1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (C) 2018, STMicroelectronics - All Rights Reserved
4  */
5 
6 #define LOG_CATEGORY UCLASS_CLK
7 
8 #include <common.h>
9 #include <clk-uclass.h>
10 #include <div64.h>
11 #include <dm.h>
12 #include <init.h>
13 #include <log.h>
14 #include <regmap.h>
15 #include <spl.h>
16 #include <syscon.h>
17 #include <time.h>
18 #include <vsprintf.h>
19 #include <asm/arch/sys_proto.h>
20 #include <asm/global_data.h>
21 #include <dm/device_compat.h>
22 #include <dt-bindings/clock/stm32mp1-clks.h>
23 #include <dt-bindings/clock/stm32mp1-clksrc.h>
24 #include <linux/bitops.h>
25 #include <linux/io.h>
26 #include <linux/iopoll.h>
27 
28 DECLARE_GLOBAL_DATA_PTR;
29 
30 #ifndef CONFIG_TFABOOT
31 #if !defined(CONFIG_SPL) || defined(CONFIG_SPL_BUILD)
32 /* activate clock tree initialization in the driver */
33 #define STM32MP1_CLOCK_TREE_INIT
34 #endif
35 #endif
36 
37 #define MAX_HSI_HZ		64000000
38 
39 /* TIMEOUT */
40 #define TIMEOUT_200MS		200000
41 #define TIMEOUT_1S		1000000
42 
43 /* STGEN registers */
44 #define STGENC_CNTCR		0x00
45 #define STGENC_CNTSR		0x04
46 #define STGENC_CNTCVL		0x08
47 #define STGENC_CNTCVU		0x0C
48 #define STGENC_CNTFID0		0x20
49 
50 #define STGENC_CNTCR_EN		BIT(0)
51 
52 /* RCC registers */
53 #define RCC_OCENSETR		0x0C
54 #define RCC_OCENCLRR		0x10
55 #define RCC_HSICFGR		0x18
56 #define RCC_MPCKSELR		0x20
57 #define RCC_ASSCKSELR		0x24
58 #define RCC_RCK12SELR		0x28
59 #define RCC_MPCKDIVR		0x2C
60 #define RCC_AXIDIVR		0x30
61 #define RCC_APB4DIVR		0x3C
62 #define RCC_APB5DIVR		0x40
63 #define RCC_RTCDIVR		0x44
64 #define RCC_MSSCKSELR		0x48
65 #define RCC_PLL1CR		0x80
66 #define RCC_PLL1CFGR1		0x84
67 #define RCC_PLL1CFGR2		0x88
68 #define RCC_PLL1FRACR		0x8C
69 #define RCC_PLL1CSGR		0x90
70 #define RCC_PLL2CR		0x94
71 #define RCC_PLL2CFGR1		0x98
72 #define RCC_PLL2CFGR2		0x9C
73 #define RCC_PLL2FRACR		0xA0
74 #define RCC_PLL2CSGR		0xA4
75 #define RCC_I2C46CKSELR		0xC0
76 #define RCC_SPI6CKSELR		0xC4
77 #define RCC_CPERCKSELR		0xD0
78 #define RCC_STGENCKSELR		0xD4
79 #define RCC_DDRITFCR		0xD8
80 #define RCC_BDCR		0x140
81 #define RCC_RDLSICR		0x144
82 #define RCC_MP_APB4ENSETR	0x200
83 #define RCC_MP_APB5ENSETR	0x208
84 #define RCC_MP_AHB5ENSETR	0x210
85 #define RCC_MP_AHB6ENSETR	0x218
86 #define RCC_OCRDYR		0x808
87 #define RCC_DBGCFGR		0x80C
88 #define RCC_RCK3SELR		0x820
89 #define RCC_RCK4SELR		0x824
90 #define RCC_MCUDIVR		0x830
91 #define RCC_APB1DIVR		0x834
92 #define RCC_APB2DIVR		0x838
93 #define RCC_APB3DIVR		0x83C
94 #define RCC_PLL3CR		0x880
95 #define RCC_PLL3CFGR1		0x884
96 #define RCC_PLL3CFGR2		0x888
97 #define RCC_PLL3FRACR		0x88C
98 #define RCC_PLL3CSGR		0x890
99 #define RCC_PLL4CR		0x894
100 #define RCC_PLL4CFGR1		0x898
101 #define RCC_PLL4CFGR2		0x89C
102 #define RCC_PLL4FRACR		0x8A0
103 #define RCC_PLL4CSGR		0x8A4
104 #define RCC_I2C12CKSELR		0x8C0
105 #define RCC_I2C35CKSELR		0x8C4
106 #define RCC_SPI2S1CKSELR	0x8D8
107 #define RCC_SPI2S23CKSELR	0x8DC
108 #define RCC_SPI45CKSELR		0x8E0
109 #define RCC_UART6CKSELR		0x8E4
110 #define RCC_UART24CKSELR	0x8E8
111 #define RCC_UART35CKSELR	0x8EC
112 #define RCC_UART78CKSELR	0x8F0
113 #define RCC_SDMMC12CKSELR	0x8F4
114 #define RCC_SDMMC3CKSELR	0x8F8
115 #define RCC_ETHCKSELR		0x8FC
116 #define RCC_QSPICKSELR		0x900
117 #define RCC_FMCCKSELR		0x904
118 #define RCC_USBCKSELR		0x91C
119 #define RCC_DSICKSELR		0x924
120 #define RCC_ADCCKSELR		0x928
121 #define RCC_MP_APB1ENSETR	0xA00
122 #define RCC_MP_APB2ENSETR	0XA08
123 #define RCC_MP_APB3ENSETR	0xA10
124 #define RCC_MP_AHB2ENSETR	0xA18
125 #define RCC_MP_AHB3ENSETR	0xA20
126 #define RCC_MP_AHB4ENSETR	0xA28
127 
128 /* used for most of SELR register */
129 #define RCC_SELR_SRC_MASK	GENMASK(2, 0)
130 #define RCC_SELR_SRCRDY		BIT(31)
131 
132 /* Values of RCC_MPCKSELR register */
133 #define RCC_MPCKSELR_HSI	0
134 #define RCC_MPCKSELR_HSE	1
135 #define RCC_MPCKSELR_PLL	2
136 #define RCC_MPCKSELR_PLL_MPUDIV	3
137 
138 /* Values of RCC_ASSCKSELR register */
139 #define RCC_ASSCKSELR_HSI	0
140 #define RCC_ASSCKSELR_HSE	1
141 #define RCC_ASSCKSELR_PLL	2
142 
143 /* Values of RCC_MSSCKSELR register */
144 #define RCC_MSSCKSELR_HSI	0
145 #define RCC_MSSCKSELR_HSE	1
146 #define RCC_MSSCKSELR_CSI	2
147 #define RCC_MSSCKSELR_PLL	3
148 
149 /* Values of RCC_CPERCKSELR register */
150 #define RCC_CPERCKSELR_HSI	0
151 #define RCC_CPERCKSELR_CSI	1
152 #define RCC_CPERCKSELR_HSE	2
153 
154 /* used for most of DIVR register : max div for RTC */
155 #define RCC_DIVR_DIV_MASK	GENMASK(5, 0)
156 #define RCC_DIVR_DIVRDY		BIT(31)
157 
158 /* Masks for specific DIVR registers */
159 #define RCC_APBXDIV_MASK	GENMASK(2, 0)
160 #define RCC_MPUDIV_MASK		GENMASK(2, 0)
161 #define RCC_AXIDIV_MASK		GENMASK(2, 0)
162 #define RCC_MCUDIV_MASK		GENMASK(3, 0)
163 
164 /*  offset between RCC_MP_xxxENSETR and RCC_MP_xxxENCLRR registers */
165 #define RCC_MP_ENCLRR_OFFSET	4
166 
167 /* Fields of RCC_BDCR register */
168 #define RCC_BDCR_LSEON		BIT(0)
169 #define RCC_BDCR_LSEBYP		BIT(1)
170 #define RCC_BDCR_LSERDY		BIT(2)
171 #define RCC_BDCR_DIGBYP		BIT(3)
172 #define RCC_BDCR_LSEDRV_MASK	GENMASK(5, 4)
173 #define RCC_BDCR_LSEDRV_SHIFT	4
174 #define RCC_BDCR_LSECSSON	BIT(8)
175 #define RCC_BDCR_RTCCKEN	BIT(20)
176 #define RCC_BDCR_RTCSRC_MASK	GENMASK(17, 16)
177 #define RCC_BDCR_RTCSRC_SHIFT	16
178 
179 /* Fields of RCC_RDLSICR register */
180 #define RCC_RDLSICR_LSION	BIT(0)
181 #define RCC_RDLSICR_LSIRDY	BIT(1)
182 
183 /* used for ALL PLLNCR registers */
184 #define RCC_PLLNCR_PLLON	BIT(0)
185 #define RCC_PLLNCR_PLLRDY	BIT(1)
186 #define RCC_PLLNCR_SSCG_CTRL	BIT(2)
187 #define RCC_PLLNCR_DIVPEN	BIT(4)
188 #define RCC_PLLNCR_DIVQEN	BIT(5)
189 #define RCC_PLLNCR_DIVREN	BIT(6)
190 #define RCC_PLLNCR_DIVEN_SHIFT	4
191 
192 /* used for ALL PLLNCFGR1 registers */
193 #define RCC_PLLNCFGR1_DIVM_SHIFT	16
194 #define RCC_PLLNCFGR1_DIVM_MASK		GENMASK(21, 16)
195 #define RCC_PLLNCFGR1_DIVN_SHIFT	0
196 #define RCC_PLLNCFGR1_DIVN_MASK		GENMASK(8, 0)
197 /* only for PLL3 and PLL4 */
198 #define RCC_PLLNCFGR1_IFRGE_SHIFT	24
199 #define RCC_PLLNCFGR1_IFRGE_MASK	GENMASK(25, 24)
200 
201 /* used for ALL PLLNCFGR2 registers , using stm32mp1_div_id */
202 #define RCC_PLLNCFGR2_SHIFT(div_id)	((div_id) * 8)
203 #define RCC_PLLNCFGR2_DIVX_MASK		GENMASK(6, 0)
204 #define RCC_PLLNCFGR2_DIVP_SHIFT	RCC_PLLNCFGR2_SHIFT(_DIV_P)
205 #define RCC_PLLNCFGR2_DIVP_MASK		GENMASK(6, 0)
206 #define RCC_PLLNCFGR2_DIVQ_SHIFT	RCC_PLLNCFGR2_SHIFT(_DIV_Q)
207 #define RCC_PLLNCFGR2_DIVQ_MASK		GENMASK(14, 8)
208 #define RCC_PLLNCFGR2_DIVR_SHIFT	RCC_PLLNCFGR2_SHIFT(_DIV_R)
209 #define RCC_PLLNCFGR2_DIVR_MASK		GENMASK(22, 16)
210 
211 /* used for ALL PLLNFRACR registers */
212 #define RCC_PLLNFRACR_FRACV_SHIFT	3
213 #define RCC_PLLNFRACR_FRACV_MASK	GENMASK(15, 3)
214 #define RCC_PLLNFRACR_FRACLE		BIT(16)
215 
216 /* used for ALL PLLNCSGR registers */
217 #define RCC_PLLNCSGR_INC_STEP_SHIFT	16
218 #define RCC_PLLNCSGR_INC_STEP_MASK	GENMASK(30, 16)
219 #define RCC_PLLNCSGR_MOD_PER_SHIFT	0
220 #define RCC_PLLNCSGR_MOD_PER_MASK	GENMASK(12, 0)
221 #define RCC_PLLNCSGR_SSCG_MODE_SHIFT	15
222 #define RCC_PLLNCSGR_SSCG_MODE_MASK	BIT(15)
223 
224 /* used for RCC_OCENSETR and RCC_OCENCLRR registers */
225 #define RCC_OCENR_HSION			BIT(0)
226 #define RCC_OCENR_CSION			BIT(4)
227 #define RCC_OCENR_DIGBYP		BIT(7)
228 #define RCC_OCENR_HSEON			BIT(8)
229 #define RCC_OCENR_HSEBYP		BIT(10)
230 #define RCC_OCENR_HSECSSON		BIT(11)
231 
232 /* Fields of RCC_OCRDYR register */
233 #define RCC_OCRDYR_HSIRDY		BIT(0)
234 #define RCC_OCRDYR_HSIDIVRDY		BIT(2)
235 #define RCC_OCRDYR_CSIRDY		BIT(4)
236 #define RCC_OCRDYR_HSERDY		BIT(8)
237 
238 /* Fields of DDRITFCR register */
239 #define RCC_DDRITFCR_DDRCKMOD_MASK	GENMASK(22, 20)
240 #define RCC_DDRITFCR_DDRCKMOD_SHIFT	20
241 #define RCC_DDRITFCR_DDRCKMOD_SSR	0
242 
243 /* Fields of RCC_HSICFGR register */
244 #define RCC_HSICFGR_HSIDIV_MASK		GENMASK(1, 0)
245 
246 /* used for MCO related operations */
247 #define RCC_MCOCFG_MCOON		BIT(12)
248 #define RCC_MCOCFG_MCODIV_MASK		GENMASK(7, 4)
249 #define RCC_MCOCFG_MCODIV_SHIFT		4
250 #define RCC_MCOCFG_MCOSRC_MASK		GENMASK(2, 0)
251 
252 enum stm32mp1_parent_id {
253 /*
254  * _HSI, _HSE, _CSI, _LSI, _LSE should not be moved
255  * they are used as index in osc_clk[] as clock reference
256  */
257 	_HSI,
258 	_HSE,
259 	_CSI,
260 	_LSI,
261 	_LSE,
262 	_I2S_CKIN,
263 	NB_OSC,
264 
265 /* other parent source */
266 	_HSI_KER = NB_OSC,
267 	_HSE_KER,
268 	_HSE_KER_DIV2,
269 	_CSI_KER,
270 	_PLL1_P,
271 	_PLL1_Q,
272 	_PLL1_R,
273 	_PLL2_P,
274 	_PLL2_Q,
275 	_PLL2_R,
276 	_PLL3_P,
277 	_PLL3_Q,
278 	_PLL3_R,
279 	_PLL4_P,
280 	_PLL4_Q,
281 	_PLL4_R,
282 	_ACLK,
283 	_PCLK1,
284 	_PCLK2,
285 	_PCLK3,
286 	_PCLK4,
287 	_PCLK5,
288 	_HCLK6,
289 	_HCLK2,
290 	_CK_PER,
291 	_CK_MPU,
292 	_CK_MCU,
293 	_DSI_PHY,
294 	_USB_PHY_48,
295 	_PARENT_NB,
296 	_UNKNOWN_ID = 0xff,
297 };
298 
299 enum stm32mp1_parent_sel {
300 	_I2C12_SEL,
301 	_I2C35_SEL,
302 	_I2C46_SEL,
303 	_UART6_SEL,
304 	_UART24_SEL,
305 	_UART35_SEL,
306 	_UART78_SEL,
307 	_SDMMC12_SEL,
308 	_SDMMC3_SEL,
309 	_ETH_SEL,
310 	_QSPI_SEL,
311 	_FMC_SEL,
312 	_USBPHY_SEL,
313 	_USBO_SEL,
314 	_STGEN_SEL,
315 	_DSI_SEL,
316 	_ADC12_SEL,
317 	_SPI1_SEL,
318 	_SPI23_SEL,
319 	_SPI45_SEL,
320 	_SPI6_SEL,
321 	_RTC_SEL,
322 	_PARENT_SEL_NB,
323 	_UNKNOWN_SEL = 0xff,
324 };
325 
326 enum stm32mp1_pll_id {
327 	_PLL1,
328 	_PLL2,
329 	_PLL3,
330 	_PLL4,
331 	_PLL_NB
332 };
333 
334 enum stm32mp1_div_id {
335 	_DIV_P,
336 	_DIV_Q,
337 	_DIV_R,
338 	_DIV_NB,
339 };
340 
341 enum stm32mp1_clksrc_id {
342 	CLKSRC_MPU,
343 	CLKSRC_AXI,
344 	CLKSRC_MCU,
345 	CLKSRC_PLL12,
346 	CLKSRC_PLL3,
347 	CLKSRC_PLL4,
348 	CLKSRC_RTC,
349 	CLKSRC_MCO1,
350 	CLKSRC_MCO2,
351 	CLKSRC_NB
352 };
