1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/mtd/nand/raw/nand_util.c
4  *
5  * Copyright (C) 2006 by Weiss-Electronic GmbH.
6  * All rights reserved.
7  *
8  * @author:	Guido Classen <clagix@gmail.com>
9  * @descr:	NAND Flash support
10  * @references: borrowed heavily from Linux mtd-utils code:
11  *		flash_eraseall.c by Arcom Control System Ltd
12  *		nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
13  *			       and Thomas Gleixner (tglx@linutronix.de)
14  *
15  * Copyright (C) 2008 Nokia Corporation: drop_ffs() function by
16  * Artem Bityutskiy <dedekind1@gmail.com> from mtd-utils
17  *
18  * Copyright 2010 Freescale Semiconductor
19  */
20 
21 #include <common.h>
22 #include <command.h>
23 #include <log.h>
24 #include <watchdog.h>
25 #include <malloc.h>
26 #include <memalign.h>
27 #include <div64.h>
28 #include <asm/cache.h>
29 #include <dm/devres.h>
30 
31 #include <linux/errno.h>
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/rawnand.h>
34 #include <nand.h>
35 #include <jffs2/jffs2.h>
36 
37 typedef struct erase_info	erase_info_t;
38 typedef struct mtd_info		mtd_info_t;
39 
40 /* support only for native endian JFFS2 */
41 #define cpu_to_je16(x) (x)
42 #define cpu_to_je32(x) (x)
43 
44 /**
45  * nand_erase_opts: - erase NAND flash with support for various options
46  *		      (jffs2 formatting)
47  *
48  * @param mtd		nand mtd instance to erase
49  * @param opts		options,  @see struct nand_erase_options
50  * @return		0 in case of success
51  *
52  * This code is ported from flash_eraseall.c from Linux mtd utils by
53  * Arcom Control System Ltd.
54  */
nand_erase_opts(struct mtd_info * mtd,const nand_erase_options_t * opts)55 int nand_erase_opts(struct mtd_info *mtd,
56 		    const nand_erase_options_t *opts)
57 {
58 	struct jffs2_unknown_node cleanmarker;
59 	erase_info_t erase;
60 	unsigned long erase_length, erased_length; /* in blocks */
61 	int result;
62 	int percent_complete = -1;
63 	const char *mtd_device = mtd->name;
64 	struct mtd_oob_ops oob_opts;
65 	struct nand_chip *chip = mtd_to_nand(mtd);
66 
67 	if ((opts->offset & (mtd->erasesize - 1)) != 0) {
68 		printf("Attempt to erase non block-aligned data\n");
69 		return -1;
70 	}
71 
72 	memset(&erase, 0, sizeof(erase));
73 	memset(&oob_opts, 0, sizeof(oob_opts));
74 
75 	erase.mtd = mtd;
76 	erase.len = mtd->erasesize;
77 	erase.addr = opts->offset;
78 	erase_length = lldiv(opts->length + mtd->erasesize - 1,
79 			     mtd->erasesize);
80 
81 	cleanmarker.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
82 	cleanmarker.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
83 	cleanmarker.totlen = cpu_to_je32(8);
84 
85 	/* scrub option allows to erase badblock. To prevent internal
86 	 * check from erase() method, set block check method to dummy
87 	 * and disable bad block table while erasing.
88 	 */
89 	if (opts->scrub) {
90 		erase.scrub = opts->scrub;
91 		/*
92 		 * We don't need the bad block table anymore...
93 		 * after scrub, there are no bad blocks left!
