1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Device manager
4  *
5  * Copyright (c) 2013 Google, Inc
6  *
7  * (C) Copyright 2012
8  * Pavel Herrmann <morpheus.ibis@gmail.com>
9  */
10 
11 #include <common.h>
12 #include <cpu_func.h>
13 #include <log.h>
14 #include <asm/global_data.h>
15 #include <asm/io.h>
16 #include <clk.h>
17 #include <fdtdec.h>
18 #include <fdt_support.h>
19 #include <malloc.h>
20 #include <asm/cache.h>
21 #include <dm/device.h>
22 #include <dm/device-internal.h>
23 #include <dm/lists.h>
24 #include <dm/of_access.h>
25 #include <dm/pinctrl.h>
26 #include <dm/platdata.h>
27 #include <dm/read.h>
28 #include <dm/uclass.h>
29 #include <dm/uclass-internal.h>
30 #include <dm/util.h>
31 #include <iommu.h>
32 #include <linux/err.h>
33 #include <linux/list.h>
34 #include <power-domain.h>
35 
36 DECLARE_GLOBAL_DATA_PTR;
37 
device_bind_common(struct udevice * parent,const struct driver * drv,const char * name,void * plat,ulong driver_data,ofnode node,uint of_plat_size,struct udevice ** devp)38 static int device_bind_common(struct udevice *parent, const struct driver *drv,
39 			      const char *name, void *plat,
40 			      ulong driver_data, ofnode node,
41 			      uint of_plat_size, struct udevice **devp)
42 {
43 	struct udevice *dev;
44 	struct uclass *uc;
45 	int size, ret = 0;
46 	bool auto_seq = true;
47 	void *ptr;
48 
49 	if (CONFIG_IS_ENABLED(OF_PLATDATA_NO_BIND))
50 		return -ENOSYS;
51 
52 	if (devp)
53 		*devp = NULL;
54 	if (!name)
55 		return -EINVAL;
56 
57 	ret = uclass_get(drv->id, &uc);
58 	if (ret) {
59 		debug("Missing uclass for driver %s\n", drv->name);
60 		return ret;
61 	}
62 
63 	dev = calloc(1, sizeof(struct udevice));
64 	if (!dev)
65 		return -ENOMEM;
66 
67 	INIT_LIST_HEAD(&dev->sibling_node);
68 	INIT_LIST_HEAD(&dev->child_head);
69 	INIT_LIST_HEAD(&dev->uclass_node);
70 #ifdef CONFIG_DEVRES
71 	INIT_LIST_HEAD(&dev->devres_head);
72 #endif
73 	dev_set_plat(dev, plat);
74 	dev->driver_data = driver_data;
75 	dev->name = name;
76 	dev_set_ofnode(dev, node);
77 	dev->parent = parent;
78 	dev->driver = drv;
79 	dev->uclass = uc;
80 
81 	dev->seq_ = -1;
82 	if (CONFIG_IS_ENABLED(DM_SEQ_ALIAS) &&
83 	    (uc->uc_drv->flags & DM_UC_FLAG_SEQ_ALIAS)) {
84 		/*
85 		 * Some devices, such as a SPI bus, I2C bus and serial ports
86 		 * are numbered using aliases.
87 		 */
88 		if (CONFIG_IS_ENABLED(OF_CONTROL) &&
89 		    !CONFIG_IS_ENABLED(OF_PLATDATA)) {
90 			if (uc->uc_drv->name && ofnode_valid(node)) {
91 				if (!dev_read_alias_seq(dev, &dev->seq_)) {
92 					auto_seq = false;
93 					log_debug("   - seq=%d\n", dev->seq_);
94 					}
95 			}
96 		}
97 	}
98 	if (auto_seq && !(uc->uc_drv->flags & DM_UC_FLAG_NO_AUTO_SEQ))
99 		dev->seq_ = uclass_find_next_free_seq(uc);
100 
101 	/* Check if we need to allocate plat */
102 	if (drv->plat_auto) {
103 		bool alloc = !plat;
104 
105 		/*
106 		 * For of-platdata, we try use the existing data, but if
107 		 * plat_auto is larger, we must allocate a new space
108 		 */
109 		if (CONFIG_IS_ENABLED(OF_PLATDATA)) {
110 			if (of_plat_size)
111 				dev_or_flags(dev, DM_FLAG_OF_PLATDATA);
112 			if (of_plat_size < drv->plat_auto)
113 				alloc = true;
114 		}
115 		if (alloc) {
116 			dev_or_flags(dev, DM_FLAG_ALLOC_PDATA);
117 			ptr = calloc(1, drv->plat_auto);
118 			if (!ptr) {
119 				ret = -ENOMEM;
120 				goto fail_alloc1;
121 			}
122 
123 			/*
124 			 * For of-platdata, copy the old plat into the new
125 			 * space
126 			 */
127 			if (CONFIG_IS_ENABLED(OF_PLATDATA) && plat)
128 				memcpy(ptr, plat, of_plat_size);
129 			dev_set_plat(dev, ptr);
130 		}
131 	}
132 
133 	size = uc->uc_drv->per_device_plat_auto;
134 	if (size) {
135 		dev_or_flags(dev, DM_FLAG_ALLOC_UCLASS_PDATA);
136 		ptr = calloc(1, size);
137 		if (!ptr) {
138 			ret = -ENOMEM;
139 			goto fail_alloc2;
140 		}
141 		dev_set_uclass_plat(dev, ptr);
142 	}
143 
144 	if (parent) {
145 		size = parent->driver->per_child_plat_auto;
146 		if (!size)
147 			size = parent->uclass->uc_drv->per_child_plat_auto;
148 		if (size) {
149 			dev_or_flags(dev, DM_FLAG_ALLOC_PARENT_PDATA);
150 			ptr = calloc(1, size);
151 			if (!ptr) {
152 				ret = -ENOMEM;
153 				goto fail_alloc3;
154 			}
155 			dev_set_parent_plat(dev, ptr);
156 		}
157 		/* put dev into parent's successor list */
158 		list_add_tail(&dev->sibling_node, &parent->child_head);
159 	}
160 
161 	ret = uclass_bind_device(dev);
162 	if (ret)
163 		goto fail_uclass_bind;
164 
165 	/* if we fail to bind we remove device from successors and free it */
