1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/mtd/nand/raw/nand_util.c
4 *
5 * Copyright (C) 2006 by Weiss-Electronic GmbH.
6 * All rights reserved.
7 *
8 * @author: Guido Classen <clagix@gmail.com>
9 * @descr: NAND Flash support
10 * @references: borrowed heavily from Linux mtd-utils code:
11 * flash_eraseall.c by Arcom Control System Ltd
12 * nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
13 * and Thomas Gleixner (tglx@linutronix.de)
14 *
15 * Copyright (C) 2008 Nokia Corporation: drop_ffs() function by
16 * Artem Bityutskiy <dedekind1@gmail.com> from mtd-utils
17 *
18 * Copyright 2010 Freescale Semiconductor
19 */
20
21 #include <common.h>
22 #include <command.h>
23 #include <log.h>
24 #include <watchdog.h>
25 #include <malloc.h>
26 #include <memalign.h>
27 #include <div64.h>
28 #include <asm/cache.h>
29 #include <dm/devres.h>
30
31 #include <linux/errno.h>
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/rawnand.h>
34 #include <nand.h>
35 #include <jffs2/jffs2.h>
36
37 typedef struct erase_info erase_info_t;
38 typedef struct mtd_info mtd_info_t;
39
40 /* support only for native endian JFFS2 */
41 #define cpu_to_je16(x) (x)
42 #define cpu_to_je32(x) (x)
43
44 /**
45 * nand_erase_opts: - erase NAND flash with support for various options
46 * (jffs2 formatting)
47 *
48 * @param mtd nand mtd instance to erase
49 * @param opts options, @see struct nand_erase_options
50 * @return 0 in case of success
51 *
52 * This code is ported from flash_eraseall.c from Linux mtd utils by
53 * Arcom Control System Ltd.
54 */
nand_erase_opts(struct mtd_info * mtd,const nand_erase_options_t * opts)55 int nand_erase_opts(struct mtd_info *mtd,
56 const nand_erase_options_t *opts)
57 {
58 struct jffs2_unknown_node cleanmarker;
59 erase_info_t erase;
60 unsigned long erase_length, erased_length; /* in blocks */
61 int result;
62 int percent_complete = -1;
63 const char *mtd_device = mtd->name;
64 struct mtd_oob_ops oob_opts;
65 struct nand_chip *chip = mtd_to_nand(mtd);
66
67 if ((opts->offset & (mtd->erasesize - 1)) != 0) {
68 printf("Attempt to erase non block-aligned data\n");
69 return -1;
70 }
71
72 memset(&erase, 0, sizeof(erase));
73 memset(&oob_opts, 0, sizeof(oob_opts));
74
75 erase.mtd = mtd;
76 erase.len = mtd->erasesize;
77 erase.addr = opts->offset;
78 erase_length = lldiv(opts->length + mtd->erasesize - 1,
79 mtd->erasesize);
80
81 cleanmarker.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
82 cleanmarker.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
83 cleanmarker.totlen = cpu_to_je32(8);
84
85 /* scrub option allows to erase badblock. To prevent internal
86 * check from erase() method, set block check method to dummy
87 * and disable bad block table while erasing.
88 */
89 if (opts->scrub) {
90 erase.scrub = opts->scrub;
91 /*
92 * We don't need the bad block table anymore...
93 * after scrub, there are no bad blocks left!
