1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2010
4  * Vipin Kumar, ST Microelectronics, vipin.kumar@st.com.
5  *
6  * (C) Copyright 2012
7  * Amit Virdi, ST Microelectronics, amit.virdi@st.com.
8  */
9 
10 #include <common.h>
11 #include <nand.h>
12 #include <asm/io.h>
13 #include <linux/bitops.h>
14 #include <linux/err.h>
15 #include <linux/mtd/nand_ecc.h>
16 #include <linux/mtd/rawnand.h>
17 #include <linux/mtd/fsmc_nand.h>
18 #include <asm/arch/hardware.h>
19 
20 static u32 fsmc_version;
21 static struct fsmc_regs *const fsmc_regs_p = (struct fsmc_regs *)
22 	CONFIG_SYS_FSMC_BASE;
23 
24 /*
25  * ECC4 and ECC1 have 13 bytes and 3 bytes of ecc respectively for 512 bytes of
26  * data. ECC4 can correct up to 8 bits in 512 bytes of data while ECC1 can
27  * correct 1 bit in 512 bytes
28  */
29 
30 static struct nand_ecclayout fsmc_ecc4_lp_layout = {
31 	.eccbytes = 104,
32 	.eccpos = {  2,   3,   4,   5,   6,   7,   8,
33 		9,  10,  11,  12,  13,  14,
34 		18,  19,  20,  21,  22,  23,  24,
35 		25,  26,  27,  28,  29,  30,
36 		34,  35,  36,  37,  38,  39,  40,
37 		41,  42,  43,  44,  45,  46,
38 		50,  51,  52,  53,  54,  55,  56,
39 		57,  58,  59,  60,  61,  62,
40 		66,  67,  68,  69,  70,  71,  72,
41 		73,  74,  75,  76,  77,  78,
42 		82,  83,  84,  85,  86,  87,  88,
43 		89,  90,  91,  92,  93,  94,
44 		98,  99, 100, 101, 102, 103, 104,
45 		105, 106, 107, 108, 109, 110,
46 		114, 115, 116, 117, 118, 119, 120,
47 		121, 122, 123, 124, 125, 126
48 	},
49 	.oobfree = {
50 		{.offset = 15, .length = 3},
51 		{.offset = 31, .length = 3},
52 		{.offset = 47, .length = 3},
53 		{.offset = 63, .length = 3},
54 		{.offset = 79, .length = 3},
55 		{.offset = 95, .length = 3},
56 		{.offset = 111, .length = 3},
57 		{.offset = 127, .length = 1}
58 	}
59 };
60 
61 /*
62  * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes
63  * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118
64  * bytes are free for use.
65  */
66 static struct nand_ecclayout fsmc_ecc4_224_layout = {
67 	.eccbytes = 104,
68 	.eccpos = {  2,   3,   4,   5,   6,   7,   8,
69 		9,  10,  11,  12,  13,  14,
70 		18,  19,  20,  21,  22,  23,  24,
71 		25,  26,  27,  28,  29,  30,
72 		34,  35,  36,  37,  38,  39,  40,
73 		41,  42,  43,  44,  45,  46,
74 		50,  51,  52,  53,  54,  55,  56,
75 		57,  58,  59,  60,  61,  62,
76 		66,  67,  68,  69,  70,  71,  72,
77 		73,  74,  75,  76,  77,  78,
78 		82,  83,  84,  85,  86,  87,  88,
79 		89,  90,  91,  92,  93,  94,
80 		98,  99, 100, 101, 102, 103, 104,
81 		105, 106, 107, 108, 109, 110,
82 		114, 115, 116, 117, 118, 119, 120,
83 		121, 122, 123, 124, 125, 126
84 	},
85 	.oobfree = {
86 		{.offset = 15, .length = 3},
87 		{.offset = 31, .length = 3},
88 		{.offset = 47, .length = 3},
89 		{.offset = 63, .length = 3},
90 		{.offset = 79, .length = 3},
91 		{.offset = 95, .length = 3},
92 		{.offset = 111, .length = 3},
93 		{.offset = 127, .length = 97}
94 	}
95 };
96 
97 /*
98  * ECC placement definitions in oobfree type format
99  * There are 13 bytes of ecc for every 512 byte block and it has to be read
100  * consecutively and immediately after the 512 byte data block for hardware to
101  * generate the error bit offsets in 512 byte data
102  * Managing the ecc bytes in the following way makes it easier for software to
103  * read ecc bytes consecutive to data bytes. This way is similar to