166 	if (drv->bind) {
167 		ret = drv->bind(dev);
168 		if (ret)
169 			goto fail_bind;
170 	}
171 	if (parent && parent->driver->child_post_bind) {
172 		ret = parent->driver->child_post_bind(dev);
173 		if (ret)
174 			goto fail_child_post_bind;
175 	}
176 	if (uc->uc_drv->post_bind) {
177 		ret = uc->uc_drv->post_bind(dev);
178 		if (ret)
179 			goto fail_uclass_post_bind;
180 	}
181 
182 	if (parent)
183 		pr_debug("Bound device %s to %s\n", dev->name, parent->name);
184 	if (devp)
185 		*devp = dev;
186 
187 	dev_or_flags(dev, DM_FLAG_BOUND);
188 
189 	return 0;
190 
191 fail_uclass_post_bind:
192 	/* There is no child unbind() method, so no clean-up required */
193 fail_child_post_bind:
194 	if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
195 		if (drv->unbind && drv->unbind(dev)) {
196 			dm_warn("unbind() method failed on dev '%s' on error path\n",
197 				dev->name);
198 		}
199 	}
200 
201 fail_bind:
202 	if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
203 		if (uclass_unbind_device(dev)) {
204 			dm_warn("Failed to unbind dev '%s' on error path\n",
205 				dev->name);
206 		}
207 	}
208 fail_uclass_bind:
209 	if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
210 		list_del(&dev->sibling_node);
211 		if (dev_get_flags(dev) & DM_FLAG_ALLOC_PARENT_PDATA) {
212 			free(dev_get_parent_plat(dev));
213 			dev_set_parent_plat(dev, NULL);
214 		}
215 	}
216 fail_alloc3:
217 	if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
218 		if (dev_get_flags(dev) & DM_FLAG_ALLOC_UCLASS_PDATA) {
219 			free(dev_get_uclass_plat(dev));
220 			dev_set_uclass_plat(dev, NULL);
221 		}
222 	}
223 fail_alloc2:
224 	if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
225 		if (dev_get_flags(dev) & DM_FLAG_ALLOC_PDATA) {
226 			free(dev_get_plat(dev));
227 			dev_set_plat(dev, NULL);
228 		}
229 	}
230 fail_alloc1:
231 	devres_release_all(dev);
232 
233 	free(dev);
234 
235 	return ret;
236 }
237 
device_bind_with_driver_data(struct udevice * parent,const struct driver * drv,const char * name,ulong driver_data,ofnode node,struct udevice ** devp)238 int device_bind_with_driver_data(struct udevice *parent,
239 				 const struct driver *drv, const char *name,
240 				 ulong driver_data, ofnode node,
241 				 struct udevice **devp)
242 {
243 	return device_bind_common(parent, drv, name, NULL, driver_data, node,
244 				  0, devp);
245 }
246 
device_bind(struct udevice * parent,const struct driver * drv,const char * name,void * plat,ofnode node,struct udevice ** devp)247 int device_bind(struct udevice *parent, const struct driver *drv,
248 		const char *name, void *plat, ofnode node,
249 		struct udevice **devp)
250 {
251 	return device_bind_common(parent, drv, name, plat, 0, node, 0,
252 				  devp);
253 }
254 
device_bind_by_name(struct udevice * parent,bool pre_reloc_only,const struct driver_info * info,struct udevice ** devp)255 int device_bind_by_name(struct udevice *parent, bool pre_reloc_only,
256 			const struct driver_info *info, struct udevice **devp)
257 {
258 	struct driver *drv;
259 	uint plat_size = 0;
260 	int ret;
261 
262 	drv = lists_driver_lookup_name(info->name);
263 	if (!drv)
264 		return -ENOENT;
265 	if (pre_reloc_only && !(drv->flags & DM_FLAG_PRE_RELOC))
266 		return -EPERM;
267 
268 #if CONFIG_IS_ENABLED(OF_PLATDATA)
269 	plat_size = info->plat_size;
270 #endif
271 	ret = device_bind_common(parent, drv, info->name, (void *)info->plat, 0,
272 				 ofnode_null(), plat_size, devp);
273 	if (ret)
274 		return ret;
275 
276 	return ret;
277 }
278 
device_reparent(struct udevice * dev,struct udevice * new_parent)279 int device_reparent(struct udevice *dev, struct udevice *new_parent)
280 {
281 	struct udevice *pos, *n;
282 
283 	assert(dev);
284 	assert(new_parent);
285 
286 	list_for_each_entry_safe(pos, n, &dev->parent->child_head,
287 				 sibling_node) {
288 		if (pos->driver != dev->driver)
289 			continue;
290 
291 		list_del(&dev->sibling_node);
292 		list_add_tail(&dev->sibling_node, &new_parent->child_head);
293 		dev->parent = new_parent;
294 
295 		break;
296 	}
297 
298 	return 0;
299 }
300 
alloc_priv(int size,uint flags)301 static void *alloc_priv(int size, uint flags)
302 {
303 	void *priv;
304 
305 	if (flags & DM_FLAG_ALLOC_PRIV_DMA) {
306 		size = ROUND(size, ARCH_DMA_MINALIGN);
307 		priv = memalign(ARCH_DMA_MINALIGN, size);
308 		if (priv) {
309 			memset(priv, '\0', size);
310 
311 			/*
312 			 * Ensure that the zero bytes are flushed to memory.