94 */
95 if (chip->bbt) {
96 kfree(chip->bbt);
97 }
98 chip->bbt = NULL;
99 chip->options &= ~NAND_BBT_SCANNED;
100 }
101
102 for (erased_length = 0;
103 erased_length < erase_length;
104 erase.addr += mtd->erasesize) {
105
106 WATCHDOG_RESET();
107
108 if (opts->lim && (erase.addr >= (opts->offset + opts->lim))) {
109 puts("Size of erase exceeds limit\n");
110 return -EFBIG;
111 }
112 if (!opts->scrub) {
113 int ret = mtd_block_isbad(mtd, erase.addr);
114 if (ret > 0) {
115 if (!opts->quiet)
116 printf("\rSkipping bad block at "
117 "0x%08llx "
118 " \n",
119 erase.addr);
120
121 if (!opts->spread)
122 erased_length++;
123
124 continue;
125
126 } else if (ret < 0) {
127 printf("\n%s: MTD get bad block failed: %d\n",
128 mtd_device,
129 ret);
130 return -1;
131 }
132 }
133
134 erased_length++;
135
136 result = mtd_erase(mtd, &erase);
137 if (result != 0) {
138 printf("\n%s: MTD Erase failure: %d\n",
139 mtd_device, result);
140 continue;
141 }
142
143 /* format for JFFS2 ? */
144 if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) {
145 struct mtd_oob_ops ops;
146 ops.ooblen = 8;
147 ops.datbuf = NULL;
148 ops.oobbuf = (uint8_t *)&cleanmarker;
149 ops.ooboffs = 0;
150 ops.mode = MTD_OPS_AUTO_OOB;
151
152 result = mtd_write_oob(mtd, erase.addr, &ops);
153 if (result != 0) {
154 printf("\n%s: MTD writeoob failure: %d\n",
155 mtd_device, result);
156 continue;
157 }
158 }
159
160 if (!opts->quiet) {
161 unsigned long long n = erased_length * 100ULL;
162 int percent;
163
164 do_div(n, erase_length);
165 percent = (int)n;
166
167 /* output progress message only at whole percent
168 * steps to reduce the number of messages printed
169 * on (slow) serial consoles
170 */
171 if (percent != percent_complete) {
172 percent_complete = percent;
173
174 printf("\rErasing at 0x%llx -- %3d%% complete.",
175 erase.addr, percent);
176
177 if (opts->jffs2 && result == 0)
178 printf(" Cleanmarker written at 0x%llx.",
179 erase.addr);
180 }
181 }
182 }
183 if (!opts->quiet)
184 printf("\n");
185
186 return 0;
187 }
188
189 #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
190
191 #define NAND_CMD_LOCK_TIGHT 0x2c
192 #define NAND_CMD_LOCK_STATUS 0x7a
193
194 /******************************************************************************
195 * Support for locking / unlocking operations of some NAND devices
196 *****************************************************************************/
197
198 /**
199 * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
200 * state
201 *
202 * @param mtd nand mtd instance
203 * @param tight bring device in lock tight mode
204 *
205 * @return 0 on success, -1 in case of error
206 *
207 * The lock / lock-tight command only applies to the whole chip. To get some
208 * parts of the chip lock and others unlocked use the following sequence:
209 *
210 * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
211 * - Call nand_unlock() once for each consecutive area to be unlocked
212 * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
213 *
214 * If the device is in lock-tight state software can't change the
215 * current active lock/unlock state of all pages. nand_lock() / nand_unlock()
216 * calls will fail. It is only posible to leave lock-tight state by
217 * an hardware signal (low pulse on _WP pin) or by power down.
218 */
nand_lock(struct mtd_info * mtd,int tight)219 int nand_lock(struct mtd_info *mtd, int tight)
220 {
221 int ret = 0;
222 int status;
223 struct nand_chip *chip = mtd_to_nand(mtd);
224
225 /* select the NAND device */
226 chip->select_chip(mtd, 0);
227
228 /* check the Lock Tight Status */
229 chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, 0);
230 if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) {
231 printf("nand_lock: Device is locked tight!\n");
232 ret = -1;
233 goto out;
234 }
235
236 chip->cmdfunc(mtd,
237 (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
238 -1, -1);
239
240 /* call wait ready function */
241 status = chip->waitfunc(mtd, chip);
242
243 /* see if device thinks it succeeded */
244 if (status & 0x01) {
245 ret = -1;
246 }
247
248 out:
249 /* de-select the NAND device */
250 chip->select_chip(mtd, -1);
251 return ret;
252 }
253
254 /**
255 * nand_get_lock_status: - query current lock state from one page of NAND
256 * flash
257 *
258 * @param mtd nand mtd instance
259 * @param offset page address to query (must be page-aligned!)
