1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) Excito Elektronik i Skåne AB, 2010.
4  * Author: Tor Krill <tor@excito.com>
5  *
6  * Copyright (C) 2015, 2019 Stefan Roese <sr@denx.de>
7  */
8 
9 /*
10  * This driver supports the SATA controller of some Mavell SoC's.
11  * Here a (most likely incomplete) list of the supported SoC's:
12  * - Kirkwood
13  * - Armada 370
14  * - Armada XP
15  *
16  * This driver implementation is an alternative to the already available
17  * driver via the "ide" commands interface (drivers/block/mvsata_ide.c).
18  * But this driver only supports PIO mode and as this new driver also
19  * supports transfer via DMA, its much faster.
20  *
21  * Please note, that the newer SoC's (e.g. Armada 38x) are not supported
22  * by this driver. As they have an AHCI compatible SATA controller
23  * integrated.
24  */
25 
26 /*
27  * TODO:
28  * Better error recovery
29  * No support for using PRDs (Thus max 64KB transfers)
30  * No NCQ support
31  * No port multiplier support
32  */
33 
34 #include <common.h>
35 #include <ahci.h>
36 #include <blk.h>
37 #include <cpu_func.h>
38 #include <dm.h>
39 #include <log.h>
40 #include <asm/cache.h>
41 #include <asm/global_data.h>
42 #include <dm/device-internal.h>
43 #include <dm/lists.h>
44 #include <fis.h>
45 #include <libata.h>
46 #include <malloc.h>
47 #include <sata.h>
48 #include <linux/bitops.h>
49 #include <linux/delay.h>
50 #include <linux/errno.h>
51 #include <asm/io.h>
52 #include <linux/mbus.h>
53 
54 #include <asm/arch/soc.h>
55 #if defined(CONFIG_ARCH_KIRKWOOD)
56 #define SATAHC_BASE		KW_SATA_BASE
57 #else
58 #define SATAHC_BASE		MVEBU_AXP_SATA_BASE
59 #endif
60 
61 #define SATA0_BASE		(SATAHC_BASE + 0x2000)
62 #define SATA1_BASE		(SATAHC_BASE + 0x4000)
63 
64 /* EDMA registers */
65 #define EDMA_CFG		0x000
66 #define EDMA_CFG_NCQ		(1 << 5)
67 #define EDMA_CFG_EQUE		(1 << 9)
68 #define EDMA_TIMER		0x004
69 #define EDMA_IECR		0x008
70 #define EDMA_IEMR		0x00c
71 #define EDMA_RQBA_HI		0x010
72 #define EDMA_RQIPR		0x014
73 #define EDMA_RQIPR_IPMASK	(0x1f << 5)
74 #define EDMA_RQIPR_IPSHIFT	5
75 #define EDMA_RQOPR		0x018
76 #define EDMA_RQOPR_OPMASK	(0x1f << 5)
77 #define EDMA_RQOPR_OPSHIFT	5
78 #define EDMA_RSBA_HI		0x01c
79 #define EDMA_RSIPR		0x020
80 #define EDMA_RSIPR_IPMASK	(0x1f << 3)
81 #define EDMA_RSIPR_IPSHIFT	3
82 #define	EDMA_RSOPR		0x024
83 #define EDMA_RSOPR_OPMASK	(0x1f << 3)
84 #define EDMA_RSOPR_OPSHIFT	3
85 #define EDMA_CMD		0x028
86 #define EDMA_CMD_ENEDMA		(0x01 << 0)
87 #define EDMA_CMD_DISEDMA	(0x01 << 1)
88 #define EDMA_CMD_ATARST		(0x01 << 2)
89 #define EDMA_CMD_FREEZE		(0x01 << 4)
90 #define EDMA_TEST_CTL		0x02c
91 #define EDMA_STATUS		0x030
92 #define EDMA_IORTO		0x034
93 #define EDMA_CDTR		0x040
94 #define EDMA_HLTCND		0x060
95 #define EDMA_NTSR		0x094
96 
97 /* Basic DMA registers */
98 #define BDMA_CMD		0x224
99 #define BDMA_STATUS		0x228
100 #define BDMA_DTLB		0x22c
101 #define BDMA_DTHB		0x230
102 #define BDMA_DRL		0x234
103 #define BDMA_DRH		0x238
104 
105 /* SATA Interface registers */
106 #define SIR_ICFG		0x050
107 #define SIR_CFG_GEN2EN		(0x1 << 7)
108 #define SIR_PLL_CFG		0x054
109 #define SIR_SSTATUS		0x300
110 #define SSTATUS_DET_MASK	(0x0f << 0)
111 #define SIR_SERROR		0x304
112 #define SIR_SCONTROL		0x308
113 #define SIR_SCONTROL_DETEN	(0x01 << 0)
114 #define SIR_LTMODE		0x30c
115 #define SIR_LTMODE_NELBE	(0x01 << 7)
116 #define SIR_PHYMODE3		0x310
117 #define SIR_PHYMODE4		0x314
118 #define SIR_PHYMODE1		0x32c
119 #define SIR_PHYMODE2		0x330
120 #define SIR_BIST_CTRL		0x334
121 #define SIR_BIST_DW1		0x338
122 #define SIR_BIST_DW2		0x33c
123 #define SIR_SERR_IRQ_MASK	0x340
124 #define SIR_SATA_IFCTRL		0x344
125 #define SIR_SATA_TESTCTRL	0x348
126 #define SIR_SATA_IFSTATUS	0x34c
127 #define SIR_VEND_UNIQ		0x35c
128 #define SIR_FIS_CFG		0x360
129 #define SIR_FIS_IRQ_CAUSE	0x364
130 #define SIR_FIS_IRQ_MASK	0x368
131 #define SIR_FIS_DWORD0		0x370
132 #define SIR_FIS_DWORD1		0x374
133 #define SIR_FIS_DWORD2		0x378
134 #define SIR_FIS_DWORD3		0x37c
135 #define SIR_FIS_DWORD4		0x380
136 #define SIR_FIS_DWORD5		0x384
137 #define SIR_FIS_DWORD6		0x388
138 #define SIR_PHYM9_GEN2		0x398
139 #define SIR_PHYM9_GEN1		0x39c
140 #define SIR_PHY_CFG		0x3a0
141 #define SIR_PHYCTL		0x3a4
142 #define SIR_PHYM10		0x3a8
143 #define SIR_PHYM12		0x3b0
144 
145 /* Shadow registers */
