1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Ingenic JZ MMC driver
4  *
5  * Copyright (c) 2013 Imagination Technologies
6  * Author: Paul Burton <paul.burton@imgtec.com>
7  */
8 
9 #include <common.h>
10 #include <malloc.h>
11 #include <mmc.h>
12 #include <asm/global_data.h>
13 #include <asm/io.h>
14 #include <asm/unaligned.h>
15 #include <errno.h>
16 #include <dm/device_compat.h>
17 #include <linux/bitops.h>
18 #include <linux/delay.h>
19 #include <mach/jz4780.h>
20 #include <wait_bit.h>
21 
22 /* Registers */
23 #define MSC_STRPCL			0x000
24 #define MSC_STAT			0x004
25 #define MSC_CLKRT			0x008
26 #define MSC_CMDAT			0x00c
27 #define MSC_RESTO			0x010
28 #define MSC_RDTO			0x014
29 #define MSC_BLKLEN			0x018
30 #define MSC_NOB				0x01c
31 #define MSC_SNOB			0x020
32 #define MSC_IMASK			0x024
33 #define MSC_IREG			0x028
34 #define MSC_CMD				0x02c
35 #define MSC_ARG				0x030
36 #define MSC_RES				0x034
37 #define MSC_RXFIFO			0x038
38 #define MSC_TXFIFO			0x03c
39 #define MSC_LPM				0x040
40 #define MSC_DMAC			0x044
41 #define MSC_DMANDA			0x048
42 #define MSC_DMADA			0x04c
43 #define MSC_DMALEN			0x050
44 #define MSC_DMACMD			0x054
45 #define MSC_CTRL2			0x058
46 #define MSC_RTCNT			0x05c
47 #define MSC_DBG				0x0fc
48 
49 /* MSC Clock and Control Register (MSC_STRPCL) */
50 #define MSC_STRPCL_EXIT_MULTIPLE	BIT(7)
51 #define MSC_STRPCL_EXIT_TRANSFER	BIT(6)
52 #define MSC_STRPCL_START_READWAIT	BIT(5)
53 #define MSC_STRPCL_STOP_READWAIT	BIT(4)
54 #define MSC_STRPCL_RESET		BIT(3)
55 #define MSC_STRPCL_START_OP		BIT(2)
56 #define MSC_STRPCL_CLOCK_CONTROL_STOP	BIT(0)
57 #define MSC_STRPCL_CLOCK_CONTROL_START	BIT(1)
58 
59 /* MSC Status Register (MSC_STAT) */
60 #define MSC_STAT_AUTO_CMD_DONE		BIT(31)
61 #define MSC_STAT_IS_RESETTING		BIT(15)
62 #define MSC_STAT_SDIO_INT_ACTIVE	BIT(14)
63 #define MSC_STAT_PRG_DONE		BIT(13)
64 #define MSC_STAT_DATA_TRAN_DONE		BIT(12)
65 #define MSC_STAT_END_CMD_RES		BIT(11)
66 #define MSC_STAT_DATA_FIFO_AFULL	BIT(10)
67 #define MSC_STAT_IS_READWAIT		BIT(9)
68 #define MSC_STAT_CLK_EN			BIT(8)
69 #define MSC_STAT_DATA_FIFO_FULL		BIT(7)
70 #define MSC_STAT_DATA_FIFO_EMPTY	BIT(6)
71 #define MSC_STAT_CRC_RES_ERR		BIT(5)
72 #define MSC_STAT_CRC_READ_ERROR		BIT(4)
73 #define MSC_STAT_CRC_WRITE_ERROR	BIT(2)
74 #define MSC_STAT_CRC_WRITE_ERROR_NOSTS	BIT(4)
75 #define MSC_STAT_TIME_OUT_RES		BIT(1)
76 #define MSC_STAT_TIME_OUT_READ		BIT(0)
77 
78 /* MSC Bus Clock Control Register (MSC_CLKRT) */
79 #define MSC_CLKRT_CLK_RATE_MASK		0x7
80 
81 /* MSC Command Sequence Control Register (MSC_CMDAT) */
82 #define MSC_CMDAT_IO_ABORT		BIT(11)