260 *
261 * @return -1 in case of error
262 * >0 lock status:
263 * bitfield with the following combinations:
264 * NAND_LOCK_STATUS_TIGHT: page in tight state
265 * NAND_LOCK_STATUS_UNLOCK: page unlocked
266 *
267 */
nand_get_lock_status(struct mtd_info * mtd,loff_t offset)268 int nand_get_lock_status(struct mtd_info *mtd, loff_t offset)
269 {
270 int ret = 0;
271 int chipnr;
272 int page;
273 struct nand_chip *chip = mtd_to_nand(mtd);
274
275 /* select the NAND device */
276 chipnr = (int)(offset >> chip->chip_shift);
277 chip->select_chip(mtd, chipnr);
278
279
280 if ((offset & (mtd->writesize - 1)) != 0) {
281 printf("nand_get_lock_status: "
282 "Start address must be beginning of "
283 "nand page!\n");
284 ret = -1;
285 goto out;
286 }
287
288 /* check the Lock Status */
289 page = (int)(offset >> chip->page_shift);
290 chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
291
292 ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT
293 | NAND_LOCK_STATUS_UNLOCK);
294
295 out:
296 /* de-select the NAND device */
297 chip->select_chip(mtd, -1);
298 return ret;
299 }
300
301 /**
302 * nand_unlock: - Unlock area of NAND pages
303 * only one consecutive area can be unlocked at one time!
304 *
305 * @param mtd nand mtd instance
306 * @param start start byte address
307 * @param length number of bytes to unlock (must be a multiple of
308 * page size mtd->writesize)
309 * @param allexcept if set, unlock everything not selected
310 *
311 * @return 0 on success, -1 in case of error
312 */
nand_unlock(struct mtd_info * mtd,loff_t start,size_t length,int allexcept)313 int nand_unlock(struct mtd_info *mtd, loff_t start, size_t length,
314 int allexcept)
315 {
316 int ret = 0;
317 int chipnr;
318 int status;
319 int page;
320 struct nand_chip *chip = mtd_to_nand(mtd);
321
322 debug("nand_unlock%s: start: %08llx, length: %zd!\n",
323 allexcept ? " (allexcept)" : "", start, length);
324
325 /* select the NAND device */
326 chipnr = (int)(start >> chip->chip_shift);
327 chip->select_chip(mtd, chipnr);
328
329 /* check the WP bit */
330 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
331 if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) {
332 printf("nand_unlock: Device is write protected!\n");
333 ret = -1;
334 goto out;
335 }
336
337 /* check the Lock Tight Status */
338 page = (int)(start >> chip->page_shift);
339 chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
340 if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) {
341 printf("nand_unlock: Device is locked tight!\n");
342 ret = -1;
343 goto out;
344 }
345
346 if ((start & (mtd->erasesize - 1)) != 0) {
347 printf("nand_unlock: Start address must be beginning of "
348 "nand block!\n");
349 ret = -1;
350 goto out;
351 }
352
353 if (length == 0 || (length & (mtd->erasesize - 1)) != 0) {
354 printf("nand_unlock: Length must be a multiple of nand block "
355 "size %08x!\n", mtd->erasesize);
356 ret = -1;
357 goto out;
358 }
359
360 /*
361 * Set length so that the last address is set to the
362 * starting address of the last block
363 */
364 length -= mtd->erasesize;
365
366 /* submit address of first page to unlock */
367 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
368
369 /* submit ADDRESS of LAST page to unlock */
370 page += (int)(length >> chip->page_shift);
371
372 /*
373 * Page addresses for unlocking are supposed to be block-aligned.
374 * At least some NAND chips use the low bit to indicate that the
375 * page range should be inverted.