313 			 * This prevents problems if the driver uses this as
314 			 * both an input and an output buffer:
315 			 *
316 			 * 1. Zeroes written to buffer (here) and sit in the
317 			 *	cache
318 			 * 2. Driver issues a read command to DMA
319 			 * 3. CPU runs out of cache space and evicts some cache
320 			 *	data in the buffer, writing zeroes to RAM from
321 			 *	the memset() above
322 			 * 4. DMA completes
323 			 * 5. Buffer now has some DMA data and some zeroes
324 			 * 6. Data being read is now incorrect
325 			 *
326 			 * To prevent this, ensure that the cache is clean
327 			 * within this range at the start. The driver can then
328 			 * use normal flush-after-write, invalidate-before-read
329 			 * procedures.
330 			 *
331 			 * TODO(sjg@chromium.org): Drop this microblaze
332 			 * exception.
333 			 */
334 #ifndef CONFIG_MICROBLAZE
335 			flush_dcache_range((ulong)priv, (ulong)priv + size);
336 #endif
337 		}
338 	} else {
339 		priv = calloc(1, size);
340 	}
341 
342 	return priv;
343 }
344 
345 /**
346  * device_alloc_priv() - Allocate priv/plat data required by the device
347  *
348  * @dev: Device to process
349  * @return 0 if OK, -ENOMEM if out of memory
350  */
device_alloc_priv(struct udevice * dev)351 static int device_alloc_priv(struct udevice *dev)
352 {
353 	const struct driver *drv;
354 	void *ptr;
355 	int size;
356 
357 	drv = dev->driver;
358 	assert(drv);
359 
360 	/* Allocate private data if requested and not reentered */
361 	if (drv->priv_auto && !dev_get_priv(dev)) {
362 		ptr = alloc_priv(drv->priv_auto, drv->flags);
363 		if (!ptr)
364 			return -ENOMEM;
365 		dev_set_priv(dev, ptr);
366 	}
367 
368 	/* Allocate private data if requested and not reentered */
369 	size = dev->uclass->uc_drv->per_device_auto;
370 	if (size && !dev_get_uclass_priv(dev)) {
371 		ptr = alloc_priv(size, dev->uclass->uc_drv->flags);
372 		if (!ptr)
373 			return -ENOMEM;
374 		dev_set_uclass_priv(dev, ptr);
375 	}
376 
377 	/* Allocate parent data for this child */
378 	if (dev->parent) {
379 		size = dev->parent->driver->per_child_auto;
380 		if (!size)
381 			size = dev->parent->uclass->uc_drv->per_child_auto;
382 		if (size && !dev_get_parent_priv(dev)) {
383 			ptr = alloc_priv(size, drv->flags);
384 			if (!ptr)
385 				return -ENOMEM;
386 			dev_set_parent_priv(dev, ptr);
387 		}
388 	}
389 
390 	return 0;
391 }
392 
device_of_to_plat(struct udevice * dev)393 int device_of_to_plat(struct udevice *dev)
394 {
395 	const struct driver *drv;
396 	int ret;
397 
398 	if (!dev)
399 		return -EINVAL;
400 
401 	if (dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID)
402 		return 0;
403 
404 	/*
405 	 * This is not needed if binding is disabled, since data is allocated
406 	 * at build time.
407 	 */
408 	if (!CONFIG_IS_ENABLED(OF_PLATDATA_NO_BIND)) {
409 		/* Ensure all parents have ofdata */
410 		if (dev->parent) {
411 			ret = device_of_to_plat(dev->parent);
412 			if (ret)
413 				goto fail;
414 
415 			/*
416 			 * The device might have already been probed during
417 			 * the call to device_probe() on its parent device
418 			 * (e.g. PCI bridge devices). Test the flags again
419 			 * so that we don't mess up the device.