94 		 */
95 		if (chip->bbt) {
96 			kfree(chip->bbt);
97 		}
98 		chip->bbt = NULL;
99 		chip->options &= ~NAND_BBT_SCANNED;
100 	}
101 
102 	for (erased_length = 0;
103 	     erased_length < erase_length;
104 	     erase.addr += mtd->erasesize) {
105 
106 		WATCHDOG_RESET();
107 
108 		if (opts->lim && (erase.addr >= (opts->offset + opts->lim))) {
109 			puts("Size of erase exceeds limit\n");
110 			return -EFBIG;
111 		}
112 		if (!opts->scrub) {
113 			int ret = mtd_block_isbad(mtd, erase.addr);
114 			if (ret > 0) {
115 				if (!opts->quiet)
116 					printf("\rSkipping bad block at  "
117 					       "0x%08llx                 "
118 					       "                         \n",
119 					       erase.addr);
120 
121 				if (!opts->spread)
122 					erased_length++;
123 
124 				continue;
125 
126 			} else if (ret < 0) {
127 				printf("\n%s: MTD get bad block failed: %d\n",
128 				       mtd_device,
129 				       ret);
130 				return -1;
131 			}
132 		}
133 
134 		erased_length++;
135 
136 		result = mtd_erase(mtd, &erase);
137 		if (result != 0) {
138 			printf("\n%s: MTD Erase failure: %d\n",
139 			       mtd_device, result);
140 			continue;
141 		}
142 
143 		/* format for JFFS2 ? */
144 		if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) {
145 			struct mtd_oob_ops ops;
146 			ops.ooblen = 8;
147 			ops.datbuf = NULL;
148 			ops.oobbuf = (uint8_t *)&cleanmarker;
149 			ops.ooboffs = 0;
150 			ops.mode = MTD_OPS_AUTO_OOB;
151 
152 			result = mtd_write_oob(mtd, erase.addr, &ops);
153 			if (result != 0) {
154 				printf("\n%s: MTD writeoob failure: %d\n",
155 				       mtd_device, result);
156 				continue;
157 			}
158 		}
159 
160 		if (!opts->quiet) {
161 			unsigned long long n = erased_length * 100ULL;
162 			int percent;
163 
164 			do_div(n, erase_length);
165 			percent = (int)n;
166 
167 			/* output progress message only at whole percent
168 			 * steps to reduce the number of messages printed
169 			 * on (slow) serial consoles
170 			 */
171 			if (percent != percent_complete) {
172 				percent_complete = percent;
173 
174 				printf("\rErasing at 0x%llx -- %3d%% complete.",
175 				       erase.addr, percent);
176 
177 				if (opts->jffs2 && result == 0)
178 					printf(" Cleanmarker written at 0x%llx.",
179 					       erase.addr);
180 			}
181 		}
182 	}
183 	if (!opts->quiet)
184 		printf("\n");
185 
186 	return 0;
187 }
188 
189 #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
190 
191 #define NAND_CMD_LOCK_TIGHT     0x2c
192 #define NAND_CMD_LOCK_STATUS    0x7a
193 
194 /******************************************************************************
195  * Support for locking / unlocking operations of some NAND devices
196  *****************************************************************************/
197 
198 /**
199  * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
200  *	      state
201  *
202  * @param mtd		nand mtd instance
203  * @param tight		bring device in lock tight mode
204  *
205  * @return		0 on success, -1 in case of error
206  *
207  * The lock / lock-tight command only applies to the whole chip. To get some
208  * parts of the chip lock and others unlocked use the following sequence:
209  *
210  * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
211  * - Call nand_unlock() once for each consecutive area to be unlocked
212  * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
213  *
214  *   If the device is in lock-tight state software can't change the
215  *   current active lock/unlock state of all pages. nand_lock() / nand_unlock()
216  *   calls will fail. It is only posible to leave lock-tight state by
217  *   an hardware signal (low pulse on _WP pin) or by power down.