104  * oobfree structure maintained already in u-boot nand driver
105  */
106 static struct fsmc_eccplace fsmc_eccpl_lp = {
107 	.eccplace = {
108 		{.offset = 2, .length = 13},
109 		{.offset = 18, .length = 13},
110 		{.offset = 34, .length = 13},
111 		{.offset = 50, .length = 13},
112 		{.offset = 66, .length = 13},
113 		{.offset = 82, .length = 13},
114 		{.offset = 98, .length = 13},
115 		{.offset = 114, .length = 13}
116 	}
117 };
118 
119 static struct nand_ecclayout fsmc_ecc4_sp_layout = {
120 	.eccbytes = 13,
121 	.eccpos = { 0,  1,  2,  3,  6,  7, 8,
122 		9, 10, 11, 12, 13, 14
123 	},
124 	.oobfree = {
125 		{.offset = 15, .length = 1},
126 	}
127 };
128 
129 static struct fsmc_eccplace fsmc_eccpl_sp = {
130 	.eccplace = {
131 		{.offset = 0, .length = 4},
132 		{.offset = 6, .length = 9}
133 	}
134 };
135 
136 static struct nand_ecclayout fsmc_ecc1_layout = {
137 	.eccbytes = 24,
138 	.eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52,
139 		66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116},
140 	.oobfree = {
141 		{.offset = 8, .length = 8},
142 		{.offset = 24, .length = 8},
143 		{.offset = 40, .length = 8},
144 		{.offset = 56, .length = 8},
145 		{.offset = 72, .length = 8},
146 		{.offset = 88, .length = 8},
147 		{.offset = 104, .length = 8},
148 		{.offset = 120, .length = 8}
149 	}
150 };
151 
152 /* Count the number of 0's in buff upto a max of max_bits */
count_written_bits(uint8_t * buff,int size,int max_bits)153 static int count_written_bits(uint8_t *buff, int size, int max_bits)
154 {
155 	int k, written_bits = 0;
156 
157 	for (k = 0; k < size; k++) {
158 		written_bits += hweight8(~buff[k]);
159 		if (written_bits > max_bits)
160 			break;
161 	}
162 
163 	return written_bits;
164 }
165 
fsmc_nand_hwcontrol(struct mtd_info * mtd,int cmd,uint ctrl)166 static void fsmc_nand_hwcontrol(struct mtd_info *mtd, int cmd, uint ctrl)
167 {
168 	struct nand_chip *this = mtd_to_nand(mtd);
169 	ulong IO_ADDR_W;
170 
171 	if (ctrl & NAND_CTRL_CHANGE) {
172 		IO_ADDR_W = (ulong)this->IO_ADDR_W;
173 
174 		IO_ADDR_W &= ~(CONFIG_SYS_NAND_CLE | CONFIG_SYS_NAND_ALE);
175 		if (ctrl & NAND_CLE)
176 			IO_ADDR_W |= CONFIG_SYS_NAND_CLE;
177 		if (ctrl & NAND_ALE)
178 			IO_ADDR_W |= CONFIG_SYS_NAND_ALE;
179 
180 		if (ctrl & NAND_NCE) {
181 			writel(readl(&fsmc_regs_p->pc) |
182 					FSMC_ENABLE, &fsmc_regs_p->pc);
183 		} else {
184 			writel(readl(&fsmc_regs_p->pc) &
185 					~FSMC_ENABLE, &fsmc_regs_p->pc);
186 		}
187 		this->IO_ADDR_W = (void *)IO_ADDR_W;
188 	}
189 
190 	if (cmd != NAND_CMD_NONE)
191 		writeb(cmd, this->IO_ADDR_W);
192 }
193 
fsmc_bch8_correct_data(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)194 static int fsmc_bch8_correct_data(struct mtd_info *mtd, u_char *dat,
195 		u_char *read_ecc, u_char *calc_ecc)
196 {
197 	/* The calculated ecc is actually the correction index in data */
198 	u32 err_idx[8];
199 	u32 num_err, i;
200 	u32 ecc1, ecc2, ecc3, ecc4;
201 
202 	num_err = (readl(&fsmc_regs_p->sts) >> 10) & 0xF;
203 
204 	if (likely(num_err == 0))
205 		return 0;
206 
207 	if (unlikely(num_err > 8)) {
208 		/*
209 		 * This is a temporary erase check. A newly erased page read
210 		 * would result in an ecc error because the oob data is also
211 		 * erased to FF and the calculated ecc for an FF data is not
212 		 * FF..FF.