83 #define MSC_CMDAT_BUS_WIDTH_1BIT	(0x0 << 9)
84 #define MSC_CMDAT_BUS_WIDTH_4BIT	(0x2 << 9)
85 #define MSC_CMDAT_DMA_EN		BIT(8)
86 #define MSC_CMDAT_INIT			BIT(7)
87 #define MSC_CMDAT_BUSY			BIT(6)
88 #define MSC_CMDAT_STREAM_BLOCK		BIT(5)
89 #define MSC_CMDAT_WRITE			BIT(4)
90 #define MSC_CMDAT_DATA_EN		BIT(3)
91 #define MSC_CMDAT_RESPONSE_MASK		(0x7 << 0)
92 #define MSC_CMDAT_RESPONSE_NONE		(0x0 << 0) /* No response */
93 #define MSC_CMDAT_RESPONSE_R1		(0x1 << 0) /* Format R1 and R1b */
94 #define MSC_CMDAT_RESPONSE_R2		(0x2 << 0) /* Format R2 */
95 #define MSC_CMDAT_RESPONSE_R3		(0x3 << 0) /* Format R3 */
96 #define MSC_CMDAT_RESPONSE_R4		(0x4 << 0) /* Format R4 */
97 #define MSC_CMDAT_RESPONSE_R5		(0x5 << 0) /* Format R5 */
98 #define MSC_CMDAT_RESPONSE_R6		(0x6 << 0) /* Format R6 */
99 
100 /* MSC Interrupts Mask Register (MSC_IMASK) */
101 #define MSC_IMASK_TIME_OUT_RES		BIT(9)
102 #define MSC_IMASK_TIME_OUT_READ		BIT(8)
103 #define MSC_IMASK_SDIO			BIT(7)
104 #define MSC_IMASK_TXFIFO_WR_REQ		BIT(6)
105 #define MSC_IMASK_RXFIFO_RD_REQ		BIT(5)
106 #define MSC_IMASK_END_CMD_RES		BIT(2)
107 #define MSC_IMASK_PRG_DONE		BIT(1)
108 #define MSC_IMASK_DATA_TRAN_DONE	BIT(0)
109 
110 /* MSC Interrupts Status Register (MSC_IREG) */
111 #define MSC_IREG_TIME_OUT_RES		BIT(9)
112 #define MSC_IREG_TIME_OUT_READ		BIT(8)
113 #define MSC_IREG_SDIO			BIT(7)
114 #define MSC_IREG_TXFIFO_WR_REQ		BIT(6)
115 #define MSC_IREG_RXFIFO_RD_REQ		BIT(5)
116 #define MSC_IREG_END_CMD_RES		BIT(2)
117 #define MSC_IREG_PRG_DONE		BIT(1)
118 #define MSC_IREG_DATA_TRAN_DONE		BIT(0)
119 
120 struct jz_mmc_plat {
121 	struct mmc_config cfg;
122 	struct mmc mmc;
123 };
124 
125 struct jz_mmc_priv {
126 	void __iomem		*regs;
127 	u32			flags;
128 /* priv flags */
129 #define JZ_MMC_BUS_WIDTH_MASK	0x3
130 #define JZ_MMC_BUS_WIDTH_1	0x0
131 #define JZ_MMC_BUS_WIDTH_4	0x2
132 #define JZ_MMC_BUS_WIDTH_8	0x3
133 #define JZ_MMC_SENT_INIT	BIT(2)
134 };
135 
jz_mmc_clock_rate(void)136 static int jz_mmc_clock_rate(void)
137 {
138 	return 24000000;
139 }
140 
141 #if CONFIG_IS_ENABLED(MMC_WRITE)
jz_mmc_write_data(struct jz_mmc_priv * priv,struct mmc_data * data)142 static inline void jz_mmc_write_data(struct jz_mmc_priv *priv, struct mmc_data *data)
143 {
144 	int sz = DIV_ROUND_UP(data->blocks * data->blocksize, 4);
145 	const void *buf = data->src;
146 
147 	while (sz--) {
148 		u32 val = get_unaligned_le32(buf);
149 
150 		wait_for_bit_le32(priv->regs + MSC_IREG,
151 				  MSC_IREG_TXFIFO_WR_REQ,
152 				  true, 10000, false);
153 		writel(val, priv->regs + MSC_TXFIFO);
154 		buf += 4;
155 	}