146 #define	PIO_DATA		0x100
147 #define PIO_ERR_FEATURES	0x104
148 #define PIO_SECTOR_COUNT	0x108
149 #define PIO_LBA_LOW		0x10c
150 #define PIO_LBA_MID		0x110
151 #define PIO_LBA_HI		0x114
152 #define PIO_DEVICE		0x118
153 #define PIO_CMD_STATUS		0x11c
154 #define PIO_STATUS_ERR		(0x01 << 0)
155 #define PIO_STATUS_DRQ		(0x01 << 3)
156 #define PIO_STATUS_DF		(0x01 << 5)
157 #define PIO_STATUS_DRDY		(0x01 << 6)
158 #define PIO_STATUS_BSY		(0x01 << 7)
159 #define PIO_CTRL_ALTSTAT	0x120
160 
161 /* SATAHC arbiter registers */
162 #define SATAHC_CFG		0x000
163 #define SATAHC_RQOP		0x004
164 #define SATAHC_RQIP		0x008
165 #define SATAHC_ICT		0x00c
166 #define SATAHC_ITT		0x010
167 #define SATAHC_ICR		0x014
168 #define SATAHC_ICR_PORT0	(0x01 << 0)
169 #define SATAHC_ICR_PORT1	(0x01 << 1)
170 #define SATAHC_MIC		0x020
171 #define SATAHC_MIM		0x024
172 #define SATAHC_LED_CFG		0x02c
173 
174 #define REQUEST_QUEUE_SIZE	32
175 #define RESPONSE_QUEUE_SIZE	REQUEST_QUEUE_SIZE
176 
177 struct crqb {
178 	u32 dtb_low;		/* DW0 */
179 	u32 dtb_high;		/* DW1 */
180 	u32 control_flags;	/* DW2 */
181 	u32 drb_count;		/* DW3 */
182 	u32 ata_cmd_feat;	/* DW4 */
183 	u32 ata_addr;		/* DW5 */
184 	u32 ata_addr_exp;	/* DW6 */
185 	u32 ata_sect_count;	/* DW7 */
186 };
187 
188 #define CRQB_ALIGN			0x400
189 
190 #define CRQB_CNTRLFLAGS_DIR		(0x01 << 0)
191 #define CRQB_CNTRLFLAGS_DQTAGMASK	(0x1f << 1)
192 #define CRQB_CNTRLFLAGS_DQTAGSHIFT	1
193 #define CRQB_CNTRLFLAGS_PMPORTMASK	(0x0f << 12)
194 #define CRQB_CNTRLFLAGS_PMPORTSHIFT	12
195 #define CRQB_CNTRLFLAGS_PRDMODE		(0x01 << 16)
196 #define CRQB_CNTRLFLAGS_HQTAGMASK	(0x1f << 17)
197 #define CRQB_CNTRLFLAGS_HQTAGSHIFT	17
198 
199 #define CRQB_CMDFEAT_CMDMASK		(0xff << 16)
200 #define CRQB_CMDFEAT_CMDSHIFT		16
201 #define CRQB_CMDFEAT_FEATMASK		(0xff << 16)
202 #define CRQB_CMDFEAT_FEATSHIFT		24
203 
204 #define CRQB_ADDR_LBA_LOWMASK		(0xff << 0)
205 #define CRQB_ADDR_LBA_LOWSHIFT		0
206 #define CRQB_ADDR_LBA_MIDMASK		(0xff << 8)
207 #define CRQB_ADDR_LBA_MIDSHIFT		8
208 #define CRQB_ADDR_LBA_HIGHMASK		(0xff << 16)
209 #define CRQB_ADDR_LBA_HIGHSHIFT		16
210 #define CRQB_ADDR_DEVICE_MASK		(0xff << 24)
211 #define CRQB_ADDR_DEVICE_SHIFT		24
212 
213 #define CRQB_ADDR_LBA_LOW_EXP_MASK	(0xff << 0)
214 #define CRQB_ADDR_LBA_LOW_EXP_SHIFT	0
215 #define CRQB_ADDR_LBA_MID_EXP_MASK	(0xff << 8)
216 #define CRQB_ADDR_LBA_MID_EXP_SHIFT	8
217 #define CRQB_ADDR_LBA_HIGH_EXP_MASK	(0xff << 16)
218 #define CRQB_ADDR_LBA_HIGH_EXP_SHIFT	16
219 #define CRQB_ADDR_FEATURE_EXP_MASK	(0xff << 24)
220 #define CRQB_ADDR_FEATURE_EXP_SHIFT	24
221 
222 #define CRQB_SECTCOUNT_COUNT_MASK	(0xff << 0)
223 #define CRQB_SECTCOUNT_COUNT_SHIFT	0
224 #define CRQB_SECTCOUNT_COUNT_EXP_MASK	(0xff << 8)
225 #define CRQB_SECTCOUNT_COUNT_EXP_SHIFT	8
226 
227 #define MVSATA_WIN_CONTROL(w)	(SATAHC_BASE + 0x30 + ((w) << 4))
228 #define MVSATA_WIN_BASE(w)	(SATAHC_BASE + 0x34 + ((w) << 4))
229 
230 struct eprd {
231 	u32 phyaddr_low;
232 	u32 bytecount_eot;
233 	u32 phyaddr_hi;
234 	u32 reserved;
235 };
236 
237 #define EPRD_PHYADDR_MASK	0xfffffffe
238 #define EPRD_BYTECOUNT_MASK	0x0000ffff
239 #define EPRD_EOT		(0x01 << 31)
240 
241 struct crpb {
242 	u32 id;
243 	u32 flags;
244 	u32 timestamp;
245 };
246 
247 #define CRPB_ALIGN		0x100
248 
249 #define READ_CMD		0
250 #define WRITE_CMD		1
251 
252 /*
253  * Since we don't use PRDs yet max transfer size
254  * is 64KB
255  */
256 #define MV_ATA_MAX_SECTORS	(65535 / ATA_SECT_SIZE)
257 
258 /* Keep track if hw is initialized or not */
259 static u32 hw_init;
260 
261 struct mv_priv {
262 	char name[12];
263 	u32 link;
264 	u32 regbase;
265 	u32 queue_depth;
266 	u16 pio;
267 	u16 mwdma;
268 	u16 udma;
269 	int dev_nr;
270 
271 	void *crqb_alloc;
272 	struct crqb *request;
273 
274 	void *crpb_alloc;
275 	struct crpb *response;
276 };
277 
ata_wait_register(u32 * addr,u32 mask,u32 val,u32 timeout_msec)278 static int ata_wait_register(u32 *addr, u32 mask, u32 val, u32 timeout_msec)
279 {
280 	ulong start;
281 
282 	start = get_timer(0);
283 	do {
284 		if ((in_le32(addr) & mask) == val)
285 			return 0;
286 	} while (get_timer(start) < timeout_msec);
287 
288 	return -ETIMEDOUT;
289 }
290 
291 /* Cut from sata_mv in linux kernel */
mv_stop_edma_engine(struct udevice * dev,int port)292 static int mv_stop_edma_engine(struct udevice *dev, int port)