213 		 * This is a workaround to skip performing correction in case
214 		 * data is FF..FF
215 		 *
216 		 * Logic:
217 		 * For every page, each bit written as 0 is counted until these
218 		 * number of bits are greater than 8 (the maximum correction
219 		 * capability of FSMC for each 512 + 13 bytes)
220 		 */
221 
222 		int bits_ecc = count_written_bits(read_ecc, 13, 8);
223 		int bits_data = count_written_bits(dat, 512, 8);
224 
225 		if ((bits_ecc + bits_data) <= 8) {
226 			if (bits_data)
227 				memset(dat, 0xff, 512);
228 			return bits_data + bits_ecc;
229 		}
230 
231 		return -EBADMSG;
232 	}
233 
234 	ecc1 = readl(&fsmc_regs_p->ecc1);
235 	ecc2 = readl(&fsmc_regs_p->ecc2);
236 	ecc3 = readl(&fsmc_regs_p->ecc3);
237 	ecc4 = readl(&fsmc_regs_p->sts);
238 
239 	err_idx[0] = (ecc1 >> 0) & 0x1FFF;
240 	err_idx[1] = (ecc1 >> 13) & 0x1FFF;
241 	err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
242 	err_idx[3] = (ecc2 >> 7) & 0x1FFF;
243 	err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
244 	err_idx[5] = (ecc3 >> 1) & 0x1FFF;
245 	err_idx[6] = (ecc3 >> 14) & 0x1FFF;
246 	err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
247 
248 	i = 0;
249 	while (i < num_err) {
250 		err_idx[i] ^= 3;
251 
252 		if (err_idx[i] < 512 * 8)
253 			__change_bit(err_idx[i], dat);
254 
255 		i++;
256 	}
257 
258 	return num_err;
259 }
260 
fsmc_read_hwecc(struct mtd_info * mtd,const u_char * data,u_char * ecc)261 static int fsmc_read_hwecc(struct mtd_info *mtd,
262 			const u_char *data, u_char *ecc)
263 {
264 	u_int ecc_tmp;
265 	int timeout = CONFIG_SYS_HZ;
266 	ulong start;
267 
268 	switch (fsmc_version) {
269 	case FSMC_VER8:
270 		start = get_timer(0);
271 		while (get_timer(start) < timeout) {
272 			/*
273 			 * Busy waiting for ecc computation
274 			 * to finish for 512 bytes
275 			 */
276 			if (readl(&fsmc_regs_p->sts) & FSMC_CODE_RDY)
277 				break;
278 		}
279 
280 		ecc_tmp = readl(&fsmc_regs_p->ecc1);
281 		ecc[0] = (u_char) (ecc_tmp >> 0);
282 		ecc[1] = (u_char) (ecc_tmp >> 8);
283 		ecc[2] = (u_char) (ecc_tmp >> 16);
284 		ecc[3] = (u_char) (ecc_tmp >> 24);
285 
286 		ecc_tmp = readl(&fsmc_regs_p->ecc2);
287 		ecc[4] = (u_char) (ecc_tmp >> 0);
288 		ecc[5] = (u_char) (ecc_tmp >> 8);
289 		ecc[6] = (u_char) (ecc_tmp >> 16);
290 		ecc[7] = (u_char) (ecc_tmp >> 24);
291 
292 		ecc_tmp = readl(&fsmc_regs_p->ecc3);
293 		ecc[8] = (u_char) (ecc_tmp >> 0);
294 		ecc[9] = (u_char) (ecc_tmp >> 8);
295 		ecc[10] = (u_char) (ecc_tmp >> 16);
296 		ecc[11] = (u_char) (ecc_tmp >> 24);
297 
298 		ecc_tmp = readl(&fsmc_regs_p->sts);
299 		ecc[12] = (u_char) (ecc_tmp >> 16);
300 		break;
301 
302 	default:
303 		ecc_tmp = readl(&fsmc_regs_p->ecc1);
304 		ecc[0] = (u_char) (ecc_tmp >> 0);
305 		ecc[1] = (u_char) (ecc_tmp >> 8);
306 		ecc[2] = (u_char) (ecc_tmp >> 16);
307 		break;
308 	}
309 
310 	return 0;
311 }
312 
fsmc_enable_hwecc(struct mtd_info * mtd,int mode)313 void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
314 {
315 	writel(readl(&fsmc_regs_p->pc) & ~FSMC_ECCPLEN_256,
316 			&fsmc_regs_p->pc);
317 	writel(readl(&fsmc_regs_p->pc) & ~FSMC_ECCEN,
318 			&fsmc_regs_p->pc);
319 	writel(readl(&fsmc_regs_p->pc) | FSMC_ECCEN,
320 			&fsmc_regs_p->pc);
321 }
322 
323 /*
324  * fsmc_read_page_hwecc
325  * @mtd:	mtd info structure
326  * @chip:	nand chip info structure
327  * @buf:	buffer to store read data
328  * @oob_required:	caller expects OOB data read to chip->oob_poi
329  * @page:	page number to read
330  *
331  * This routine is needed for fsmc verison 8 as reading from NAND chip has to be
332  * performed in a strict sequence as follows:
333  * data(512 byte) -> ecc(13 byte)
334  * After this read, fsmc hardware generates and reports error data bits(upto a
335  * max of 8 bits)
336  */
fsmc_read_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)337 static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
338 				 uint8_t *buf, int oob_required, int page)
339 {
340 	struct fsmc_eccplace *fsmc_eccpl;
341 	int i, j, s, stat, eccsize = chip->ecc.size;
342 	int eccbytes = chip->ecc.bytes;
343 	int eccsteps = chip->ecc.steps;
344 	uint8_t *p = buf;
345 	uint8_t *ecc_calc = chip->buffers->ecccalc;
346 	uint8_t *ecc_code = chip->buffers->ecccode;
347 	int off, len, group = 0;
348 	uint8_t oob[13] __attribute__ ((aligned (2)));
349 
350 	/* Differentiate between small and large page ecc place definitions */
351 	if (mtd->writesize == 512)
352 		fsmc_eccpl = &fsmc_eccpl_sp;
353 	else
354 		fsmc_eccpl = &fsmc_eccpl_lp;
355 
356 	for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
357 
358 		chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
359 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
360 		chip->read_buf(mtd, p, eccsize);
361 
362 		for (j = 0; j < eccbytes;) {
363 			off = fsmc_eccpl->eccplace[group].offset;
364 			len = fsmc_eccpl->eccplace[group].length;
365 			group++;
366 
367 			/*
368 			 * length is intentionally kept a higher multiple of 2
369 			 * to read at least 13 bytes even in case of 16 bit NAND
370 			 * devices
371 			 */
372 			if (chip->options & NAND_BUSWIDTH_16)
373 				len = roundup(len, 2);
374 			chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
375 			chip->read_buf(mtd, oob + j, len);
376 			j += len;
377 		}
378 
379 		memcpy(&ecc_code[i], oob, 13);
380 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