376 */
377 if (allexcept)
378 page |= 1;
379
380 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask);
381
382 /* call wait ready function */
383 status = chip->waitfunc(mtd, chip);
384 /* see if device thinks it succeeded */
385 if (status & 0x01) {
386 /* there was an error */
387 ret = -1;
388 goto out;
389 }
390
391 out:
392 /* de-select the NAND device */
393 chip->select_chip(mtd, -1);
394 return ret;
395 }
396 #endif
397
398 /**
399 * check_skip_len
400 *
401 * Check if there are any bad blocks, and whether length including bad
402 * blocks fits into device
403 *
404 * @param mtd nand mtd instance
405 * @param offset offset in flash
406 * @param length image length
407 * @param used length of flash needed for the requested length
408 * @return 0 if the image fits and there are no bad blocks
409 * 1 if the image fits, but there are bad blocks
410 * -1 if the image does not fit
411 */
check_skip_len(struct mtd_info * mtd,loff_t offset,size_t length,size_t * used)412 static int check_skip_len(struct mtd_info *mtd, loff_t offset, size_t length,
413 size_t *used)
414 {
415 size_t len_excl_bad = 0;
416 int ret = 0;
417
418 while (len_excl_bad < length) {
419 size_t block_len, block_off;
420 loff_t block_start;
421
422 if (offset >= mtd->size)
423 return -1;
424
425 block_start = offset & ~(loff_t)(mtd->erasesize - 1);
426 block_off = offset & (mtd->erasesize - 1);
427 block_len = mtd->erasesize - block_off;
428
429 if (!nand_block_isbad(mtd, block_start))
430 len_excl_bad += block_len;
431 else
432 ret = 1;
433
434 offset += block_len;
435 *used += block_len;
436 }
437
438 /* If the length is not a multiple of block_len, adjust. */
439 if (len_excl_bad > length)
440 *used -= (len_excl_bad - length);
441
442 return ret;
443 }
444
445 #ifdef CONFIG_CMD_NAND_TRIMFFS
drop_ffs(const struct mtd_info * mtd,const u_char * buf,const size_t * len)446 static size_t drop_ffs(const struct mtd_info *mtd, const u_char *buf,
447 const size_t *len)
448 {
449 size_t l = *len;
450 ssize_t i;
451
452 for (i = l - 1; i >= 0; i--)
453 if (buf[i] != 0xFF)
454 break;
455
456 /* The resulting length must be aligned to the minimum flash I/O size */
457 l = i + 1;
458 l = (l + mtd->writesize - 1) / mtd->writesize;
459 l *= mtd->writesize;
460
461 /*
462 * since the input length may be unaligned, prevent access past the end
463 * of the buffer
464 */
465 return min(l, *len);
466 }
467 #endif
468
469 /**
470 * nand_verify_page_oob:
471 *
472 * Verify a page of NAND flash, including the OOB.
473 * Reads page of NAND and verifies the contents and OOB against the
474 * values in ops.
475 *
476 * @param mtd nand mtd instance
477 * @param ops MTD operations, including data to verify
478 * @param ofs offset in flash
479 * @return 0 in case of success
480 */
nand_verify_page_oob(struct mtd_info * mtd,struct mtd_oob_ops * ops,loff_t ofs)481 int nand_verify_page_oob(struct mtd_info *mtd, struct mtd_oob_ops *ops,
482 loff_t ofs)
483 {
484 int rval;
485 struct mtd_oob_ops vops;
486 size_t verlen = mtd->writesize + mtd->oobsize;
487
488 memcpy(&vops, ops, sizeof(vops));
489
490 vops.datbuf = memalign(ARCH_DMA_MINALIGN, verlen);
491
492 if (!vops.datbuf)
493 return -ENOMEM;
494
495 vops.oobbuf = vops.datbuf + mtd->writesize;
496
497 rval = mtd_read_oob(mtd, ofs, &vops);
498 if (!rval)
499 rval = memcmp(ops->datbuf, vops.datbuf, vops.len);
500 if (!rval)
501 rval = memcmp(ops->oobbuf, vops.oobbuf, vops.ooblen);
502
503 free(vops.datbuf);
504
505 return rval ? -EIO : 0;
506 }
507
508 /**
509 * nand_verify:
510 *
511 * Verify a region of NAND flash.
512 * Reads NAND in page-sized chunks and verifies the contents against
513 * the contents of a buffer. The offset into the NAND must be
514 * page-aligned, and the function doesn't handle skipping bad blocks.