293 {
294 	struct mv_priv *priv = dev_get_plat(dev);
295 	int i;
296 
297 	/* Disable eDMA. The disable bit auto clears. */
298 	out_le32(priv->regbase + EDMA_CMD, EDMA_CMD_DISEDMA);
299 
300 	/* Wait for the chip to confirm eDMA is off. */
301 	for (i = 10000; i > 0; i--) {
302 		u32 reg = in_le32(priv->regbase + EDMA_CMD);
303 		if (!(reg & EDMA_CMD_ENEDMA)) {
304 			debug("EDMA stop on port %d succesful\n", port);
305 			return 0;
306 		}
307 		udelay(10);
308 	}
309 	debug("EDMA stop on port %d failed\n", port);
310 	return -1;
311 }
312 
mv_start_edma_engine(struct udevice * dev,int port)313 static int mv_start_edma_engine(struct udevice *dev, int port)
314 {
315 	struct mv_priv *priv = dev_get_plat(dev);
316 	u32 tmp;
317 
318 	/* Check preconditions */
319 	tmp = in_le32(priv->regbase + SIR_SSTATUS);
320 	if ((tmp & SSTATUS_DET_MASK) != 0x03) {
321 		printf("Device error on port: %d\n", port);
322 		return -1;
323 	}
324 
325 	tmp = in_le32(priv->regbase + PIO_CMD_STATUS);
326 	if (tmp & (ATA_BUSY | ATA_DRQ)) {
327 		printf("Device not ready on port: %d\n", port);
328 		return -1;
329 	}
330 
331 	/* Clear interrupt cause */
332 	out_le32(priv->regbase + EDMA_IECR, 0x0);
333 
334 	tmp = in_le32(SATAHC_BASE + SATAHC_ICR);
335 	tmp &= ~(port == 0 ? SATAHC_ICR_PORT0 : SATAHC_ICR_PORT1);
336 	out_le32(SATAHC_BASE + SATAHC_ICR, tmp);
337 
338 	/* Configure edma operation */
339 	tmp = in_le32(priv->regbase + EDMA_CFG);
340 	tmp &= ~EDMA_CFG_NCQ;	/* No NCQ */
341 	tmp &= ~EDMA_CFG_EQUE;	/* Dont queue operations */
342 	out_le32(priv->regbase + EDMA_CFG, tmp);
343 
344 	out_le32(priv->regbase + SIR_FIS_IRQ_CAUSE, 0x0);
345 
346 	/* Configure fis, set all to no-wait for now */
347 	out_le32(priv->regbase + SIR_FIS_CFG, 0x0);
348 
349 	/* Setup request queue */
350 	out_le32(priv->regbase + EDMA_RQBA_HI, 0x0);
351 	out_le32(priv->regbase + EDMA_RQIPR, priv->request);
352 	out_le32(priv->regbase + EDMA_RQOPR, 0x0);
353 
354 	/* Setup response queue */
355 	out_le32(priv->regbase + EDMA_RSBA_HI, 0x0);
356 	out_le32(priv->regbase + EDMA_RSOPR, priv->response);
357 	out_le32(priv->regbase + EDMA_RSIPR, 0x0);
358 
359 	/* Start edma */
360 	out_le32(priv->regbase + EDMA_CMD, EDMA_CMD_ENEDMA);
361 
362 	return 0;
363 }
364 
mv_reset_channel(struct udevice * dev,int port)365 static int mv_reset_channel(struct udevice *dev, int port)
366 {
367 	struct mv_priv *priv = dev_get_plat(dev);
368 
369 	/* Make sure edma is stopped  */
370 	mv_stop_edma_engine(dev, port);
371 
372 	out_le32(priv->regbase + EDMA_CMD, EDMA_CMD_ATARST);
373 	udelay(25);		/* allow reset propagation */
374 	out_le32(priv->regbase + EDMA_CMD, 0);
375 	mdelay(10);
376 
377 	return 0;
378 }
379 
mv_reset_port(struct udevice * dev,int port)380 static void mv_reset_port(struct udevice *dev, int port)
381 {
382 	struct mv_priv *priv = dev_get_plat(dev);
383 
384 	mv_reset_channel(dev, port);
385 
386 	out_le32(priv->regbase + EDMA_CMD, 0x0);
387 	out_le32(priv->regbase + EDMA_CFG, 0x101f);
388 	out_le32(priv->regbase + EDMA_IECR, 0x0);
389 	out_le32(priv->regbase + EDMA_IEMR, 0x0);
390 	out_le32(priv->regbase + EDMA_RQBA_HI, 0x0);
391 	out_le32(priv->regbase + EDMA_RQIPR, 0x0);
392 	out_le32(priv->regbase + EDMA_RQOPR, 0x0);
393 	out_le32(priv->regbase + EDMA_RSBA_HI, 0x0);
394 	out_le32(priv->regbase + EDMA_RSIPR, 0x0);
395 	out_le32(priv->regbase + EDMA_RSOPR, 0x0);
396 	out_le32(priv->regbase + EDMA_IORTO, 0xfa);
397 }
398 
mv_reset_one_hc(void)399 static void mv_reset_one_hc(void)
400 {
401 	out_le32(SATAHC_BASE + SATAHC_ICT, 0x00);
402 	out_le32(SATAHC_BASE + SATAHC_ITT, 0x00);
403 	out_le32(SATAHC_BASE + SATAHC_ICR, 0x00);
404 }
405 
probe_port(struct udevice * dev,int port)406 static int probe_port(struct udevice *dev, int port)
407 {
408 	struct mv_priv *priv = dev_get_plat(dev);
409 	int tries, tries2, set15 = 0;
410 	u32 tmp;
411 
412 	debug("Probe port: %d\n", port);
413 
414 	for (tries = 0; tries < 2; tries++) {
415 		/* Clear SError */
416 		out_le32(priv->regbase + SIR_SERROR, 0x0);
417 
418 		/* trigger com-init */
419 		tmp = in_le32(priv->regbase + SIR_SCONTROL);
420 		tmp = (tmp & 0x0f0) | 0x300 | SIR_SCONTROL_DETEN;
421 		out_le32(priv->regbase + SIR_SCONTROL, tmp);
422 
423 		mdelay(1);
424 
425 		tmp = in_le32(priv->regbase + SIR_SCONTROL);
426 		tries2 = 5;
427 		do {
428 			tmp = (tmp & 0x0f0) | 0x300;
