1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Chromium OS cros_ec driver
4  *
5  * Copyright (c) 2012 The Chromium OS Authors.
6  */
7 
8 /*
9  * This is the interface to the Chrome OS EC. It provides keyboard functions,
10  * power control and battery management. Quite a few other functions are
11  * provided to enable the EC software to be updated, talk to the EC's I2C bus
12  * and store a small amount of data in a memory which persists while the EC
13  * is not reset.
14  */
15 
16 #define LOG_CATEGORY UCLASS_CROS_EC
17 
18 #include <common.h>
19 #include <command.h>
20 #include <dm.h>
21 #include <flash.h>
22 #include <i2c.h>
23 #include <cros_ec.h>
24 #include <fdtdec.h>
25 #include <log.h>
26 #include <malloc.h>
27 #include <spi.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <asm/io.h>
31 #include <asm-generic/gpio.h>
32 #include <dm/device-internal.h>
33 #include <dm/of_extra.h>
34 #include <dm/uclass-internal.h>
35 
36 #ifdef DEBUG_TRACE
37 #define debug_trace(fmt, b...)	debug(fmt, #b)
38 #else
39 #define debug_trace(fmt, b...)
40 #endif
41 
42 enum {
43 	/* Timeout waiting for a flash erase command to complete */
44 	CROS_EC_CMD_TIMEOUT_MS	= 5000,
45 	/* Timeout waiting for a synchronous hash to be recomputed */
46 	CROS_EC_CMD_HASH_TIMEOUT_MS = 2000,
47 
48 	/* Wait 10 ms between attempts to check if EC's hash is ready */
49 	CROS_EC_HASH_CHECK_DELAY_MS = 10,
50 
51 };
52 
53 #define INVALID_HCMD 0xFF
54 
55 /*
56  * Map UHEPI masks to non UHEPI commands in order to support old EC FW
57  * which does not support UHEPI command.
58  */
59 static const struct {
60 	u8 set_cmd;
61 	u8 clear_cmd;
62 	u8 get_cmd;
63 } event_map[] = {
64 	[EC_HOST_EVENT_MAIN] = {
65 		INVALID_HCMD, EC_CMD_HOST_EVENT_CLEAR,
66 		INVALID_HCMD,
67 	},
68 	[EC_HOST_EVENT_B] = {
69 		INVALID_HCMD, EC_CMD_HOST_EVENT_CLEAR_B,
70 		EC_CMD_HOST_EVENT_GET_B,
71 	},
72 	[EC_HOST_EVENT_SCI_MASK] = {
73 		EC_CMD_HOST_EVENT_SET_SCI_MASK, INVALID_HCMD,
74 		EC_CMD_HOST_EVENT_GET_SCI_MASK,
75 	},
76 	[EC_HOST_EVENT_SMI_MASK] = {
77 		EC_CMD_HOST_EVENT_SET_SMI_MASK, INVALID_HCMD,
78 		EC_CMD_HOST_EVENT_GET_SMI_MASK,
79 	},
80 	[EC_HOST_EVENT_ALWAYS_REPORT_MASK] = {
81 		INVALID_HCMD, INVALID_HCMD, INVALID_HCMD,
82 	},
83 	[EC_HOST_EVENT_ACTIVE_WAKE_MASK] = {
84 		EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
85 		EC_CMD_HOST_EVENT_GET_WAKE_MASK,
86 	},
87 	[EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX] = {
88 		EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
89 		EC_CMD_HOST_EVENT_GET_WAKE_MASK,
90 	},
91 	[EC_HOST_EVENT_LAZY_WAKE_MASK_S3] = {
92 		EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
93 		EC_CMD_HOST_EVENT_GET_WAKE_MASK,
94 	},
95 	[EC_HOST_EVENT_LAZY_WAKE_MASK_S5] = {
96 		EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
97 		EC_CMD_HOST_EVENT_GET_WAKE_MASK,
98 	},
99 };
100 
cros_ec_dump_data(const char * name,int cmd,const uint8_t * data,int len)101 void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len)
102 {
103 #ifdef DEBUG
104 	int i;
105 
106 	printf("%s: ", name);
107 	if (cmd != -1)
108 		printf("cmd=%#x: ", cmd);
109 	for (i = 0; i < len; i++)
110 		printf("%02x ", data[i]);
111 	printf("\n");
112 #endif
113 }
114 
115 /*
116  * Calculate a simple 8-bit checksum of a data block
117  *
118  * @param data	Data block to checksum
119  * @param size	Size of data block in bytes
120  * @return checksum value (0 to 255)
121  */
cros_ec_calc_checksum(const uint8_t * data,int size)122 int cros_ec_calc_checksum(const uint8_t *data, int size)
123 {
124 	int csum, i;
125 
126 	for (i = csum = 0; i < size; i++)
127 		csum += data[i];
128 	return csum & 0xff;
129 }
130 
131 /**
132  * Create a request packet for protocol version 3.
133  *
134  * The packet is stored in the device's internal output buffer.
135  *
136  * @param dev		CROS-EC device
137  * @param cmd		Command to send (EC_CMD_...)
138  * @param cmd_version	Version of command to send (EC_VER_...)
139  * @param dout          Output data (may be NULL If dout_len=0)
140  * @param dout_len      Size of output data in bytes
141  * @return packet size in bytes, or <0 if error.
142  */
create_proto3_request(struct cros_ec_dev * cdev,int cmd,int cmd_version,const void * dout,int dout_len)143 static int create_proto3_request(struct cros_ec_dev *cdev,
144 				 int cmd, int cmd_version,
145 				 const void *dout, int dout_len)
146 {
147 	struct ec_host_request *rq = (struct ec_host_request *)cdev->dout;
148 	int out_bytes = dout_len + sizeof(*rq);
149 
150 	/* Fail if output size is too big */
151 	if (out_bytes > (int)sizeof(cdev->dout)) {
152 		debug("%s: Cannot send %d bytes\n", __func__, dout_len);
153 		return -EC_RES_REQUEST_TRUNCATED;
154 	}
155 
156 	/* Fill in request packet */
157 	rq->struct_version = EC_HOST_REQUEST_VERSION;
158 	rq->checksum = 0;
159 	rq->command = cmd;
160 	rq->command_version = cmd_version;
161 	rq->reserved = 0;
162 	rq->data_len = dout_len;
163 
164 	/* Copy data after header */
165 	memcpy(rq + 1, dout, dout_len);
166 
167 	/* Write checksum field so the entire packet sums to 0 */
168 	rq->checksum = (uint8_t)(-cros_ec_calc_checksum(cdev->dout, out_bytes));
169 
170 	cros_ec_dump_data("out", cmd, cdev->dout, out_bytes);
171 
172 	/* Return size of request packet */
173 	return out_bytes;
174 }
175 
176 /**
177  * Prepare the device to receive a protocol version 3 response.
178  *
179  * @param dev		CROS-EC device
180  * @param din_len       Maximum size of response in bytes
181  * @return maximum expected number of bytes in response, or <0 if error.
182  */
prepare_proto3_response_buffer(struct cros_ec_dev * cdev,int din_len)183 static int prepare_proto3_response_buffer(struct cros_ec_dev *cdev, int din_len)
184 {
185 	int in_bytes = din_len + sizeof(struct ec_host_response);
186 
187 	/* Fail if input size is too big */
188 	if (in_bytes > (int)sizeof(cdev->din)) {
189 		debug("%s: Cannot receive %d bytes\n", __func__, din_len);
190 		return -EC_RES_RESPONSE_TOO_BIG;
191 	}
192 
193 	/* Return expected size of response packet */
194 	return in_bytes;
195 }
196 
197 /**
198  * Handle a protocol version 3 response packet.
199  *
200  * The packet must already be stored in the device's internal input buffer.
201  *
202  * @param dev		CROS-EC device
203  * @param dinp          Returns pointer to response data
204  * @param din_len       Maximum size of response in bytes
205  * @return number of bytes of response data, or <0 if error. Note that error
206  * codes can be from errno.h or -ve EC_RES_INVALID_CHECKSUM values (and they
207  * overlap!)