515 *
516 * @param mtd nand mtd instance
517 * @param ofs offset in flash
518 * @param len buffer length
519 * @param buf buffer to read from
520 * @return 0 in case of success
521 */
nand_verify(struct mtd_info * mtd,loff_t ofs,size_t len,u_char * buf)522 int nand_verify(struct mtd_info *mtd, loff_t ofs, size_t len, u_char *buf)
523 {
524 int rval = 0;
525 size_t verofs;
526 size_t verlen = mtd->writesize;
527 uint8_t *verbuf = memalign(ARCH_DMA_MINALIGN, verlen);
528
529 if (!verbuf)
530 return -ENOMEM;
531
532 /* Read the NAND back in page-size groups to limit malloc size */
533 for (verofs = ofs; verofs < ofs + len;
534 verofs += verlen, buf += verlen) {
535 verlen = min(mtd->writesize, (uint32_t)(ofs + len - verofs));
536 rval = nand_read(mtd, verofs, &verlen, verbuf);
537 if (!rval || (rval == -EUCLEAN))
538 rval = memcmp(buf, verbuf, verlen);
539
540 if (rval)
541 break;
542 }
543
544 free(verbuf);
545
546 return rval ? -EIO : 0;
547 }
548
549 /**
550 * nand_write_skip_bad:
551 *
552 * Write image to NAND flash.
553 * Blocks that are marked bad are skipped and the is written to the next
554 * block instead as long as the image is short enough to fit even after
555 * skipping the bad blocks. Due to bad blocks we may not be able to
556 * perform the requested write. In the case where the write would
557 * extend beyond the end of the NAND device, both length and actual (if
558 * not NULL) are set to 0. In the case where the write would extend
559 * beyond the limit we are passed, length is set to 0 and actual is set
560 * to the required length.
561 *
562 * @param mtd nand mtd instance
563 * @param offset offset in flash
564 * @param length buffer length
565 * @param actual set to size required to write length worth of
566 * buffer or 0 on error, if not NULL
567 * @param lim maximum size that actual may be in order to not
568 * exceed the buffer
569 * @param buffer buffer to read from
570 * @param flags flags modifying the behaviour of the write to NAND
571 * @return 0 in case of success
572 */
nand_write_skip_bad(struct mtd_info * mtd,loff_t offset,size_t * length,size_t * actual,loff_t lim,u_char * buffer,int flags)573 int nand_write_skip_bad(struct mtd_info *mtd, loff_t offset, size_t *length,
574 size_t *actual, loff_t lim, u_char *buffer, int flags)
575 {
576 int rval = 0, blocksize;
577 size_t left_to_write = *length;
578 size_t used_for_write = 0;
579 u_char *p_buffer = buffer;
580 int need_skip;
581
582 if (actual)
583 *actual = 0;
584
585 blocksize = mtd->erasesize;
586
587 /*
588 * nand_write() handles unaligned, partial page writes.
589 *
590 * We allow length to be unaligned, for convenience in
591 * using the $filesize variable.
592 *
593 * However, starting at an unaligned offset makes the
594 * semantics of bad block skipping ambiguous (really,
595 * you should only start a block skipping access at a
596 * partition boundary). So don't try to handle that.
597 */
598 if ((offset & (mtd->writesize - 1)) != 0) {
599 printf("Attempt to write non page-aligned data\n");
600 *length = 0;
601 return -EINVAL;
602 }
603
604 need_skip = check_skip_len(mtd, offset, *length, &used_for_write);
605
606 if (actual)
607 *actual = used_for_write;
608
609 if (need_skip < 0) {
610 printf("Attempt to write outside the flash area\n");
611 *length = 0;
612 return -EINVAL;
613 }
614
615 if (used_for_write > lim) {
616 puts("Size of write exceeds partition or device limit\n");
617 *length = 0;
618 return -EFBIG;
619 }
620
621 if (!need_skip && !(flags & WITH_DROP_FFS)) {
622 rval = nand_write(mtd, offset, length, buffer);
623
624 if ((flags & WITH_WR_VERIFY) && !rval)
625 rval = nand_verify(mtd, offset, *length, buffer);
626
627 if (rval == 0)
628 return 0;
629
630 *length = 0;
631 printf("NAND write to offset %llx failed %d\n",
632 offset, rval);
633 return rval;
634 }
635
636 while (left_to_write > 0) {
637 loff_t block_start = offset & ~(loff_t)(mtd->erasesize - 1);
638 size_t block_offset = offset & (mtd->erasesize - 1);
639 size_t write_size, truncated_write_size;
640
641 WATCHDOG_RESET();
642
643 if (nand_block_isbad(mtd, block_start)) {
644 printf("Skip bad block 0x%08llx\n", block_start);
645 offset += mtd->erasesize - block_offset;
646 continue;
647 }
648
649 if (left_to_write < (blocksize - block_offset))
650 write_size = left_to_write;
651 else
652 write_size = blocksize - block_offset;
653
654 truncated_write_size = write_size;
655 #ifdef CONFIG_CMD_NAND_TRIMFFS
656 if (flags & WITH_DROP_FFS)
657 truncated_write_size = drop_ffs(mtd, p_buffer,
658 &write_size);
659 #endif
660
661 rval = nand_write(mtd, offset, &truncated_write_size,
662 p_buffer);
663
664 if ((flags & WITH_WR_VERIFY) && !rval)
665 rval = nand_verify(mtd, offset,
666 truncated_write_size, p_buffer);
667
668 offset += write_size;
669 p_buffer += write_size;
670
671 if (rval != 0) {
672 printf("NAND write to offset %llx failed %d\n",
673 offset, rval);
674 *length -= left_to_write;
675 return rval;
676 }
677
678 left_to_write -= write_size;
679 }
680
681 return 0;
682 }
683
684 /**
685 * nand_read_skip_bad:
686 *
687 * Read image from NAND flash.
