1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * MTD device concatenation layer
4 *
5 * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
6 * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
7 *
8 * NAND support by Christian Gan <cgan@iders.ca>
9 *
10 */
11
12 #ifndef __UBOOT__
13 #include <log.h>
14 #include <dm/devres.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/types.h>
20 #include <linux/backing-dev.h>
21 #include <asm/div64.h>
22 #else
23 #include <div64.h>
24 #include <linux/bug.h>
25 #include <linux/compat.h>
26 #endif
27
28 #include <linux/mtd/mtd.h>
29 #include <linux/mtd/concat.h>
30
31 #include <ubi_uboot.h>
32
33 /*
34 * Our storage structure:
35 * Subdev points to an array of pointers to struct mtd_info objects
36 * which is allocated along with this structure
37 *
38 */
39 struct mtd_concat {
40 struct mtd_info mtd;
41 int num_subdev;
42 struct mtd_info **subdev;
43 };
44
45 /*
46 * how to calculate the size required for the above structure,
47 * including the pointer array subdev points to:
48 */
49 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \
50 ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
51
52 /*
53 * Given a pointer to the MTD object in the mtd_concat structure,
54 * we can retrieve the pointer to that structure with this macro.
55 */
56 #define CONCAT(x) ((struct mtd_concat *)(x))
57
58 /*
59 * MTD methods which look up the relevant subdevice, translate the
60 * effective address and pass through to the subdevice.
61 */
62
63 static int
concat_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)64 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
65 size_t * retlen, u_char * buf)
66 {
67 struct mtd_concat *concat = CONCAT(mtd);
68 int ret = 0, err;
69 int i;
70
71 #ifdef __UBOOT__
72 *retlen = 0;
73 #endif
74
75 for (i = 0; i < concat->num_subdev; i++) {
76 struct mtd_info *subdev = concat->subdev[i];
77 size_t size, retsize;
78
79 if (from >= subdev->size) {
80 /* Not destined for this subdev */
81 size = 0;
82 from -= subdev->size;
83 continue;
84 }
85 if (from + len > subdev->size)
86 /* First part goes into this subdev */
87 size = subdev->size - from;
88 else
89 /* Entire transaction goes into this subdev */
90 size = len;
91
92 err = mtd_read(subdev, from, size, &retsize, buf);
93
94 /* Save information about bitflips! */
95 if (unlikely(err)) {
96 if (mtd_is_eccerr(err)) {
97 mtd->ecc_stats.failed++;
98 ret = err;
99 } else if (mtd_is_bitflip(err)) {
100 mtd->ecc_stats.corrected++;
101 /* Do not overwrite -EBADMSG !! */
102 if (!ret)
103 ret = err;
104 } else
105 return err;
106 }
107
108 *retlen += retsize;
109 len -= size;
110 if (len == 0)
111 return ret;
112
113 buf += size;
114 from = 0;
115 }
116 return -EINVAL;
117 }
118
119 static int
concat_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)120 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
121 size_t * retlen, const u_char * buf)
122 {
123 struct mtd_concat *concat = CONCAT(mtd);
124 int err = -EINVAL;
125 int i;
126
127 #ifdef __UBOOT__
128 *retlen = 0;
129 #endif
130
131 for (i = 0; i < concat->num_subdev; i++) {
132 struct mtd_info *subdev = concat->subdev[i];
133 size_t size, retsize;
134
135 if (to >= subdev->size) {
136 size = 0;
137 to -= subdev->size;
138 continue;
139 }
140 if (to + len > subdev->size)
141 size = subdev->size - to;
142 else
143 size = len;
144
145 err = mtd_write(subdev, to, size, &retsize, buf);
146 if (err)
147 break;
148
149 *retlen += retsize;
150 len -= size;
151 if (len == 0)
152 break;
153
154 err = -EINVAL;
155 buf += size;
156 to = 0;
157 }
158 return err;
159 }
160
161 #ifndef __UBOOT__
162 static int
concat_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)163 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
164 unsigned long count, loff_t to, size_t * retlen)
165 {
166 struct mtd_concat *concat = CONCAT(mtd);
167 struct kvec *vecs_copy;
168 unsigned long entry_low, entry_high;
169 size_t total_len = 0;
170 int i;
171 int err = -EINVAL;
172
173 /* Calculate total length of data */
174 for (i = 0; i < count; i++)
175 total_len += vecs[i].iov_len;
176
177 /* Check alignment */
178 if (mtd->writesize > 1) {
179 uint64_t __to = to;
180 if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