208  */
handle_proto3_response(struct cros_ec_dev * dev,uint8_t ** dinp,int din_len)209 static int handle_proto3_response(struct cros_ec_dev *dev,
210 				  uint8_t **dinp, int din_len)
211 {
212 	struct ec_host_response *rs = (struct ec_host_response *)dev->din;
213 	int in_bytes;
214 	int csum;
215 
216 	cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs));
217 
218 	/* Check input data */
219 	if (rs->struct_version != EC_HOST_RESPONSE_VERSION) {
220 		debug("%s: EC response version mismatch\n", __func__);
221 		return -EC_RES_INVALID_RESPONSE;
222 	}
223 
224 	if (rs->reserved) {
225 		debug("%s: EC response reserved != 0\n", __func__);
226 		return -EC_RES_INVALID_RESPONSE;
227 	}
228 
229 	if (rs->data_len > din_len) {
230 		debug("%s: EC returned too much data\n", __func__);
231 		return -EC_RES_RESPONSE_TOO_BIG;
232 	}
233 
234 	cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len);
235 
236 	/* Update in_bytes to actual data size */
237 	in_bytes = sizeof(*rs) + rs->data_len;
238 
239 	/* Verify checksum */
240 	csum = cros_ec_calc_checksum(dev->din, in_bytes);
241 	if (csum) {
242 		debug("%s: EC response checksum invalid: 0x%02x\n", __func__,
243 		      csum);
244 		return -EC_RES_INVALID_CHECKSUM;
245 	}
246 
247 	/* Return error result, if any */
248 	if (rs->result)
249 		return -(int)rs->result;
250 
251 	/* If we're still here, set response data pointer and return length */
252 	*dinp = (uint8_t *)(rs + 1);
253 
254 	return rs->data_len;
255 }
256 
send_command_proto3(struct cros_ec_dev * cdev,int cmd,int cmd_version,const void * dout,int dout_len,uint8_t ** dinp,int din_len)257 static int send_command_proto3(struct cros_ec_dev *cdev,
258 			       int cmd, int cmd_version,
259 			       const void *dout, int dout_len,
260 			       uint8_t **dinp, int din_len)
261 {
262 	struct dm_cros_ec_ops *ops;
263 	int out_bytes, in_bytes;
264 	int rv;
265 
266 	/* Create request packet */
267 	out_bytes = create_proto3_request(cdev, cmd, cmd_version,
268 					  dout, dout_len);
269 	if (out_bytes < 0)
270 		return out_bytes;
271 
272 	/* Prepare response buffer */
273 	in_bytes = prepare_proto3_response_buffer(cdev, din_len);
274 	if (in_bytes < 0)
275 		return in_bytes;
276 
277 	ops = dm_cros_ec_get_ops(cdev->dev);
278 	rv = ops->packet ? ops->packet(cdev->dev, out_bytes, in_bytes) :
279 			-ENOSYS;
280 	if (rv < 0)
281 		return rv;
282 
283 	/* Process the response */
284 	return handle_proto3_response(cdev, dinp, din_len);
285 }
286 
send_command(struct cros_ec_dev * dev,uint cmd,int cmd_version,const void * dout,int dout_len,uint8_t ** dinp,int din_len)287 static int send_command(struct cros_ec_dev *dev, uint cmd, int cmd_version,
288 			const void *dout, int dout_len,
289 			uint8_t **dinp, int din_len)
290 {
291 	struct dm_cros_ec_ops *ops;
292 	int ret = -1;
293 
294 	/* Handle protocol version 3 support */
295 	if (dev->protocol_version == 3) {
296 		return send_command_proto3(dev, cmd, cmd_version,
297 					   dout, dout_len, dinp, din_len);
298 	}
299 
300 	ops = dm_cros_ec_get_ops(dev->dev);
301 	ret = ops->command(dev->dev, cmd, cmd_version,
302 			   (const uint8_t *)dout, dout_len, dinp, din_len);
303 
304 	return ret;
305 }
306 
307 /**
308  * Send a command to the CROS-EC device and return the reply.
309  *
310  * The device's internal input/output buffers are used.
311  *
312  * @param dev		CROS-EC device
313  * @param cmd		Command to send (EC_CMD_...)
314  * @param cmd_version	Version of command to send (EC_VER_...)
315  * @param dout          Output data (may be NULL If dout_len=0)
316  * @param dout_len      Size of output data in bytes
317  * @param dinp          Response data (may be NULL If din_len=0).
318  *			If not NULL, it will be updated to point to the data
319  *			and will always be double word aligned (64-bits)
320  * @param din_len       Maximum size of response in bytes
321  * @return number of bytes in response, or -ve on error
322  */
ec_command_inptr(struct udevice * dev,uint cmd,int cmd_version,const void * dout,int dout_len,uint8_t ** dinp,int din_len)323 static int ec_command_inptr(struct udevice *dev, uint cmd,
324 			    int cmd_version, const void *dout, int dout_len,
325 			    uint8_t **dinp, int din_len)
326 {
327 	struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
328 	uint8_t *din = NULL;
329 	int len;
330 
331 	len = send_command(cdev, cmd, cmd_version, dout, dout_len, &din,
332 			   din_len);
333 
334 	/* If the command doesn't complete, wait a while */
335 	if (len == -EC_RES_IN_PROGRESS) {
336 		struct ec_response_get_comms_status *resp = NULL;
337 		ulong start;
338 
339 		/* Wait for command to complete */
340 		start = get_timer(0);
341 		do {
342 			int ret;
343 
344 			mdelay(50);	/* Insert some reasonable delay */
345 			ret = send_command(cdev, EC_CMD_GET_COMMS_STATUS, 0,
346 					   NULL, 0,
347 					   (uint8_t **)&resp, sizeof(*resp));
348 			if (ret < 0)
349 				return ret;
350 
351 			if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) {
352 				debug("%s: Command %#02x timeout\n",
353 				      __func__, cmd);
354 				return -EC_RES_TIMEOUT;
355 			}
356 		} while (resp->flags & EC_COMMS_STATUS_PROCESSING);
357 
358 		/* OK it completed, so read the status response */
359 		/* not sure why it was 0 for the last argument */
360 		len = send_command(cdev, EC_CMD_RESEND_RESPONSE, 0, NULL, 0,
361 				   &din, din_len);
362 	}
363 
364 	debug("%s: len=%d, din=%p\n", __func__, len, din);
365 	if (dinp) {
366 		/* If we have any data to return, it must be 64bit-aligned */
367 		assert(len <= 0 || !((uintptr_t)din & 7));
368 		*dinp = din;
369 	}
370 
371 	return len;
372 }
373 
374 /**
375  * Send a command to the CROS-EC device and return the reply.
376  *
377  * The device's internal input/output buffers are used.
378  *
379  * @param dev		CROS-EC device
380  * @param cmd		Command to send (EC_CMD_...)
381  * @param cmd_version	Version of command to send (EC_VER_...)
382  * @param dout          Output data (may be NULL If dout_len=0)
383  * @param dout_len      Size of output data in bytes
384  * @param din           Response data (may be NULL If din_len=0).
385  *			It not NULL, it is a place for ec_command() to copy the
386  *      data to.
387  * @param din_len       Maximum size of response in bytes
388  * @return number of bytes in response, or -ve on error
389  */
ec_command(struct udevice * dev,uint cmd,int cmd_version,const void * dout,int dout_len,void * din,int din_len)390 static int ec_command(struct udevice *dev, uint cmd, int cmd_version,
391 		      const void *dout, int dout_len,
392 		      void *din, int din_len)
393 {
394 	uint8_t *in_buffer;
395 	int len;
396 
397 	assert((din_len == 0) || din);
398 	len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len,
399 			       &in_buffer, din_len);
400 	if (len > 0) {
401 		/*
402 		 * If we were asked to put it somewhere, do so, otherwise just
403 		 * disregard the result.