218  */
nand_lock(struct mtd_info * mtd,int tight)219 int nand_lock(struct mtd_info *mtd, int tight)
220 {
221 	int ret = 0;
222 	int status;
223 	struct nand_chip *chip = mtd_to_nand(mtd);
224 
225 	/* select the NAND device */
226 	chip->select_chip(mtd, 0);
227 
228 	/* check the Lock Tight Status */
229 	chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, 0);
230 	if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) {
231 		printf("nand_lock: Device is locked tight!\n");
232 		ret = -1;
233 		goto out;
234 	}
235 
236 	chip->cmdfunc(mtd,
237 		      (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
238 		      -1, -1);
239 
240 	/* call wait ready function */
241 	status = chip->waitfunc(mtd, chip);
242 
243 	/* see if device thinks it succeeded */
244 	if (status & 0x01) {
245 		ret = -1;
246 	}
247 
248  out:
249 	/* de-select the NAND device */
250 	chip->select_chip(mtd, -1);
251 	return ret;
252 }
253 
254 /**
255  * nand_get_lock_status: - query current lock state from one page of NAND
256  *			   flash
257  *
258  * @param mtd		nand mtd instance
259  * @param offset	page address to query (must be page-aligned!)
260  *
261  * @return		-1 in case of error
262  *			>0 lock status:
263  *			  bitfield with the following combinations:
264  *			  NAND_LOCK_STATUS_TIGHT: page in tight state
265  *			  NAND_LOCK_STATUS_UNLOCK: page unlocked
266  *
267  */
nand_get_lock_status(struct mtd_info * mtd,loff_t offset)268 int nand_get_lock_status(struct mtd_info *mtd, loff_t offset)
269 {
270 	int ret = 0;
271 	int chipnr;
272 	int page;
273 	struct nand_chip *chip = mtd_to_nand(mtd);
274 
275 	/* select the NAND device */
276 	chipnr = (int)(offset >> chip->chip_shift);
277 	chip->select_chip(mtd, chipnr);
278 
279 
280 	if ((offset & (mtd->writesize - 1)) != 0) {
281 		printf("nand_get_lock_status: "
282 			"Start address must be beginning of "
283 			"nand page!\n");
284 		ret = -1;
285 		goto out;
286 	}
287 
288 	/* check the Lock Status */
289 	page = (int)(offset >> chip->page_shift);
290 	chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
291 
292 	ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT
293 					  | NAND_LOCK_STATUS_UNLOCK);
294 
295  out:
296 	/* de-select the NAND device */
297 	chip->select_chip(mtd, -1);
298 	return ret;
299 }
300 
301 /**
302  * nand_unlock: - Unlock area of NAND pages
303  *		  only one consecutive area can be unlocked at one time!
304  *
305  * @param mtd		nand mtd instance
306  * @param start		start byte address
307  * @param length	number of bytes to unlock (must be a multiple of
308  *			page size mtd->writesize)
309  * @param allexcept	if set, unlock everything not selected
310  *
311  * @return		0 on success, -1 in case of error
312  */
nand_unlock(struct mtd_info * mtd,loff_t start,size_t length,int allexcept)313 int nand_unlock(struct mtd_info *mtd, loff_t start, size_t length,
314 	int allexcept)
315 {
316 	int ret = 0;
317 	int chipnr;
318 	int status;
319 	int page;
320 	struct nand_chip *chip = mtd_to_nand(mtd);
321 
322 	debug("nand_unlock%s: start: %08llx, length: %zd!\n",
323 		allexcept ? " (allexcept)" : "", start, length);
324 
325 	/* select the NAND device */
326 	chipnr = (int)(start >> chip->chip_shift);
327 	chip->select_chip(mtd, chipnr);
328 
329 	/* check the WP bit */
330 	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
331 	if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) {
332 		printf("nand_unlock: Device is write protected!\n");
333 		ret = -1;
334 		goto out;
335 	}
336 
337 	/* check the Lock Tight Status */
338 	page = (int)(start >> chip->page_shift);
339 	chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
340 	if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) {
341 		printf("nand_unlock: Device is locked tight!\n");
342 		ret = -1;
343 		goto out;
344 	}
345 
346 	if ((start & (mtd->erasesize - 1)) != 0) {
347 		printf("nand_unlock: Start address must be beginning of "
348 			"nand block!\n");
349 		ret = -1;
350 		goto out;
351 	}
352 
353 	if (length == 0 || (length & (mtd->erasesize - 1)) != 0) {
354 		printf("nand_unlock: Length must be a multiple of nand block "
355 			"size %08x!\n", mtd->erasesize);
356 		ret = -1;
357 		goto out;
358 	}
359 
360 	/*
361 	 * Set length so that the last address is set to the
362 	 * starting address of the last block
363 	 */
364 	length -= mtd->erasesize;
365 
366 	/* submit address of first page to unlock */
367 	chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
368 
369 	/* submit ADDRESS of LAST page to unlock */
370 	page += (int)(length >> chip->page_shift);
371 
372 	/*
373 	 * Page addresses for unlocking are supposed to be block-aligned.