181 return -EINVAL;
182 }
183
184 /* make a copy of vecs */
185 vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
186 if (!vecs_copy)
187 return -ENOMEM;
188
189 entry_low = 0;
190 for (i = 0; i < concat->num_subdev; i++) {
191 struct mtd_info *subdev = concat->subdev[i];
192 size_t size, wsize, retsize, old_iov_len;
193
194 if (to >= subdev->size) {
195 to -= subdev->size;
196 continue;
197 }
198
199 size = min_t(uint64_t, total_len, subdev->size - to);
200 wsize = size; /* store for future use */
201
202 entry_high = entry_low;
203 while (entry_high < count) {
204 if (size <= vecs_copy[entry_high].iov_len)
205 break;
206 size -= vecs_copy[entry_high++].iov_len;
207 }
208
209 old_iov_len = vecs_copy[entry_high].iov_len;
210 vecs_copy[entry_high].iov_len = size;
211
212 err = mtd_writev(subdev, &vecs_copy[entry_low],
213 entry_high - entry_low + 1, to, &retsize);
214
215 vecs_copy[entry_high].iov_len = old_iov_len - size;
216 vecs_copy[entry_high].iov_base += size;
217
218 entry_low = entry_high;
219
220 if (err)
221 break;
222
223 *retlen += retsize;
224 total_len -= wsize;
225
226 if (total_len == 0)
227 break;
228
229 err = -EINVAL;
230 to = 0;
231 }
232
233 kfree(vecs_copy);
234 return err;
235 }
236 #endif
237
238 static int
concat_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)239 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
240 {
241 struct mtd_concat *concat = CONCAT(mtd);
242 struct mtd_oob_ops devops = *ops;
243 int i, err, ret = 0;
244
245 ops->retlen = ops->oobretlen = 0;
246
247 for (i = 0; i < concat->num_subdev; i++) {
248 struct mtd_info *subdev = concat->subdev[i];
249
250 if (from >= subdev->size) {
251 from -= subdev->size;
252 continue;
253 }
254
255 /* partial read ? */
256 if (from + devops.len > subdev->size)
257 devops.len = subdev->size - from;
258
259 err = mtd_read_oob(subdev, from, &devops);
260 ops->retlen += devops.retlen;
261 ops->oobretlen += devops.oobretlen;
262
263 /* Save information about bitflips! */
264 if (unlikely(err)) {
265 if (mtd_is_eccerr(err)) {
266 mtd->ecc_stats.failed++;
267 ret = err;
268 } else if (mtd_is_bitflip(err)) {
269 mtd->ecc_stats.corrected++;
270 /* Do not overwrite -EBADMSG !! */
271 if (!ret)
272 ret = err;
273 } else
274 return err;
275 }
276
277 if (devops.datbuf) {
278 devops.len = ops->len - ops->retlen;
279 if (!devops.len)
280 return ret;
281 devops.datbuf += devops.retlen;
282 }
283 if (devops.oobbuf) {
284 devops.ooblen = ops->ooblen - ops->oobretlen;
285 if (!devops.ooblen)
286 return ret;
287 devops.oobbuf += ops->oobretlen;
288 }
289
290 from = 0;
291 }
292 return -EINVAL;
293 }
294
295 static int
concat_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)296 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
297 {
298 struct mtd_concat *concat = CONCAT(mtd);
299 struct mtd_oob_ops devops = *ops;
300 int i, err;
301
302 if (!(mtd->flags & MTD_WRITEABLE))
303 return -EROFS;
304
305 ops->retlen = ops->oobretlen = 0;
306
307 for (i = 0; i < concat->num_subdev; i++) {
308 struct mtd_info *subdev = concat->subdev[i];
309
310 if (to >= subdev->size) {
311 to -= subdev->size;
312 continue;
313 }
314
315 /* partial write ? */
316 if (to + devops.len > subdev->size)
317 devops.len = subdev->size - to;
318
319 err = mtd_write_oob(subdev, to, &devops);
320 ops->retlen += devops.oobretlen;
321 if (err)
322 return err;
323
324 if (devops.datbuf) {
325 devops.len = ops->len - ops->retlen;
326 if (!devops.len)
327 return 0;
328 devops.datbuf += devops.retlen;
329 }
330 if (devops.oobbuf) {
331 devops.ooblen = ops->ooblen - ops->oobretlen;
332 if (!devops.ooblen)
333 return 0;
334 devops.oobbuf += devops.oobretlen;
335 }
336 to = 0;
337 }
338 return -EINVAL;
339 }
340
concat_dev_erase(struct mtd_info * mtd,struct erase_info * erase)341 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
342 {
343 int err;
344 wait_queue_head_t waitq;
345 DECLARE_WAITQUEUE(wait, current);
346
347 /*
348 * This code was stol^H^H^H^Hinspired by mtdchar.c
349 */
350 init_waitqueue_head(&waitq);
351
352 erase->mtd = mtd;
353 erase->priv = (unsigned long) &waitq;
354
355 /*
356 * FIXME: Allow INTERRUPTIBLE. Which means
357 * not having the wait_queue head on the stack.