404 		 */
405 		if (din && in_buffer) {
406 			assert(len <= din_len);
407 			if (len > din_len)
408 				return -ENOSPC;
409 			memmove(din, in_buffer, len);
410 		}
411 	}
412 	return len;
413 }
414 
cros_ec_scan_keyboard(struct udevice * dev,struct mbkp_keyscan * scan)415 int cros_ec_scan_keyboard(struct udevice *dev, struct mbkp_keyscan *scan)
416 {
417 	if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan,
418 		       sizeof(scan->data)) != sizeof(scan->data))
419 		return -1;
420 
421 	return 0;
422 }
423 
cros_ec_get_next_event(struct udevice * dev,struct ec_response_get_next_event * event)424 int cros_ec_get_next_event(struct udevice *dev,
425 			   struct ec_response_get_next_event *event)
426 {
427 	int ret;
428 
429 	ret = ec_command(dev, EC_CMD_GET_NEXT_EVENT, 0, NULL, 0,
430 			 event, sizeof(*event));
431 	if (ret < 0)
432 		return ret;
433 	else if (ret != sizeof(*event))
434 		return -EC_RES_INVALID_RESPONSE;
435 
436 	return 0;
437 }
438 
cros_ec_read_id(struct udevice * dev,char * id,int maxlen)439 int cros_ec_read_id(struct udevice *dev, char *id, int maxlen)
440 {
441 	struct ec_response_get_version *r;
442 	int ret;
443 
444 	ret = ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
445 			       (uint8_t **)&r, sizeof(*r));
446 	if (ret != sizeof(*r)) {
447 		log_err("Got rc %d, expected %u\n", ret, (uint)sizeof(*r));
448 		return -1;
449 	}
450 
451 	if (maxlen > (int)sizeof(r->version_string_ro))
452 		maxlen = sizeof(r->version_string_ro);
453 
454 	switch (r->current_image) {
455 	case EC_IMAGE_RO:
456 		memcpy(id, r->version_string_ro, maxlen);
457 		break;
458 	case EC_IMAGE_RW:
459 		memcpy(id, r->version_string_rw, maxlen);
460 		break;
461 	default:
462 		log_err("Invalid EC image %d\n", r->current_image);
463 		return -1;
464 	}
465 
466 	id[maxlen - 1] = '\0';
467 	return 0;
468 }
469 
cros_ec_read_version(struct udevice * dev,struct ec_response_get_version ** versionp)470 int cros_ec_read_version(struct udevice *dev,
471 			 struct ec_response_get_version **versionp)
472 {
473 	if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
474 			(uint8_t **)versionp, sizeof(**versionp))
475 			!= sizeof(**versionp))
476 		return -1;
477 
478 	return 0;
479 }
480 
cros_ec_read_build_info(struct udevice * dev,char ** strp)481 int cros_ec_read_build_info(struct udevice *dev, char **strp)
482 {
483 	if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0,
484 			(uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0)
485 		return -1;
486 
487 	return 0;
488 }
489 
cros_ec_read_current_image(struct udevice * dev,enum ec_current_image * image)490 int cros_ec_read_current_image(struct udevice *dev,
491 			       enum ec_current_image *image)
492 {
493 	struct ec_response_get_version *r;
494 
495 	if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
496 			(uint8_t **)&r, sizeof(*r)) != sizeof(*r))
497 		return -1;
498 
499 	*image = r->current_image;
500 	return 0;
501 }
502 
cros_ec_wait_on_hash_done(struct udevice * dev,struct ec_params_vboot_hash * p,struct ec_response_vboot_hash * hash)503 static int cros_ec_wait_on_hash_done(struct udevice *dev,
504 				     struct ec_params_vboot_hash *p,
505 				     struct ec_response_vboot_hash *hash)
506 {
507 	ulong start;
508 
509 	start = get_timer(0);
510 	while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) {
511 		mdelay(CROS_EC_HASH_CHECK_DELAY_MS);
512 
513 		p->cmd = EC_VBOOT_HASH_GET;
514 
515 		if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, p, sizeof(*p), hash,
516 			       sizeof(*hash)) < 0)
517 			return -1;
518 
519 		if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) {
520 			debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__);
521 			return -EC_RES_TIMEOUT;
522 		}
523 	}
524 	return 0;
525 }
526 
cros_ec_read_hash(struct udevice * dev,uint hash_offset,struct ec_response_vboot_hash * hash)527 int cros_ec_read_hash(struct udevice *dev, uint hash_offset,
528 		      struct ec_response_vboot_hash *hash)
529 {
530 	struct ec_params_vboot_hash p;
531 	int rv;
532 
533 	p.cmd = EC_VBOOT_HASH_GET;
534 	p.offset = hash_offset;
535 	if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
536 		       hash, sizeof(*hash)) < 0)
537 		return -1;
538 
539 	/* If the EC is busy calculating the hash, fidget until it's done. */
540 	rv = cros_ec_wait_on_hash_done(dev, &p, hash);
541 	if (rv)
542 		return rv;
543 
544 	/* If the hash is valid, we're done. Otherwise, we have to kick it off
545 	 * again and wait for it to complete. Note that we explicitly assume
546 	 * that hashing zero bytes is always wrong, even though that would
547 	 * produce a valid hash value. */
548 	if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size)
549 		return 0;
550 
551 	debug("%s: No valid hash (status=%d size=%d). Compute one...\n",
552 	      __func__, hash->status, hash->size);
553 
554 	p.cmd = EC_VBOOT_HASH_START;
555 	p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
556 	p.nonce_size = 0;
557 	p.offset = hash_offset;
558 
559 	if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
560 		       hash, sizeof(*hash)) < 0)
561 		return -1;
562 
563 	rv = cros_ec_wait_on_hash_done(dev, &p, hash);
564 	if (rv)
565 		return rv;
566 	if (hash->status != EC_VBOOT_HASH_STATUS_DONE) {
567 		log_err("Hash did not complete, status=%d\n", hash->status);
568 		return -EIO;
569 	}
570 
571 	debug("%s: hash done\n", __func__);
572 
573 	return 0;
574 }
575 
cros_ec_invalidate_hash(struct udevice * dev)576 static int cros_ec_invalidate_hash(struct udevice *dev)
577 {
578 	struct ec_params_vboot_hash p;
579 	struct ec_response_vboot_hash *hash;
580 
581 	/* We don't have an explict command for the EC to discard its current
582 	 * hash value, so we'll just tell it to calculate one that we know is
583 	 * wrong (we claim that hashing zero bytes is always invalid).
584 	 */
585 	p.cmd = EC_VBOOT_HASH_RECALC;
586 	p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
587 	p.nonce_size = 0;
588 	p.offset = 0;
589 	p.size = 0;
590 
591 	debug("%s:\n", __func__);
592 
593 	if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
594 		       (uint8_t **)&hash, sizeof(*hash)) < 0)
595 		return -1;
596 
597 	/* No need to wait for it to finish */
598 	return 0;
599 }
600 
cros_ec_hello(struct udevice * dev,uint * handshakep)601 int cros_ec_hello(struct udevice *dev, uint *handshakep)
602 {
603 	struct ec_params_hello req;
604 	struct ec_response_hello *resp;
605 
606 	req.in_data = 0x12345678;
607 	if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
608 			     (uint8_t **)&resp, sizeof(*resp)) < 0)
609 		return -EIO;
610 	if (resp->out_data != req.in_data + 0x01020304) {
611 		printf("Received invalid handshake %x\n", resp->out_data);
612 		if (handshakep)
613 			*handshakep = req.in_data;
614 		return -ENOTSYNC;
615 	}
616 
617 	return 0;
618 }
619 
cros_ec_reboot(struct udevice * dev,enum ec_reboot_cmd cmd,uint8_t flags)620 int cros_ec_reboot(struct udevice *dev, enum ec_reboot_cmd cmd, uint8_t flags)
621 {
622 	struct ec_params_reboot_ec p;
623 
624 	p.cmd = cmd;
625 	p.flags = flags;
626 
627 	if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0)
628 			< 0)
629 		return -1;
630 
631 	if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) {
632 		ulong start;
633 
634 		/*
635 		 * EC reboot will take place immediately so delay to allow it
636 		 * to complete.  Note that some reboot types (EC_REBOOT_COLD)
637 		 * will reboot the AP as well, in which case we won't actually
638 		 * get to this point.