420 			 */
421 			if (dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID)
422 				return 0;
423 		}
424 
425 		ret = device_alloc_priv(dev);
426 		if (ret)
427 			goto fail;
428 	}
429 	drv = dev->driver;
430 	assert(drv);
431 
432 	if (drv->of_to_plat &&
433 	    (CONFIG_IS_ENABLED(OF_PLATDATA) || dev_has_ofnode(dev))) {
434 		ret = drv->of_to_plat(dev);
435 		if (ret)
436 			goto fail;
437 	}
438 
439 	dev_or_flags(dev, DM_FLAG_PLATDATA_VALID);
440 
441 	return 0;
442 fail:
443 	device_free(dev);
444 
445 	return ret;
446 }
447 
448 /**
449  * device_get_dma_constraints() - Populate device's DMA constraints
450  *
451  * Gets a device's DMA constraints from firmware. This information is later
452  * used by drivers to translate physcal addresses to the device's bus address
453  * space. For now only device-tree is supported.
454  *
455  * @dev: Pointer to target device
456  * Return: 0 if OK or if no DMA constraints were found, error otherwise
457  */
device_get_dma_constraints(struct udevice * dev)458 static int device_get_dma_constraints(struct udevice *dev)
459 {
460 	struct udevice *parent = dev->parent;
461 	phys_addr_t cpu = 0;
462 	dma_addr_t bus = 0;
463 	u64 size = 0;
464 	int ret;
465 
466 	if (!CONFIG_IS_ENABLED(DM_DMA) || !parent || !dev_has_ofnode(parent))
467 		return 0;
468 
469 	/*
470 	 * We start parsing for dma-ranges from the device's bus node. This is
471 	 * specially important on nested buses.
472 	 */
473 	ret = dev_get_dma_range(parent, &cpu, &bus, &size);
474 	/* Don't return an error if no 'dma-ranges' were found */
475 	if (ret && ret != -ENOENT) {
476 		dm_warn("%s: failed to get DMA range, %d\n", dev->name, ret);
477 		return ret;
478 	}
479 
480 	dev_set_dma_offset(dev, cpu - bus);
481 
482 	return 0;
483 }
484 
device_probe(struct udevice * dev)485 int device_probe(struct udevice *dev)
486 {
487 	const struct driver *drv;
488 	int ret;
489 
490 	if (!dev)
491 		return -EINVAL;
492 
493 	if (dev_get_flags(dev) & DM_FLAG_ACTIVATED)
494 		return 0;
495 
496 	drv = dev->driver;
497 	assert(drv);
498 
499 	ret = device_of_to_plat(dev);
500 	if (ret)
501 		goto fail;
502 
503 	/* Ensure all parents are probed */
504 	if (dev->parent) {
505 		ret = device_probe(dev->parent);
506 		if (ret)
507 			goto fail;
508 
509 		/*
510 		 * The device might have already been probed during
511 		 * the call to device_probe() on its parent device
512 		 * (e.g. PCI bridge devices). Test the flags again
513 		 * so that we don't mess up the device.
514 		 */
515 		if (dev_get_flags(dev) & DM_FLAG_ACTIVATED)
516 			return 0;
517 	}
518 
519 	dev_or_flags(dev, DM_FLAG_ACTIVATED);
520 
521 	/*
522 	 * Process pinctrl for everything except the root device, and
523 	 * continue regardless of the result of pinctrl. Don't process pinctrl
524 	 * settings for pinctrl devices since the device may not yet be
525 	 * probed.
526 	 *
527 	 * This call can produce some non-intuitive results. For example, on an
528 	 * x86 device where dev is the main PCI bus, the pinctrl device may be
529 	 * child or grandchild of that bus, meaning that the child will be
530 	 * probed here. If the child happens to be the P2SB and the pinctrl
531 	 * device is a child of that, then both the pinctrl and P2SB will be
532 	 * probed by this call. This works because the DM_FLAG_ACTIVATED flag
533 	 * is set just above. However, the PCI bus' probe() method and
534 	 * associated uclass methods have not yet been called.
535 	 */
536 	if (dev->parent && device_get_uclass_id(dev) != UCLASS_PINCTRL)
537 		pinctrl_select_state(dev, "default");
538 
539 	if (CONFIG_IS_ENABLED(POWER_DOMAIN) && dev->parent &&
540 	    (device_get_uclass_id(dev) != UCLASS_POWER_DOMAIN) &&
541 	    !(drv->flags & DM_FLAG_DEFAULT_PD_CTRL_OFF)) {
542 		ret = dev_power_domain_on(dev);
543 		if (ret)
544 			goto fail;
545 	}
546 
547 	if (CONFIG_IS_ENABLED(IOMMU) && dev->parent &&
548 	    (device_get_uclass_id(dev) != UCLASS_IOMMU)) {
549 		ret = dev_iommu_enable(dev);
550 		if (ret)
551 			goto fail;
552 	}
553 
554 	ret = device_get_dma_constraints(dev);
555 	if (ret)
556 		goto fail;
557 
558 	ret = uclass_pre_probe_device(dev);
559 	if (ret)
560 		goto fail;
561 
562 	if (dev->parent && dev->parent->driver->child_pre_probe) {
563 		ret = dev->parent->driver->child_pre_probe(dev);
564 		if (ret)