429 			out_le32(priv->regbase + SIR_SCONTROL, tmp);
430 			mdelay(10);
431 			tmp = in_le32(priv->regbase + SIR_SCONTROL);
432 		} while ((tmp & 0xf0f) != 0x300 && tries2--);
433 
434 		mdelay(10);
435 
436 		for (tries2 = 0; tries2 < 200; tries2++) {
437 			tmp = in_le32(priv->regbase + SIR_SSTATUS);
438 			if ((tmp & SSTATUS_DET_MASK) == 0x03) {
439 				debug("Found device on port\n");
440 				return 0;
441 			}
442 			mdelay(1);
443 		}
444 
445 		if ((tmp & SSTATUS_DET_MASK) == 0) {
446 			debug("No device attached on port %d\n", port);
447 			return -ENODEV;
448 		}
449 
450 		if (!set15) {
451 			/* Try on 1.5Gb/S */
452 			debug("Try 1.5Gb link\n");
453 			set15 = 1;
454 			out_le32(priv->regbase + SIR_SCONTROL, 0x304);
455 
456 			tmp = in_le32(priv->regbase + SIR_ICFG);
457 			tmp &= ~SIR_CFG_GEN2EN;
458 			out_le32(priv->regbase + SIR_ICFG, tmp);
459 
460 			mv_reset_channel(dev, port);
461 		}
462 	}
463 
464 	debug("Failed to probe port\n");
465 	return -1;
466 }
467 
468 /* Get request queue in pointer */
get_reqip(struct udevice * dev,int port)469 static int get_reqip(struct udevice *dev, int port)
470 {
471 	struct mv_priv *priv = dev_get_plat(dev);
472 	u32 tmp;
473 
474 	tmp = in_le32(priv->regbase + EDMA_RQIPR) & EDMA_RQIPR_IPMASK;
475 	tmp = tmp >> EDMA_RQIPR_IPSHIFT;
476 
477 	return tmp;
478 }
479 
set_reqip(struct udevice * dev,int port,int reqin)480 static void set_reqip(struct udevice *dev, int port, int reqin)
481 {
482 	struct mv_priv *priv = dev_get_plat(dev);
483 	u32 tmp;
484 
485 	tmp = in_le32(priv->regbase + EDMA_RQIPR) & ~EDMA_RQIPR_IPMASK;
486 	tmp |= ((reqin << EDMA_RQIPR_IPSHIFT) & EDMA_RQIPR_IPMASK);
487 	out_le32(priv->regbase + EDMA_RQIPR, tmp);
488 }
489 
490 /* Get next available slot, ignoring possible overwrite */
get_next_reqip(struct udevice * dev,int port)491 static int get_next_reqip(struct udevice *dev, int port)
492 {
493 	int slot = get_reqip(dev, port);
494 	slot = (slot + 1) % REQUEST_QUEUE_SIZE;
495 	return slot;
496 }
497 
498 /* Get response queue in pointer */
get_rspip(struct udevice * dev,int port)499 static int get_rspip(struct udevice *dev, int port)
500 {
501 	struct mv_priv *priv = dev_get_plat(dev);
502 	u32 tmp;
503 
504 	tmp = in_le32(priv->regbase + EDMA_RSIPR) & EDMA_RSIPR_IPMASK;
505 	tmp = tmp >> EDMA_RSIPR_IPSHIFT;
506 
507 	return tmp;
508 }
509 
510 /* Get response queue out pointer */
get_rspop(struct udevice * dev,int port)511 static int get_rspop(struct udevice *dev, int port)
512 {
513 	struct mv_priv *priv = dev_get_plat(dev);
514 	u32 tmp;
515 
516 	tmp = in_le32(priv->regbase + EDMA_RSOPR) & EDMA_RSOPR_OPMASK;
517 	tmp = tmp >> EDMA_RSOPR_OPSHIFT;
518 	return tmp;
519 }
520 
521 /* Get next response queue pointer  */
get_next_rspop(struct udevice * dev,int port)522 static int get_next_rspop(struct udevice *dev, int port)
523 {
524 	return (get_rspop(dev, port) + 1) % RESPONSE_QUEUE_SIZE;
525 }
526 
527 /* Set response queue pointer */
set_rspop(struct udevice * dev,int port,int reqin)528 static void set_rspop(struct udevice *dev, int port, int reqin)
529 {
530 	struct mv_priv *priv = dev_get_plat(dev);
531 	u32 tmp;
532 
533 	tmp = in_le32(priv->regbase + EDMA_RSOPR) & ~EDMA_RSOPR_OPMASK;
534 	tmp |= ((reqin << EDMA_RSOPR_OPSHIFT) & EDMA_RSOPR_OPMASK);
535 
536 	out_le32(priv->regbase + EDMA_RSOPR, tmp);
537 }
538 
wait_dma_completion(struct udevice * dev,int port,int index,u32 timeout_msec)539 static int wait_dma_completion(struct udevice *dev, int port, int index,
540 			       u32 timeout_msec)
541 {
542 	u32 tmp, res;
543 
544 	tmp = port == 0 ? SATAHC_ICR_PORT0 : SATAHC_ICR_PORT1;
545 	res = ata_wait_register((u32 *)(SATAHC_BASE + SATAHC_ICR), tmp,
546 				tmp, timeout_msec);
547 	if (res)
548 		printf("Failed to wait for completion on port %d\n", port);
549 
550 	return res;
551 }
552 
process_responses(struct udevice * dev,int port)553 static void process_responses(struct udevice *dev, int port)
554 {
555 #ifdef DEBUG
556 	struct mv_priv *priv = dev_get_plat(dev);
557 #endif
558 	u32 tmp;
559 	u32 outind = get_rspop(dev, port);
560 
561 	/* Ack interrupts */
562 	tmp = in_le32(SATAHC_BASE + SATAHC_ICR);
563 	if (port == 0)
564 		tmp &= ~(BIT(0) | BIT(8));
565 	else
566 		tmp &= ~(BIT(1) | BIT(9));
567 	tmp &= ~(BIT(4));
568 	out_le32(SATAHC_BASE + SATAHC_ICR, tmp);
569 