353 
354 enum stm32mp1_clkdiv_id {
355 	CLKDIV_MPU,
356 	CLKDIV_AXI,
357 	CLKDIV_MCU,
358 	CLKDIV_APB1,
359 	CLKDIV_APB2,
360 	CLKDIV_APB3,
361 	CLKDIV_APB4,
362 	CLKDIV_APB5,
363 	CLKDIV_RTC,
364 	CLKDIV_MCO1,
365 	CLKDIV_MCO2,
366 	CLKDIV_NB
367 };
368 
369 enum stm32mp1_pllcfg {
370 	PLLCFG_M,
371 	PLLCFG_N,
372 	PLLCFG_P,
373 	PLLCFG_Q,
374 	PLLCFG_R,
375 	PLLCFG_O,
376 	PLLCFG_NB
377 };
378 
379 enum stm32mp1_pllcsg {
380 	PLLCSG_MOD_PER,
381 	PLLCSG_INC_STEP,
382 	PLLCSG_SSCG_MODE,
383 	PLLCSG_NB
384 };
385 
386 enum stm32mp1_plltype {
387 	PLL_800,
388 	PLL_1600,
389 	PLL_TYPE_NB
390 };
391 
392 struct stm32mp1_pll {
393 	u8 refclk_min;
394 	u8 refclk_max;
395 	u8 divn_max;
396 };
397 
398 struct stm32mp1_clk_gate {
399 	u16 offset;
400 	u8 bit;
401 	u8 index;
402 	u8 set_clr;
403 	u8 sel;
404 	u8 fixed;
405 };
406 
407 struct stm32mp1_clk_sel {
408 	u16 offset;
409 	u8 src;
410 	u8 msk;
411 	u8 nb_parent;
412 	const u8 *parent;
413 };
414 
415 #define REFCLK_SIZE 4
416 struct stm32mp1_clk_pll {
417 	enum stm32mp1_plltype plltype;
418 	u16 rckxselr;
419 	u16 pllxcfgr1;
420 	u16 pllxcfgr2;
421 	u16 pllxfracr;
422 	u16 pllxcr;
423 	u16 pllxcsgr;
424 	u8 refclk[REFCLK_SIZE];
425 };
426 
427 struct stm32mp1_clk_data {
428 	const struct stm32mp1_clk_gate *gate;
429 	const struct stm32mp1_clk_sel *sel;
430 	const struct stm32mp1_clk_pll *pll;
431 	const int nb_gate;
432 };
433 
434 struct stm32mp1_clk_priv {
435 	fdt_addr_t base;
436 	const struct stm32mp1_clk_data *data;
437 	struct clk osc_clk[NB_OSC];
438 };
439 
440 #define STM32MP1_CLK(off, b, idx, s)		\
441 	{					\
442 		.offset = (off),		\
443 		.bit = (b),			\
444 		.index = (idx),			\
445 		.set_clr = 0,			\
446 		.sel = (s),			\
447 		.fixed = _UNKNOWN_ID,		\
448 	}
449 
450 #define STM32MP1_CLK_F(off, b, idx, f)		\
451 	{					\
452 		.offset = (off),		\
453 		.bit = (b),			\
454 		.index = (idx),			\
455 		.set_clr = 0,			\
456 		.sel = _UNKNOWN_SEL,		\
457 		.fixed = (f),			\
458 	}
459 
460 #define STM32MP1_CLK_SET_CLR(off, b, idx, s)	\
461 	{					\
462 		.offset = (off),		\
463 		.bit = (b),			\
464 		.index = (idx),			\
465 		.set_clr = 1,			\
466 		.sel = (s),			\
467 		.fixed = _UNKNOWN_ID,		\
468 	}
469 
470 #define STM32MP1_CLK_SET_CLR_F(off, b, idx, f)	\
471 	{					\
472 		.offset = (off),		\
473 		.bit = (b),			\
474 		.index = (idx),			\
475 		.set_clr = 1,			\
476 		.sel = _UNKNOWN_SEL,		\
477 		.fixed = (f),			\
478 	}
479 
480 #define STM32MP1_CLK_PARENT(idx, off, s, m, p)   \
481 	[(idx)] = {				\
482 		.offset = (off),		\
483 		.src = (s),			\
484 		.msk = (m),			\
485 		.parent = (p),			\
486 		.nb_parent = ARRAY_SIZE((p))	\
487 	}
488 
489 #define STM32MP1_CLK_PLL(idx, type, off1, off2, off3, off4, off5, off6,\
490 			p1, p2, p3, p4) \
491 	[(idx)] = {				\
492 		.plltype = (type),			\
493 		.rckxselr = (off1),		\
494 		.pllxcfgr1 = (off2),		\
495 		.pllxcfgr2 = (off3),		\
496 		.pllxfracr = (off4),		\
497 		.pllxcr = (off5),		\
498 		.pllxcsgr = (off6),		\
499 		.refclk[0] = (p1),		\
500 		.refclk[1] = (p2),		\
501 		.refclk[2] = (p3),		\
502 		.refclk[3] = (p4),		\
503 	}
504 
505 static const u8 stm32mp1_clks[][2] = {
506 	{CK_PER, _CK_PER},
507 	{CK_MPU, _CK_MPU},
508 	{CK_AXI, _ACLK},
509 	{CK_MCU, _CK_MCU},
510 	{CK_HSE, _HSE},
511 	{CK_CSI, _CSI},
512 	{CK_LSI, _LSI},
513 	{CK_LSE, _LSE},
514 	{CK_HSI, _HSI},
515 	{CK_HSE_DIV2, _HSE_KER_DIV2},
516 };
517 
518 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
519 	STM32MP1_CLK(RCC_DDRITFCR, 0, DDRC1, _UNKNOWN_SEL),
520 	STM32MP1_CLK(RCC_DDRITFCR, 1, DDRC1LP, _UNKNOWN_SEL),
521 	STM32MP1_CLK(RCC_DDRITFCR, 2, DDRC2, _UNKNOWN_SEL),
522 	STM32MP1_CLK(RCC_DDRITFCR, 3, DDRC2LP, _UNKNOWN_SEL),
523 	STM32MP1_CLK_F(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
524 	STM32MP1_CLK(RCC_DDRITFCR, 5, DDRPHYCLP, _UNKNOWN_SEL),
525 	STM32MP1_CLK(RCC_DDRITFCR, 6, DDRCAPB, _UNKNOWN_SEL),
526 	STM32MP1_CLK(RCC_DDRITFCR, 7, DDRCAPBLP, _UNKNOWN_SEL),
527 	STM32MP1_CLK(RCC_DDRITFCR, 8, AXIDCG, _UNKNOWN_SEL),
528 	STM32MP1_CLK(RCC_DDRITFCR, 9, DDRPHYCAPB, _UNKNOWN_SEL),
529 	STM32MP1_CLK(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _UNKNOWN_SEL),
530 
531 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 11, SPI2_K, _SPI23_SEL),
532 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 12, SPI3_K, _SPI23_SEL),
533 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
534 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
535 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
536 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
537 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
538 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
539 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
540 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
541 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
542 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
543 
544 	STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 8, SPI1_K, _SPI1_SEL),
545 	STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 9, SPI4_K, _SPI45_SEL),
546 	STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 10, SPI5_K, _SPI45_SEL),
547 	STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
548 
549 	STM32MP1_CLK_SET_CLR_F(RCC_MP_APB3ENSETR, 13, VREF, _PCLK3),
550 	STM32MP1_CLK_SET_CLR_F(RCC_MP_APB3ENSETR, 11, SYSCFG, _UNKNOWN_SEL),
551 
552 	STM32MP1_CLK_SET_CLR_F(RCC_MP_APB4ENSETR, 0, LTDC_PX, _PLL4_Q),
553 	STM32MP1_CLK_SET_CLR_F(RCC_MP_APB4ENSETR, 4, DSI_PX, _PLL4_Q),
554 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 4, DSI_K, _DSI_SEL),
555 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
556 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
557 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
558 
559 	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 0, SPI6_K, _SPI6_SEL),
560 	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
561 	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL),
562 	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
563 	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 16, BSEC, _UNKNOWN_SEL),
564 	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
565 
566 	STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB2ENSETR, 5, ADC12, _HCLK2),
567 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 5, ADC12_K, _ADC12_SEL),
568 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
569 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
570 
571 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB3ENSETR, 11, HSEM, _UNKNOWN_SEL),
572 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB3ENSETR, 12, IPCC, _UNKNOWN_SEL),
573 
574 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
575 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
576 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
577 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
578 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
579 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
580 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
581 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
582 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
583 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
584 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
585 
586 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB5ENSETR, 0, GPIOZ, _UNKNOWN_SEL),
587 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB5ENSETR, 6, RNG1_K, _UNKNOWN_SEL),
588 
589 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 7, ETHCK_K, _ETH_SEL),
590 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 8, ETHTX, _UNKNOWN_SEL),
591 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 9, ETHRX, _UNKNOWN_SEL),
592 	STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB6ENSETR, 10, ETHMAC, _ACLK),
593 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
594 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
595 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
596 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
597 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
598 
599 	STM32MP1_CLK(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
600 
601 	STM32MP1_CLK(RCC_BDCR, 20, RTC, _RTC_SEL),
602 };
603 
604 static const u8 i2c12_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
605 static const u8 i2c35_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
606 static const u8 i2c46_parents[] = {_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER};
607 static const u8 uart6_parents[] = {_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER,
608 					_HSE_KER};
609 static const u8 uart24_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
610 					 _HSE_KER};
611 static const u8 uart35_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
612 					 _HSE_KER};
613 static const u8 uart78_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
614 					 _HSE_KER};
615 static const u8 sdmmc12_parents[] = {_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER};
616 static const u8 sdmmc3_parents[] = {_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER};
617 static const u8 eth_parents[] = {_PLL4_P, _PLL3_Q};
618 static const u8 qspi_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
619 static const u8 fmc_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
620 static const u8 usbphy_parents[] = {_HSE_KER, _PLL4_R, _HSE_KER_DIV2};
621 static const u8 usbo_parents[] = {_PLL4_R, _USB_PHY_48};
622 static const u8 stgen_parents[] = {_HSI_KER, _HSE_KER};
623 static const u8 dsi_parents[] = {_DSI_PHY, _PLL4_P};
624 static const u8 adc_parents[] = {_PLL4_R, _CK_PER, _PLL3_Q};
625 /* same parents for SPI1=RCC_SPI2S1CKSELR and SPI2&3 = RCC_SPI2S23CKSELR */