565 			goto fail;
566 	}
567 
568 	/* Only handle devices that have a valid ofnode */
569 	if (dev_has_ofnode(dev)) {
570 		/*
571 		 * Process 'assigned-{clocks/clock-parents/clock-rates}'
572 		 * properties
573 		 */
574 		ret = clk_set_defaults(dev, CLK_DEFAULTS_PRE);
575 		if (ret)
576 			goto fail;
577 	}
578 
579 	if (drv->probe) {
580 		ret = drv->probe(dev);
581 		if (ret)
582 			goto fail;
583 	}
584 
585 	ret = uclass_post_probe_device(dev);
586 	if (ret)
587 		goto fail_uclass;
588 
589 	if (dev->parent && device_get_uclass_id(dev) == UCLASS_PINCTRL)
590 		pinctrl_select_state(dev, "default");
591 
592 	return 0;
593 fail_uclass:
594 	if (device_remove(dev, DM_REMOVE_NORMAL)) {
595 		dm_warn("%s: Device '%s' failed to remove on error path\n",
596 			__func__, dev->name);
597 	}
598 fail:
599 	dev_bic_flags(dev, DM_FLAG_ACTIVATED);
600 
601 	device_free(dev);
602 
603 	return ret;
604 }
605 
dev_get_plat(const struct udevice * dev)606 void *dev_get_plat(const struct udevice *dev)
607 {
608 	if (!dev) {
609 		dm_warn("%s: null device\n", __func__);
610 		return NULL;
611 	}
612 
613 	return dm_priv_to_rw(dev->plat_);
614 }
615 
dev_get_parent_plat(const struct udevice * dev)616 void *dev_get_parent_plat(const struct udevice *dev)
617 {
618 	if (!dev) {
619 		dm_warn("%s: null device\n", __func__);
620 		return NULL;
621 	}
622 
623 	return dm_priv_to_rw(dev->parent_plat_);
624 }
625 
dev_get_uclass_plat(const struct udevice * dev)626 void *dev_get_uclass_plat(const struct udevice *dev)
627 {
628 	if (!dev) {
629 		dm_warn("%s: null device\n", __func__);
630 		return NULL;
631 	}
632 
633 	return dm_priv_to_rw(dev->uclass_plat_);
634 }
635 
dev_get_priv(const struct udevice * dev)636 void *dev_get_priv(const struct udevice *dev)
637 {
638 	if (!dev) {
639 		dm_warn("%s: null device\n", __func__);
640 		return NULL;
641 	}
642 
643 	return dm_priv_to_rw(dev->priv_);
644 }
645 
dev_get_uclass_priv(const struct udevice * dev)646 void *dev_get_uclass_priv(const struct udevice *dev)
647 {
648 	if (!dev) {
649 		dm_warn("%s: null device\n", __func__);
650 		return NULL;
651 	}
652 
653 	return dm_priv_to_rw(dev->uclass_priv_);
654 }
655 
dev_get_parent_priv(const struct udevice * dev)656 void *dev_get_parent_priv(const struct udevice *dev)
657 {
658 	if (!dev) {
659 		dm_warn("%s: null device\n", __func__);
660 		return NULL;
661 	}
662 
663 	return dm_priv_to_rw(dev->parent_priv_);
664 }
665 
device_get_device_tail(struct udevice * dev,int ret,struct udevice ** devp)666 static int device_get_device_tail(struct udevice *dev, int ret,
667 				  struct udevice **devp)
668 {
669 	if (ret)
670 		return ret;
671 
672 	ret = device_probe(dev);
673 	if (ret)
674 		return ret;
675 
676 	*devp = dev;
677 
678 	return 0;
679 }
680 
681 #if CONFIG_IS_ENABLED(OF_REAL)
682 /**
683  * device_find_by_ofnode() - Return device associated with given ofnode
684  *
685  * The returned device is *not* activated.
686  *
687  * @node: The ofnode for which a associated device should be looked up
688  * @devp: Pointer to structure to hold the found device
689  * Return: 0 if OK, -ve on error
690  */
device_find_by_ofnode(ofnode node,struct udevice ** devp)691 static int device_find_by_ofnode(ofnode node, struct udevice **devp)
692 {
693 	struct uclass *uc;
694 	struct udevice *dev;
695 	int ret;
696 
697 	list_for_each_entry(uc, gd->uclass_root, sibling_node) {
698 		ret = uclass_find_device_by_ofnode(uc->uc_drv->id, node,
699 						   &dev);
700 		if (!ret || dev) {
701 			*devp = dev;
702 			return 0;
703 		}
704 	}
705 
706 	return -ENODEV;
707 }
708 #endif
709 
device_get_child(const struct udevice * parent,int index,struct udevice ** devp)710 int device_get_child(const struct udevice *parent, int index,
711 		     struct udevice **devp)
712 {
713 	struct udevice *dev;
714 
715 	list_for_each_entry(dev, &parent->child_head, sibling_node) {
716 		if (!index--)
717 			return device_get_device_tail(dev, 0, devp);
718 	}
719 
720 	return -ENODEV;
721 }
722 
device_get_child_count(const struct udevice * parent)723 int device_get_child_count(const struct udevice *parent)
724 {
725 	struct udevice *dev;
726 	int count = 0;
727 
728 	list_for_each_entry(dev, &parent->child_head, sibling_node)
729 		count++;
730 
731 	return count;
732 }
733 