358 */
359 err = mtd_erase(mtd, erase);
360 if (!err) {
361 set_current_state(TASK_UNINTERRUPTIBLE);
362 add_wait_queue(&waitq, &wait);
363 if (erase->state != MTD_ERASE_DONE
364 && erase->state != MTD_ERASE_FAILED)
365 schedule();
366 remove_wait_queue(&waitq, &wait);
367 set_current_state(TASK_RUNNING);
368
369 err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
370 }
371 return err;
372 }
373
concat_erase(struct mtd_info * mtd,struct erase_info * instr)374 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
375 {
376 struct mtd_concat *concat = CONCAT(mtd);
377 struct mtd_info *subdev;
378 int i, err;
379 uint64_t length, offset = 0;
380 struct erase_info *erase;
381
382 /*
383 * Check for proper erase block alignment of the to-be-erased area.
384 * It is easier to do this based on the super device's erase
385 * region info rather than looking at each particular sub-device
386 * in turn.
387 */
388 if (!concat->mtd.numeraseregions) {
389 /* the easy case: device has uniform erase block size */
390 if (instr->addr & (concat->mtd.erasesize - 1))
391 return -EINVAL;
392 if (instr->len & (concat->mtd.erasesize - 1))
393 return -EINVAL;
394 } else {
395 /* device has variable erase size */
396 struct mtd_erase_region_info *erase_regions =
397 concat->mtd.eraseregions;
398
399 /*
400 * Find the erase region where the to-be-erased area begins:
401 */
402 for (i = 0; i < concat->mtd.numeraseregions &&
403 instr->addr >= erase_regions[i].offset; i++) ;
404 --i;
405
406 /*
407 * Now erase_regions[i] is the region in which the
408 * to-be-erased area begins. Verify that the starting
409 * offset is aligned to this region's erase size:
410 */
411 if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
412 return -EINVAL;
413
414 /*
415 * now find the erase region where the to-be-erased area ends:
416 */
417 for (; i < concat->mtd.numeraseregions &&
418 (instr->addr + instr->len) >= erase_regions[i].offset;
419 ++i) ;
420 --i;
421 /*
422 * check if the ending offset is aligned to this region's erase size
423 */
424 if (i < 0 || ((instr->addr + instr->len) &
425 (erase_regions[i].erasesize - 1)))
426 return -EINVAL;
427 }
428
429 /* make a local copy of instr to avoid modifying the caller's struct */
430 erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
431
432 if (!erase)
433 return -ENOMEM;
434
435 *erase = *instr;
436 length = instr->len;
437
438 /*
439 * find the subdevice where the to-be-erased area begins, adjust
440 * starting offset to be relative to the subdevice start
441 */
442 for (i = 0; i < concat->num_subdev; i++) {
443 subdev = concat->subdev[i];
444 if (subdev->size <= erase->addr) {
445 erase->addr -= subdev->size;
446 offset += subdev->size;
447 } else {
448 break;
449 }
450 }
451
452 /* must never happen since size limit has been verified above */
453 BUG_ON(i >= concat->num_subdev);
454
455 /* now do the erase: */
456 err = 0;
457 for (; length > 0; i++) {
458 /* loop for all subdevices affected by this request */
459 subdev = concat->subdev[i]; /* get current subdevice */
460
461 /* limit length to subdevice's size: */
462 if (erase->addr + length > subdev->size)
463 erase->len = subdev->size - erase->addr;
464 else
465 erase->len = length;
466
467 length -= erase->len;
468 if ((err = concat_dev_erase(subdev, erase))) {
469 /* sanity check: should never happen since
470 * block alignment has been checked above */
471 BUG_ON(err == -EINVAL);
472 if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
473 instr->fail_addr = erase->fail_addr + offset;
474 break;
475 }
476 /*
477 * erase->addr specifies the offset of the area to be
478 * erased *within the current subdevice*. It can be
479 * non-zero only the first time through this loop, i.e.