626 static const u8 spi_parents[] = {_PLL4_P, _PLL3_Q, _I2S_CKIN, _CK_PER,
627 				 _PLL3_R};
628 static const u8 spi45_parents[] = {_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER,
629 				   _HSE_KER};
630 static const u8 spi6_parents[] = {_PCLK5, _PLL4_Q, _HSI_KER, _CSI_KER,
631 				  _HSE_KER, _PLL3_Q};
632 static const u8 rtc_parents[] = {_UNKNOWN_ID, _LSE, _LSI, _HSE};
633 
634 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
635 	STM32MP1_CLK_PARENT(_I2C12_SEL, RCC_I2C12CKSELR, 0, 0x7, i2c12_parents),
636 	STM32MP1_CLK_PARENT(_I2C35_SEL, RCC_I2C35CKSELR, 0, 0x7, i2c35_parents),
637 	STM32MP1_CLK_PARENT(_I2C46_SEL, RCC_I2C46CKSELR, 0, 0x7, i2c46_parents),
638 	STM32MP1_CLK_PARENT(_UART6_SEL, RCC_UART6CKSELR, 0, 0x7, uart6_parents),
639 	STM32MP1_CLK_PARENT(_UART24_SEL, RCC_UART24CKSELR, 0, 0x7,
640 			    uart24_parents),
641 	STM32MP1_CLK_PARENT(_UART35_SEL, RCC_UART35CKSELR, 0, 0x7,
642 			    uart35_parents),
643 	STM32MP1_CLK_PARENT(_UART78_SEL, RCC_UART78CKSELR, 0, 0x7,
644 			    uart78_parents),
645 	STM32MP1_CLK_PARENT(_SDMMC12_SEL, RCC_SDMMC12CKSELR, 0, 0x7,
646 			    sdmmc12_parents),
647 	STM32MP1_CLK_PARENT(_SDMMC3_SEL, RCC_SDMMC3CKSELR, 0, 0x7,
648 			    sdmmc3_parents),
649 	STM32MP1_CLK_PARENT(_ETH_SEL, RCC_ETHCKSELR, 0, 0x3, eth_parents),
650 	STM32MP1_CLK_PARENT(_QSPI_SEL, RCC_QSPICKSELR, 0, 0x3, qspi_parents),
651 	STM32MP1_CLK_PARENT(_FMC_SEL, RCC_FMCCKSELR, 0, 0x3, fmc_parents),
652 	STM32MP1_CLK_PARENT(_USBPHY_SEL, RCC_USBCKSELR, 0, 0x3, usbphy_parents),
653 	STM32MP1_CLK_PARENT(_USBO_SEL, RCC_USBCKSELR, 4, 0x1, usbo_parents),
654 	STM32MP1_CLK_PARENT(_STGEN_SEL, RCC_STGENCKSELR, 0, 0x3, stgen_parents),
655 	STM32MP1_CLK_PARENT(_DSI_SEL, RCC_DSICKSELR, 0, 0x1, dsi_parents),
656 	STM32MP1_CLK_PARENT(_ADC12_SEL, RCC_ADCCKSELR, 0, 0x3, adc_parents),
657 	STM32MP1_CLK_PARENT(_SPI1_SEL, RCC_SPI2S1CKSELR, 0, 0x7, spi_parents),
658 	STM32MP1_CLK_PARENT(_SPI23_SEL, RCC_SPI2S23CKSELR, 0, 0x7, spi_parents),
659 	STM32MP1_CLK_PARENT(_SPI45_SEL, RCC_SPI45CKSELR, 0, 0x7, spi45_parents),
660 	STM32MP1_CLK_PARENT(_SPI6_SEL, RCC_SPI6CKSELR, 0, 0x7, spi6_parents),
661 	STM32MP1_CLK_PARENT(_RTC_SEL, RCC_BDCR, RCC_BDCR_RTCSRC_SHIFT,
662 			    (RCC_BDCR_RTCSRC_MASK >> RCC_BDCR_RTCSRC_SHIFT),
663 			    rtc_parents),
664 };
665 
666 #ifdef STM32MP1_CLOCK_TREE_INIT
667 
668 /* define characteristic of PLL according type */
669 #define DIVM_MIN	0
670 #define DIVM_MAX	63
671 #define DIVN_MIN	24
672 #define DIVP_MIN	0
673 #define DIVP_MAX	127
674 #define FRAC_MAX	8192
675 
676 #define PLL1600_VCO_MIN	800000000
677 #define PLL1600_VCO_MAX	1600000000
678 
679 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
680 	[PLL_800] = {
681 		.refclk_min = 4,
682 		.refclk_max = 16,
683 		.divn_max = 99,
684 		},
685 	[PLL_1600] = {
686 		.refclk_min = 8,
687 		.refclk_max = 16,
688 		.divn_max = 199,
689 		},
690 };
691 #endif /* STM32MP1_CLOCK_TREE_INIT */
692 
693 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
694 	STM32MP1_CLK_PLL(_PLL1, PLL_1600,
695 			 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
696 			 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
697 			 _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
698 	STM32MP1_CLK_PLL(_PLL2, PLL_1600,
699 			 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
700 			 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
701 			 _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
702 	STM32MP1_CLK_PLL(_PLL3, PLL_800,
703 			 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
704 			 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
705 			 _HSI, _HSE, _CSI, _UNKNOWN_ID),
706 	STM32MP1_CLK_PLL(_PLL4, PLL_800,
707 			 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
708 			 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
709 			 _HSI, _HSE, _CSI, _I2S_CKIN),
710 };
711 
712 /* Prescaler table lookups for clock computation */
713 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
714 static const u8 stm32mp1_mcu_div[16] = {
715 	0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
716 };
717 
718 /* div = /1 /2 /4 /8 /16 : same divider for pmu and apbx*/
719 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
720 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
721 static const u8 stm32mp1_mpu_apbx_div[8] = {
722 	0, 1, 2, 3, 4, 4, 4, 4
723 };
724 
725 /* div = /1 /2 /3 /4 */
726 static const u8 stm32mp1_axi_div[8] = {
727 	1, 2, 3, 4, 4, 4, 4, 4
728 };
729 
730 static const __maybe_unused
731 char * const stm32mp1_clk_parent_name[_PARENT_NB] = {
732 	[_HSI] = "HSI",
733 	[_HSE] = "HSE",
734 	[_CSI] = "CSI",
735 	[_LSI] = "LSI",
736 	[_LSE] = "LSE",
737 	[_I2S_CKIN] = "I2S_CKIN",
738 	[_HSI_KER] = "HSI_KER",
739 	[_HSE_KER] = "HSE_KER",
740 	[_HSE_KER_DIV2] = "HSE_KER_DIV2",
741 	[_CSI_KER] = "CSI_KER",
742 	[_PLL1_P] = "PLL1_P",
743 	[_PLL1_Q] = "PLL1_Q",
744 	[_PLL1_R] = "PLL1_R",
745 	[_PLL2_P] = "PLL2_P",
746 	[_PLL2_Q] = "PLL2_Q",
747 	[_PLL2_R] = "PLL2_R",
748 	[_PLL3_P] = "PLL3_P",
749 	[_PLL3_Q] = "PLL3_Q",
750 	[_PLL3_R] = "PLL3_R",
751 	[_PLL4_P] = "PLL4_P",
752 	[_PLL4_Q] = "PLL4_Q",
753 	[_PLL4_R] = "PLL4_R",
754 	[_ACLK] = "ACLK",
755 	[_PCLK1] = "PCLK1",
756 	[_PCLK2] = "PCLK2",
757 	[_PCLK3] = "PCLK3",
758 	[_PCLK4] = "PCLK4",
759 	[_PCLK5] = "PCLK5",
760 	[_HCLK6] = "KCLK6",
761 	[_HCLK2] = "HCLK2",
762 	[_CK_PER] = "CK_PER",
763 	[_CK_MPU] = "CK_MPU",
764 	[_CK_MCU] = "CK_MCU",
765 	[_USB_PHY_48] = "USB_PHY_48",
766 	[_DSI_PHY] = "DSI_PHY_PLL",
767 };
768 
769 static const __maybe_unused
770 char * const stm32mp1_clk_parent_sel_name[_PARENT_SEL_NB] = {
771 	[_I2C12_SEL] = "I2C12",
772 	[_I2C35_SEL] = "I2C35",
773 	[_I2C46_SEL] = "I2C46",
774 	[_UART6_SEL] = "UART6",
775 	[_UART24_SEL] = "UART24",
776 	[_UART35_SEL] = "UART35",
777 	[_UART78_SEL] = "UART78",
778 	[_SDMMC12_SEL] = "SDMMC12",
779 	[_SDMMC3_SEL] = "SDMMC3",
780 	[_ETH_SEL] = "ETH",
781 	[_QSPI_SEL] = "QSPI",
782 	[_FMC_SEL] = "FMC",
783 	[_USBPHY_SEL] = "USBPHY",
784 	[_USBO_SEL] = "USBO",
785 	[_STGEN_SEL] = "STGEN",
786 	[_DSI_SEL] = "DSI",
787 	[_ADC12_SEL] = "ADC12",
788 	[_SPI1_SEL] = "SPI1",
789 	[_SPI45_SEL] = "SPI45",
790 	[_RTC_SEL] = "RTC",
791 };
792 
793 static const struct stm32mp1_clk_data stm32mp1_data = {
794 	.gate = stm32mp1_clk_gate,
795 	.sel = stm32mp1_clk_sel,
796 	.pll = stm32mp1_clk_pll,
797 	.nb_gate = ARRAY_SIZE(stm32mp1_clk_gate),
798 };
799 
stm32mp1_clk_get_fixed(struct stm32mp1_clk_priv * priv,int idx)800 static ulong stm32mp1_clk_get_fixed(struct stm32mp1_clk_priv *priv, int idx)
801 {
802 	if (idx >= NB_OSC) {
803 		log_debug("clk id %d not found\n", idx);
804 		return 0;
805 	}
806 
807 	return clk_get_rate(&priv->osc_clk[idx]);
808 }
809 
stm32mp1_clk_get_id(struct stm32mp1_clk_priv * priv,unsigned long id)810 static int stm32mp1_clk_get_id(struct stm32mp1_clk_priv *priv, unsigned long id)
811 {
812 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
813 	int i, nb_clks = priv->data->nb_gate;
814 
815 	for (i = 0; i < nb_clks; i++) {
816 		if (gate[i].index == id)
817 			break;
818 	}
819 
820 	if (i == nb_clks) {
821 		log_err("clk id %d not found\n", (u32)id);
822 		return -EINVAL;
823 	}
824 
825 	return i;
826 }
827 
stm32mp1_clk_get_sel(struct stm32mp1_clk_priv * priv,int i)828 static int stm32mp1_clk_get_sel(struct stm32mp1_clk_priv *priv,
829 				int i)
830 {
831 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
832 
833 	if (gate[i].sel > _PARENT_SEL_NB) {
834 		log_err("parents for clk id %d not found\n", i);
835 		return -EINVAL;
836 	}
837 
838 	return gate[i].sel;
839 }
840 
stm32mp1_clk_get_fixed_parent(struct stm32mp1_clk_priv * priv,int i)841 static int stm32mp1_clk_get_fixed_parent(struct stm32mp1_clk_priv *priv,
842 					 int i)
843 {
844 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
845 
846 	if (gate[i].fixed == _UNKNOWN_ID)
847 		return -ENOENT;
848 
849 	return gate[i].fixed;
850 }
851 
stm32mp1_clk_get_parent(struct stm32mp1_clk_priv * priv,unsigned long id)852 static int stm32mp1_clk_get_parent(struct stm32mp1_clk_priv *priv,
853 				   unsigned long id)
854 {
855 	const struct stm32mp1_clk_sel *sel = priv->data->sel;
856 	int i;
857 	int s, p;
858 	unsigned int idx;
859 
860 	for (idx = 0; idx < ARRAY_SIZE(stm32mp1_clks); idx++)
861 		if (stm32mp1_clks[idx][0] == id)
862 			return stm32mp1_clks[idx][1];
863 
864 	i = stm32mp1_clk_get_id(priv, id);
865 	if (i < 0)
866 		return i;
867 
868 	p = stm32mp1_clk_get_fixed_parent(priv, i);
869 	if (p >= 0 && p < _PARENT_NB)
870 		return p;
871 
872 	s = stm32mp1_clk_get_sel(priv, i);
873 	if (s < 0)
874 		return s;
875 
876 	p = (readl(priv->base + sel[s].offset) >> sel[s].src) & sel[s].msk;
877 
878 	if (p < sel[s].nb_parent) {
879 		log_content("%s clock is the parent %s of clk id %d\n",
880 			    stm32mp1_clk_parent_name[sel[s].parent[p]],
881 			    stm32mp1_clk_parent_sel_name[s],
882 			    (u32)id);
883 		return sel[s].parent[p];
884 	}
885 
886 	log_err("no parents defined for clk id %d\n", (u32)id);
887 
888 	return -EINVAL;
889 }
890 
pll_get_fref_ck(struct stm32mp1_clk_priv * priv,int pll_id)891 static ulong  pll_get_fref_ck(struct stm32mp1_clk_priv *priv,
892 			      int pll_id)
893 {
894 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
895 	u32 selr;
896 	int src;
897 	ulong refclk;
898 
899 	/* Get current refclk */
900 	selr = readl(priv->base + pll[pll_id].rckxselr);
901 	src = selr & RCC_SELR_SRC_MASK;
902 
903 	refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]);
904 
905 	return refclk;
906 }
907 
908 /*
909  * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
910  * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
911  * - PLL3 & PLL4 => return VCO     with Fpll_y_ck = FVCO / (DIVy + 1)
912  * => in all the case Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
913  */