device_find_child_by_seq(const struct udevice * parent,int seq,struct udevice ** devp)734 int device_find_child_by_seq(const struct udevice *parent, int seq,
735 			     struct udevice **devp)
736 {
737 	struct udevice *dev;
738 
739 	*devp = NULL;
740 
741 	list_for_each_entry(dev, &parent->child_head, sibling_node) {
742 		if (dev->seq_ == seq) {
743 			*devp = dev;
744 			return 0;
745 		}
746 	}
747 
748 	return -ENODEV;
749 }
750 
device_get_child_by_seq(const struct udevice * parent,int seq,struct udevice ** devp)751 int device_get_child_by_seq(const struct udevice *parent, int seq,
752 			    struct udevice **devp)
753 {
754 	struct udevice *dev;
755 	int ret;
756 
757 	*devp = NULL;
758 	ret = device_find_child_by_seq(parent, seq, &dev);
759 
760 	return device_get_device_tail(dev, ret, devp);
761 }
762 
device_find_child_by_of_offset(const struct udevice * parent,int of_offset,struct udevice ** devp)763 int device_find_child_by_of_offset(const struct udevice *parent, int of_offset,
764 				   struct udevice **devp)
765 {
766 	struct udevice *dev;
767 
768 	*devp = NULL;
769 
770 	list_for_each_entry(dev, &parent->child_head, sibling_node) {
771 		if (dev_of_offset(dev) == of_offset) {
772 			*devp = dev;
773 			return 0;
774 		}
775 	}
776 
777 	return -ENODEV;
778 }
779 
device_get_child_by_of_offset(const struct udevice * parent,int node,struct udevice ** devp)780 int device_get_child_by_of_offset(const struct udevice *parent, int node,
781 				  struct udevice **devp)
782 {
783 	struct udevice *dev;
784 	int ret;
785 
786 	*devp = NULL;
787 	ret = device_find_child_by_of_offset(parent, node, &dev);
788 	return device_get_device_tail(dev, ret, devp);
789 }
790 
_device_find_global_by_ofnode(struct udevice * parent,ofnode ofnode)791 static struct udevice *_device_find_global_by_ofnode(struct udevice *parent,
792 						     ofnode ofnode)
793 {
794 	struct udevice *dev, *found;
795 
796 	if (ofnode_equal(dev_ofnode(parent), ofnode))
797 		return parent;
798 
799 	list_for_each_entry(dev, &parent->child_head, sibling_node) {
800 		found = _device_find_global_by_ofnode(dev, ofnode);
801 		if (found)
802 			return found;
803 	}
804 
805 	return NULL;
806 }
807 
device_find_global_by_ofnode(ofnode ofnode,struct udevice ** devp)808 int device_find_global_by_ofnode(ofnode ofnode, struct udevice **devp)
809 {
810 	*devp = _device_find_global_by_ofnode(gd->dm_root, ofnode);
811 
812 	return *devp ? 0 : -ENOENT;
813 }
814 
device_get_global_by_ofnode(ofnode ofnode,struct udevice ** devp)815 int device_get_global_by_ofnode(ofnode ofnode, struct udevice **devp)
816 {
817 	struct udevice *dev;
818 
819 	dev = _device_find_global_by_ofnode(gd->dm_root, ofnode);
820 	return device_get_device_tail(dev, dev ? 0 : -ENOENT, devp);
821 }
822 
823 #if CONFIG_IS_ENABLED(OF_PLATDATA)
device_get_by_ofplat_idx(uint idx,struct udevice ** devp)824 int device_get_by_ofplat_idx(uint idx, struct udevice **devp)
825 {
826 	struct udevice *dev;
827 
828 	if (CONFIG_IS_ENABLED(OF_PLATDATA_INST)) {
829 		struct udevice *base = ll_entry_start(struct udevice, udevice);
830 
831 		dev = base + idx;
832 	} else {
833 		struct driver_rt *drt = gd_dm_driver_rt() + idx;
834 
835 		dev = drt->dev;
836 	}
837 	*devp = NULL;
838 
839 	return device_get_device_tail(dev, dev ? 0 : -ENOENT, devp);
840 }
841 #endif
842 
device_find_first_child(const struct udevice * parent,struct udevice ** devp)843 int device_find_first_child(const struct udevice *parent, struct udevice **devp)
844 {
845 	if (list_empty(&parent->child_head)) {
846 		*devp = NULL;
847 	} else {
848 		*devp = list_first_entry(&parent->child_head, struct udevice,
849 					 sibling_node);
850 	}
851 
852 	return 0;
853 }
854 
device_find_next_child(struct udevice ** devp)855 int device_find_next_child(struct udevice **devp)
856 {
857 	struct udevice *dev = *devp;
858 	struct udevice *parent = dev->parent;
859 
860 	if (list_is_last(&dev->sibling_node, &parent->child_head)) {
861 		*devp = NULL;
862 	} else {
863 		*devp = list_entry(dev->sibling_node.next, struct udevice,
864 				   sibling_node);
865 	}
866 
867 	return 0;
868 }
869 
device_find_first_inactive_child(const struct udevice * parent,enum uclass_id uclass_id,struct udevice ** devp)870 int device_find_first_inactive_child(const struct udevice *parent,
871 				     enum uclass_id uclass_id,
872 				     struct udevice **devp)