480 * for the first subdevice where blocks need to be erased.
481 * All the following erases must begin at the start of the
482 * current subdevice, i.e. at offset zero.
483 */
484 erase->addr = 0;
485 offset += subdev->size;
486 }
487 instr->state = erase->state;
488 kfree(erase);
489 if (err)
490 return err;
491
492 return 0;
493 }
494
concat_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)495 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
496 {
497 struct mtd_concat *concat = CONCAT(mtd);
498 int i, err = -EINVAL;
499
500 for (i = 0; i < concat->num_subdev; i++) {
501 struct mtd_info *subdev = concat->subdev[i];
502 uint64_t size;
503
504 if (ofs >= subdev->size) {
505 size = 0;
506 ofs -= subdev->size;
507 continue;
508 }
509 if (ofs + len > subdev->size)
510 size = subdev->size - ofs;
511 else
512 size = len;
513
514 err = mtd_lock(subdev, ofs, size);
515 if (err)
516 break;
517
518 len -= size;
519 if (len == 0)
520 break;
521
522 err = -EINVAL;
523 ofs = 0;
524 }
525
526 return err;
527 }
528
concat_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)529 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
530 {
531 struct mtd_concat *concat = CONCAT(mtd);
532 int i, err = 0;
533
534 for (i = 0; i < concat->num_subdev; i++) {
535 struct mtd_info *subdev = concat->subdev[i];
536 uint64_t size;
537
538 if (ofs >= subdev->size) {
539 size = 0;
540 ofs -= subdev->size;
541 continue;
542 }
543 if (ofs + len > subdev->size)
544 size = subdev->size - ofs;
545 else
546 size = len;
547
548 err = mtd_unlock(subdev, ofs, size);
549 if (err)
550 break;
551
552 len -= size;
553 if (len == 0)
554 break;
555
556 err = -EINVAL;
557 ofs = 0;
558 }
559
560 return err;
561 }
562
concat_sync(struct mtd_info * mtd)563 static void concat_sync(struct mtd_info *mtd)
564 {
565 struct mtd_concat *concat = CONCAT(mtd);
566 int i;
567
568 for (i = 0; i < concat->num_subdev; i++) {
569 struct mtd_info *subdev = concat->subdev[i];
570 mtd_sync(subdev);
571 }
572 }
573
574 #ifndef __UBOOT__
concat_suspend(struct mtd_info * mtd)575 static int concat_suspend(struct mtd_info *mtd)
576 {
577 struct mtd_concat *concat = CONCAT(mtd);
578 int i, rc = 0;
579
580 for (i = 0; i < concat->num_subdev; i++) {
581 struct mtd_info *subdev = concat->subdev[i];
582 if ((rc = mtd_suspend(subdev)) < 0)
583 return rc;
584 }
585 return rc;
586 }
587
concat_resume(struct mtd_info * mtd)588 static void concat_resume(struct mtd_info *mtd)
589 {
590 struct mtd_concat *concat = CONCAT(mtd);
591 int i;
592
593 for (i = 0; i < concat->num_subdev; i++) {
594 struct mtd_info *subdev = concat->subdev[i];
595 mtd_resume(subdev);
596 }
597 }
598 #endif
599
concat_block_isbad(struct mtd_info * mtd,loff_t ofs)600 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
601 {
602 struct mtd_concat *concat = CONCAT(mtd);
603 int i, res = 0;
604
605 if (!mtd_can_have_bb(concat->subdev[0]))
606 return res;