381 
382 		stat = chip->ecc.correct(mtd, p, &ecc_code[i],
383 				&ecc_calc[i]);
384 		if (stat < 0)
385 			mtd->ecc_stats.failed++;
386 		else
387 			mtd->ecc_stats.corrected += stat;
388 	}
389 
390 	return 0;
391 }
392 
fsmc_nand_init(struct nand_chip * nand)393 int fsmc_nand_init(struct nand_chip *nand)
394 {
395 	static int chip_nr;
396 	struct mtd_info *mtd;
397 	u32 peripid2 = readl(&fsmc_regs_p->peripid2);
398 
399 	fsmc_version = (peripid2 >> FSMC_REVISION_SHFT) &
400 		FSMC_REVISION_MSK;
401 
402 	writel(readl(&fsmc_regs_p->ctrl) | FSMC_WP, &fsmc_regs_p->ctrl);
403 
404 #if defined(CONFIG_SYS_FSMC_NAND_16BIT)
405 	writel(FSMC_DEVWID_16 | FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON,
406 			&fsmc_regs_p->pc);
407 #elif defined(CONFIG_SYS_FSMC_NAND_8BIT)
408 	writel(FSMC_DEVWID_8 | FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON,
409 			&fsmc_regs_p->pc);
410 #else
411 #error Please define CONFIG_SYS_FSMC_NAND_16BIT or CONFIG_SYS_FSMC_NAND_8BIT
412 #endif
413 	writel(readl(&fsmc_regs_p->pc) | FSMC_TCLR_1 | FSMC_TAR_1,
414 			&fsmc_regs_p->pc);
415 	writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
416 			&fsmc_regs_p->comm);
417 	writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
418 			&fsmc_regs_p->attrib);
419 
420 	nand->options = 0;
421 #if defined(CONFIG_SYS_FSMC_NAND_16BIT)
422 	nand->options |= NAND_BUSWIDTH_16;
423 #endif
424 	nand->ecc.mode = NAND_ECC_HW;
425 	nand->ecc.size = 512;
426 	nand->ecc.calculate = fsmc_read_hwecc;
427 	nand->ecc.hwctl = fsmc_enable_hwecc;
428 	nand->cmd_ctrl = fsmc_nand_hwcontrol;
429 	nand->IO_ADDR_R = nand->IO_ADDR_W =
430 		(void  __iomem *)CONFIG_SYS_NAND_BASE;
431 	nand->badblockbits = 7;
432 
433 	mtd = nand_to_mtd(nand);
434 
435 	switch (fsmc_version) {
436 	case FSMC_VER8:
437 		nand->ecc.bytes = 13;
438 		nand->ecc.strength = 8;
439 		nand->ecc.correct = fsmc_bch8_correct_data;
440 		nand->ecc.read_page = fsmc_read_page_hwecc;
441 		if (mtd->writesize == 512)
442 			nand->ecc.layout = &fsmc_ecc4_sp_layout;
443 		else {
444 			if (mtd->oobsize == 224)
445 				nand->ecc.layout = &fsmc_ecc4_224_layout;
446 			else
447 				nand->ecc.layout = &fsmc_ecc4_lp_layout;
448 		}
449 
450 		break;
451 	default:
452 		nand->ecc.bytes = 3;
453 		nand->ecc.strength = 1;
454 		nand->ecc.layout = &fsmc_ecc1_layout;
455 		nand->ecc.correct = nand_correct_data;
456 		break;
457 	}
458 
459 	/* Detect NAND chips */
460 	if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL))
461 		return -ENXIO;
462 
463 	if (nand_scan_tail(mtd))
464 		return -ENXIO;
465 
466 	if (nand_register(chip_nr++, mtd))
467 		return -ENXIO;
468 
469 	return 0;
470 }
471