873 {
874 	struct udevice *dev;
875 
876 	*devp = NULL;
877 	list_for_each_entry(dev, &parent->child_head, sibling_node) {
878 		if (!device_active(dev) &&
879 		    device_get_uclass_id(dev) == uclass_id) {
880 			*devp = dev;
881 			return 0;
882 		}
883 	}
884 
885 	return -ENODEV;
886 }
887 
device_find_first_child_by_uclass(const struct udevice * parent,enum uclass_id uclass_id,struct udevice ** devp)888 int device_find_first_child_by_uclass(const struct udevice *parent,
889 				      enum uclass_id uclass_id,
890 				      struct udevice **devp)
891 {
892 	struct udevice *dev;
893 
894 	*devp = NULL;
895 	list_for_each_entry(dev, &parent->child_head, sibling_node) {
896 		if (device_get_uclass_id(dev) == uclass_id) {
897 			*devp = dev;
898 			return 0;
899 		}
900 	}
901 
902 	return -ENODEV;
903 }
904 
device_find_child_by_name(const struct udevice * parent,const char * name,struct udevice ** devp)905 int device_find_child_by_name(const struct udevice *parent, const char *name,
906 			      struct udevice **devp)
907 {
908 	struct udevice *dev;
909 
910 	*devp = NULL;
911 
912 	list_for_each_entry(dev, &parent->child_head, sibling_node) {
913 		if (!strcmp(dev->name, name)) {
914 			*devp = dev;
915 			return 0;
916 		}
917 	}
918 
919 	return -ENODEV;
920 }
921 
device_first_child_err(struct udevice * parent,struct udevice ** devp)922 int device_first_child_err(struct udevice *parent, struct udevice **devp)
923 {
924 	struct udevice *dev;
925 
926 	device_find_first_child(parent, &dev);
927 	if (!dev)
928 		return -ENODEV;
929 
930 	return device_get_device_tail(dev, 0, devp);
931 }
932 
device_next_child_err(struct udevice ** devp)933 int device_next_child_err(struct udevice **devp)
934 {
935 	struct udevice *dev = *devp;
936 
937 	device_find_next_child(&dev);
938 	if (!dev)
939 		return -ENODEV;
940 
941 	return device_get_device_tail(dev, 0, devp);
942 }
943 
device_first_child_ofdata_err(struct udevice * parent,struct udevice ** devp)944 int device_first_child_ofdata_err(struct udevice *parent, struct udevice **devp)
945 {
946 	struct udevice *dev;
947 	int ret;
948 
949 	device_find_first_child(parent, &dev);
950 	if (!dev)
951 		return -ENODEV;
952 
953 	ret = device_of_to_plat(dev);
954 	if (ret)
955 		return ret;
956 
957 	*devp = dev;
958 
959 	return 0;
960 }
961 
device_next_child_ofdata_err(struct udevice ** devp)962 int device_next_child_ofdata_err(struct udevice **devp)
963 {
964 	struct udevice *dev = *devp;
965 	int ret;
966 
967 	device_find_next_child(&dev);
968 	if (!dev)
969 		return -ENODEV;
970 
971 	ret = device_of_to_plat(dev);
972 	if (ret)
973 		return ret;
974 
975 	*devp = dev;
976 
977 	return 0;
978 }
979 
dev_get_parent(const struct udevice * child)980 struct udevice *dev_get_parent(const struct udevice *child)
981 {
982 	return child->parent;
983 }
984 
dev_get_driver_data(const struct udevice * dev)985 ulong dev_get_driver_data(const struct udevice *dev)
986 {
987 	return dev->driver_data;
988 }
989 
dev_get_driver_ops(const struct udevice * dev)990 const void *dev_get_driver_ops(const struct udevice *dev)
991 {
992 	if (!dev || !dev->driver->ops)
993 		return NULL;
994 
995 	return dev->driver->ops;
996 }
997 
device_get_uclass_id(const struct udevice * dev)998 enum uclass_id device_get_uclass_id(const struct udevice *dev)
999 {
1000 	return dev->uclass->uc_drv->id;
1001 }
1002 
dev_get_uclass_name(const struct udevice * dev)1003 const char *dev_get_uclass_name(const struct udevice *dev)
1004 {
1005 	if (!dev)
1006 		return NULL;
1007 
1008 	return dev->uclass->uc_drv->name;
1009 }
1010 
device_has_children(const struct udevice * dev)1011 bool device_has_children(const struct udevice *dev)
1012 {
1013 	return !list_empty(&dev->child_head);
1014 }
1015 
device_has_active_children(const struct udevice * dev)1016 bool device_has_active_children(const struct udevice *dev)
1017 {
1018 	struct udevice *child;
1019 
1020 	for (device_find_first_child(dev, &child);
1021 	     child;
1022 	     device_find_next_child(&child)) {
1023 		if (device_active(child))
1024 			return true;
1025 	}
1026 
1027 	return false;
1028 }
1029 
device_is_last_sibling(const struct udevice * dev)1030 bool device_is_last_sibling(const struct udevice *dev)
1031 {
1032 	struct udevice *parent = dev->parent;
1033 
1034 	if (!parent)
1035 		return false;