156 }
157 #else
jz_mmc_write_data(struct jz_mmc_priv * priv,struct mmc_data * data)158 static void jz_mmc_write_data(struct jz_mmc_priv *priv, struct mmc_data *data)
159 {}
160 #endif
161 
jz_mmc_read_data(struct jz_mmc_priv * priv,struct mmc_data * data)162 static inline int jz_mmc_read_data(struct jz_mmc_priv *priv, struct mmc_data *data)
163 {
164 	int sz = data->blocks * data->blocksize;
165 	void *buf = data->dest;
166 	u32 stat, val;
167 
168 	do {
169 		stat = readl(priv->regs + MSC_STAT);
170 
171 		if (stat & MSC_STAT_TIME_OUT_READ)
172 			return -ETIMEDOUT;
173 		if (stat & MSC_STAT_CRC_READ_ERROR)
174 			return -EINVAL;
175 		if (stat & MSC_STAT_DATA_FIFO_EMPTY) {
176 			udelay(10);
177 			continue;
178 		}
179 		do {
180 			val = readl(priv->regs + MSC_RXFIFO);
181 			if (sz == 1)
182 				*(u8 *)buf = (u8)val;
183 			else if (sz == 2)
184 				put_unaligned_le16(val, buf);
185 			else if (sz >= 4)
186 				put_unaligned_le32(val, buf);
187 			buf += 4;
188 			sz -= 4;
189 			stat = readl(priv->regs + MSC_STAT);
190 		} while (!(stat & MSC_STAT_DATA_FIFO_EMPTY));
191 	} while (!(stat & MSC_STAT_DATA_TRAN_DONE));
192 	return 0;
193 }
194 
jz_mmc_send_cmd(struct mmc * mmc,struct jz_mmc_priv * priv,struct mmc_cmd * cmd,struct mmc_data * data)195 static int jz_mmc_send_cmd(struct mmc *mmc, struct jz_mmc_priv *priv,
196 			   struct mmc_cmd *cmd, struct mmc_data *data)
197 {
198 	u32 stat, mask, cmdat = 0;
199 	int i, ret;
200 
201 	/* stop the clock */
202 	writel(MSC_STRPCL_CLOCK_CONTROL_STOP, priv->regs + MSC_STRPCL);
203 	ret = wait_for_bit_le32(priv->regs + MSC_STAT,
204 				MSC_STAT_CLK_EN, false, 10000, false);
205 	if (ret)
206 		return ret;
207 
208 	writel(0, priv->regs + MSC_DMAC);
209 
210 	/* setup command */
211 	writel(cmd->cmdidx, priv->regs + MSC_CMD);
212 	writel(cmd->cmdarg, priv->regs + MSC_ARG);
213 
214 	if (data) {
215 		/* setup data */
216 		cmdat |= MSC_CMDAT_DATA_EN;
217 		if (data->flags & MMC_DATA_WRITE)
218 			cmdat |= MSC_CMDAT_WRITE;
219 
220 		writel(data->blocks, priv->regs + MSC_NOB);
221 		writel(data->blocksize, priv->regs + MSC_BLKLEN);
222 	} else {
223 		writel(0, priv->regs + MSC_NOB);
224 		writel(0, priv->regs + MSC_BLKLEN);
225 	}
226 
227 	/* setup response */
228 	switch (cmd->resp_type) {
229 	case MMC_RSP_NONE:
230 		break;
231 	case MMC_RSP_R1:
232 	case MMC_RSP_R1b:
233 		cmdat |= MSC_CMDAT_RESPONSE_R1;
234 		break;
235 	case MMC_RSP_R2:
236 		cmdat |= MSC_CMDAT_RESPONSE_R2;
237 		break;
238 	case MMC_RSP_R3:
239 		cmdat |= MSC_CMDAT_RESPONSE_R3;
240 		break;
241 	default:
242 		break;
243 	}
244 