639 		 */
640 		mdelay(50);
641 		start = get_timer(0);
642 		while (cros_ec_hello(dev, NULL)) {
643 			if (get_timer(start) > 3000) {
644 				log_err("EC did not return from reboot\n");
645 				return -ETIMEDOUT;
646 			}
647 			mdelay(5);
648 		}
649 	}
650 
651 	return 0;
652 }
653 
cros_ec_interrupt_pending(struct udevice * dev)654 int cros_ec_interrupt_pending(struct udevice *dev)
655 {
656 	struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
657 
658 	/* no interrupt support : always poll */
659 	if (!dm_gpio_is_valid(&cdev->ec_int))
660 		return -ENOENT;
661 
662 	return dm_gpio_get_value(&cdev->ec_int);
663 }
664 
cros_ec_info(struct udevice * dev,struct ec_response_mkbp_info * info)665 int cros_ec_info(struct udevice *dev, struct ec_response_mkbp_info *info)
666 {
667 	if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info,
668 		       sizeof(*info)) != sizeof(*info))
669 		return -1;
670 
671 	return 0;
672 }
673 
cros_ec_get_event_mask(struct udevice * dev,uint type,uint32_t * mask)674 int cros_ec_get_event_mask(struct udevice *dev, uint type, uint32_t *mask)
675 {
676 	struct ec_response_host_event_mask rsp;
677 	int ret;
678 
679 	ret = ec_command(dev, type, 0, NULL, 0, &rsp, sizeof(rsp));
680 	if (ret < 0)
681 		return ret;
682 	else if (ret != sizeof(rsp))
683 		return -EINVAL;
684 
685 	*mask = rsp.mask;
686 
687 	return 0;
688 }
689 
cros_ec_set_event_mask(struct udevice * dev,uint type,uint32_t mask)690 int cros_ec_set_event_mask(struct udevice *dev, uint type, uint32_t mask)
691 {
692 	struct ec_params_host_event_mask req;
693 	int ret;
694 
695 	req.mask = mask;
696 
697 	ret = ec_command(dev, type, 0, &req, sizeof(req), NULL, 0);
698 	if (ret < 0)
699 		return ret;
700 
701 	return 0;
702 }
703 
cros_ec_get_host_events(struct udevice * dev,uint32_t * events_ptr)704 int cros_ec_get_host_events(struct udevice *dev, uint32_t *events_ptr)
705 {
706 	struct ec_response_host_event_mask *resp;
707 
708 	/*
709 	 * Use the B copy of the event flags, because the main copy is already
710 	 * used by ACPI/SMI.
711 	 */
712 	if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0,
713 		       (uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp))
714 		return -1;
715 
716 	if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID))
717 		return -1;
718 
719 	*events_ptr = resp->mask;
720 	return 0;
721 }
722 
cros_ec_clear_host_events(struct udevice * dev,uint32_t events)723 int cros_ec_clear_host_events(struct udevice *dev, uint32_t events)
724 {
725 	struct ec_params_host_event_mask params;
726 
727 	params.mask = events;
728 
729 	/*
730 	 * Use the B copy of the event flags, so it affects the data returned
731 	 * by cros_ec_get_host_events().
732 	 */
733 	if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0,
734 		       &params, sizeof(params), NULL, 0) < 0)
735 		return -1;
736 
737 	return 0;
738 }
739 
cros_ec_flash_protect(struct udevice * dev,uint32_t set_mask,uint32_t set_flags,struct ec_response_flash_protect * resp)740 int cros_ec_flash_protect(struct udevice *dev, uint32_t set_mask,
741 			  uint32_t set_flags,
742 			  struct ec_response_flash_protect *resp)
743 {
744 	struct ec_params_flash_protect params;
745 
746 	params.mask = set_mask;
747 	params.flags = set_flags;
748 
749 	if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT,
750 		       &params, sizeof(params),
751 		       resp, sizeof(*resp)) != sizeof(*resp))
752 		return -1;
753 
754 	return 0;
755 }
756 
cros_ec_check_version(struct udevice * dev)757 static int cros_ec_check_version(struct udevice *dev)
758 {
759 	struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
760 	struct ec_params_hello req;
761 
762 	struct dm_cros_ec_ops *ops;
763 	int ret;
764 
765 	ops = dm_cros_ec_get_ops(dev);
766 	if (ops->check_version) {
767 		ret = ops->check_version(dev);
768 		if (ret)
769 			return ret;
770 	}
771 
772 	/*
773 	 * TODO(sjg@chromium.org).
774 	 * There is a strange oddity here with the EC. We could just ignore
775 	 * the response, i.e. pass the last two parameters as NULL and 0.
776 	 * In this case we won't read back very many bytes from the EC.
777 	 * On the I2C bus the EC gets upset about this and will try to send
778 	 * the bytes anyway. This means that we will have to wait for that
779 	 * to complete before continuing with a new EC command.
780 	 *
781 	 * This problem is probably unique to the I2C bus.
782 	 *
783 	 * So for now, just read all the data anyway.
784 	 */
785 
786 	/* Try sending a version 3 packet */
787 	cdev->protocol_version = 3;
788 	req.in_data = 0;
789 	ret = cros_ec_hello(dev, NULL);
790 	if (!ret || ret == -ENOTSYNC)
791 		return 0;
792 
793 	/* Try sending a version 2 packet */
794 	cdev->protocol_version = 2;
795 	ret = cros_ec_hello(dev, NULL);
796 	if (!ret || ret == -ENOTSYNC)
797 		return 0;
798 
799 	/*
800 	 * Fail if we're still here, since the EC doesn't understand any
801 	 * protcol version we speak.  Version 1 interface without command
802 	 * version is no longer supported, and we don't know about any new
803 	 * protocol versions.
804 	 */
805 	cdev->protocol_version = 0;
806 	printf("%s: ERROR: old EC interface not supported\n", __func__);
807 	return -1;
808 }
809 
cros_ec_test(struct udevice * dev)810 int cros_ec_test(struct udevice *dev)
811 {
812 	uint out_data;
813 	int ret;
814 
815 	ret = cros_ec_hello(dev, &out_data);
816 	if (ret == -ENOTSYNC) {
817 		printf("Received invalid handshake %x\n", out_data);
818 		return ret;
819 	} else if (ret) {
820 		printf("ec_command_inptr() returned error\n");
821 		return ret;
822 	}
823 
824 	return 0;
825 }
826 
cros_ec_flash_offset(struct udevice * dev,enum ec_flash_region region,uint32_t * offset,uint32_t * size)827 int cros_ec_flash_offset(struct udevice *dev, enum ec_flash_region region,
828 		      uint32_t *offset, uint32_t *size)
829 {
830 	struct ec_params_flash_region_info p;
831 	struct ec_response_flash_region_info *r;
832 	int ret;
833 
834 	p.region = region;
835 	ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO,
836 			 EC_VER_FLASH_REGION_INFO,
837 			 &p, sizeof(p), (uint8_t **)&r, sizeof(*r));
838 	if (ret != sizeof(*r))
839 		return -1;
840 
841 	if (offset)
842 		*offset = r->offset;
843 	if (size)
844 		*size = r->size;
845 
846 	return 0;
847 }
848 
cros_ec_flash_erase(struct udevice * dev,uint32_t offset,uint32_t size)849 int cros_ec_flash_erase(struct udevice *dev, uint32_t offset, uint32_t size)
850 {
851 	struct ec_params_flash_erase p;
852 
853 	p.offset = offset;
854 	p.size = size;
855 	return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p),
856 			NULL, 0);
857 }
858 
859 /**
860  * Write a single block to the flash
861  *
862  * Write a block of data to the EC flash. The size must not exceed the flash
863  * write block size which you can obtain from cros_ec_flash_write_burst_size().
864  *
865  * The offset starts at 0. You can obtain the region information from
866  * cros_ec_flash_offset() to find out where to write for a particular region.
867  *
868  * Attempting to write to the region where the EC is currently running from
869  * will result in an error.
870  *
871  * @param dev		CROS-EC device
872  * @param data		Pointer to data buffer to write
873  * @param offset	Offset within flash to write to.