pll_get_fvco(struct stm32mp1_clk_priv * priv,int pll_id)914 static ulong pll_get_fvco(struct stm32mp1_clk_priv *priv,
915 			  int pll_id)
916 {
917 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
918 	int divm, divn;
919 	ulong refclk, fvco;
920 	u32 cfgr1, fracr;
921 
922 	cfgr1 = readl(priv->base + pll[pll_id].pllxcfgr1);
923 	fracr = readl(priv->base + pll[pll_id].pllxfracr);
924 
925 	divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
926 	divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
927 
928 	refclk = pll_get_fref_ck(priv, pll_id);
929 
930 	/* with FRACV :
931 	 *   Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
932 	 * without FRACV
933 	 *   Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
934 	 */
935 	if (fracr & RCC_PLLNFRACR_FRACLE) {
936 		u32 fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK)
937 			    >> RCC_PLLNFRACR_FRACV_SHIFT;
938 		fvco = (ulong)lldiv((unsigned long long)refclk *
939 				     (((divn + 1) << 13) + fracv),
940 				     ((unsigned long long)(divm + 1)) << 13);
941 	} else {
942 		fvco = (ulong)(refclk * (divn + 1) / (divm + 1));
943 	}
944 
945 	return fvco;
946 }
947 
stm32mp1_read_pll_freq(struct stm32mp1_clk_priv * priv,int pll_id,int div_id)948 static ulong stm32mp1_read_pll_freq(struct stm32mp1_clk_priv *priv,
949 				    int pll_id, int div_id)
950 {
951 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
952 	int divy;
953 	ulong dfout;
954 	u32 cfgr2;
955 
956 	if (div_id >= _DIV_NB)
957 		return 0;
958 
959 	cfgr2 = readl(priv->base + pll[pll_id].pllxcfgr2);
960 	divy = (cfgr2 >> RCC_PLLNCFGR2_SHIFT(div_id)) & RCC_PLLNCFGR2_DIVX_MASK;
961 
962 	dfout = pll_get_fvco(priv, pll_id) / (divy + 1);
963 
964 	return dfout;
965 }
966 
stm32mp1_clk_get(struct stm32mp1_clk_priv * priv,int p)967 static ulong stm32mp1_clk_get(struct stm32mp1_clk_priv *priv, int p)
968 {
969 	u32 reg;
970 	ulong clock = 0;
971 
972 	switch (p) {
973 	case _CK_MPU:
974 	/* MPU sub system */
975 		reg = readl(priv->base + RCC_MPCKSELR);
976 		switch (reg & RCC_SELR_SRC_MASK) {
977 		case RCC_MPCKSELR_HSI:
978 			clock = stm32mp1_clk_get_fixed(priv, _HSI);
979 			break;
980 		case RCC_MPCKSELR_HSE:
981 			clock = stm32mp1_clk_get_fixed(priv, _HSE);
982 			break;
983 		case RCC_MPCKSELR_PLL:
984 		case RCC_MPCKSELR_PLL_MPUDIV:
985 			clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_P);
986 			if ((reg & RCC_SELR_SRC_MASK) ==
987 			    RCC_MPCKSELR_PLL_MPUDIV) {
988 				reg = readl(priv->base + RCC_MPCKDIVR);
989 				clock >>= stm32mp1_mpu_div[reg &
990 					RCC_MPUDIV_MASK];
991 			}
992 			break;
993 		}
994 		break;
995 	/* AXI sub system */
996 	case _ACLK:
997 	case _HCLK2:
998 	case _HCLK6:
999 	case _PCLK4:
1000 	case _PCLK5:
1001 		reg = readl(priv->base + RCC_ASSCKSELR);
1002 		switch (reg & RCC_SELR_SRC_MASK) {
1003 		case RCC_ASSCKSELR_HSI:
1004 			clock = stm32mp1_clk_get_fixed(priv, _HSI);
1005 			break;
1006 		case RCC_ASSCKSELR_HSE:
1007 			clock = stm32mp1_clk_get_fixed(priv, _HSE);
1008 			break;
1009 		case RCC_ASSCKSELR_PLL:
1010 			clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_P);
1011 			break;
1012 		}
1013 
1014 		/* System clock divider */
1015 		reg = readl(priv->base + RCC_AXIDIVR);
1016 		clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
1017 
1018 		switch (p) {
1019 		case _PCLK4:
1020 			reg = readl(priv->base + RCC_APB4DIVR);
1021 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1022 			break;
1023 		case _PCLK5:
1024 			reg = readl(priv->base + RCC_APB5DIVR);
1025 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1026 			break;
1027 		default:
1028 			break;
1029 		}
1030 		break;
1031 	/* MCU sub system */
1032 	case _CK_MCU:
1033 	case _PCLK1:
1034 	case _PCLK2:
1035 	case _PCLK3:
1036 		reg = readl(priv->base + RCC_MSSCKSELR);
1037 		switch (reg & RCC_SELR_SRC_MASK) {
1038 		case RCC_MSSCKSELR_HSI:
1039 			clock = stm32mp1_clk_get_fixed(priv, _HSI);
1040 			break;
1041 		case RCC_MSSCKSELR_HSE:
1042 			clock = stm32mp1_clk_get_fixed(priv, _HSE);
1043 			break;
1044 		case RCC_MSSCKSELR_CSI:
1045 			clock = stm32mp1_clk_get_fixed(priv, _CSI);
1046 			break;
1047 		case RCC_MSSCKSELR_PLL:
1048 			clock = stm32mp1_read_pll_freq(priv, _PLL3, _DIV_P);
1049 			break;
1050 		}
1051 
1052 		/* MCU clock divider */
1053 		reg = readl(priv->base + RCC_MCUDIVR);
1054 		clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
1055 
1056 		switch (p) {
1057 		case _PCLK1:
1058 			reg = readl(priv->base + RCC_APB1DIVR);
1059 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1060 			break;
1061 		case _PCLK2:
1062 			reg = readl(priv->base + RCC_APB2DIVR);
1063 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1064 			break;
1065 		case _PCLK3:
1066 			reg = readl(priv->base + RCC_APB3DIVR);
1067 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1068 			break;
1069 		case _CK_MCU:
1070 		default:
1071 			break;
1072 		}
1073 		break;
1074 	case _CK_PER:
1075 		reg = readl(priv->base + RCC_CPERCKSELR);
1076 		switch (reg & RCC_SELR_SRC_MASK) {
1077 		case RCC_CPERCKSELR_HSI:
1078 			clock = stm32mp1_clk_get_fixed(priv, _HSI);
1079 			break;
1080 		case RCC_CPERCKSELR_HSE:
1081 			clock = stm32mp1_clk_get_fixed(priv, _HSE);
1082 			break;
1083 		case RCC_CPERCKSELR_CSI:
1084 			clock = stm32mp1_clk_get_fixed(priv, _CSI);
1085 			break;
1086 		}
1087 		break;
1088 	case _HSI:
1089 	case _HSI_KER:
1090 		clock = stm32mp1_clk_get_fixed(priv, _HSI);
1091 		break;
1092 	case _CSI:
1093 	case _CSI_KER:
1094 		clock = stm32mp1_clk_get_fixed(priv, _CSI);
1095 		break;
1096 	case _HSE:
1097 	case _HSE_KER:
1098 	case _HSE_KER_DIV2:
1099 		clock = stm32mp1_clk_get_fixed(priv, _HSE);
1100 		if (p == _HSE_KER_DIV2)
1101 			clock >>= 1;
1102 		break;
1103 	case _LSI:
1104 		clock = stm32mp1_clk_get_fixed(priv, _LSI);
1105 		break;
1106 	case _LSE:
1107 		clock = stm32mp1_clk_get_fixed(priv, _LSE);
1108 		break;
1109 	/* PLL */
1110 	case _PLL1_P:
1111 	case _PLL1_Q:
1112 	case _PLL1_R:
1113 		clock = stm32mp1_read_pll_freq(priv, _PLL1, p - _PLL1_P);
1114 		break;
1115 	case _PLL2_P:
1116 	case _PLL2_Q:
1117 	case _PLL2_R:
1118 		clock = stm32mp1_read_pll_freq(priv, _PLL2, p - _PLL2_P);
1119 		break;
1120 	case _PLL3_P:
1121 	case _PLL3_Q:
1122 	case _PLL3_R:
1123 		clock = stm32mp1_read_pll_freq(priv, _PLL3, p - _PLL3_P);
1124 		break;
1125 	case _PLL4_P:
1126 	case _PLL4_Q:
1127 	case _PLL4_R:
1128 		clock = stm32mp1_read_pll_freq(priv, _PLL4, p - _PLL4_P);
1129 		break;
1130 	/* other */
1131 	case _USB_PHY_48:
1132 		clock = 48000000;
1133 		break;
1134 	case _DSI_PHY:
1135 	{
1136 		struct clk clk;
1137 		struct udevice *dev = NULL;
1138 
1139 		if (!uclass_get_device_by_name(UCLASS_CLK, "ck_dsi_phy",
1140 					       &dev)) {
1141 			if (clk_request(dev, &clk)) {
1142 				log_err("ck_dsi_phy request");
1143 			} else {
1144 				clk.id = 0;
1145 				clock = clk_get_rate(&clk);
1146 			}
1147 		}
1148 		break;
1149 	}
1150 	default:
1151 		break;
1152 	}
1153 
1154 	log_debug("id=%d clock = %lx : %ld kHz\n", p, clock, clock / 1000);
1155 
1156 	return clock;
1157 }
1158 
stm32mp1_clk_enable(struct clk * clk)1159 static int stm32mp1_clk_enable(struct clk *clk)
1160 {
1161 	struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1162 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
1163 	int i = stm32mp1_clk_get_id(priv, clk->id);
1164 
1165 	if (i < 0)
1166 		return i;
1167 
1168 	if (gate[i].set_clr)
1169 		writel(BIT(gate[i].bit), priv->base + gate[i].offset);
1170 	else
1171 		setbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
1172 
1173 	dev_dbg(clk->dev, "%s: id clock %d has been enabled\n", __func__, (u32)clk->id);
1174 
1175 	return 0;
1176 }
1177 
stm32mp1_clk_disable(struct clk * clk)1178 static int stm32mp1_clk_disable(struct clk *clk)
1179 {
1180 	struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1181 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
1182 	int i = stm32mp1_clk_get_id(priv, clk->id);
1183 
1184 	if (i < 0)
1185 		return i;
1186 
1187 	if (gate[i].set_clr)
1188 		writel(BIT(gate[i].bit),
1189 		       priv->base + gate[i].offset
1190 		       + RCC_MP_ENCLRR_OFFSET);
1191 	else
1192 		clrbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
1193 
1194 	dev_dbg(clk->dev, "%s: id clock %d has been disabled\n", __func__, (u32)clk->id);
1195 
1196 	return 0;
1197 }
1198 
stm32mp1_clk_get_rate(struct clk * clk)1199 static ulong stm32mp1_clk_get_rate(struct clk *clk)
1200 {
1201 	struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1202 	int p = stm32mp1_clk_get_parent(priv, clk->id);
1203 	ulong rate;
1204 
1205 	if (p < 0)
1206 		return 0;
1207 
1208 	rate = stm32mp1_clk_get(priv, p);
1209 
1210 	dev_vdbg(clk->dev, "computed rate for id clock %d is %d (parent is %s)\n",
1211 		 (u32)clk->id, (u32)rate, stm32mp1_clk_parent_name[p]);
1212 
1213 	return rate;
1214 }
1215 
1216 #ifdef STM32MP1_CLOCK_TREE_INIT
1217 
stm32mp1_supports_opp(u32 opp_id,u32 cpu_type)1218 bool stm32mp1_supports_opp(u32 opp_id, u32 cpu_type)
1219 {
1220 	unsigned int id;
1221 
1222 	switch (opp_id) {
1223 	case 1:
1224 	case 2:
1225 		id = opp_id;
1226 		break;
1227 	default:
1228 		id = 1; /* default value */
1229 		break;
1230 	}
1231 
1232 	switch (cpu_type) {
1233 	case CPU_STM32MP157Fxx:
1234 	case CPU_STM32MP157Dxx:
1235 	case CPU_STM32MP153Fxx:
1236 	case CPU_STM32MP153Dxx:
1237 	case CPU_STM32MP151Fxx:
1238 	case CPU_STM32MP151Dxx:
1239 		return true;
1240 	default:
1241 		return id == 1;
1242 	}
1243 }
1244 
board_vddcore_init(u32 voltage_mv)1245 __weak void board_vddcore_init(u32 voltage_mv)
1246 {
1247 }
1248 
1249 /*
1250  * gets OPP parameters (frequency in KHz and voltage in mV) from
1251  * an OPP table subnode. Platform HW support capabilities are also checked.