607
608 for (i = 0; i < concat->num_subdev; i++) {
609 struct mtd_info *subdev = concat->subdev[i];
610
611 if (ofs >= subdev->size) {
612 ofs -= subdev->size;
613 continue;
614 }
615
616 res = mtd_block_isbad(subdev, ofs);
617 break;
618 }
619
620 return res;
621 }
622
concat_block_markbad(struct mtd_info * mtd,loff_t ofs)623 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
624 {
625 struct mtd_concat *concat = CONCAT(mtd);
626 int i, err = -EINVAL;
627
628 for (i = 0; i < concat->num_subdev; i++) {
629 struct mtd_info *subdev = concat->subdev[i];
630
631 if (ofs >= subdev->size) {
632 ofs -= subdev->size;
633 continue;
634 }
635
636 err = mtd_block_markbad(subdev, ofs);
637 if (!err)
638 mtd->ecc_stats.badblocks++;
639 break;
640 }
641
642 return err;
643 }
644
645 /*
646 * try to support NOMMU mmaps on concatenated devices
647 * - we don't support subdev spanning as we can't guarantee it'll work
648 */
concat_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)649 static unsigned long concat_get_unmapped_area(struct mtd_info *mtd,
650 unsigned long len,
651 unsigned long offset,
652 unsigned long flags)
653 {
654 struct mtd_concat *concat = CONCAT(mtd);
655 int i;
656
657 for (i = 0; i < concat->num_subdev; i++) {
658 struct mtd_info *subdev = concat->subdev[i];
659
660 if (offset >= subdev->size) {
661 offset -= subdev->size;
662 continue;
663 }
664
665 return mtd_get_unmapped_area(subdev, len, offset, flags);
666 }
667
668 return (unsigned long) -ENOSYS;
669 }
670
671 /*
672 * This function constructs a virtual MTD device by concatenating
673 * num_devs MTD devices. A pointer to the new device object is
674 * stored to *new_dev upon success. This function does _not_
675 * register any devices: this is the caller's responsibility.
676 */
mtd_concat_create(struct mtd_info * subdev[],int num_devs,const char * name)677 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to concatenate */
678 int num_devs, /* number of subdevices */
679 #ifndef __UBOOT__
680 const char *name)
681 #else
682 char *name)
683 #endif
684 { /* name for the new device */
685 int i;
686 size_t size;
687 struct mtd_concat *concat;
688 uint32_t max_erasesize, curr_erasesize;
689 int num_erase_region;
690 int max_writebufsize = 0;
691
692 debug("Concatenating MTD devices:\n");
693 for (i = 0; i < num_devs; i++)
694 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
695 debug("into device \"%s\"\n", name);
696
697 /* allocate the device structure */
698 size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
699 concat = kzalloc(size, GFP_KERNEL);
700 if (!concat) {
701 printk
702 ("memory allocation error while creating concatenated device \"%s\"\n",
703 name);
704 return NULL;
705 }
706 concat->subdev = (struct mtd_info **) (concat + 1);
707
708 /*
709 * Set up the new "super" device's MTD object structure, check for
710 * incompatibilities between the subdevices.