874  * @param size		Number of bytes to write
875  * @return 0 if ok, -1 on error
876  */
cros_ec_flash_write_block(struct udevice * dev,const uint8_t * data,uint32_t offset,uint32_t size)877 static int cros_ec_flash_write_block(struct udevice *dev, const uint8_t *data,
878 				     uint32_t offset, uint32_t size)
879 {
880 	struct ec_params_flash_write *p;
881 	int ret;
882 
883 	p = malloc(sizeof(*p) + size);
884 	if (!p)
885 		return -ENOMEM;
886 
887 	p->offset = offset;
888 	p->size = size;
889 	assert(data && p->size <= EC_FLASH_WRITE_VER0_SIZE);
890 	memcpy(p + 1, data, p->size);
891 
892 	ret = ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0,
893 			  p, sizeof(*p) + size, NULL, 0) >= 0 ? 0 : -1;
894 
895 	free(p);
896 
897 	return ret;
898 }
899 
900 /**
901  * Return optimal flash write burst size
902  */
cros_ec_flash_write_burst_size(struct udevice * dev)903 static int cros_ec_flash_write_burst_size(struct udevice *dev)
904 {
905 	return EC_FLASH_WRITE_VER0_SIZE;
906 }
907 
908 /**
909  * Check if a block of data is erased (all 0xff)
910  *
911  * This function is useful when dealing with flash, for checking whether a
912  * data block is erased and thus does not need to be programmed.
913  *
914  * @param data		Pointer to data to check (must be word-aligned)
915  * @param size		Number of bytes to check (must be word-aligned)
916  * @return 0 if erased, non-zero if any word is not erased
917  */
cros_ec_data_is_erased(const uint32_t * data,int size)918 static int cros_ec_data_is_erased(const uint32_t *data, int size)
919 {
920 	assert(!(size & 3));
921 	size /= sizeof(uint32_t);
922 	for (; size > 0; size -= 4, data++)
923 		if (*data != -1U)
924 			return 0;
925 
926 	return 1;
927 }
928 
929 /**
930  * Read back flash parameters
931  *
932  * This function reads back parameters of the flash as reported by the EC
933  *
934  * @param dev  Pointer to device
935  * @param info Pointer to output flash info struct
936  */
cros_ec_read_flashinfo(struct udevice * dev,struct ec_response_flash_info * info)937 int cros_ec_read_flashinfo(struct udevice *dev,
938 			   struct ec_response_flash_info *info)
939 {
940 	int ret;
941 
942 	ret = ec_command(dev, EC_CMD_FLASH_INFO, 0,
943 			 NULL, 0, info, sizeof(*info));
944 	if (ret < 0)
945 		return ret;
946 
947 	return ret < sizeof(*info) ? -1 : 0;
948 }
949 
cros_ec_flash_write(struct udevice * dev,const uint8_t * data,uint32_t offset,uint32_t size)950 int cros_ec_flash_write(struct udevice *dev, const uint8_t *data,
951 			uint32_t offset, uint32_t size)
952 {
953 	struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
954 	uint32_t burst = cros_ec_flash_write_burst_size(dev);
955 	uint32_t end, off;
956 	int ret;
957 
958 	if (!burst)
959 		return -EINVAL;
960 
961 	/*
962 	 * TODO: round up to the nearest multiple of write size.  Can get away
963 	 * without that on link right now because its write size is 4 bytes.
964 	 */
965 	end = offset + size;
966 	for (off = offset; off < end; off += burst, data += burst) {
967 		uint32_t todo;
968 
969 		/* If the data is empty, there is no point in programming it */
970 		todo = min(end - off, burst);
971 		if (cdev->optimise_flash_write &&
972 		    cros_ec_data_is_erased((uint32_t *)data, todo))
973 			continue;
974 
975 		ret = cros_ec_flash_write_block(dev, data, off, todo);
976 		if (ret)
977 			return ret;
978 	}
979 
980 	return 0;
981 }
982 
983 /**
984  * Run verification on a slot
985  *
986  * @param me     CrosEc instance
987  * @param region Region to run verification on
988  * @return 0 if success or not applicable. Non-zero if verification failed.
989  */
cros_ec_efs_verify(struct udevice * dev,enum ec_flash_region region)990 int cros_ec_efs_verify(struct udevice *dev, enum ec_flash_region region)
991 {
992 	struct ec_params_efs_verify p;
993 	int rv;
994 
995 	log_info("EFS: EC is verifying updated image...\n");
996 	p.region = region;
997 
998 	rv = ec_command(dev, EC_CMD_EFS_VERIFY, 0, &p, sizeof(p), NULL, 0);
999 	if (rv >= 0) {
1000 		log_info("EFS: Verification success\n");
1001 		return 0;
1002 	}
1003 	if (rv == -EC_RES_INVALID_COMMAND) {
1004 		log_info("EFS: EC doesn't support EFS_VERIFY command\n");
1005 		return 0;
1006 	}
1007 	log_info("EFS: Verification failed\n");
1008 
1009 	return rv;
1010 }
1011 
1012 /**
1013  * Read a single block from the flash
1014  *
1015  * Read a block of data from the EC flash. The size must not exceed the flash
1016  * write block size which you can obtain from cros_ec_flash_write_burst_size().
1017  *
1018  * The offset starts at 0. You can obtain the region information from
1019  * cros_ec_flash_offset() to find out where to read for a particular region.
1020  *
1021  * @param dev		CROS-EC device
1022  * @param data		Pointer to data buffer to read into
1023  * @param offset	Offset within flash to read from
1024  * @param size		Number of bytes to read
1025  * @return 0 if ok, -1 on error
1026  */
cros_ec_flash_read_block(struct udevice * dev,uint8_t * data,uint32_t offset,uint32_t size)1027 static int cros_ec_flash_read_block(struct udevice *dev, uint8_t *data,
1028 				    uint32_t offset, uint32_t size)
1029 {
1030 	struct ec_params_flash_read p;
1031 
1032 	p.offset = offset;
1033 	p.size = size;
1034 
1035 	return ec_command(dev, EC_CMD_FLASH_READ, 0,
1036 			  &p, sizeof(p), data, size) >= 0 ? 0 : -1;
1037 }
1038 
cros_ec_flash_read(struct udevice * dev,uint8_t * data,uint32_t offset,uint32_t size)1039 int cros_ec_flash_read(struct udevice *dev, uint8_t *data, uint32_t offset,
1040 		       uint32_t size)
1041 {
1042 	uint32_t burst = cros_ec_flash_write_burst_size(dev);
1043 	uint32_t end, off;
1044 	int ret;
1045 
1046 	end = offset + size;
1047 	for (off = offset; off < end; off += burst, data += burst) {
1048 		ret = cros_ec_flash_read_block(dev, data, off,
1049 					    min(end - off, burst));
1050 		if (ret)
1051 			return ret;
1052 	}
1053 
1054 	return 0;
1055 }
1056 
cros_ec_flash_update_rw(struct udevice * dev,const uint8_t * image,int image_size)1057 int cros_ec_flash_update_rw(struct udevice *dev, const uint8_t *image,
1058 			    int image_size)
1059 {
1060 	uint32_t rw_offset, rw_size;
1061 	int ret;
1062 
1063 	if (cros_ec_flash_offset(dev, EC_FLASH_REGION_ACTIVE, &rw_offset,
1064 		&rw_size))
1065 		return -1;
1066 	if (image_size > (int)rw_size)
1067 		return -1;
1068 
1069 	/* Invalidate the existing hash, just in case the AP reboots
1070 	 * unexpectedly during the update. If that happened, the EC RW firmware
1071 	 * would be invalid, but the EC would still have the original hash.
1072 	 */
1073 	ret = cros_ec_invalidate_hash(dev);
1074 	if (ret)
1075 		return ret;
1076 
1077 	/*
1078 	 * Erase the entire RW section, so that the EC doesn't see any garbage
1079 	 * past the new image if it's smaller than the current image.
1080 	 *
1081 	 * TODO: could optimize this to erase just the current image, since
1082 	 * presumably everything past that is 0xff's.  But would still need to
1083 	 * round up to the nearest multiple of erase size.