245 	if (cmd->resp_type & MMC_RSP_BUSY)
246 		cmdat |= MSC_CMDAT_BUSY;
247 
248 	/* set init for the first command only */
249 	if (!(priv->flags & JZ_MMC_SENT_INIT)) {
250 		cmdat |= MSC_CMDAT_INIT;
251 		priv->flags |= JZ_MMC_SENT_INIT;
252 	}
253 
254 	cmdat |= (priv->flags & JZ_MMC_BUS_WIDTH_MASK) << 9;
255 
256 	/* write the data setup */
257 	writel(cmdat, priv->regs + MSC_CMDAT);
258 
259 	/* unmask interrupts */
260 	mask = 0xffffffff & ~(MSC_IMASK_END_CMD_RES | MSC_IMASK_TIME_OUT_RES);
261 	if (data) {
262 		mask &= ~MSC_IMASK_DATA_TRAN_DONE;
263 		if (data->flags & MMC_DATA_WRITE) {
264 			mask &= ~MSC_IMASK_TXFIFO_WR_REQ;
265 		} else {
266 			mask &= ~(MSC_IMASK_RXFIFO_RD_REQ |
267 				  MSC_IMASK_TIME_OUT_READ);
268 		}
269 	}
270 	writel(mask, priv->regs + MSC_IMASK);
271 
272 	/* clear interrupts */
273 	writel(0xffffffff, priv->regs + MSC_IREG);
274 
275 	/* start the command (& the clock) */
276 	writel(MSC_STRPCL_START_OP | MSC_STRPCL_CLOCK_CONTROL_START,
277 	       priv->regs + MSC_STRPCL);
278 
279 	/* wait for completion */
280 	for (i = 0; i < 100; i++) {
281 		stat = readl(priv->regs + MSC_IREG);
282 		stat &= MSC_IREG_END_CMD_RES | MSC_IREG_TIME_OUT_RES;
283 		if (stat)
284 			break;
285 		mdelay(1);
286 	}
287 	writel(stat, priv->regs + MSC_IREG);
288 	if (stat & MSC_IREG_TIME_OUT_RES)
289 		return -ETIMEDOUT;
290 
291 	if (cmd->resp_type & MMC_RSP_PRESENT) {
292 		/* read the response */
293 		if (cmd->resp_type & MMC_RSP_136) {
294 			u16 a, b, c, i;
295 
296 			a = readw(priv->regs + MSC_RES);
297 			for (i = 0; i < 4; i++) {
298 				b = readw(priv->regs + MSC_RES);
299 				c = readw(priv->regs + MSC_RES);
300 				cmd->response[i] =
301 					(a << 24) | (b << 8) | (c >> 8);
302 				a = c;
303 			}
304 		} else {
305 			cmd->response[0] = readw(priv->regs + MSC_RES) << 24;
306 			cmd->response[0] |= readw(priv->regs + MSC_RES) << 8;
307 			cmd->response[0] |= readw(priv->regs + MSC_RES) & 0xff;
308 		}
309 	}
310 	if (data) {
311 		if (data->flags & MMC_DATA_WRITE)
312 			jz_mmc_write_data(priv, data);
313 		else if (data->flags & MMC_DATA_READ) {
314 			ret = jz_mmc_read_data(priv, data);
315 			if (ret)
316 				return ret;
317 		}
318 	}
319 
320 	return 0;
321 }
322 
jz_mmc_set_ios(struct mmc * mmc,struct jz_mmc_priv * priv)323 static int jz_mmc_set_ios(struct mmc *mmc, struct jz_mmc_priv *priv)
324 {
325 	u32 real_rate = jz_mmc_clock_rate();
326 	u8 clk_div = 0;
327 
328 	/* calculate clock divide */
329 	while ((real_rate > mmc->clock) && (clk_div < 7)) {
330 		real_rate >>= 1;
331 		clk_div++;
332 	}