374 	 * At least some NAND chips use the low bit to indicate that the
375 	 * page range should be inverted.
376 	 */
377 	if (allexcept)
378 		page |= 1;
379 
380 	chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask);
381 
382 	/* call wait ready function */
383 	status = chip->waitfunc(mtd, chip);
384 	/* see if device thinks it succeeded */
385 	if (status & 0x01) {
386 		/* there was an error */
387 		ret = -1;
388 		goto out;
389 	}
390 
391  out:
392 	/* de-select the NAND device */
393 	chip->select_chip(mtd, -1);
394 	return ret;
395 }
396 #endif
397 
398 /**
399  * check_skip_len
400  *
401  * Check if there are any bad blocks, and whether length including bad
402  * blocks fits into device
403  *
404  * @param mtd nand mtd instance
405  * @param offset offset in flash
406  * @param length image length
407  * @param used length of flash needed for the requested length
408  * @return 0 if the image fits and there are no bad blocks
409  *         1 if the image fits, but there are bad blocks
410  *        -1 if the image does not fit
411  */
check_skip_len(struct mtd_info * mtd,loff_t offset,size_t length,size_t * used)412 static int check_skip_len(struct mtd_info *mtd, loff_t offset, size_t length,
413 			  size_t *used)
414 {
415 	size_t len_excl_bad = 0;
416 	int ret = 0;
417 
418 	while (len_excl_bad < length) {
419 		size_t block_len, block_off;
420 		loff_t block_start;
421 
422 		if (offset >= mtd->size)
423 			return -1;
424 
425 		block_start = offset & ~(loff_t)(mtd->erasesize - 1);
426 		block_off = offset & (mtd->erasesize - 1);
427 		block_len = mtd->erasesize - block_off;
428 
429 		if (!nand_block_isbad(mtd, block_start))
430 			len_excl_bad += block_len;
431 		else
432 			ret = 1;
433 
434 		offset += block_len;
435 		*used += block_len;
436 	}
437 
438 	/* If the length is not a multiple of block_len, adjust. */
439 	if (len_excl_bad > length)
440 		*used -= (len_excl_bad - length);
441 
442 	return ret;
443 }
444 
445 #ifdef CONFIG_CMD_NAND_TRIMFFS
drop_ffs(const struct mtd_info * mtd,const u_char * buf,const size_t * len)446 static size_t drop_ffs(const struct mtd_info *mtd, const u_char *buf,
447 			const size_t *len)
448 {
449 	size_t l = *len;
450 	ssize_t i;
451 
452 	for (i = l - 1; i >= 0; i--)
453 		if (buf[i] != 0xFF)
454 			break;
455 
456 	/* The resulting length must be aligned to the minimum flash I/O size */
457 	l = i + 1;
458 	l = (l + mtd->writesize - 1) / mtd->writesize;
459 	l *=  mtd->writesize;
460 
461 	/*
462 	 * since the input length may be unaligned, prevent access past the end
463 	 * of the buffer
464 	 */
465 	return min(l, *len);
466 }
467 #endif
468 
469 /**
470  * nand_verify_page_oob:
471  *
472  * Verify a page of NAND flash, including the OOB.