1084 	 */
1085 	ret = cros_ec_flash_erase(dev, rw_offset, rw_size);
1086 	if (ret)
1087 		return ret;
1088 
1089 	/* Write the image */
1090 	ret = cros_ec_flash_write(dev, image, rw_offset, image_size);
1091 	if (ret)
1092 		return ret;
1093 
1094 	return 0;
1095 }
1096 
cros_ec_get_sku_id(struct udevice * dev)1097 int cros_ec_get_sku_id(struct udevice *dev)
1098 {
1099 	struct ec_sku_id_info *r;
1100 	int ret;
1101 
1102 	ret = ec_command_inptr(dev, EC_CMD_GET_SKU_ID, 0, NULL, 0,
1103 			       (uint8_t **)&r, sizeof(*r));
1104 	if (ret != sizeof(*r))
1105 		return -ret;
1106 
1107 	return r->sku_id;
1108 }
1109 
cros_ec_read_nvdata(struct udevice * dev,uint8_t * block,int size)1110 int cros_ec_read_nvdata(struct udevice *dev, uint8_t *block, int size)
1111 {
1112 	struct ec_params_vbnvcontext p;
1113 	int len;
1114 
1115 	if (size != EC_VBNV_BLOCK_SIZE && size != EC_VBNV_BLOCK_SIZE_V2)
1116 		return -EINVAL;
1117 
1118 	p.op = EC_VBNV_CONTEXT_OP_READ;
1119 
1120 	len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
1121 			 &p, sizeof(uint32_t) + size, block, size);
1122 	if (len != size) {
1123 		log_err("Expected %d bytes, got %d\n", size, len);
1124 		return -EIO;
1125 	}
1126 
1127 	return 0;
1128 }
1129 
cros_ec_write_nvdata(struct udevice * dev,const uint8_t * block,int size)1130 int cros_ec_write_nvdata(struct udevice *dev, const uint8_t *block, int size)
1131 {
1132 	struct ec_params_vbnvcontext p;
1133 	int len;
1134 
1135 	if (size != EC_VBNV_BLOCK_SIZE && size != EC_VBNV_BLOCK_SIZE_V2)
1136 		return -EINVAL;
1137 	p.op = EC_VBNV_CONTEXT_OP_WRITE;
1138 	memcpy(p.block, block, size);
1139 
1140 	len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
1141 			&p, sizeof(uint32_t) + size, NULL, 0);
1142 	if (len < 0)
1143 		return -1;
1144 
1145 	return 0;
1146 }
1147 
cros_ec_battery_cutoff(struct udevice * dev,uint8_t flags)1148 int cros_ec_battery_cutoff(struct udevice *dev, uint8_t flags)
1149 {
1150 	struct ec_params_battery_cutoff p;
1151 	int len;
1152 
1153 	p.flags = flags;
1154 	len = ec_command(dev, EC_CMD_BATTERY_CUT_OFF, 1, &p, sizeof(p),
1155 			 NULL, 0);
1156 
1157 	if (len < 0)
1158 		return -1;
1159 	return 0;
1160 }
1161 
cros_ec_set_pwm_duty(struct udevice * dev,uint8_t index,uint16_t duty)1162 int cros_ec_set_pwm_duty(struct udevice *dev, uint8_t index, uint16_t duty)
1163 {
1164 	struct ec_params_pwm_set_duty p;
1165 	int ret;
1166 
1167 	p.duty = duty;
1168 	p.pwm_type = EC_PWM_TYPE_GENERIC;
1169 	p.index = index;
1170 
1171 	ret = ec_command(dev, EC_CMD_PWM_SET_DUTY, 0, &p, sizeof(p),
1172 			 NULL, 0);
1173 	if (ret < 0)
1174 		return ret;
1175 
1176 	return 0;
1177 }
1178 
cros_ec_set_ldo(struct udevice * dev,uint8_t index,uint8_t state)1179 int cros_ec_set_ldo(struct udevice *dev, uint8_t index, uint8_t state)
1180 {
1181 	struct ec_params_ldo_set params;
1182 
1183 	params.index = index;
1184 	params.state = state;
1185 
1186 	if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0, &params, sizeof(params),
1187 			     NULL, 0))
1188 		return -1;
1189 
1190 	return 0;
1191 }
1192 
cros_ec_get_ldo(struct udevice * dev,uint8_t index,uint8_t * state)1193 int cros_ec_get_ldo(struct udevice *dev, uint8_t index, uint8_t *state)
1194 {
1195 	struct ec_params_ldo_get params;
1196 	struct ec_response_ldo_get *resp;
1197 
1198 	params.index = index;
1199 
1200 	if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0, &params, sizeof(params),
1201 			     (uint8_t **)&resp, sizeof(*resp)) !=
1202 			     sizeof(*resp))
1203 		return -1;
1204 
1205 	*state = resp->state;
1206 
1207 	return 0;
1208 }
1209 
cros_ec_register(struct udevice * dev)1210 int cros_ec_register(struct udevice *dev)
1211 {
1212 	struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
1213 	char id[MSG_BYTES];
1214 
1215 	cdev->dev = dev;
1216 	gpio_request_by_name(dev, "ec-interrupt", 0, &cdev->ec_int,
1217 			     GPIOD_IS_IN);
1218 	cdev->optimise_flash_write = dev_read_bool(dev, "optimise-flash-write");
1219 
1220 	if (cros_ec_check_version(dev)) {
1221 		debug("%s: Could not detect CROS-EC version\n", __func__);
1222 		return -CROS_EC_ERR_CHECK_VERSION;
1223 	}
1224 
1225 	if (cros_ec_read_id(dev, id, sizeof(id))) {
1226 		debug("%s: Could not read KBC ID\n", __func__);
1227 		return -CROS_EC_ERR_READ_ID;
1228 	}
1229 
1230 	/* Remember this device for use by the cros_ec command */
1231 	debug("Google Chrome EC v%d CROS-EC driver ready, id '%s'\n",
1232 	      cdev->protocol_version, id);
1233 
1234 	return 0;
1235 }
1236 
cros_ec_decode_ec_flash(struct udevice * dev,struct fdt_cros_ec * config)1237 int cros_ec_decode_ec_flash(struct udevice *dev, struct fdt_cros_ec *config)
1238 {
1239 	ofnode flash_node, node;
1240 
1241 	flash_node = dev_read_subnode(dev, "flash");
1242 	if (!ofnode_valid(flash_node)) {
1243 		debug("Failed to find flash node\n");
1244 		return -1;
1245 	}
1246 
1247 	if (ofnode_read_fmap_entry(flash_node,  &config->flash)) {
1248 		debug("Failed to decode flash node in chrome-ec\n");
1249 		return -1;
1250 	}
1251 
1252 	config->flash_erase_value = ofnode_read_s32_default(flash_node,
1253 							    "erase-value", -1);
1254 	ofnode_for_each_subnode(node, flash_node) {
1255 		const char *name = ofnode_get_name(node);
1256 		enum ec_flash_region region;
1257 
1258 		if (0 == strcmp(name, "ro")) {
1259 			region = EC_FLASH_REGION_RO;
1260 		} else if (0 == strcmp(name, "rw")) {
1261 			region = EC_FLASH_REGION_ACTIVE;
1262 		} else if (0 == strcmp(name, "wp-ro")) {
1263 			region = EC_FLASH_REGION_WP_RO;
1264 		} else {
1265 			debug("Unknown EC flash region name '%s'\n", name);
1266 			return -1;
1267 		}
1268 
1269 		if (ofnode_read_fmap_entry(node, &config->region[region])) {
1270 			debug("Failed to decode flash region in chrome-ec'\n");
1271 			return -1;
1272 		}
1273 	}
1274 
1275 	return 0;
1276 }
1277 
cros_ec_i2c_tunnel(struct udevice * dev,int port,struct i2c_msg * in,int nmsgs)1278 int cros_ec_i2c_tunnel(struct udevice *dev, int port, struct i2c_msg *in,
1279 		       int nmsgs)
1280 {
1281 	union {
1282 		struct ec_params_i2c_passthru p;
1283 		uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE];
1284 	} params;
1285 	union {
1286 		struct ec_response_i2c_passthru r;
1287 		uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE];
1288 	} response;
1289 	struct ec_params_i2c_passthru *p = &params.p;
1290 	struct ec_response_i2c_passthru *r = &response.r;
1291 	struct ec_params_i2c_passthru_msg *msg;
1292 	uint8_t *pdata, *read_ptr = NULL;
1293 	int read_len;
1294 	int size;