688 * Blocks that are marked bad are skipped and the next block is read
689 * instead as long as the image is short enough to fit even after
690 * skipping the bad blocks. Due to bad blocks we may not be able to
691 * perform the requested read. In the case where the read would extend
692 * beyond the end of the NAND device, both length and actual (if not
693 * NULL) are set to 0. In the case where the read would extend beyond
694 * the limit we are passed, length is set to 0 and actual is set to the
695 * required length.
696 *
697 * @param mtd nand mtd instance
698 * @param offset offset in flash
699 * @param length buffer length, on return holds number of read bytes
700 * @param actual set to size required to read length worth of buffer or 0
701 * on error, if not NULL
702 * @param lim maximum size that actual may be in order to not exceed the
703 * buffer
704 * @param buffer buffer to write to
705 * @return 0 in case of success
706 */
nand_read_skip_bad(struct mtd_info * mtd,loff_t offset,size_t * length,size_t * actual,loff_t lim,u_char * buffer)707 int nand_read_skip_bad(struct mtd_info *mtd, loff_t offset, size_t *length,
708 size_t *actual, loff_t lim, u_char *buffer)
709 {
710 int rval;
711 size_t left_to_read = *length;
712 size_t used_for_read = 0;
713 u_char *p_buffer = buffer;
714 int need_skip;
715
716 if ((offset & (mtd->writesize - 1)) != 0) {
717 printf("Attempt to read non page-aligned data\n");
718 *length = 0;
719 if (actual)
720 *actual = 0;
721 return -EINVAL;
722 }
723
724 need_skip = check_skip_len(mtd, offset, *length, &used_for_read);
725
726 if (actual)
727 *actual = used_for_read;
728
729 if (need_skip < 0) {
730 printf("Attempt to read outside the flash area\n");
731 *length = 0;
732 return -EINVAL;
733 }
734
735 if (used_for_read > lim) {
736 puts("Size of read exceeds partition or device limit\n");
737 *length = 0;
738 return -EFBIG;
739 }
740
741 if (!need_skip) {
742 rval = nand_read(mtd, offset, length, buffer);
743 if (!rval || rval == -EUCLEAN)
744 return 0;
745
746 *length = 0;
747 printf("NAND read from offset %llx failed %d\n",
748 offset, rval);
749 return rval;
750 }
751
752 while (left_to_read > 0) {
753 size_t block_offset = offset & (mtd->erasesize - 1);
754 size_t read_length;
755
756 WATCHDOG_RESET();
757
758 if (nand_block_isbad(mtd, offset & ~(mtd->erasesize - 1))) {
759 printf("Skipping bad block 0x%08llx\n",
760 offset & ~(mtd->erasesize - 1));
761 offset += mtd->erasesize - block_offset;
762 continue;
763 }
764
765 if (left_to_read < (mtd->erasesize - block_offset))
766 read_length = left_to_read;
767 else
768 read_length = mtd->erasesize - block_offset;
769
770 rval = nand_read(mtd, offset, &read_length, p_buffer);
771 if (rval && rval != -EUCLEAN) {
772 printf("NAND read from offset %llx failed %d\n",
773 offset, rval);
774 *length -= left_to_read;
775 return rval;
776 }
777
778 left_to_read -= read_length;
779 offset += read_length;
780 p_buffer += read_length;
781 }
782
783 return 0;
784 }
785
786 #ifdef CONFIG_CMD_NAND_TORTURE
787
788 /**
789 * check_pattern:
790 *
791 * Check if buffer contains only a certain byte pattern.