711 */
712 concat->mtd.type = subdev[0]->type;
713 concat->mtd.flags = subdev[0]->flags;
714 concat->mtd.size = subdev[0]->size;
715 concat->mtd.erasesize = subdev[0]->erasesize;
716 concat->mtd.writesize = subdev[0]->writesize;
717
718 for (i = 0; i < num_devs; i++)
719 if (max_writebufsize < subdev[i]->writebufsize)
720 max_writebufsize = subdev[i]->writebufsize;
721 concat->mtd.writebufsize = max_writebufsize;
722
723 concat->mtd.subpage_sft = subdev[0]->subpage_sft;
724 concat->mtd.oobsize = subdev[0]->oobsize;
725 concat->mtd.oobavail = subdev[0]->oobavail;
726 #ifndef __UBOOT__
727 if (subdev[0]->_writev)
728 concat->mtd._writev = concat_writev;
729 #endif
730 if (subdev[0]->_read_oob)
731 concat->mtd._read_oob = concat_read_oob;
732 if (subdev[0]->_write_oob)
733 concat->mtd._write_oob = concat_write_oob;
734 if (subdev[0]->_block_isbad)
735 concat->mtd._block_isbad = concat_block_isbad;
736 if (subdev[0]->_block_markbad)
737 concat->mtd._block_markbad = concat_block_markbad;
738
739 concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
740
741 #ifndef __UBOOT__
742 concat->mtd.backing_dev_info = subdev[0]->backing_dev_info;
743 #endif
744
745 concat->subdev[0] = subdev[0];
746
747 for (i = 1; i < num_devs; i++) {
748 if (concat->mtd.type != subdev[i]->type) {
749 kfree(concat);
750 printk("Incompatible device type on \"%s\"\n",
751 subdev[i]->name);
752 return NULL;
753 }
754 if (concat->mtd.flags != subdev[i]->flags) {
755 /*
756 * Expect all flags except MTD_WRITEABLE to be
757 * equal on all subdevices.
758 */
759 if ((concat->mtd.flags ^ subdev[i]->
760 flags) & ~MTD_WRITEABLE) {
761 kfree(concat);
762 printk("Incompatible device flags on \"%s\"\n",
763 subdev[i]->name);
764 return NULL;
765 } else
766 /* if writeable attribute differs,
767 make super device writeable */
768 concat->mtd.flags |=
769 subdev[i]->flags & MTD_WRITEABLE;
770 }
771
772 #ifndef __UBOOT__
773 /* only permit direct mapping if the BDIs are all the same
774 * - copy-mapping is still permitted
775 */
776 if (concat->mtd.backing_dev_info !=
777 subdev[i]->backing_dev_info)
778 concat->mtd.backing_dev_info =
779 &default_backing_dev_info;
780 #endif
781
782 concat->mtd.size += subdev[i]->size;
783 concat->mtd.ecc_stats.badblocks +=
784 subdev[i]->ecc_stats.badblocks;
785 if (concat->mtd.writesize != subdev[i]->writesize ||
786 concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
787 concat->mtd.oobsize != subdev[i]->oobsize ||
788 !concat->mtd._read_oob != !subdev[i]->_read_oob ||
789 !concat->mtd._write_oob != !subdev[i]->_write_oob) {
790 kfree(concat);
791 printk("Incompatible OOB or ECC data on \"%s\"\n",
792 subdev[i]->name);
793 return NULL;
794 }
795 concat->subdev[i] = subdev[i];
796
797 }
798
799 concat->mtd.ecclayout = subdev[0]->ecclayout;
800
801 concat->num_subdev = num_devs;
802 concat->mtd.name = name;
803
804 concat->mtd._erase = concat_erase;
805 concat->mtd._read = concat_read;
806 concat->mtd._write = concat_write;
807 concat->mtd._sync = concat_sync;
808 concat->mtd._lock = concat_lock;
809 concat->mtd._unlock = concat_unlock;
810 #ifndef __UBOOT__
811 concat->mtd._suspend = concat_suspend;
812 concat->mtd._resume = concat_resume;
813 #endif
814 concat->mtd._get_unmapped_area = concat_get_unmapped_area;
815
816 /*
817 * Combine the erase block size info of the subdevices:
818 *
819 * first, walk the map of the new device and see how
820 * many changes in erase size we have
821 */
822 max_erasesize = curr_erasesize = subdev[0]->erasesize;
823 num_erase_region = 1;
824 for (i = 0; i < num_devs; i++) {
825 if (subdev[i]->numeraseregions == 0) {
826 /* current subdevice has uniform erase size */
827 if (subdev[i]->erasesize != curr_erasesize) {
828 /* if it differs from the last subdevice's erase size, count it */
829 ++num_erase_region;
830 curr_erasesize = subdev[i]->erasesize;
831 if (curr_erasesize > max_erasesize)
832 max_erasesize = curr_erasesize;
833 }
834 } else {
835 /* current subdevice has variable erase size */
836 int j;
837 for (j = 0; j < subdev[i]->numeraseregions; j++) {
838
839 /* walk the list of erase regions, count any changes */
840 if (subdev[i]->eraseregions[j].erasesize !=
841 curr_erasesize) {
842 ++num_erase_region;
843 curr_erasesize =
844 subdev[i]->eraseregions[j].