1295 	int rv;
1296 	int i;
1297 
1298 	p->port = port;
1299 
1300 	p->num_msgs = nmsgs;
1301 	size = sizeof(*p) + p->num_msgs * sizeof(*msg);
1302 
1303 	/* Create a message to write the register address and optional data */
1304 	pdata = (uint8_t *)p + size;
1305 
1306 	read_len = 0;
1307 	for (i = 0, msg = p->msg; i < nmsgs; i++, msg++, in++) {
1308 		bool is_read = in->flags & I2C_M_RD;
1309 
1310 		msg->addr_flags = in->addr;
1311 		msg->len = in->len;
1312 		if (is_read) {
1313 			msg->addr_flags |= EC_I2C_FLAG_READ;
1314 			read_len += in->len;
1315 			read_ptr = in->buf;
1316 			if (sizeof(*r) + read_len > sizeof(response)) {
1317 				puts("Read length too big for buffer\n");
1318 				return -1;
1319 			}
1320 		} else {
1321 			if (pdata - (uint8_t *)p + in->len > sizeof(params)) {
1322 				puts("Params too large for buffer\n");
1323 				return -1;
1324 			}
1325 			memcpy(pdata, in->buf, in->len);
1326 			pdata += in->len;
1327 		}
1328 	}
1329 
1330 	rv = ec_command(dev, EC_CMD_I2C_PASSTHRU, 0, p, pdata - (uint8_t *)p,
1331 			r, sizeof(*r) + read_len);
1332 	if (rv < 0)
1333 		return rv;
1334 
1335 	/* Parse response */
1336 	if (r->i2c_status & EC_I2C_STATUS_ERROR) {
1337 		printf("Transfer failed with status=0x%x\n", r->i2c_status);
1338 		return -1;
1339 	}
1340 
1341 	if (rv < sizeof(*r) + read_len) {
1342 		puts("Truncated read response\n");
1343 		return -1;
1344 	}
1345 
1346 	/* We only support a single read message for each transfer */
1347 	if (read_len)
1348 		memcpy(read_ptr, r->data, read_len);
1349 
1350 	return 0;
1351 }
1352 
cros_ec_get_features(struct udevice * dev,u64 * featuresp)1353 int cros_ec_get_features(struct udevice *dev, u64 *featuresp)
1354 {
1355 	struct ec_response_get_features r;
1356 	int rv;
1357 
1358 	rv = ec_command(dev, EC_CMD_GET_FEATURES, 0, NULL, 0, &r, sizeof(r));
1359 	if (rv != sizeof(r))
1360 		return -EIO;
1361 	*featuresp = r.flags[0] | (u64)r.flags[1] << 32;
1362 
1363 	return 0;
1364 }
1365 
cros_ec_check_feature(struct udevice * dev,uint feature)1366 int cros_ec_check_feature(struct udevice *dev, uint feature)
1367 {
1368 	struct ec_response_get_features r;
1369 	int rv;
1370 
1371 	rv = ec_command(dev, EC_CMD_GET_FEATURES, 0, NULL, 0, &r, sizeof(r));
1372 	if (rv != sizeof(r))
1373 		return -EIO;
1374 
1375 	if (feature >= 8 * sizeof(r.flags))
1376 		return -EINVAL;
1377 
1378 	return r.flags[feature / 32] & EC_FEATURE_MASK_0(feature) ? true :
1379 		 false;
1380 }
1381 
1382 /*
1383  * Query the EC for specified mask indicating enabled events.
1384  * The EC maintains separate event masks for SMI, SCI and WAKE.
1385  */
cros_ec_uhepi_cmd(struct udevice * dev,uint mask,uint action,uint64_t * value)1386 static int cros_ec_uhepi_cmd(struct udevice *dev, uint mask, uint action,
1387 			     uint64_t *value)
1388 {
1389 	int ret;
1390 	struct ec_params_host_event req;
1391 	struct ec_response_host_event rsp;
1392 
1393 	req.action = action;
1394 	req.mask_type = mask;
1395 	if (action != EC_HOST_EVENT_GET)
1396 		req.value = *value;
1397 	else
1398 		*value = 0;
1399 	ret = ec_command(dev, EC_CMD_HOST_EVENT, 0, &req, sizeof(req), &rsp,
1400 			 sizeof(rsp));
1401 
1402 	if (action != EC_HOST_EVENT_GET)
1403 		return ret;
1404 	if (ret == 0)
1405 		*value = rsp.value;
1406 
1407 	return ret;
1408 }
1409 
cros_ec_handle_non_uhepi_cmd(struct udevice * dev,uint hcmd,uint action,uint64_t * value)1410 static int cros_ec_handle_non_uhepi_cmd(struct udevice *dev, uint hcmd,
1411 					uint action, uint64_t *value)
1412 {
1413 	int ret = -1;
1414 	struct ec_params_host_event_mask req;
1415 	struct ec_response_host_event_mask rsp;
1416 
1417 	if (hcmd == INVALID_HCMD)
1418 		return ret;
1419 
1420 	if (action != EC_HOST_EVENT_GET)
1421 		req.mask = (uint32_t)*value;
1422 	else
1423 		*value = 0;
1424 
1425 	ret = ec_command(dev, hcmd, 0, &req, sizeof(req), &rsp, sizeof(rsp));
1426 	if (action != EC_HOST_EVENT_GET)
1427 		return ret;
1428 	if (ret == 0)
1429 		*value = rsp.mask;
1430 
1431 	return ret;
1432 }
1433 
cros_ec_is_uhepi_supported(struct udevice * dev)1434 bool cros_ec_is_uhepi_supported(struct udevice *dev)
1435 {
1436 #define UHEPI_SUPPORTED 1
1437 #define UHEPI_NOT_SUPPORTED 2
1438 	static int uhepi_support;
1439 
1440 	if (!uhepi_support) {
1441 		uhepi_support = cros_ec_check_feature(dev,
1442 			EC_FEATURE_UNIFIED_WAKE_MASKS) > 0 ? UHEPI_SUPPORTED :
1443 			UHEPI_NOT_SUPPORTED;
1444 		log_debug("Chrome EC: UHEPI %s\n",
1445 			  uhepi_support == UHEPI_SUPPORTED ? "supported" :
1446 			  "not supported");
1447 	}
1448 	return uhepi_support == UHEPI_SUPPORTED;
1449 }
1450 
cros_ec_get_mask(struct udevice * dev,uint type)1451 static int cros_ec_get_mask(struct udevice *dev, uint type)
1452 {
1453 	u64 value = 0;
1454 
1455 	if (cros_ec_is_uhepi_supported(dev)) {
1456 		cros_ec_uhepi_cmd(dev, type, EC_HOST_EVENT_GET, &value);
1457 	} else {
1458 		assert(type < ARRAY_SIZE(event_map));
1459 		cros_ec_handle_non_uhepi_cmd(dev, event_map[type].get_cmd,
1460 					     EC_HOST_EVENT_GET, &value);
1461 	}
1462 	return value;
1463 }
1464 
cros_ec_clear_mask(struct udevice * dev,uint type,u64 mask)1465 static int cros_ec_clear_mask(struct udevice *dev, uint type, u64 mask)
1466 {
1467 	if (cros_ec_is_uhepi_supported(dev))
1468 		return cros_ec_uhepi_cmd(dev, type, EC_HOST_EVENT_CLEAR, &mask);
1469 
1470 	assert(type < ARRAY_SIZE(event_map));
1471 
1472 	return cros_ec_handle_non_uhepi_cmd(dev, event_map[type].clear_cmd,
1473 					    EC_HOST_EVENT_CLEAR, &mask);
1474 }
1475 
cros_ec_get_events_b(struct udevice * dev)1476 uint64_t cros_ec_get_events_b(struct udevice *dev)
1477 {
1478 	return cros_ec_get_mask(dev, EC_HOST_EVENT_B);
1479 }
1480 
cros_ec_clear_events_b(struct udevice * dev,uint64_t mask)1481 int cros_ec_clear_events_b(struct udevice *dev, uint64_t mask)
1482 {
1483 	log_debug("Chrome EC: clear events_b mask to 0x%016llx\n", mask);
1484 
1485 	return cros_ec_clear_mask(dev, EC_HOST_EVENT_B, mask);
1486 }
1487 
cros_ec_read_limit_power(struct udevice * dev,int * limit_powerp)1488 int cros_ec_read_limit_power(struct udevice *dev, int *limit_powerp)
1489 {
1490 	struct ec_params_charge_state p;
1491 	struct ec_response_charge_state r;
1492 	int ret;
1493 
1494 	p.cmd = CHARGE_STATE_CMD_GET_PARAM;
1495 	p.get_param.param = CS_PARAM_LIMIT_POWER;
1496 	ret = ec_command(dev, EC_CMD_CHARGE_STATE, 0, &p, sizeof(p),
1497 			 &r, sizeof(r));
1498 
1499 	/*
1500 	 * If our EC doesn't support the LIMIT_POWER parameter, assume that
1501 	 * LIMIT_POWER is not requested.