1252  * Returns 0 on success and a negative FDT error code on failure.
1253  */
stm32mp1_get_opp(u32 cpu_type,ofnode subnode,u32 * freq_khz,u32 * voltage_mv)1254 static int stm32mp1_get_opp(u32 cpu_type, ofnode subnode,
1255 			    u32 *freq_khz, u32 *voltage_mv)
1256 {
1257 	u32 opp_hw;
1258 	u64 read_freq_64;
1259 	u32 read_voltage_32;
1260 
1261 	*freq_khz = 0;
1262 	*voltage_mv = 0;
1263 
1264 	opp_hw = ofnode_read_u32_default(subnode, "opp-supported-hw", 0);
1265 	if (opp_hw)
1266 		if (!stm32mp1_supports_opp(opp_hw, cpu_type))
1267 			return -FDT_ERR_BADVALUE;
1268 
1269 	read_freq_64 = ofnode_read_u64_default(subnode, "opp-hz", 0) /
1270 		       1000ULL;
1271 	read_voltage_32 = ofnode_read_u32_default(subnode, "opp-microvolt", 0) /
1272 			  1000U;
1273 
1274 	if (!read_voltage_32 || !read_freq_64)
1275 		return -FDT_ERR_NOTFOUND;
1276 
1277 	/* Frequency value expressed in KHz must fit on 32 bits */
1278 	if (read_freq_64 > U32_MAX)
1279 		return -FDT_ERR_BADVALUE;
1280 
1281 	/* Millivolt value must fit on 16 bits */
1282 	if (read_voltage_32 > U16_MAX)
1283 		return -FDT_ERR_BADVALUE;
1284 
1285 	*freq_khz = (u32)read_freq_64;
1286 	*voltage_mv = read_voltage_32;
1287 
1288 	return 0;
1289 }
1290 
1291 /*
1292  * parses OPP table in DT and finds the parameters for the
1293  * highest frequency supported by the HW platform.
1294  * Returns 0 on success and a negative FDT error code on failure.
1295  */
stm32mp1_get_max_opp_freq(struct stm32mp1_clk_priv * priv,u64 * freq_hz)1296 int stm32mp1_get_max_opp_freq(struct stm32mp1_clk_priv *priv, u64 *freq_hz)
1297 {
1298 	ofnode node, subnode;
1299 	int ret;
1300 	u32 freq = 0U, voltage = 0U;
1301 	u32 cpu_type = get_cpu_type();
1302 
1303 	node = ofnode_by_compatible(ofnode_null(), "operating-points-v2");
1304 	if (!ofnode_valid(node))
1305 		return -FDT_ERR_NOTFOUND;
1306 
1307 	ofnode_for_each_subnode(subnode, node) {
1308 		unsigned int read_freq;
1309 		unsigned int read_voltage;
1310 
1311 		ret = stm32mp1_get_opp(cpu_type, subnode,
1312 				       &read_freq, &read_voltage);
1313 		if (ret)
1314 			continue;
1315 
1316 		if (read_freq > freq) {
1317 			freq = read_freq;
1318 			voltage = read_voltage;
1319 		}
1320 	}
1321 
1322 	if (!freq || !voltage)
1323 		return -FDT_ERR_NOTFOUND;
1324 
1325 	*freq_hz = (u64)1000U * freq;
1326 	board_vddcore_init(voltage);
1327 
1328 	return 0;
1329 }
1330 
stm32mp1_pll1_opp(struct stm32mp1_clk_priv * priv,int clksrc,u32 * pllcfg,u32 * fracv)1331 static int stm32mp1_pll1_opp(struct stm32mp1_clk_priv *priv, int clksrc,
1332 			     u32 *pllcfg, u32 *fracv)
1333 {
1334 	u32 post_divm;
1335 	u32 input_freq;
1336 	u64 output_freq;
1337 	u64 freq;
1338 	u64 vco;
1339 	u32 divm, divn, divp, frac;
1340 	int i, ret;
1341 	u32 diff;
1342 	u32 best_diff = U32_MAX;
1343 
1344 	/* PLL1 is 1600 */
1345 	const u32 DIVN_MAX = stm32mp1_pll[PLL_1600].divn_max;
1346 	const u32 POST_DIVM_MIN = stm32mp1_pll[PLL_1600].refclk_min * 1000000U;
1347 	const u32 POST_DIVM_MAX = stm32mp1_pll[PLL_1600].refclk_max * 1000000U;
1348 
1349 	ret = stm32mp1_get_max_opp_freq(priv, &output_freq);
1350 	if (ret) {
1351 		log_debug("PLL1 OPP configuration not found (%d).\n", ret);
1352 		return ret;
1353 	}
1354 
1355 	switch (clksrc) {
1356 	case CLK_PLL12_HSI:
1357 		input_freq = stm32mp1_clk_get_fixed(priv, _HSI);
1358 		break;
1359 	case CLK_PLL12_HSE:
1360 		input_freq = stm32mp1_clk_get_fixed(priv, _HSE);
1361 		break;
1362 	default:
1363 		return -EINTR;
1364 	}
1365 
1366 	/* Following parameters have always the same value */
1367 	pllcfg[PLLCFG_Q] = 0;
1368 	pllcfg[PLLCFG_R] = 0;
1369 	pllcfg[PLLCFG_O] = PQR(1, 0, 0);
1370 
1371 	for (divm = DIVM_MAX; divm >= DIVM_MIN; divm--)	{
1372 		post_divm = (u32)(input_freq / (divm + 1));
1373 		if (post_divm < POST_DIVM_MIN || post_divm > POST_DIVM_MAX)
1374 			continue;
1375 
1376 		for (divp = DIVP_MIN; divp <= DIVP_MAX; divp++) {
1377 			freq = output_freq * (divm + 1) * (divp + 1);
1378 			divn = (u32)((freq / input_freq) - 1);
1379 			if (divn < DIVN_MIN || divn > DIVN_MAX)
1380 				continue;
1381 
1382 			frac = (u32)(((freq * FRAC_MAX) / input_freq) -
1383 				     ((divn + 1) * FRAC_MAX));
1384 			/* 2 loops to refine the fractional part */
1385 			for (i = 2; i != 0; i--) {
1386 				if (frac > FRAC_MAX)
1387 					break;
1388 
1389 				vco = (post_divm * (divn + 1)) +
1390 				      ((post_divm * (u64)frac) /
1391 				       FRAC_MAX);
1392 				if (vco < (PLL1600_VCO_MIN / 2) ||
1393 				    vco > (PLL1600_VCO_MAX / 2)) {
1394 					frac++;
1395 					continue;
1396 				}
1397 				freq = vco / (divp + 1);
1398 				if (output_freq < freq)
1399 					diff = (u32)(freq - output_freq);
1400 				else
1401 					diff = (u32)(output_freq - freq);
1402 				if (diff < best_diff)  {
1403 					pllcfg[PLLCFG_M] = divm;
1404 					pllcfg[PLLCFG_N] = divn;
1405 					pllcfg[PLLCFG_P] = divp;
1406 					*fracv = frac;
1407 
1408 					if (diff == 0)
1409 						return 0;
1410 
1411 					best_diff = diff;
1412 				}
1413 				frac++;
1414 			}
1415 		}
1416 	}
1417 
1418 	if (best_diff == U32_MAX)
1419 		return -1;
1420 
1421 	return 0;
1422 }
1423 
stm32mp1_ls_osc_set(int enable,fdt_addr_t rcc,u32 offset,u32 mask_on)1424 static void stm32mp1_ls_osc_set(int enable, fdt_addr_t rcc, u32 offset,
1425 				u32 mask_on)
1426 {
1427 	u32 address = rcc + offset;
1428 
1429 	if (enable)
1430 		setbits_le32(address, mask_on);
1431 	else
1432 		clrbits_le32(address, mask_on);
1433 }
1434 
stm32mp1_hs_ocs_set(int enable,fdt_addr_t rcc,u32 mask_on)1435 static void stm32mp1_hs_ocs_set(int enable, fdt_addr_t rcc, u32 mask_on)
1436 {
1437 	writel(mask_on, rcc + (enable ? RCC_OCENSETR : RCC_OCENCLRR));
1438 }
1439 
stm32mp1_osc_wait(int enable,fdt_addr_t rcc,u32 offset,u32 mask_rdy)1440 static int stm32mp1_osc_wait(int enable, fdt_addr_t rcc, u32 offset,
1441 			     u32 mask_rdy)
1442 {
1443 	u32 mask_test = 0;
1444 	u32 address = rcc + offset;
1445 	u32 val;
1446 	int ret;
1447 
1448 	if (enable)
1449 		mask_test = mask_rdy;
1450 
1451 	ret = readl_poll_timeout(address, val,
1452 				 (val & mask_rdy) == mask_test,
1453 				 TIMEOUT_1S);
1454 
1455 	if (ret)
1456 		log_err("OSC %x @ %x timeout for enable=%d : 0x%x\n",
1457 			mask_rdy, address, enable, readl(address));
1458 
1459 	return ret;
1460 }
1461 
stm32mp1_lse_enable(fdt_addr_t rcc,int bypass,int digbyp,u32 lsedrv)1462 static void stm32mp1_lse_enable(fdt_addr_t rcc, int bypass, int digbyp,
1463 				u32 lsedrv)
1464 {
1465 	u32 value;
1466 
1467 	if (digbyp)
1468 		setbits_le32(rcc + RCC_BDCR, RCC_BDCR_DIGBYP);
1469 
1470 	if (bypass || digbyp)
1471 		setbits_le32(rcc + RCC_BDCR, RCC_BDCR_LSEBYP);
1472 
1473 	/*
1474 	 * warning: not recommended to switch directly from "high drive"
1475 	 * to "medium low drive", and vice-versa.