1036 	return list_is_last(&dev->sibling_node, &parent->child_head);
1037 }
1038 
device_set_name_alloced(struct udevice * dev)1039 void device_set_name_alloced(struct udevice *dev)
1040 {
1041 	dev_or_flags(dev, DM_FLAG_NAME_ALLOCED);
1042 }
1043 
device_set_name(struct udevice * dev,const char * name)1044 int device_set_name(struct udevice *dev, const char *name)
1045 {
1046 	name = strdup(name);
1047 	if (!name)
1048 		return -ENOMEM;
1049 	dev->name = name;
1050 	device_set_name_alloced(dev);
1051 
1052 	return 0;
1053 }
1054 
dev_set_priv(struct udevice * dev,void * priv)1055 void dev_set_priv(struct udevice *dev, void *priv)
1056 {
1057 	dev->priv_ = priv;
1058 }
1059 
dev_set_parent_priv(struct udevice * dev,void * parent_priv)1060 void dev_set_parent_priv(struct udevice *dev, void *parent_priv)
1061 {
1062 	dev->parent_priv_ = parent_priv;
1063 }
1064 
dev_set_uclass_priv(struct udevice * dev,void * uclass_priv)1065 void dev_set_uclass_priv(struct udevice *dev, void *uclass_priv)
1066 {
1067 	dev->uclass_priv_ = uclass_priv;
1068 }
1069 
dev_set_plat(struct udevice * dev,void * plat)1070 void dev_set_plat(struct udevice *dev, void *plat)
1071 {
1072 	dev->plat_ = plat;
1073 }
1074 
dev_set_parent_plat(struct udevice * dev,void * parent_plat)1075 void dev_set_parent_plat(struct udevice *dev, void *parent_plat)
1076 {
1077 	dev->parent_plat_ = parent_plat;
1078 }
1079 
dev_set_uclass_plat(struct udevice * dev,void * uclass_plat)1080 void dev_set_uclass_plat(struct udevice *dev, void *uclass_plat)
1081 {
1082 	dev->uclass_plat_ = uclass_plat;
1083 }
1084 
1085 #if CONFIG_IS_ENABLED(OF_REAL)
device_is_compatible(const struct udevice * dev,const char * compat)1086 bool device_is_compatible(const struct udevice *dev, const char *compat)
1087 {
1088 	return ofnode_device_is_compatible(dev_ofnode(dev), compat);
1089 }
1090 
of_machine_is_compatible(const char * compat)1091 bool of_machine_is_compatible(const char *compat)
1092 {
1093 	const void *fdt = gd->fdt_blob;
1094 
1095 	return !fdt_node_check_compatible(fdt, 0, compat);
1096 }
1097 
dev_disable_by_path(const char * path)1098 int dev_disable_by_path(const char *path)
1099 {
1100 	struct uclass *uc;
1101 	ofnode node = ofnode_path(path);
1102 	struct udevice *dev;
1103 	int ret = 1;
1104 
1105 	if (!of_live_active())
1106 		return -ENOSYS;
1107 
1108 	list_for_each_entry(uc, gd->uclass_root, sibling_node) {
1109 		ret = uclass_find_device_by_ofnode(uc->uc_drv->id, node, &dev);
1110 		if (!ret)
1111 			break;
1112 	}
1113 
1114 	if (ret)
1115 		return ret;
1116 
1117 	ret = device_remove(dev, DM_REMOVE_NORMAL);
1118 	if (ret)
1119 		return ret;
1120 
1121 	ret = device_unbind(dev);
1122 	if (ret)
1123 		return ret;
1124 
1125 	return ofnode_set_enabled(node, false);
1126 }
1127 
dev_enable_by_path(const char * path)1128 int dev_enable_by_path(const char *path)
1129 {
1130 	ofnode node = ofnode_path(path);
1131 	ofnode pnode = ofnode_get_parent(node);
1132 	struct udevice *parent;
1133 	int ret = 1;
1134 
1135 	if (!of_live_active())
1136 		return -ENOSYS;
1137 
1138 	ret = device_find_by_ofnode(pnode, &parent);
1139 	if (ret)
1140 		return ret;
1141 
1142 	ret = ofnode_set_enabled(node, true);
1143 	if (ret)
1144 		return ret;
1145 
1146 	return lists_bind_fdt(parent, node, NULL, NULL, false);
1147 }
1148 #endif
1149 
1150 #if CONFIG_IS_ENABLED(OF_PLATDATA_RT)
dev_get_rt(const struct udevice * dev)1151 static struct udevice_rt *dev_get_rt(const struct udevice *dev)
1152 {
1153 	struct udevice *base = ll_entry_start(struct udevice, udevice);
1154 	int idx = dev - base;
1155 
1156 	struct udevice_rt *urt = gd_dm_udevice_rt() + idx;
1157 
1158 	return urt;
1159 }
1160 
dev_get_flags(const struct udevice * dev)1161 u32 dev_get_flags(const struct udevice *dev)
1162 {
1163 	const struct udevice_rt *urt = dev_get_rt(dev);
1164 
1165 	return urt->flags_;
1166 }
1167 
dev_or_flags(const struct udevice * dev,u32 or)1168 void dev_or_flags(const struct udevice *dev, u32 or)
1169 {
1170 	struct udevice_rt *urt = dev_get_rt(dev);
1171 
1172 	urt->flags_ |= or;
1173 }
1174 
dev_bic_flags(const struct udevice * dev,u32 bic)1175 void dev_bic_flags(const struct udevice *dev, u32 bic)
1176 {
1177 	struct udevice_rt *urt = dev_get_rt(dev);
1178 
1179 	urt->flags_ &= ~bic;
1180 }
1181 #endif /* OF_PLATDATA_RT */
1182