1502 	 */
1503 	if (ret == -EC_RES_INVALID_PARAM || ret == -EC_RES_INVALID_COMMAND) {
1504 		log_warning("PARAM_LIMIT_POWER not supported by EC\n");
1505 		return -ENOSYS;
1506 	}
1507 
1508 	if (ret != sizeof(r.get_param))
1509 		return -EINVAL;
1510 
1511 	*limit_powerp = r.get_param.value;
1512 	return 0;
1513 }
1514 
cros_ec_config_powerbtn(struct udevice * dev,uint32_t flags)1515 int cros_ec_config_powerbtn(struct udevice *dev, uint32_t flags)
1516 {
1517 	struct ec_params_config_power_button params;
1518 	int ret;
1519 
1520 	params.flags = flags;
1521 	ret = ec_command(dev, EC_CMD_CONFIG_POWER_BUTTON, 0,
1522 			 &params, sizeof(params), NULL, 0);
1523 	if (ret < 0)
1524 		return ret;
1525 
1526 	return 0;
1527 }
1528 
cros_ec_get_lid_shutdown_mask(struct udevice * dev)1529 int cros_ec_get_lid_shutdown_mask(struct udevice *dev)
1530 {
1531 	u32 mask;
1532 	int ret;
1533 
1534 	ret = cros_ec_get_event_mask(dev, EC_CMD_HOST_EVENT_GET_SMI_MASK,
1535 				     &mask);
1536 	if (ret < 0)
1537 		return ret;
1538 
1539 	return !!(mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED));
1540 }
1541 
cros_ec_set_lid_shutdown_mask(struct udevice * dev,int enable)1542 int cros_ec_set_lid_shutdown_mask(struct udevice *dev, int enable)
1543 {
1544 	u32 mask;
1545 	int ret;
1546 
1547 	ret = cros_ec_get_event_mask(dev, EC_CMD_HOST_EVENT_GET_SMI_MASK,
1548 				     &mask);
1549 	if (ret < 0)
1550 		return ret;
1551 
1552 	/* Set lid close event state in the EC SMI event mask */
1553 	if (enable)
1554 		mask |= EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED);
1555 	else
1556 		mask &= ~EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED);
1557 
1558 	ret = cros_ec_set_event_mask(dev, EC_CMD_HOST_EVENT_SET_SMI_MASK, mask);
1559 	if (ret < 0)
1560 		return ret;
1561 
1562 	printf("EC: %sabled lid close event\n", enable ? "en" : "dis");
1563 	return 0;
1564 }
1565 
cros_ec_vstore_supported(struct udevice * dev)1566 int cros_ec_vstore_supported(struct udevice *dev)
1567 {
1568 	return cros_ec_check_feature(dev, EC_FEATURE_VSTORE);
1569 }
1570 
cros_ec_vstore_info(struct udevice * dev,u32 * lockedp)1571 int cros_ec_vstore_info(struct udevice *dev, u32 *lockedp)
1572 {
1573 	struct ec_response_vstore_info *resp;
1574 
1575 	if (ec_command_inptr(dev, EC_CMD_VSTORE_INFO, 0, NULL, 0,
1576 			     (uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp))
1577 		return -EIO;
1578 
1579 	if (lockedp)
1580 		*lockedp = resp->slot_locked;
1581 
1582 	return resp->slot_count;
1583 }
1584 
1585 /*
1586  * cros_ec_vstore_read - Read data from EC vstore slot
1587  *
1588  * @slot: vstore slot to read from
1589  * @data: buffer to store read data, must be EC_VSTORE_SLOT_SIZE bytes
1590  */
cros_ec_vstore_read(struct udevice * dev,int slot,uint8_t * data)1591 int cros_ec_vstore_read(struct udevice *dev, int slot, uint8_t *data)
1592 {
1593 	struct ec_params_vstore_read req;
1594 	struct ec_response_vstore_read *resp;
1595 
1596 	req.slot = slot;
1597 	if (ec_command_inptr(dev, EC_CMD_VSTORE_READ, 0, &req, sizeof(req),
1598 			     (uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp))
1599 		return -EIO;
1600 
1601 	if (!data || req.slot >= EC_VSTORE_SLOT_MAX)
1602 		return -EINVAL;
1603 
1604 	memcpy(data, resp->data, sizeof(resp->data));
1605 
1606 	return 0;
1607 }
1608 
1609 /*
1610  * cros_ec_vstore_write - Save data into EC vstore slot
1611  *
1612  * @slot: vstore slot to write into
1613  * @data: data to write
1614  * @size: size of data in bytes
1615  *
1616  * Maximum size of data is EC_VSTORE_SLOT_SIZE.  It is the callers
1617  * responsibility to check the number of implemented slots by
1618  * querying the vstore info.
1619  */
cros_ec_vstore_write(struct udevice * dev,int slot,const uint8_t * data,size_t size)1620 int cros_ec_vstore_write(struct udevice *dev, int slot, const uint8_t *data,
1621 			 size_t size)
1622 {
1623 	struct ec_params_vstore_write req;
1624 
1625 	if (slot >= EC_VSTORE_SLOT_MAX || size > EC_VSTORE_SLOT_SIZE)
1626 		return -EINVAL;
1627 
1628 	req.slot = slot;
1629 	memcpy(req.data, data, size);
1630 
1631 	if (ec_command(dev, EC_CMD_VSTORE_WRITE, 0, &req, sizeof(req), NULL, 0))
1632 		return -EIO;
1633 
1634 	return 0;
1635 }
1636 
cros_ec_get_switches(struct udevice * dev)1637 int cros_ec_get_switches(struct udevice *dev)
1638 {
1639 	struct dm_cros_ec_ops *ops;
1640 	int ret;
1641 
1642 	ops = dm_cros_ec_get_ops(dev);
1643 	if (!ops->get_switches)
1644 		return -ENOSYS;
1645 
1646 	ret = ops->get_switches(dev);
1647 	if (ret < 0)
1648 		return log_msg_ret("get", ret);
1649 
1650 	return ret;
1651 }
1652 
cros_ec_read_batt_charge(struct udevice * dev,uint * chargep)1653 int cros_ec_read_batt_charge(struct udevice *dev, uint *chargep)
1654 {
1655 	struct ec_params_charge_state req;
1656 	struct ec_response_charge_state resp;
1657 	int ret;
1658 
1659 	req.cmd = CHARGE_STATE_CMD_GET_STATE;
1660 	ret = ec_command(dev, EC_CMD_CHARGE_STATE, 0, &req, sizeof(req),
1661 			 &resp, sizeof(resp));
1662 	if (ret)
1663 		return log_msg_ret("read", ret);
1664 
1665 	*chargep = resp.get_state.batt_state_of_charge;
1666 
1667 	return 0;
1668 }
1669 
1670 UCLASS_DRIVER(cros_ec) = {
1671 	.id		= UCLASS_CROS_EC,
1672 	.name		= "cros-ec",
1673 	.per_device_auto	= sizeof(struct cros_ec_dev),
1674 #if CONFIG_IS_ENABLED(OF_REAL)
1675 	.post_bind	= dm_scan_fdt_dev,
1676 #endif
1677 	.flags		= DM_UC_FLAG_ALLOC_PRIV_DMA,
1678 };
1679