speed";
2019 #endif
2020 
2021 U_BOOT_CMD(
2022 	i2c, 7, 1, do_i2c,
2023 	"I2C sub-system",
2024 	i2c_help_text
2025 );
2026