333 	writel(clk_div & MSC_CLKRT_CLK_RATE_MASK, priv->regs + MSC_CLKRT);
334 
335 	/* set the bus width for the next command */
336 	priv->flags &= ~JZ_MMC_BUS_WIDTH_MASK;
337 	if (mmc->bus_width == 8)
338 		priv->flags |= JZ_MMC_BUS_WIDTH_8;
339 	else if (mmc->bus_width == 4)
340 		priv->flags |= JZ_MMC_BUS_WIDTH_4;
341 	else
342 		priv->flags |= JZ_MMC_BUS_WIDTH_1;
343 
344 	return 0;
345 }
346 
jz_mmc_core_init(struct mmc * mmc)347 static int jz_mmc_core_init(struct mmc *mmc)
348 {
349 	struct jz_mmc_priv *priv = mmc->priv;
350 	int ret;
351 
352 	/* Reset */
353 	writel(MSC_STRPCL_RESET, priv->regs + MSC_STRPCL);
354 	ret = wait_for_bit_le32(priv->regs + MSC_STAT,
355 				MSC_STAT_IS_RESETTING, false, 10000, false);
356 	if (ret)
357 		return ret;
358 
359 	/* Maximum timeouts */
360 	writel(0xffff, priv->regs + MSC_RESTO);
361 	writel(0xffffffff, priv->regs + MSC_RDTO);
362 
363 	/* Enable low power mode */
364 	writel(0x1, priv->regs + MSC_LPM);
365 
366 	return 0;
367 }
368 
369 #if !CONFIG_IS_ENABLED(DM_MMC)
370 
jz_mmc_legacy_send_cmd(struct mmc * mmc,struct mmc_cmd * cmd,struct mmc_data * data)371 static int jz_mmc_legacy_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
372 				  struct mmc_data *data)
373 {
374 	struct jz_mmc_priv *priv = mmc->priv;
375 
376 	return jz_mmc_send_cmd(mmc, priv, cmd, data);
377 }
378 
jz_mmc_legacy_set_ios(struct mmc * mmc)379 static int jz_mmc_legacy_set_ios(struct mmc *mmc)
380 {
381 	struct jz_mmc_priv *priv = mmc->priv;
382 
383 	return jz_mmc_set_ios(mmc, priv);
384 };
385 
386 static const struct mmc_ops jz_msc_ops = {
387 	.send_cmd	= jz_mmc_legacy_send_cmd,
388 	.set_ios	= jz_mmc_legacy_set_ios,
389 	.init		= jz_mmc_core_init,
390 };
391 
392 static struct jz_mmc_priv jz_mmc_priv_static;
393 static struct jz_mmc_plat jz_mmc_plat_static = {
394 	.cfg = {
395 		.name = "MSC",
396 		.ops = &jz_msc_ops,
397 
398 		.voltages = MMC_VDD_27_28 | MMC_VDD_28_29 | MMC_VDD_29_30 |
399 			    MMC_VDD_30_31 | MMC_VDD_31_32 | MMC_VDD_32_33 |
400 			    MMC_VDD_33_34 | MMC_VDD_34_35 | MMC_VDD_35_36,
401 		.host_caps = MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS,
402 
403 		.f_min = 375000,
404 		.f_max = 48000000,
405 		.b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT,
406 	},
407 };
408 
jz_mmc_init(void __iomem * base)409 int jz_mmc_init(void __iomem *base)
410 {
411 	struct mmc *mmc;
412 
413 	jz_mmc_priv_static.regs = base;
414 
415 	mmc = mmc_create(&jz_mmc_plat_static.cfg, &jz_mmc_priv_static);
416 
417 	return mmc ? 0 : -ENODEV;
418 }
419 
420 #else /* CONFIG_DM_MMC */
421 
422 #include <dm.h>
423 DECLARE_GLOBAL_DATA_PTR;