1476 	 */
1477 	value = (readl(rcc + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK)
1478 		>> RCC_BDCR_LSEDRV_SHIFT;
1479 
1480 	while (value != lsedrv) {
1481 		if (value > lsedrv)
1482 			value--;
1483 		else
1484 			value++;
1485 
1486 		clrsetbits_le32(rcc + RCC_BDCR,
1487 				RCC_BDCR_LSEDRV_MASK,
1488 				value << RCC_BDCR_LSEDRV_SHIFT);
1489 	}
1490 
1491 	stm32mp1_ls_osc_set(1, rcc, RCC_BDCR, RCC_BDCR_LSEON);
1492 }
1493 
stm32mp1_lse_wait(fdt_addr_t rcc)1494 static void stm32mp1_lse_wait(fdt_addr_t rcc)
1495 {
1496 	stm32mp1_osc_wait(1, rcc, RCC_BDCR, RCC_BDCR_LSERDY);
1497 }
1498 
stm32mp1_lsi_set(fdt_addr_t rcc,int enable)1499 static void stm32mp1_lsi_set(fdt_addr_t rcc, int enable)
1500 {
1501 	stm32mp1_ls_osc_set(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSION);
1502 	stm32mp1_osc_wait(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSIRDY);
1503 }
1504 
stm32mp1_hse_enable(fdt_addr_t rcc,int bypass,int digbyp,int css)1505 static void stm32mp1_hse_enable(fdt_addr_t rcc, int bypass, int digbyp, int css)
1506 {
1507 	if (digbyp)
1508 		writel(RCC_OCENR_DIGBYP, rcc + RCC_OCENSETR);
1509 	if (bypass || digbyp)
1510 		writel(RCC_OCENR_HSEBYP, rcc + RCC_OCENSETR);
1511 
1512 	stm32mp1_hs_ocs_set(1, rcc, RCC_OCENR_HSEON);
1513 	stm32mp1_osc_wait(1, rcc, RCC_OCRDYR, RCC_OCRDYR_HSERDY);
1514 
1515 	if (css)
1516 		writel(RCC_OCENR_HSECSSON, rcc + RCC_OCENSETR);
1517 }
1518 
stm32mp1_csi_set(fdt_addr_t rcc,int enable)1519 static void stm32mp1_csi_set(fdt_addr_t rcc, int enable)
1520 {
1521 	stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_CSION);
1522 	stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_CSIRDY);
1523 }
1524 
stm32mp1_hsi_set(fdt_addr_t rcc,int enable)1525 static void stm32mp1_hsi_set(fdt_addr_t rcc, int enable)
1526 {
1527 	stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_HSION);
1528 	stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_HSIRDY);
1529 }
1530 
stm32mp1_set_hsidiv(fdt_addr_t rcc,u8 hsidiv)1531 static int stm32mp1_set_hsidiv(fdt_addr_t rcc, u8 hsidiv)
1532 {
1533 	u32 address = rcc + RCC_OCRDYR;
1534 	u32 val;
1535 	int ret;
1536 
1537 	clrsetbits_le32(rcc + RCC_HSICFGR,
1538 			RCC_HSICFGR_HSIDIV_MASK,
1539 			RCC_HSICFGR_HSIDIV_MASK & hsidiv);
1540 
1541 	ret = readl_poll_timeout(address, val,
1542 				 val & RCC_OCRDYR_HSIDIVRDY,
1543 				 TIMEOUT_200MS);
1544 	if (ret)
1545 		log_err("HSIDIV failed @ 0x%x: 0x%x\n",
1546 			address, readl(address));
1547 
1548 	return ret;
1549 }
1550 
stm32mp1_hsidiv(fdt_addr_t rcc,ulong hsifreq)1551 static int stm32mp1_hsidiv(fdt_addr_t rcc, ulong hsifreq)
1552 {
1553 	u8 hsidiv;
1554 	u32 hsidivfreq = MAX_HSI_HZ;
1555 
1556 	for (hsidiv = 0; hsidiv < 4; hsidiv++,
1557 	     hsidivfreq = hsidivfreq / 2)
1558 		if (hsidivfreq == hsifreq)
1559 			break;
1560 
1561 	if (hsidiv == 4) {
1562 		log_err("hsi frequency invalid");
1563 		return -1;
1564 	}
1565 
1566 	if (hsidiv > 0)
1567 		return stm32mp1_set_hsidiv(rcc, hsidiv);
1568 
1569 	return 0;
1570 }
1571 
pll_start(struct stm32mp1_clk_priv * priv,int pll_id)1572 static void pll_start(struct stm32mp1_clk_priv *priv, int pll_id)
1573 {
1574 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1575 
1576 	clrsetbits_le32(priv->base + pll[pll_id].pllxcr,
1577 			RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1578 			RCC_PLLNCR_DIVREN,
1579 			RCC_PLLNCR_PLLON);
1580 }
1581 
pll_output(struct stm32mp1_clk_priv * priv,int pll_id,int output)1582 static int pll_output(struct stm32mp1_clk_priv *priv, int pll_id, int output)
1583 {
1584 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1585 	u32 pllxcr = priv->base + pll[pll_id].pllxcr;
1586 	u32 val;
1587 	int ret;
1588 
1589 	ret = readl_poll_timeout(pllxcr, val, val & RCC_PLLNCR_PLLRDY,
1590 				 TIMEOUT_200MS);
1591 
1592 	if (ret) {
1593 		log_err("PLL%d start failed @ 0x%x: 0x%x\n",
1594 			pll_id, pllxcr, readl(pllxcr));
1595 		return ret;
1596 	}
1597 
1598 	/* start the requested output */
1599 	setbits_le32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1600 
1601 	return 0;
1602 }
1603 
pll_stop(struct stm32mp1_clk_priv * priv,int pll_id)1604 static int pll_stop(struct stm32mp1_clk_priv *priv, int pll_id)
1605 {
1606 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1607 	u32 pllxcr = priv->base + pll[pll_id].pllxcr;
1608 	u32 val;
1609 
1610 	/* stop all output */
1611 	clrbits_le32(pllxcr,
1612 		     RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN);
1613 
1614 	/* stop PLL */
1615 	clrbits_le32(pllxcr, RCC_PLLNCR_PLLON);
1616 
1617 	/* wait PLL stopped */
1618 	return readl_poll_timeout(pllxcr, val, (val & RCC_PLLNCR_PLLRDY) == 0,
1619 				  TIMEOUT_200MS);
1620 }
1621 
pll_config_output(struct stm32mp1_clk_priv * priv,int pll_id,u32 * pllcfg)1622 static void pll_config_output(struct stm32mp1_clk_priv *priv,
1623 			      int pll_id, u32 *pllcfg)
1624 {
1625 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1626 	fdt_addr_t rcc = priv->base;
1627 	u32 value;
1628 
1629 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT)
1630 		& RCC_PLLNCFGR2_DIVP_MASK;
1631 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT)
1632 		 & RCC_PLLNCFGR2_DIVQ_MASK;
1633 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT)
1634 		 & RCC_PLLNCFGR2_DIVR_MASK;
1635 	writel(value, rcc + pll[pll_id].pllxcfgr2);
1636 }
1637 
pll_config(struct stm32mp1_clk_priv * priv,int pll_id,u32 * pllcfg,u32 fracv)1638 static int pll_config(struct stm32mp1_clk_priv *priv, int pll_id,
1639 		      u32 *pllcfg, u32 fracv)
1640 {
1641 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1642 	fdt_addr_t rcc = priv->base;
1643 	enum stm32mp1_plltype type = pll[pll_id].plltype;
1644 	int src;
1645 	ulong refclk;
1646 	u8 ifrge = 0;
1647 	u32 value;
1648 
1649 	src = readl(priv->base + pll[pll_id].rckxselr) & RCC_SELR_SRC_MASK;
1650 
1651 	refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]) /
1652 		 (pllcfg[PLLCFG_M] + 1);
1653 
1654 	if (refclk < (stm32mp1_pll[type].refclk_min * 1000000) ||
1655 	    refclk > (stm32mp1_pll[type].refclk_max * 1000000)) {
1656 		log_err("invalid refclk = %x\n", (u32)refclk);
1657 		return -EINVAL;
1658 	}
1659 	if (type == PLL_800 && refclk >= 8000000)
1660 		ifrge = 1;
1661 
1662 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT)
1663 		 & RCC_PLLNCFGR1_DIVN_MASK;
1664 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT)
1665 		 & RCC_PLLNCFGR1_DIVM_MASK;
1666 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT)
1667 		 & RCC_PLLNCFGR1_IFRGE_MASK;
1668 	writel(value, rcc + pll[pll_id].pllxcfgr1);
1669 
1670 	/* fractional configuration: load sigma-delta modulator (SDM) */
1671 
1672 	/* Write into FRACV the new fractional value , and FRACLE to 0 */
1673 	writel(fracv << RCC_PLLNFRACR_FRACV_SHIFT,
1674 	       rcc + pll[pll_id].pllxfracr);
1675 
1676 	/* Write FRACLE to 1 : FRACV value is loaded into the SDM */
1677 	setbits_le32(rcc + pll[pll_id].pllxfracr,
1678 		     RCC_PLLNFRACR_FRACLE);
1679 
1680 	pll_config_output(priv, pll_id, pllcfg);
1681 
1682 	return 0;
1683 }
1684 
pll_csg(struct stm32mp1_clk_priv * priv,int pll_id,u32 * csg)1685 static void pll_csg(struct stm32mp1_clk_priv *priv, int pll_id, u32 *csg)
1686 {
1687 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1688 	u32 pllxcsg;
1689 
1690 	pllxcsg = ((csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1691 		    RCC_PLLNCSGR_MOD_PER_MASK) |
1692 		  ((csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1693 		    RCC_PLLNCSGR_INC_STEP_MASK) |
1694 		  ((csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1695 		    RCC_PLLNCSGR_SSCG_MODE_MASK);
1696 
1697 	writel(pllxcsg, priv->base + pll[pll_id].pllxcsgr);
1698 
1699 	setbits_le32(priv->base + pll[pll_id].pllxcr, RCC_PLLNCR_SSCG_CTRL);
1700 }
1701 
pll_set_rate(struct udevice * dev,int pll_id,int div_id,unsigned long clk_rate)1702 static  __maybe_unused int pll_set_rate(struct udevice *dev,
1703 					int pll_id,
1704 					int div_id,
1705 					unsigned long clk_rate)
1706 {
1707 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1708 	unsigned int pllcfg[PLLCFG_NB];
1709 	ofnode plloff;
1710 	char name[12];
1711 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1712 	enum stm32mp1_plltype type = pll[pll_id].plltype;
1713 	int divm, divn, divy;
1714 	int ret;
1715 	ulong fck_ref;
1716 	u32 fracv;
1717 	u64 value;
1718 
1719 	if (div_id > _DIV_NB)
1720 		return -EINVAL;
1721 
1722 	sprintf(name, "st,pll@%d", pll_id);
1723 	plloff = dev_read_subnode(dev, name);
1724 	if (!ofnode_valid(plloff))
1725 		return -FDT_ERR_NOTFOUND;
1726 
1727 	ret = ofnode_read_u32_array(plloff, "cfg",
1728 				    pllcfg, PLLCFG_NB);
1729 	if (ret < 0)
1730 		return -FDT_ERR_NOTFOUND;
1731 
1732 	fck_ref = pll_get_fref_ck(priv, pll_id);
1733 
1734 	divm = pllcfg[PLLCFG_M];
1735 	/* select output divider = 0: for _DIV_P, 1:_DIV_Q 2:_DIV_R */
1736 	divy = pllcfg[PLLCFG_P + div_id];
1737 
1738 	/* For: PLL1 & PLL2 => VCO is * 2 but ck_pll_y is also / 2
1739 	 * So same final result than PLL2 et 4
1740 	 * with FRACV
1741 	 * Fck_pll_y = Fck_ref * ((DIVN + 1) + FRACV / 2^13)
1742 	 *             / (DIVy + 1) * (DIVM + 1)
1743 	 * value = (DIVN + 1) * 2^13 + FRACV / 2^13
1744 	 *       = Fck_pll_y (DIVy + 1) * (DIVM + 1) * 2^13 / Fck_ref
1745 	 */
1746 	value = ((u64)clk_rate * (divy + 1) * (divm + 1)) << 13;
1747 	value = lldiv(value, fck_ref);
1748 
1749 	divn = (value >> 13) - 1;