845 erasesize;
846 if (curr_erasesize > max_erasesize)
847 max_erasesize = curr_erasesize;
848 }
849 }
850 }
851 }
852
853 if (num_erase_region == 1) {
854 /*
855 * All subdevices have the same uniform erase size.
856 * This is easy:
857 */
858 concat->mtd.erasesize = curr_erasesize;
859 concat->mtd.numeraseregions = 0;
860 } else {
861 uint64_t tmp64;
862
863 /*
864 * erase block size varies across the subdevices: allocate
865 * space to store the data describing the variable erase regions
866 */
867 struct mtd_erase_region_info *erase_region_p;
868 uint64_t begin, position;
869
870 concat->mtd.erasesize = max_erasesize;
871 concat->mtd.numeraseregions = num_erase_region;
872 concat->mtd.eraseregions = erase_region_p =
873 kmalloc(num_erase_region *
874 sizeof (struct mtd_erase_region_info), GFP_KERNEL);
875 if (!erase_region_p) {
876 kfree(concat);
877 printk
878 ("memory allocation error while creating erase region list"
879 " for device \"%s\"\n", name);
880 return NULL;
881 }
882
883 /*
884 * walk the map of the new device once more and fill in
885 * in erase region info:
886 */
887 curr_erasesize = subdev[0]->erasesize;
888 begin = position = 0;
889 for (i = 0; i < num_devs; i++) {
890 if (subdev[i]->numeraseregions == 0) {
891 /* current subdevice has uniform erase size */
892 if (subdev[i]->erasesize != curr_erasesize) {
893 /*
894 * fill in an mtd_erase_region_info structure for the area
895 * we have walked so far:
896 */
897 erase_region_p->offset = begin;
898 erase_region_p->erasesize =
899 curr_erasesize;
900 tmp64 = position - begin;
901 do_div(tmp64, curr_erasesize);
902 erase_region_p->numblocks = tmp64;
903 begin = position;
904
905 curr_erasesize = subdev[i]->erasesize;
906 ++erase_region_p;
907 }
908 position += subdev[i]->size;
909 } else {
910 /* current subdevice has variable erase size */
911 int j;
912 for (j = 0; j < subdev[i]->numeraseregions; j++) {
913 /* walk the list of erase regions, count any changes */
914 if (subdev[i]->eraseregions[j].
915 erasesize != curr_erasesize) {
916 erase_region_p->offset = begin;
917 erase_region_p->erasesize =
918 curr_erasesize;
919 tmp64 = position - begin;
920 do_div(tmp64, curr_erasesize);
921 erase_region_p->numblocks = tmp64;
922 begin = position;
923
924 curr_erasesize =
925 subdev[i]->eraseregions[j].
926 erasesize;
927 ++erase_region_p;
928 }
929 position +=
930 subdev[i]->eraseregions[j].
931 numblocks * (uint64_t)curr_erasesize;
932 }
933 }
934 }
935 /* Now write the final entry */
936 erase_region_p->offset = begin;
937 erase_region_p->erasesize = curr_erasesize;
938 tmp64 = position - begin;
939 do_div(tmp64, curr_erasesize);
940 erase_region_p->numblocks = tmp64;
941 }
942
943 return &concat->mtd;
944 }
945
946 /*
947 * This function destroys an MTD object obtained from concat_mtd_devs()
948 */
949
mtd_concat_destroy(struct mtd_info * mtd)950 void mtd_concat_destroy(struct mtd_info *mtd)
951 {
952 struct mtd_concat *concat = CONCAT(mtd);
953 if (concat->mtd.numeraseregions)
954 kfree(concat->mtd.eraseregions);
955 kfree(concat);
956 }
957
958 EXPORT_SYMBOL(mtd_concat_create);
959 EXPORT_SYMBOL(mtd_concat_destroy);
960
961 MODULE_LICENSE("GPL");
962 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
963 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");
964