424 
jz_mmc_dm_send_cmd(struct udevice * dev,struct mmc_cmd * cmd,struct mmc_data * data)425 static int jz_mmc_dm_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
426 			      struct mmc_data *data)
427 {
428 	struct jz_mmc_priv *priv = dev_get_priv(dev);
429 	struct mmc *mmc = mmc_get_mmc_dev(dev);
430 
431 	return jz_mmc_send_cmd(mmc, priv, cmd, data);
432 }
433 
jz_mmc_dm_set_ios(struct udevice * dev)434 static int jz_mmc_dm_set_ios(struct udevice *dev)
435 {
436 	struct jz_mmc_priv *priv = dev_get_priv(dev);
437 	struct mmc *mmc = mmc_get_mmc_dev(dev);
438 
439 	return jz_mmc_set_ios(mmc, priv);
440 };
441 
442 static const struct dm_mmc_ops jz_msc_ops = {
443 	.send_cmd	= jz_mmc_dm_send_cmd,
444 	.set_ios	= jz_mmc_dm_set_ios,
445 };
446 
jz_mmc_of_to_plat(struct udevice * dev)447 static int jz_mmc_of_to_plat(struct udevice *dev)
448 {
449 	struct jz_mmc_priv *priv = dev_get_priv(dev);
450 	struct jz_mmc_plat *plat = dev_get_plat(dev);
451 	struct mmc_config *cfg;
452 	int ret;
453 
454 	priv->regs = map_physmem(dev_read_addr(dev), 0x100, MAP_NOCACHE);
455 	cfg = &plat->cfg;
456 
457 	cfg->name = "MSC";
458 	cfg->host_caps = MMC_MODE_HS_52MHz | MMC_MODE_HS;
459 
460 	ret = mmc_of_parse(dev, cfg);
461 	if (ret < 0) {
462 		dev_err(dev, "failed to parse host caps\n");
463 		return ret;
464 	}
465 
466 	cfg->f_min = 400000;
467 	cfg->f_max = 52000000;
468 
469 	cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
470 	cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
471 
472 	return 0;
473 }
474 
jz_mmc_bind(struct udevice * dev)475 static int jz_mmc_bind(struct udevice *dev)
476 {
477 	struct jz_mmc_plat *plat = dev_get_plat(dev);
478 
479 	return mmc_bind(dev, &plat->mmc, &plat->cfg);
480 }
481 
jz_mmc_probe(struct udevice * dev)482 static int jz_mmc_probe(struct udevice *dev)
483 {
484 	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
485 	struct jz_mmc_priv *priv = dev_get_priv(dev);
486 	struct jz_mmc_plat *plat = dev_get_plat(dev);
487 
488 	plat->mmc.priv = priv;
489 	upriv->mmc = &plat->mmc;
490 	return jz_mmc_core_init(&plat->mmc);
491 }
492 
493 static const struct udevice_id jz_mmc_ids[] = {
494 	{ .compatible = "ingenic,jz4780-mmc" },
495 	{ }
496 };
497 
498 U_BOOT_DRIVER(jz_mmc_drv) = {
499 	.name			= "jz_mmc",
500 	.id			= UCLASS_MMC,
501 	.of_match		= jz_mmc_ids,
502 	.of_to_plat	= jz_mmc_of_to_plat,
503 	.bind			= jz_mmc_bind,
504 	.probe			= jz_mmc_probe,
505 	.priv_auto	= sizeof(struct jz_mmc_priv),
506 	.plat_auto	= sizeof(struct jz_mmc_plat),
507 	.ops			= &jz_msc_ops,
508 };
509 #endif /* CONFIG_DM_MMC */
510