570 	while (get_rspip(dev, port) != outind) {
571 #ifdef DEBUG
572 		debug("Response index %d flags %08x on port %d\n", outind,
573 		      priv->response[outind].flags, port);
574 #endif
575 		outind = get_next_rspop(dev, port);
576 		set_rspop(dev, port, outind);
577 	}
578 }
579 
mv_ata_exec_ata_cmd(struct udevice * dev,int port,struct sata_fis_h2d * cfis,u8 * buffer,u32 len,u32 iswrite)580 static int mv_ata_exec_ata_cmd(struct udevice *dev, int port,
581 			       struct sata_fis_h2d *cfis,
582 			       u8 *buffer, u32 len, u32 iswrite)
583 {
584 	struct mv_priv *priv = dev_get_plat(dev);
585 	struct crqb *req;
586 	int slot;
587 	u32 start;
588 
589 	if (len >= 64 * 1024) {
590 		printf("We only support <64K transfers for now\n");
591 		return -1;
592 	}
593 
594 	/* Initialize request */
595 	slot = get_reqip(dev, port);
596 	memset(&priv->request[slot], 0, sizeof(struct crqb));
597 	req = &priv->request[slot];
598 
599 	req->dtb_low = (u32)buffer;
600 
601 	/* Dont use PRDs */
602 	req->control_flags = CRQB_CNTRLFLAGS_PRDMODE;
603 	req->control_flags |= iswrite ? 0 : CRQB_CNTRLFLAGS_DIR;
604 	req->control_flags |=
605 	    ((cfis->pm_port_c << CRQB_CNTRLFLAGS_PMPORTSHIFT)
606 	     & CRQB_CNTRLFLAGS_PMPORTMASK);
607 
608 	req->drb_count = len;
609 
610 	req->ata_cmd_feat = (cfis->command << CRQB_CMDFEAT_CMDSHIFT) &
611 		CRQB_CMDFEAT_CMDMASK;
612 	req->ata_cmd_feat |= (cfis->features << CRQB_CMDFEAT_FEATSHIFT) &
613 		CRQB_CMDFEAT_FEATMASK;
614 
615 	req->ata_addr = (cfis->lba_low << CRQB_ADDR_LBA_LOWSHIFT) &
616 		CRQB_ADDR_LBA_LOWMASK;
617 	req->ata_addr |= (cfis->lba_mid << CRQB_ADDR_LBA_MIDSHIFT) &
618 		CRQB_ADDR_LBA_MIDMASK;
619 	req->ata_addr |= (cfis->lba_high << CRQB_ADDR_LBA_HIGHSHIFT) &
620 		CRQB_ADDR_LBA_HIGHMASK;
621 	req->ata_addr |= (cfis->device << CRQB_ADDR_DEVICE_SHIFT) &
622 		CRQB_ADDR_DEVICE_MASK;
623 
624 	req->ata_addr_exp = (cfis->lba_low_exp << CRQB_ADDR_LBA_LOW_EXP_SHIFT) &
625 		CRQB_ADDR_LBA_LOW_EXP_MASK;
626 	req->ata_addr_exp |=
627 		(cfis->lba_mid_exp << CRQB_ADDR_LBA_MID_EXP_SHIFT) &
628 		CRQB_ADDR_LBA_MID_EXP_MASK;
629 	req->ata_addr_exp |=
630 		(cfis->lba_high_exp << CRQB_ADDR_LBA_HIGH_EXP_SHIFT) &
631 		CRQB_ADDR_LBA_HIGH_EXP_MASK;
632 	req->ata_addr_exp |=
633 		(cfis->features_exp << CRQB_ADDR_FEATURE_EXP_SHIFT) &
634 		CRQB_ADDR_FEATURE_EXP_MASK;
635 
636 	req->ata_sect_count =
637 		(cfis->sector_count << CRQB_SECTCOUNT_COUNT_SHIFT) &
638 		CRQB_SECTCOUNT_COUNT_MASK;
639 	req->ata_sect_count |=
640 		(cfis->sector_count_exp << CRQB_SECTCOUNT_COUNT_EXP_SHIFT) &
641 		CRQB_SECTCOUNT_COUNT_EXP_MASK;
642 
643 	/* Flush data */
644 	start = (u32)req & ~(ARCH_DMA_MINALIGN - 1);
645 	flush_dcache_range(start,
646 			   start + ALIGN(sizeof(*req), ARCH_DMA_MINALIGN));
647 
648 	/* Trigger operation */
649 	slot = get_next_reqip(dev, port);
650 	set_reqip(dev, port, slot);
651 
652 	/* Wait for completion */
653 	if (wait_dma_completion(dev, port, slot, 10000)) {
654 		printf("ATA operation timed out\n");
655 		return -1;
656 	}
657 
658 	process_responses(dev, port);
659 
660 	/* Invalidate data on read */
661 	if (buffer && len) {
662 		start = (u32)buffer & ~(ARCH_DMA_MINALIGN - 1);
663 		invalidate_dcache_range(start,
664 					start + ALIGN(len, ARCH_DMA_MINALIGN));
665 	}
666 
667 	return len;
668 }
669 
mv_sata_rw_cmd_ext(struct udevice * dev,int port,lbaint_t start,u32 blkcnt,u8 * buffer,int is_write)670 static u32 mv_sata_rw_cmd_ext(struct udevice *dev, int port, lbaint_t start,
671 			      u32 blkcnt,
672 			      u8 *buffer, int is_write)
673 {
674 	struct sata_fis_h2d cfis;
675 	u32 res;
676 	u64 block;
677 
678 	block = (u64)start;
679 
680 	memset(&cfis, 0, sizeof(struct sata_fis_h2d));
681 
682 	cfis.fis_type = SATA_FIS_TYPE_REGISTER_H2D;
683 	cfis.command = (is_write) ? ATA_CMD_WRITE_EXT : ATA_CMD_READ_EXT;
684 
685 	cfis.lba_high_exp = (block >> 40) & 0xff;
686 	cfis.lba_mid_exp = (block >> 32) & 0xff;
687 	cfis.lba_low_exp = (block >> 24) & 0xff;
688 	cfis.lba_high = (block >> 16) & 0xff;
689 	cfis.lba_mid = (block >> 8) & 0xff;
690 	cfis.lba_low = block & 0xff;
691 	cfis.device = ATA_LBA;
692 	cfis.sector_count_exp = (blkcnt >> 8) & 0xff;
693 	cfis.sector_count = blkcnt & 0xff;
694 
695 	res = mv_ata_exec_ata_cmd(dev, port, &cfis, buffer,
696 				  ATA_SECT_SIZE * blkcnt, is_write);
697 
698 	return res >= 0 ? blkcnt : res;