473  * Reads page of NAND and verifies the contents and OOB against the
474  * values in ops.
475  *
476  * @param mtd		nand mtd instance
477  * @param ops		MTD operations, including data to verify
478  * @param ofs		offset in flash
479  * @return		0 in case of success
480  */
nand_verify_page_oob(struct mtd_info * mtd,struct mtd_oob_ops * ops,loff_t ofs)481 int nand_verify_page_oob(struct mtd_info *mtd, struct mtd_oob_ops *ops,
482 			 loff_t ofs)
483 {
484 	int rval;
485 	struct mtd_oob_ops vops;
486 	size_t verlen = mtd->writesize + mtd->oobsize;
487 
488 	memcpy(&vops, ops, sizeof(vops));
489 
490 	vops.datbuf = memalign(ARCH_DMA_MINALIGN, verlen);
491 
492 	if (!vops.datbuf)
493 		return -ENOMEM;
494 
495 	vops.oobbuf = vops.datbuf + mtd->writesize;
496 
497 	rval = mtd_read_oob(mtd, ofs, &vops);
498 	if (!rval)
499 		rval = memcmp(ops->datbuf, vops.datbuf, vops.len);
500 	if (!rval)
501 		rval = memcmp(ops->oobbuf, vops.oobbuf, vops.ooblen);
502 
503 	free(vops.datbuf);
504 
505 	return rval ? -EIO : 0;
506 }
507 
508 /**
509  * nand_verify:
510  *
511  * Verify a region of NAND flash.
512  * Reads NAND in page-sized chunks and verifies the contents against
513  * the contents of a buffer.  The offset into the NAND must be
514  * page-aligned, and the function doesn't handle skipping bad blocks.
515  *
516  * @param mtd		nand mtd instance
517  * @param ofs		offset in flash
518  * @param len		buffer length
519  * @param buf		buffer to read from
520  * @return		0 in case of success
521  */
nand_verify(struct mtd_info * mtd,loff_t ofs,size_t len,u_char * buf)522 int nand_verify(struct mtd_info *mtd, loff_t ofs, size_t len, u_char *buf)
523 {
524 	int rval = 0;
525 	size_t verofs;
526 	size_t verlen = mtd->writesize;
527 	uint8_t *verbuf = memalign(ARCH_DMA_MINALIGN, verlen);
528 
529 	if (!verbuf)
530 		return -ENOMEM;
531 
532 	/* Read the NAND back in page-size groups to limit malloc size */
533 	for (verofs = ofs; verofs < ofs + len;
534 	     verofs += verlen, buf += verlen) {
535 		verlen = min(mtd->writesize, (uint32_t)(ofs + len - verofs));
536 		rval = nand_read(mtd, verofs, &verlen, verbuf);
537 		if (!rval || (rval == -EUCLEAN))
538 			rval = memcmp(buf, verbuf, verlen);
539 
540 		if (rval)
541 			break;
542 	}
543 
544 	free(verbuf);
545 
546 	return rval ? -EIO : 0;
547 }
548 
549 /**
550  * nand_write_skip_bad:
551  *
552  * Write image to NAND flash.
553  * Blocks that are marked bad are skipped and the is written to the next
554  * block instead as long as the image is short enough to fit even after
555  * skipping the bad blocks.  Due to bad blocks we may not be able to
556  * perform the requested write.  In the case where the write would
557  * extend beyond the end of the NAND device, both length and actual (if
558  * not NULL) are set to 0.  In the case where the write would extend
559  * beyond the limit we are passed, length is set to 0 and actual is set
560  * to the required length.