1750 	if (divn < DIVN_MIN ||
1751 	    divn > stm32mp1_pll[type].divn_max) {
1752 		dev_err(dev, "divn invalid = %d", divn);
1753 		return -EINVAL;
1754 	}
1755 	fracv = value - ((divn + 1) << 13);
1756 	pllcfg[PLLCFG_N] = divn;
1757 
1758 	/* reconfigure PLL */
1759 	pll_stop(priv, pll_id);
1760 	pll_config(priv, pll_id, pllcfg, fracv);
1761 	pll_start(priv, pll_id);
1762 	pll_output(priv, pll_id, pllcfg[PLLCFG_O]);
1763 
1764 	return 0;
1765 }
1766 
set_clksrc(struct stm32mp1_clk_priv * priv,unsigned int clksrc)1767 static int set_clksrc(struct stm32mp1_clk_priv *priv, unsigned int clksrc)
1768 {
1769 	u32 address = priv->base + (clksrc >> 4);
1770 	u32 val;
1771 	int ret;
1772 
1773 	clrsetbits_le32(address, RCC_SELR_SRC_MASK, clksrc & RCC_SELR_SRC_MASK);
1774 	ret = readl_poll_timeout(address, val, val & RCC_SELR_SRCRDY,
1775 				 TIMEOUT_200MS);
1776 	if (ret)
1777 		log_err("CLKSRC %x start failed @ 0x%x: 0x%x\n",
1778 			clksrc, address, readl(address));
1779 
1780 	return ret;
1781 }
1782 
stgen_config(struct stm32mp1_clk_priv * priv)1783 static void stgen_config(struct stm32mp1_clk_priv *priv)
1784 {
1785 	int p;
1786 	u32 stgenc, cntfid0;
1787 	ulong rate;
1788 
1789 	stgenc = STM32_STGEN_BASE;
1790 	cntfid0 = readl(stgenc + STGENC_CNTFID0);
1791 	p = stm32mp1_clk_get_parent(priv, STGEN_K);
1792 	rate = stm32mp1_clk_get(priv, p);
1793 
1794 	if (cntfid0 != rate) {
1795 		u64 counter;
1796 
1797 		log_debug("System Generic Counter (STGEN) update\n");
1798 		clrbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN);
1799 		counter = (u64)readl(stgenc + STGENC_CNTCVL);
1800 		counter |= ((u64)(readl(stgenc + STGENC_CNTCVU))) << 32;
1801 		counter = lldiv(counter * (u64)rate, cntfid0);
1802 		writel((u32)counter, stgenc + STGENC_CNTCVL);
1803 		writel((u32)(counter >> 32), stgenc + STGENC_CNTCVU);
1804 		writel(rate, stgenc + STGENC_CNTFID0);
1805 		setbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN);
1806 
1807 		__asm__ volatile("mcr p15, 0, %0, c14, c0, 0" : : "r" (rate));
1808 
1809 		/* need to update gd->arch.timer_rate_hz with new frequency */
1810 		timer_init();
1811 	}
1812 }
1813 
set_clkdiv(unsigned int clkdiv,u32 address)1814 static int set_clkdiv(unsigned int clkdiv, u32 address)
1815 {
1816 	u32 val;
1817 	int ret;
1818 
1819 	clrsetbits_le32(address, RCC_DIVR_DIV_MASK, clkdiv & RCC_DIVR_DIV_MASK);
1820 	ret = readl_poll_timeout(address, val, val & RCC_DIVR_DIVRDY,
1821 				 TIMEOUT_200MS);
1822 	if (ret)
1823 		log_err("CLKDIV %x start failed @ 0x%x: 0x%x\n",
1824 			clkdiv, address, readl(address));
1825 
1826 	return ret;
1827 }
1828 
stm32mp1_mco_csg(struct stm32mp1_clk_priv * priv,u32 clksrc,u32 clkdiv)1829 static void stm32mp1_mco_csg(struct stm32mp1_clk_priv *priv,
1830 			     u32 clksrc, u32 clkdiv)
1831 {
1832 	u32 address = priv->base + (clksrc >> 4);
1833 
1834 	/*
1835 	 * binding clksrc : bit15-4 offset
1836 	 *                  bit3:   disable
1837 	 *                  bit2-0: MCOSEL[2:0]
1838 	 */
1839 	if (clksrc & 0x8) {
1840 		clrbits_le32(address, RCC_MCOCFG_MCOON);
1841 	} else {
1842 		clrsetbits_le32(address,
1843 				RCC_MCOCFG_MCOSRC_MASK,
1844 				clksrc & RCC_MCOCFG_MCOSRC_MASK);
1845 		clrsetbits_le32(address,
1846 				RCC_MCOCFG_MCODIV_MASK,
1847 				clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
1848 		setbits_le32(address, RCC_MCOCFG_MCOON);
1849 	}
1850 }
1851 
set_rtcsrc(struct stm32mp1_clk_priv * priv,unsigned int clksrc,int lse_css)1852 static void set_rtcsrc(struct stm32mp1_clk_priv *priv,
1853 		       unsigned int clksrc,
1854 		       int lse_css)
1855 {
1856 	u32 address = priv->base + RCC_BDCR;
1857 
1858 	if (readl(address) & RCC_BDCR_RTCCKEN)
1859 		goto skip_rtc;
1860 
1861 	if (clksrc == CLK_RTC_DISABLED)
1862 		goto skip_rtc;
1863 
1864 	clrsetbits_le32(address,
1865 			RCC_BDCR_RTCSRC_MASK,
1866 			clksrc << RCC_BDCR_RTCSRC_SHIFT);
1867 
1868 	setbits_le32(address, RCC_BDCR_RTCCKEN);
1869 
1870 skip_rtc:
1871 	if (lse_css)
1872 		setbits_le32(address, RCC_BDCR_LSECSSON);
1873 }
1874 
pkcs_config(struct stm32mp1_clk_priv * priv,u32 pkcs)1875 static void pkcs_config(struct stm32mp1_clk_priv *priv, u32 pkcs)
1876 {
1877 	u32 address = priv->base + ((pkcs >> 4) & 0xFFF);
1878 	u32 value = pkcs & 0xF;
1879 	u32 mask = 0xF;
1880 
1881 	if (pkcs & BIT(31)) {
1882 		mask <<= 4;
1883 		value <<= 4;
1884 	}
1885 	clrsetbits_le32(address, mask, value);
1886 }
1887 
stm32mp1_clktree(struct udevice * dev)1888 static int stm32mp1_clktree(struct udevice *dev)
1889 {
1890 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1891 	fdt_addr_t rcc = priv->base;
1892 	unsigned int clksrc[CLKSRC_NB];
1893 	unsigned int clkdiv[CLKDIV_NB];
1894 	unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
1895 	unsigned int pllfracv[_PLL_NB];
1896 	unsigned int pllcsg[_PLL_NB][PLLCSG_NB];
1897 	bool pllcfg_valid[_PLL_NB];
1898 	bool pllcsg_set[_PLL_NB];
1899 	int ret;
1900 	int i, len;
1901 	int lse_css = 0;
1902 	const u32 *pkcs_cell;
1903 
1904 	/* check mandatory field */
1905 	ret = dev_read_u32_array(dev, "st,clksrc", clksrc, CLKSRC_NB);
1906 	if (ret < 0) {
1907 		dev_dbg(dev, "field st,clksrc invalid: error %d\n", ret);
1908 		return -FDT_ERR_NOTFOUND;
1909 	}
1910 
1911 	ret = dev_read_u32_array(dev, "st,clkdiv", clkdiv, CLKDIV_NB);
1912 	if (ret < 0) {
1913 		dev_dbg(dev, "field st,clkdiv invalid: error %d\n", ret);
1914 		return -FDT_ERR_NOTFOUND;
1915 	}
1916 
1917 	/* check mandatory field in each pll */
1918 	for (i = 0; i < _PLL_NB; i++) {
1919 		char name[12];
1920 		ofnode node;
1921 
1922 		sprintf(name, "st,pll@%d", i);
1923 		node = dev_read_subnode(dev, name);
1924 		pllcfg_valid[i] = ofnode_valid(node);
1925 		pllcsg_set[i] = false;
1926 		if (pllcfg_valid[i]) {
1927 			dev_dbg(dev, "DT for PLL %d @ %s\n", i, name);
1928 			ret = ofnode_read_u32_array(node, "cfg",
1929 						    pllcfg[i], PLLCFG_NB);
1930 			if (ret < 0) {
1931 				dev_dbg(dev, "field cfg invalid: error %d\n", ret);
1932 				return -FDT_ERR_NOTFOUND;
1933 			}
1934 			pllfracv[i] = ofnode_read_u32_default(node, "frac", 0);
1935 
1936 			ret = ofnode_read_u32_array(node, "csg", pllcsg[i],
1937 						    PLLCSG_NB);
1938 			if (!ret) {
1939 				pllcsg_set[i] = true;
1940 			} else if (ret != -FDT_ERR_NOTFOUND) {
1941 				dev_dbg(dev, "invalid csg node for pll@%d res=%d\n",
1942 					i, ret);
1943 				return ret;
1944 			}
1945 		} else if (i == _PLL1)	{
1946 			/* use OPP for PLL1 for A7 CPU */
1947 			dev_dbg(dev, "DT for PLL %d with OPP\n", i);
1948 			ret = stm32mp1_pll1_opp(priv,
1949 						clksrc[CLKSRC_PLL12],
1950 						pllcfg[i],
1951 						&pllfracv[i]);
1952 			if (ret) {
1953 				dev_dbg(dev, "PLL %d with OPP error = %d\n", i, ret);
1954 				return ret;
1955 			}
1956 			pllcfg_valid[i] = true;
1957 		}
1958 	}
1959 
1960 	dev_dbg(dev, "configuration MCO\n");
1961 	stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
1962 	stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
1963 
1964 	dev_dbg(dev, "switch ON osillator\n");
1965 	/*
1966 	 * switch ON oscillator found in device-tree,
1967 	 * HSI already ON after bootrom
1968 	 */
1969 	if (clk_valid(&priv->osc_clk[_LSI]))
1970 		stm32mp1_lsi_set(rcc, 1);
1971 
1972 	if (clk_valid(&priv->osc_clk[_LSE])) {
1973 		int bypass, digbyp;
1974 		u32 lsedrv;
1975 		struct udevice *dev = priv->osc_clk[_LSE].dev;
1976 
1977 		bypass = dev_read_bool(dev, "st,bypass");
1978 		digbyp = dev_read_bool(dev, "st,digbypass");
1979 		lse_css = dev_read_bool(dev, "st,css");
1980 		lsedrv = dev_read_u32_default(dev, "st,drive",
1981 					      LSEDRV_MEDIUM_HIGH);
1982 
1983 		stm32mp1_lse_enable(rcc, bypass, digbyp, lsedrv);
1984 	}
1985 
1986 	if (clk_valid(&priv->osc_clk[_HSE])) {
1987 		int bypass, digbyp, css;
1988 		struct udevice *dev = priv->osc_clk[_HSE].dev;
1989 
1990 		bypass = dev_read_bool(dev, "st,bypass");
1991 		digbyp = dev_read_bool(dev, "st,digbypass");
1992 		css = dev_read_bool(dev, "st,css");
1993 
1994 		stm32mp1_hse_enable(rcc, bypass, digbyp, css);
1995 	}
1996 	/* CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
1997 	 * => switch on CSI even if node is not present in device tree
1998 	 */
1999 	stm32mp1_csi_set(rcc, 1);
2000 
2001 	/* come back to HSI */
2002 	dev_dbg(dev, "come back to HSI\n");
2003 	set_clksrc(priv, CLK_MPU_HSI);
2004 	set_clksrc(priv, CLK_AXI_HSI);
2005 	set_clksrc(priv, CLK_MCU_HSI);
2006 
2007 	dev_dbg(dev, "pll stop\n");
2008 	for (i = 0; i < _PLL_NB; i++)
2009 		pll_stop(priv, i);
2010 
2011 	/* configure HSIDIV */
2012 	dev_dbg(dev, "configure HSIDIV\n");
2013 	if (clk_valid(&priv->osc_clk[_HSI])) {
2014 		stm32mp1_hsidiv(rcc, clk_get_rate(&priv->osc_clk[_HSI]));
2015 		stgen_config(priv);
2016 	}
2017 
2018 	/* select DIV */
2019 	dev_dbg(dev, "select DIV\n");
2020 	/* no ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
2021 	writel(clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK, rcc + RCC_MPCKDIVR);
2022 	set_clkdiv(clkdiv[CLKDIV_AXI], rcc + RCC_AXIDIVR);
2023 	set_clkdiv(clkdiv[CLKDIV_APB4], rcc + RCC_APB4DIVR);
2024 	set_clkdiv(clkdiv[CLKDIV_APB5], rcc + RCC_APB5DIVR);
2025 	set_clkdiv(clkdiv[CLKDIV_MCU], rcc + RCC_MCUDIVR);
2026 	set_clkdiv(clkdiv[CLKDIV_APB1], rcc + RCC_APB1DIVR);
2027 	set_clkdiv(clkdiv[CLKDIV_APB2], rcc + RCC_APB2DIVR);
2028 	set_clkdiv(clkdiv[CLKDIV_APB3], rcc + RCC_APB3DIVR);
2029 
2030 	/* no ready bit for RTC */
2031 	writel(clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK, rcc + RCC_RTCDIVR);