699 }
700 
mv_sata_rw_cmd(struct udevice * dev,int port,lbaint_t start,u32 blkcnt,u8 * buffer,int is_write)701 static u32 mv_sata_rw_cmd(struct udevice *dev, int port, lbaint_t start,
702 			  u32 blkcnt, u8 *buffer, int is_write)
703 {
704 	struct sata_fis_h2d cfis;
705 	lbaint_t block;
706 	u32 res;
707 
708 	block = start;
709 
710 	memset(&cfis, 0, sizeof(struct sata_fis_h2d));
711 
712 	cfis.fis_type = SATA_FIS_TYPE_REGISTER_H2D;
713 	cfis.command = (is_write) ? ATA_CMD_WRITE : ATA_CMD_READ;
714 	cfis.device = ATA_LBA;
715 
716 	cfis.device |= (block >> 24) & 0xf;
717 	cfis.lba_high = (block >> 16) & 0xff;
718 	cfis.lba_mid = (block >> 8) & 0xff;
719 	cfis.lba_low = block & 0xff;
720 	cfis.sector_count = (u8)(blkcnt & 0xff);
721 
722 	res = mv_ata_exec_ata_cmd(dev, port, &cfis, buffer,
723 				  ATA_SECT_SIZE * blkcnt, is_write);
724 
725 	return res >= 0 ? blkcnt : res;
726 }
727 
ata_low_level_rw(struct udevice * dev,int port,lbaint_t blknr,lbaint_t blkcnt,void * buffer,int is_write)728 static u32 ata_low_level_rw(struct udevice *dev, int port, lbaint_t blknr,
729 			    lbaint_t blkcnt, void *buffer, int is_write)
730 {
731 	struct blk_desc *desc = dev_get_uclass_plat(dev);
732 	lbaint_t start, blks;
733 	u8 *addr;
734 	int max_blks;
735 
736 	debug("%s: " LBAFU " " LBAFU "\n", __func__, blknr, blkcnt);
737 
738 	start = blknr;
739 	blks = blkcnt;
740 	addr = (u8 *)buffer;
741 
742 	max_blks = MV_ATA_MAX_SECTORS;
743 	do {
744 		if (blks > max_blks) {
745 			if (desc->lba48) {
746 				mv_sata_rw_cmd_ext(dev, port, start, max_blks,
747 						   addr, is_write);
748 			} else {
749 				mv_sata_rw_cmd(dev, port, start, max_blks,
750 					       addr, is_write);
751 			}
752 			start += max_blks;
753 			blks -= max_blks;
754 			addr += ATA_SECT_SIZE * max_blks;
755 		} else {
756 			if (desc->lba48) {
757 				mv_sata_rw_cmd_ext(dev, port, start, blks, addr,
758 						   is_write);
759 			} else {
760 				mv_sata_rw_cmd(dev, port, start, blks, addr,
761 					       is_write);
762 			}
763 			start += blks;
764 			blks = 0;
765 			addr += ATA_SECT_SIZE * blks;
766 		}
767 	} while (blks != 0);
768 
769 	return blkcnt;
770 }
771 
mv_ata_exec_ata_cmd_nondma(struct udevice * dev,int port,struct sata_fis_h2d * cfis,u8 * buffer,u32 len,u32 iswrite)772 static int mv_ata_exec_ata_cmd_nondma(struct udevice *dev, int port,
773 				      struct sata_fis_h2d *cfis, u8 *buffer,
774 				      u32 len, u32 iswrite)
775 {
776 	struct mv_priv *priv = dev_get_plat(dev);
777 	int i;
778 	u16 *tp;
779 
780 	debug("%s\n", __func__);
781 
782 	out_le32(priv->regbase + PIO_SECTOR_COUNT, cfis->sector_count);
783 	out_le32(priv->regbase + PIO_LBA_HI, cfis->lba_high);
784 	out_le32(priv->regbase + PIO_LBA_MID, cfis->lba_mid);
785 	out_le32(priv->regbase + PIO_LBA_LOW, cfis->lba_low);
786 	out_le32(priv->regbase + PIO_ERR_FEATURES, cfis->features);
787 	out_le32(priv->regbase + PIO_DEVICE, cfis->device);
788 	out_le32(priv->regbase + PIO_CMD_STATUS, cfis->command);
789 
790 	if (ata_wait_register((u32 *)(priv->regbase + PIO_CMD_STATUS),
791 			      ATA_BUSY, 0x0, 10000)) {
792 		debug("Failed to wait for completion\n");
793 		return -1;
794 	}
795 
796 	if (len > 0) {
797 		tp = (u16 *)buffer;
798 		for (i = 0; i < len / 2; i++) {
799 			if (iswrite)
800 				out_le16(priv->regbase + PIO_DATA, *tp++);
801 			else
802 				*tp++ = in_le16(priv->regbase + PIO_DATA);
803 		}
804 	}
805 
806 	return len;
807 }
808 
mv_sata_identify(struct udevice * dev,int port,u16 * id)809 static int mv_sata_identify(struct udevice *dev, int port, u16 *id)
810 {
811 	struct sata_fis_h2d h2d;
812 	int len;
813 
814 	memset(&h2d, 0, sizeof(struct sata_fis_h2d));
815 
816 	h2d.fis_type = SATA_FIS_TYPE_REGISTER_H2D;
817 	h2d.command = ATA_CMD_ID_ATA;
818 
819 	/* Give device time to get operational */
820 	mdelay(10);
821 
822 	/* During cold start, with some HDDs, the first ATA ID command does
823 	 * not populate the ID words. In fact, the first ATA ID
824 	 * command will only power up the drive, and then the ATA ID command
825 	 * processing is lost in the process.
826 	 */
827 	len = mv_ata_exec_ata_cmd_nondma(dev, port, &h2d, (u8 *)id,
828 					 ATA_ID_WORDS * 2, READ_CMD);
829 
830 	/* If drive capacity has been filled in, then it was successfully
831 	 * identified (the drive has been powered up before, i.e.