561  *
562  * @param mtd		nand mtd instance
563  * @param offset	offset in flash
564  * @param length	buffer length
565  * @param actual	set to size required to write length worth of
566  *			buffer or 0 on error, if not NULL
567  * @param lim		maximum size that actual may be in order to not
568  *			exceed the buffer
569  * @param buffer        buffer to read from
570  * @param flags		flags modifying the behaviour of the write to NAND
571  * @return		0 in case of success
572  */
nand_write_skip_bad(struct mtd_info * mtd,loff_t offset,size_t * length,size_t * actual,loff_t lim,u_char * buffer,int flags)573 int nand_write_skip_bad(struct mtd_info *mtd, loff_t offset, size_t *length,
574 			size_t *actual, loff_t lim, u_char *buffer, int flags)
575 {
576 	int rval = 0, blocksize;
577 	size_t left_to_write = *length;
578 	size_t used_for_write = 0;
579 	u_char *p_buffer = buffer;
580 	int need_skip;
581 
582 	if (actual)
583 		*actual = 0;
584 
585 	blocksize = mtd->erasesize;
586 
587 	/*
588 	 * nand_write() handles unaligned, partial page writes.
589 	 *
590 	 * We allow length to be unaligned, for convenience in
591 	 * using the $filesize variable.
592 	 *
593 	 * However, starting at an unaligned offset makes the
594 	 * semantics of bad block skipping ambiguous (really,
595 	 * you should only start a block skipping access at a
596 	 * partition boundary).  So don't try to handle that.
597 	 */
598 	if ((offset & (mtd->writesize - 1)) != 0) {
599 		printf("Attempt to write non page-aligned data\n");
600 		*length = 0;
601 		return -EINVAL;
602 	}
603 
604 	need_skip = check_skip_len(mtd, offset, *length, &used_for_write);
605 
606 	if (actual)
607 		*actual = used_for_write;
608 
609 	if (need_skip < 0) {
610 		printf("Attempt to write outside the flash area\n");
611 		*length = 0;
612 		return -EINVAL;
613 	}
614 
615 	if (used_for_write > lim) {
616 		puts("Size of write exceeds partition or device limit\n");
617 		*length = 0;
618 		return -EFBIG;
619 	}
620 
621 	if (!need_skip && !(flags & WITH_DROP_FFS)) {
622 		rval = nand_write(mtd, offset, length, buffer);
623 
624 		if ((flags & WITH_WR_VERIFY) && !rval)
625 			rval = nand_verify(mtd, offset, *length, buffer);
626 
627 		if (rval == 0)
628 			return 0;
629 
630 		*length = 0;
631 		printf("NAND write to offset %llx failed %d\n",
632 			offset, rval);
633 		return rval;
634 	}
635 
636 	while (left_to_write > 0) {
637 		loff_t block_start = offset & ~(loff_t)(mtd->erasesize - 1);
638 		size_t block_offset = offset & (mtd->erasesize - 1);
639 		size_t write_size, truncated_write_size;
640 
641 		WATCHDOG_RESET();
642 
643 		if (nand_block_isbad(mtd, block_start)) {
644 			printf("Skip bad block 0x%08llx\n", block_start);
645 			offset += mtd->erasesize - block_offset;
646 			continue;
647 		}
648 
649 		if (left_to_write < (blocksize - block_offset))
650 			write_size = left_to_write;
651 		else
652 			write_size = blocksize - block_offset;
653 
654 		truncated_write_size = write_size;
655 #ifdef CONFIG_CMD_NAND_TRIMFFS
656 		if (flags & WITH_DROP_FFS)
657 			truncated_write_size = drop_ffs(mtd, p_buffer,
658 					&write_size);
659 #endif
660 
661 		rval = nand_write(mtd, offset, &truncated_write_size,
662 				p_buffer);
663 
664 		if ((flags & WITH_WR_VERIFY) && !rval)
665 			rval = nand_verify(mtd, offset,
666 				truncated_write_size, p_buffer);
667 
668 		offset += write_size;
669 		p_buffer += write_size;
670 
671 		if (rval != 0) {
672 			printf("NAND write to offset %llx failed %d\n",
673 				offset, rval);
674 			*length -= left_to_write;
675 			return rval;
676 		}
677 
678 		left_to_write -= write_size;
679 	}
680 
681 	return 0;
682 }
683 
684 /**
685  * nand_read_skip_bad:
686  *
687  * Read image from NAND flash.