2032 
2033 	/* configure PLLs source */
2034 	dev_dbg(dev, "configure PLLs source\n");
2035 	set_clksrc(priv, clksrc[CLKSRC_PLL12]);
2036 	set_clksrc(priv, clksrc[CLKSRC_PLL3]);
2037 	set_clksrc(priv, clksrc[CLKSRC_PLL4]);
2038 
2039 	/* configure and start PLLs */
2040 	dev_dbg(dev, "configure PLLs\n");
2041 	for (i = 0; i < _PLL_NB; i++) {
2042 		if (!pllcfg_valid[i])
2043 			continue;
2044 		dev_dbg(dev, "configure PLL %d\n", i);
2045 		pll_config(priv, i, pllcfg[i], pllfracv[i]);
2046 		if (pllcsg_set[i])
2047 			pll_csg(priv, i, pllcsg[i]);
2048 		pll_start(priv, i);
2049 	}
2050 
2051 	/* wait and start PLLs ouptut when ready */
2052 	for (i = 0; i < _PLL_NB; i++) {
2053 		if (!pllcfg_valid[i])
2054 			continue;
2055 		dev_dbg(dev, "output PLL %d\n", i);
2056 		pll_output(priv, i, pllcfg[i][PLLCFG_O]);
2057 	}
2058 
2059 	/* wait LSE ready before to use it */
2060 	if (clk_valid(&priv->osc_clk[_LSE]))
2061 		stm32mp1_lse_wait(rcc);
2062 
2063 	/* configure with expected clock source */
2064 	dev_dbg(dev, "CLKSRC\n");
2065 	set_clksrc(priv, clksrc[CLKSRC_MPU]);
2066 	set_clksrc(priv, clksrc[CLKSRC_AXI]);
2067 	set_clksrc(priv, clksrc[CLKSRC_MCU]);
2068 	set_rtcsrc(priv, clksrc[CLKSRC_RTC], lse_css);
2069 
2070 	/* configure PKCK */
2071 	dev_dbg(dev, "PKCK\n");
2072 	pkcs_cell = dev_read_prop(dev, "st,pkcs", &len);
2073 	if (pkcs_cell) {
2074 		bool ckper_disabled = false;
2075 
2076 		for (i = 0; i < len / sizeof(u32); i++) {
2077 			u32 pkcs = (u32)fdt32_to_cpu(pkcs_cell[i]);
2078 
2079 			if (pkcs == CLK_CKPER_DISABLED) {
2080 				ckper_disabled = true;
2081 				continue;
2082 			}
2083 			pkcs_config(priv, pkcs);
2084 		}
2085 		/* CKPER is source for some peripheral clock
2086 		 * (FMC-NAND / QPSI-NOR) and switching source is allowed
2087 		 * only if previous clock is still ON
2088 		 * => deactivated CKPER only after switching clock
2089 		 */
2090 		if (ckper_disabled)
2091 			pkcs_config(priv, CLK_CKPER_DISABLED);
2092 	}
2093 
2094 	/* STGEN clock source can change with CLK_STGEN_XXX */
2095 	stgen_config(priv);
2096 
2097 	dev_dbg(dev, "oscillator off\n");
2098 	/* switch OFF HSI if not found in device-tree */
2099 	if (!clk_valid(&priv->osc_clk[_HSI]))
2100 		stm32mp1_hsi_set(rcc, 0);
2101 
2102 	/* Software Self-Refresh mode (SSR) during DDR initilialization */
2103 	clrsetbits_le32(priv->base + RCC_DDRITFCR,
2104 			RCC_DDRITFCR_DDRCKMOD_MASK,
2105 			RCC_DDRITFCR_DDRCKMOD_SSR <<
2106 			RCC_DDRITFCR_DDRCKMOD_SHIFT);
2107 
2108 	return 0;
2109 }
2110 #endif /* STM32MP1_CLOCK_TREE_INIT */
2111 
pll_set_output_rate(struct udevice * dev,int pll_id,int div_id,unsigned long clk_rate)2112 static int pll_set_output_rate(struct udevice *dev,
2113 			       int pll_id,
2114 			       int div_id,
2115 			       unsigned long clk_rate)
2116 {
2117 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
2118 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
2119 	u32 pllxcr = priv->base + pll[pll_id].pllxcr;
2120 	int div;
2121 	ulong fvco;
2122 
2123 	if (div_id > _DIV_NB)
2124 		return -EINVAL;
2125 
2126 	fvco = pll_get_fvco(priv, pll_id);
2127 
2128 	if (fvco <= clk_rate)
2129 		div = 1;
2130 	else
2131 		div = DIV_ROUND_UP(fvco, clk_rate);
2132 
2133 	if (div > 128)
2134 		div = 128;
2135 
2136 	/* stop the requested output */
2137 	clrbits_le32(pllxcr, 0x1 << div_id << RCC_PLLNCR_DIVEN_SHIFT);
2138 	/* change divider */
2139 	clrsetbits_le32(priv->base + pll[pll_id].pllxcfgr2,
2140 			RCC_PLLNCFGR2_DIVX_MASK << RCC_PLLNCFGR2_SHIFT(div_id),
2141 			(div - 1) << RCC_PLLNCFGR2_SHIFT(div_id));
2142 	/* start the requested output */
2143 	setbits_le32(pllxcr, 0x1 << div_id << RCC_PLLNCR_DIVEN_SHIFT);
2144 
2145 	return 0;
2146 }
2147 
stm32mp1_clk_set_rate(struct clk * clk,unsigned long clk_rate)2148 static ulong stm32mp1_clk_set_rate(struct clk *clk, unsigned long clk_rate)
2149 {
2150 	struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
2151 	int p;
2152 
2153 	switch (clk->id) {
2154 #if defined(STM32MP1_CLOCK_TREE_INIT) && \
2155 	defined(CONFIG_STM32MP1_DDR_INTERACTIVE)
2156 	case DDRPHYC:
2157 		break;
2158 #endif
2159 	case LTDC_PX:
2160 	case DSI_PX:
2161 		break;
2162 	default:
2163 		dev_err(clk->dev, "Set of clk %ld not supported", clk->id);
2164 		return -EINVAL;
2165 	}
2166 
2167 	p = stm32mp1_clk_get_parent(priv, clk->id);
2168 	dev_vdbg(clk->dev, "parent = %d:%s\n", p, stm32mp1_clk_parent_name[p]);
2169 	if (p < 0)
2170 		return -EINVAL;
2171 
2172 	switch (p) {
2173 #if defined(STM32MP1_CLOCK_TREE_INIT) && \
2174 	defined(CONFIG_STM32MP1_DDR_INTERACTIVE)
2175 	case _PLL2_R: /* DDRPHYC */
2176 	{
2177 		/* only for change DDR clock in interactive mode */
2178 		ulong result;
2179 
2180 		set_clksrc(priv, CLK_AXI_HSI);
2181 		result = pll_set_rate(clk->dev,  _PLL2, _DIV_R, clk_rate);
2182 		set_clksrc(priv, CLK_AXI_PLL2P);
2183 		return result;
2184 	}
2185 #endif
2186 
2187 	case _PLL4_Q:
2188 		/* for LTDC_PX and DSI_PX case */
2189 		return pll_set_output_rate(clk->dev, _PLL4, _DIV_Q, clk_rate);
2190 	}
2191 
2192 	return -EINVAL;
2193 }
2194 
stm32mp1_osc_init(struct udevice * dev)2195 static void stm32mp1_osc_init(struct udevice *dev)
2196 {
2197 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
2198 	int i;
2199 	const char *name[NB_OSC] = {
2200 		[_LSI] = "lsi",
2201 		[_LSE] = "lse",
2202 		[_HSI] = "hsi",
2203 		[_HSE] = "hse",
2204 		[_CSI] = "csi",
2205 		[_I2S_CKIN] = "i2s_ckin",
2206 	};
2207 
2208 	for (i = 0; i < NB_OSC; i++) {
2209 		if (clk_get_by_name(dev, name[i], &priv->osc_clk[i]))
2210 			dev_dbg(dev, "No source clock \"%s\"", name[i]);
2211 		else
2212 			dev_dbg(dev, "%s clock rate: %luHz\n",
2213 				name[i], clk_get_rate(&priv->osc_clk[i]));
2214 	}
2215 }
2216 
stm32mp1_clk_dump(struct stm32mp1_clk_priv * priv)2217 static void  __maybe_unused stm32mp1_clk_dump(struct stm32mp1_clk_priv *priv)
2218 {
2219 	char buf[32];
2220 	int i, s, p;
2221 
2222 	printf("Clocks:\n");
2223 	for (i = 0; i < _PARENT_NB; i++) {
2224 		printf("- %s : %s MHz\n",
2225 		       stm32mp1_clk_parent_name[i],
2226 		       strmhz(buf, stm32mp1_clk_get(priv, i)));
2227 	}
2228 	printf("Source Clocks:\n");
2229 	for (i = 0; i < _PARENT_SEL_NB; i++) {
2230 		p = (readl(priv->base + priv->data->sel[i].offset) >>
2231 		     priv->data->sel[i].src) & priv->data->sel[i].msk;
2232 		if (p < priv->data->sel[i].nb_parent) {
2233 			s = priv->data->sel[i].parent[p];
2234 			printf("- %s(%d) => parent %s(%d)\n",
2235 			       stm32mp1_clk_parent_sel_name[i], i,
2236 			       stm32mp1_clk_parent_name[s], s);
2237 		} else {
2238 			printf("- %s(%d) => parent index %d is invalid\n",
2239 			       stm32mp1_clk_parent_sel_name[i], i, p);
2240 		}
2241 	}
2242 }
2243 
2244 #ifdef CONFIG_CMD_CLK
soc_clk_dump(void)2245 int soc_clk_dump(void)
2246 {
2247 	struct udevice *dev;
2248 	struct stm32mp1_clk_priv *priv;
2249 	int ret;
2250 
2251 	ret = uclass_get_device_by_driver(UCLASS_CLK,
2252 					  DM_DRIVER_GET(stm32mp1_clock),
2253 					  &dev);
2254 	if (ret)
2255 		return ret;
2256 
2257 	priv = dev_get_priv(dev);
2258 
2259 	stm32mp1_clk_dump(priv);
2260 
2261 	return 0;
2262 }
2263 #endif
2264 
stm32mp1_clk_probe(struct udevice * dev)2265 static int stm32mp1_clk_probe(struct udevice *dev)
2266 {
2267 	int result = 0;
2268 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
2269 
2270 	priv->base = dev_read_addr(dev->parent);
2271 	if (priv->base == FDT_ADDR_T_NONE)
2272 		return -EINVAL;
2273 
2274 	priv->data = (void *)&stm32mp1_data;
2275 
2276 	if (!priv->data->gate || !priv->data->sel ||
2277 	    !priv->data->pll)
2278 		return -EINVAL;
2279 
2280 	stm32mp1_osc_init(dev);
2281 
2282 #ifdef STM32MP1_CLOCK_TREE_INIT
2283 	/* clock tree init is done only one time, before relocation */
2284 	if (!(gd->flags & GD_FLG_RELOC))
2285 		result = stm32mp1_clktree(dev);
2286 	if (result)
2287 		dev_err(dev, "clock tree initialization failed (%d)\n", result);
2288 #endif
2289 
2290 #ifndef CONFIG_SPL_BUILD
2291 #if defined(VERBOSE_DEBUG)
2292 	/* display debug information for probe after relocation */
2293 	if (gd->flags & GD_FLG_RELOC)
2294 		stm32mp1_clk_dump(priv);
2295 #endif
2296 
2297 	gd->cpu_clk = stm32mp1_clk_get(priv, _CK_MPU);
2298 	gd->bus_clk = stm32mp1_clk_get(priv, _ACLK);
2299 	/* DDRPHYC father */
2300 	gd->mem_clk = stm32mp1_clk_get(priv, _PLL2_R);
2301 #if defined(CONFIG_DISPLAY_CPUINFO)
2302 	if (gd->flags & GD_FLG_RELOC) {
2303 		char buf[32];
2304 
2305 		log_info("Clocks:\n");
2306 		log_info("- MPU : %s MHz\n", strmhz(buf, gd->cpu_clk));
2307 		log_info("- MCU : %s MHz\n",
2308 			 strmhz(buf, stm32mp1_clk_get(priv, _CK_MCU)));
2309 		log_info("- AXI : %s MHz\n", strmhz(buf, gd->bus_clk));
2310 		log_info("- PER : %s MHz\n",
2311 			 strmhz(buf, stm32mp1_clk_get(priv, _CK_PER)));
2312 		log_info("- DDR : %s MHz\n", strmhz(buf, gd->mem_clk));
2313 	}
2314 #endif /* CONFIG_DISPLAY_CPUINFO */
2315 #endif
2316 
2317 	return result;
2318 }
2319 
2320 static const struct clk_ops stm32mp1_clk_ops = {
2321 	.enable = stm32mp1_clk_enable,
2322 	.disable = stm32mp1_clk_disable,
2323 	.get_rate = stm32mp1_clk_get_rate,
2324 	.set_rate = stm32mp1_clk_set_rate,
2325 };
2326 
2327 U_BOOT_DRIVER(stm32mp1_clock) = {
2328 	.name = "stm32mp1_clk",
2329 	.id = UCLASS_CLK,
2330 	.ops = &stm32mp1_clk_ops,
2331 	.priv_auto	= sizeof(struct stm32mp1_clk_priv),
2332 	.probe = stm32mp1_clk_probe,
2333 };
2334