832 	 * this function is invoked during a reboot)
833 	 */
834 	if (ata_id_n_sectors(id) != 0)
835 		return len;
836 
837 	/* Issue the 2nd ATA ID command to make sure the ID words are
838 	 * populated properly.
839 	 */
840 	mdelay(10);
841 	len = mv_ata_exec_ata_cmd_nondma(dev, port, &h2d, (u8 *)id,
842 					 ATA_ID_WORDS * 2, READ_CMD);
843 	if (ata_id_n_sectors(id) != 0)
844 		return len;
845 
846 	printf("Err: Failed to identify SATA device %d\n", port);
847 	return -ENODEV;
848 }
849 
mv_sata_xfer_mode(struct udevice * dev,int port,u16 * id)850 static void mv_sata_xfer_mode(struct udevice *dev, int port, u16 *id)
851 {
852 	struct mv_priv *priv = dev_get_plat(dev);
853 
854 	priv->pio = id[ATA_ID_PIO_MODES];
855 	priv->mwdma = id[ATA_ID_MWDMA_MODES];
856 	priv->udma = id[ATA_ID_UDMA_MODES];
857 	debug("pio %04x, mwdma %04x, udma %04x\n", priv->pio, priv->mwdma,
858 	      priv->udma);
859 }
860 
mv_sata_set_features(struct udevice * dev,int port)861 static void mv_sata_set_features(struct udevice *dev, int port)
862 {
863 	struct mv_priv *priv = dev_get_plat(dev);
864 	struct sata_fis_h2d cfis;
865 	u8 udma_cap;
866 
867 	memset(&cfis, 0, sizeof(struct sata_fis_h2d));
868 
869 	cfis.fis_type = SATA_FIS_TYPE_REGISTER_H2D;
870 	cfis.command = ATA_CMD_SET_FEATURES;
871 	cfis.features = SETFEATURES_XFER;
872 
873 	/* First check the device capablity */
874 	udma_cap = (u8) (priv->udma & 0xff);
875 
876 	if (udma_cap == ATA_UDMA6)
877 		cfis.sector_count = XFER_UDMA_6;
878 	if (udma_cap == ATA_UDMA5)
879 		cfis.sector_count = XFER_UDMA_5;
880 	if (udma_cap == ATA_UDMA4)
881 		cfis.sector_count = XFER_UDMA_4;
882 	if (udma_cap == ATA_UDMA3)
883 		cfis.sector_count = XFER_UDMA_3;
884 
885 	mv_ata_exec_ata_cmd_nondma(dev, port, &cfis, NULL, 0, READ_CMD);
886 }
887 
888 /*
889  * Initialize SATA memory windows
890  */
mvsata_ide_conf_mbus_windows(void)891 static void mvsata_ide_conf_mbus_windows(void)
892 {
893 	const struct mbus_dram_target_info *dram;
894 	int i;
895 
896 	dram = mvebu_mbus_dram_info();
897 
898 	/* Disable windows, Set Size/Base to 0  */
899 	for (i = 0; i < 4; i++) {
900 		writel(0, MVSATA_WIN_CONTROL(i));
901 		writel(0, MVSATA_WIN_BASE(i));
902 	}
903 
904 	for (i = 0; i < dram->num_cs; i++) {
905 		const struct mbus_dram_window *cs = dram->cs + i;
906 		writel(((cs->size - 1) & 0xffff0000) | (cs->mbus_attr << 8) |
907 		       (dram->mbus_dram_target_id << 4) | 1,
908 		       MVSATA_WIN_CONTROL(i));
909 		writel(cs->base & 0xffff0000, MVSATA_WIN_BASE(i));
910 	}
911 }
912 
sata_mv_init_sata(struct udevice * dev,int port)913 static int sata_mv_init_sata(struct udevice *dev, int port)
914 {
915 	struct mv_priv *priv = dev_get_plat(dev);
916 
917 	debug("Initialize sata dev: %d\n", port);
918 
919 	if (port < 0 || port >= CONFIG_SYS_SATA_MAX_DEVICE) {
920 		printf("Invalid sata device %d\n", port);
921 		return -1;
922 	}
923 
924 	/* Allocate and align request buffer */
925 	priv->crqb_alloc = malloc(sizeof(struct crqb) * REQUEST_QUEUE_SIZE +
926 				  CRQB_ALIGN);
927 	if (!priv->crqb_alloc) {
928 		printf("Unable to allocate memory for request queue\n");
929 		return -ENOMEM;
930 	}
931 	memset(priv->crqb_alloc, 0,
932 	       sizeof(struct crqb) * REQUEST_QUEUE_SIZE + CRQB_ALIGN);
933 	priv->request = (struct crqb *)(((u32) priv->crqb_alloc + CRQB_ALIGN) &
934 					~(CRQB_ALIGN - 1));
935 
936 	/* Allocate and align response buffer */
937 	priv->crpb_alloc = malloc(sizeof(struct crpb) * REQUEST_QUEUE_SIZE +
938 				  CRPB_ALIGN);
939 	if (!priv->crpb_alloc) {
940 		printf("Unable to allocate memory for response queue\n");
941 		return -ENOMEM;
942 	}
943 	memset(priv->crpb_alloc, 0,
944 	       sizeof(struct crpb) * REQUEST_QUEUE_SIZE + CRPB_ALIGN);
945 	priv->response = (struct crpb *)(((u32) priv->crpb_alloc + CRPB_ALIGN) &
946 					 ~(CRPB_ALIGN - 1));
947 
948 	sprintf(priv->name, "SATA%d", port);
949 
950 	priv->regbase = port == 0 ? SATA0_BASE : SATA1_BASE;
951 
952 	if (!hw_init) {
953 		debug("Initialize sata hw\n");
954 		hw_init = 1;
955 		mv_reset_one_hc();
956 		mvsata_ide_conf_mbus_windows();
957 	}
958 
959 	mv_reset_port(dev, port);
960 
961 	if (probe_port(dev, port)) {
962 		priv->link = 0;
963 		return -ENODEV;
964 	}
965 	priv->link = 1;
966 
967 	return 0;
968 }
969 
sata_mv_scan_sata(struct udevice * dev,int port)970 static int sata_mv_scan_sata(struct udevice *dev, int port)
971 {
972 	struct blk_desc *desc = dev_get_uclass_plat(dev);
973 	struct mv_priv *priv = dev_get_plat(dev);
974 	unsigned char serial[ATA_ID_SERNO_LEN + 1];