792 *
793 * @param buf buffer to check
794 * @param patt the pattern to check
795 * @param size buffer size in bytes
796 * @return 1 if there are only patt bytes in buf
797 * 0 if something else was found
798 */
check_pattern(const u_char * buf,u_char patt,int size)799 static int check_pattern(const u_char *buf, u_char patt, int size)
800 {
801 int i;
802
803 for (i = 0; i < size; i++)
804 if (buf[i] != patt)
805 return 0;
806 return 1;
807 }
808
809 /**
810 * nand_torture:
811 *
812 * Torture a block of NAND flash.
813 * This is useful to determine if a block that caused a write error is still
814 * good or should be marked as bad.
815 *
816 * @param mtd nand mtd instance
817 * @param offset offset in flash
818 * @return 0 if the block is still good
819 */
nand_torture(struct mtd_info * mtd,loff_t offset)820 int nand_torture(struct mtd_info *mtd, loff_t offset)
821 {
822 u_char patterns[] = {0xa5, 0x5a, 0x00};
823 struct erase_info instr = {
824 .mtd = mtd,
825 .addr = offset,
826 .len = mtd->erasesize,
827 };
828 size_t retlen;
829 int err, ret = -1, i, patt_count;
830 u_char *buf;
831
832 if ((offset & (mtd->erasesize - 1)) != 0) {
833 puts("Attempt to torture a block at a non block-aligned offset\n");
834 return -EINVAL;
835 }
836
837 if (offset + mtd->erasesize > mtd->size) {
838 puts("Attempt to torture a block outside the flash area\n");
839 return -EINVAL;
840 }
841
842 patt_count = ARRAY_SIZE(patterns);
843
844 buf = malloc_cache_aligned(mtd->erasesize);
845 if (buf == NULL) {
846 puts("Out of memory for erase block buffer\n");
847 return -ENOMEM;
848 }
849
850 for (i = 0; i < patt_count; i++) {
851 err = mtd_erase(mtd, &instr);
852 if (err) {
853 printf("%s: erase() failed for block at 0x%llx: %d\n",
854 mtd->name, instr.addr, err);
855 goto out;
856 }
857
858 /* Make sure the block contains only 0xff bytes */
859 err = mtd_read(mtd, offset, mtd->erasesize, &retlen, buf);
860 if ((err && err != -EUCLEAN) || retlen != mtd->erasesize) {
861 printf("%s: read() failed for block at 0x%llx: %d\n",
862 mtd->name, instr.addr, err);
863 goto out;
864 }
865
866 err = check_pattern(buf, 0xff, mtd->erasesize);
867 if (!err) {
868 printf("Erased block at 0x%llx, but a non-0xff byte was found\n",
869 offset);
870 ret = -EIO;
871 goto out;
872 }
873
874 /* Write a pattern and check it */
875 memset(buf, patterns[i], mtd->erasesize);
876 err = mtd_write(mtd, offset, mtd->erasesize, &retlen, buf);
877 if (err || retlen != mtd->erasesize) {
878 printf("%s: write() failed for block at 0x%llx: %d\n",
879 mtd->name, instr.addr, err);
880 goto out;
881 }
882
883 err = mtd_read(mtd, offset, mtd->erasesize, &retlen, buf);
884 if ((err && err != -EUCLEAN) || retlen != mtd->erasesize) {
885 printf("%s: read() failed for block at 0x%llx: %d\n",
886 mtd->name, instr.addr, err);
887 goto out;
888 }
889
890 err = check_pattern(buf, patterns[i], mtd->erasesize);
891 if (!err) {
892 printf("Pattern 0x%.2x checking failed for block at "
893 "0x%llx\n", patterns[i], offset);
894 ret = -EIO;
895 goto out;
896 }
897 }
898
899 ret = 0;
900
901 out:
902 free(buf);
903 return ret;
904 }
905
906 #endif
907