975 	unsigned char firmware[ATA_ID_FW_REV_LEN + 1];
976 	unsigned char product[ATA_ID_PROD_LEN + 1];
977 	u64 n_sectors;
978 	u16 *id;
979 
980 	if (!priv->link)
981 		return -ENODEV;
982 
983 	id = (u16 *)malloc(ATA_ID_WORDS * 2);
984 	if (!id) {
985 		printf("Failed to malloc id data\n");
986 		return -ENOMEM;
987 	}
988 
989 	mv_sata_identify(dev, port, id);
990 	ata_swap_buf_le16(id, ATA_ID_WORDS);
991 #ifdef DEBUG
992 	ata_dump_id(id);
993 #endif
994 
995 	/* Serial number */
996 	ata_id_c_string(id, serial, ATA_ID_SERNO, sizeof(serial));
997 	memcpy(desc->product, serial, sizeof(serial));
998 
999 	/* Firmware version */
1000 	ata_id_c_string(id, firmware, ATA_ID_FW_REV, sizeof(firmware));
1001 	memcpy(desc->revision, firmware, sizeof(firmware));
1002 
1003 	/* Product model */
1004 	ata_id_c_string(id, product, ATA_ID_PROD, sizeof(product));
1005 	memcpy(desc->vendor, product, sizeof(product));
1006 
1007 	/* Total sectors */
1008 	n_sectors = ata_id_n_sectors(id);
1009 	desc->lba = n_sectors;
1010 
1011 	/* Check if support LBA48 */
1012 	if (ata_id_has_lba48(id)) {
1013 		desc->lba48 = 1;
1014 		debug("Device support LBA48\n");
1015 	}
1016 
1017 	/* Get the NCQ queue depth from device */
1018 	priv->queue_depth = ata_id_queue_depth(id);
1019 
1020 	/* Get the xfer mode from device */
1021 	mv_sata_xfer_mode(dev, port, id);
1022 
1023 	/* Set the xfer mode to highest speed */
1024 	mv_sata_set_features(dev, port);
1025 
1026 	/* Start up */
1027 	mv_start_edma_engine(dev, port);
1028 
1029 	return 0;
1030 }
1031 
sata_mv_read(struct udevice * blk,lbaint_t blknr,lbaint_t blkcnt,void * buffer)1032 static ulong sata_mv_read(struct udevice *blk, lbaint_t blknr,
1033 			  lbaint_t blkcnt, void *buffer)
1034 {
1035 	struct mv_priv *priv = dev_get_plat(blk);
1036 
1037 	return ata_low_level_rw(blk, priv->dev_nr, blknr, blkcnt,
1038 				buffer, READ_CMD);
1039 }
1040 
sata_mv_write(struct udevice * blk,lbaint_t blknr,lbaint_t blkcnt,const void * buffer)1041 static ulong sata_mv_write(struct udevice *blk, lbaint_t blknr,
1042 			   lbaint_t blkcnt, const void *buffer)
1043 {
1044 	struct mv_priv *priv = dev_get_plat(blk);
1045 
1046 	return ata_low_level_rw(blk, priv->dev_nr, blknr, blkcnt,
1047 				(void *)buffer, WRITE_CMD);
1048 }
1049 
1050 static const struct blk_ops sata_mv_blk_ops = {
1051 	.read	= sata_mv_read,
1052 	.write	= sata_mv_write,
1053 };
1054 
1055 U_BOOT_DRIVER(sata_mv_driver) = {
1056 	.name = "sata_mv_blk",
1057 	.id = UCLASS_BLK,
1058 	.ops = &sata_mv_blk_ops,
1059 	.plat_auto	= sizeof(struct mv_priv),
1060 };
1061 
sata_mv_probe(struct udevice * dev)1062 static int sata_mv_probe(struct udevice *dev)
1063 {
1064 	const void *blob = gd->fdt_blob;
1065 	int node = dev_of_offset(dev);
1066 	struct mv_priv *priv;
1067 	struct udevice *blk;
1068 	int nr_ports;
1069 	int ret;
1070 	int i;
1071 	int status = -ENODEV; /* If the probe fails to detected any SATA port */
1072 
1073 	/* Get number of ports of this SATA controller */
1074 	nr_ports = min(fdtdec_get_int(blob, node, "nr-ports", -1),
1075 		       CONFIG_SYS_SATA_MAX_DEVICE);
1076 
1077 	for (i = 0; i < nr_ports; i++) {
1078 		ret = blk_create_devicef(dev, "sata_mv_blk", "blk",
1079 					 IF_TYPE_SATA, -1, 512, 0, &blk);
1080 		if (ret) {
1081 			debug("Can't create device\n");
1082 			continue;
1083 		}
1084 
1085 		priv = dev_get_plat(blk);
1086 		priv->dev_nr = i;
1087 
1088 		/* Init SATA port */
1089 		ret = sata_mv_init_sata(blk, i);
1090 		if (ret) {
1091 			debug("%s: Failed to init bus\n", __func__);
1092 			continue;
1093 		}
1094 
1095 		/* Scan SATA port */
1096 		ret = sata_mv_scan_sata(blk, i);
1097 		if (ret) {
1098 			debug("%s: Failed to scan bus\n", __func__);
1099 			continue;
1100 		}
1101 
1102 		/* If we got here, the current SATA port was probed
1103 		 * successfully, so set the probe status to successful.
1104 		 */
1105 		status = 0;
1106 	}
1107 
1108 	return status;
1109 }
1110 
sata_mv_scan(struct udevice * dev)1111 static int sata_mv_scan(struct udevice *dev)
1112 {
1113 	/* Nothing to do here */
1114 
1115 	return 0;
1116 }
1117 
1118 static const struct udevice_id sata_mv_ids[] = {
1119 	{ .compatible = "marvell,armada-370-sata" },
1120 	{ .compatible = "marvell,orion-sata" },
1121 	{ }
1122 };
1123 
1124 struct ahci_ops sata_mv_ahci_ops = {
1125 	.scan = sata_mv_scan,
1126 };
1127 
1128 U_BOOT_DRIVER(sata_mv_ahci) = {
1129 	.name = "sata_mv_ahci",
1130 	.id = UCLASS_AHCI,
1131 	.of_match = sata_mv_ids,
1132 	.ops = &sata_mv_ahci_ops,
1133 	.probe = sata_mv_probe,
1134 };
1135