688  * Blocks that are marked bad are skipped and the next block is read
689  * instead as long as the image is short enough to fit even after
690  * skipping the bad blocks.  Due to bad blocks we may not be able to
691  * perform the requested read.  In the case where the read would extend
692  * beyond the end of the NAND device, both length and actual (if not
693  * NULL) are set to 0.  In the case where the read would extend beyond
694  * the limit we are passed, length is set to 0 and actual is set to the
695  * required length.
696  *
697  * @param mtd nand mtd instance
698  * @param offset offset in flash
699  * @param length buffer length, on return holds number of read bytes
700  * @param actual set to size required to read length worth of buffer or 0
701  * on error, if not NULL
702  * @param lim maximum size that actual may be in order to not exceed the
703  * buffer
704  * @param buffer buffer to write to
705  * @return 0 in case of success
706  */
nand_read_skip_bad(struct mtd_info * mtd,loff_t offset,size_t * length,size_t * actual,loff_t lim,u_char * buffer)707 int nand_read_skip_bad(struct mtd_info *mtd, loff_t offset, size_t *length,
708 		       size_t *actual, loff_t lim, u_char *buffer)
709 {
710 	int rval;
711 	size_t left_to_read = *length;
712 	size_t used_for_read = 0;
713 	u_char *p_buffer = buffer;
714 	int need_skip;
715 
716 	if ((offset & (mtd->writesize - 1)) != 0) {
717 		printf("Attempt to read non page-aligned data\n");
718 		*length = 0;
719 		if (actual)
720 			*actual = 0;
721 		return -EINVAL;
722 	}
723 
724 	need_skip = check_skip_len(mtd, offset, *length, &used_for_read);
725 
726 	if (actual)
727 		*actual = used_for_read;
728 
729 	if (need_skip < 0) {
730 		printf("Attempt to read outside the flash area\n");
731 		*length = 0;
732 		return -EINVAL;
733 	}
734 
735 	if (used_for_read > lim) {
736 		puts("Size of read exceeds partition or device limit\n");
737 		*length = 0;
738 		return -EFBIG;
739 	}
740 
741 	if (!need_skip) {
742 		rval = nand_read(mtd, offset, length, buffer);
743 		if (!rval || rval == -EUCLEAN)
744 			return 0;
745 
746 		*length = 0;
747 		printf("NAND read from offset %llx failed %d\n",
748 			offset, rval);
749 		return rval;
750 	}
751 
752 	while (left_to_read > 0) {
753 		size_t block_offset = offset & (mtd->erasesize - 1);
754 		size_t read_length;
755 
756 		WATCHDOG_RESET();
757 
758 		if (nand_block_isbad(mtd, offset & ~(mtd->erasesize - 1))) {
759 			printf("Skipping bad block 0x%08llx\n",
760 				offset & ~(mtd->erasesize - 1));
761 			offset += mtd->erasesize - block_offset;
762 			continue;
763 		}
764 
765 		if (left_to_read < (mtd->erasesize - block_offset))
766 			read_length = left_to_read;
767 		else
768 			read_length = mtd->erasesize - block_offset;
769 
770 		rval = nand_read(mtd, offset, &read_length, p_buffer);
771 		if (rval && rval != -EUCLEAN) {
772 			printf("NAND read from offset %llx failed %d\n",
773 				offset, rval);
774 			*length -= left_to_read;
775 			return rval;
776 		}
777 
778 		left_to_read -= read_length;
779 		offset       += read_length;
780 		p_buffer     += read_length;
781 	}
782 
783 	return 0;
784 }
785 
786 #ifdef CONFIG_CMD_NAND_TORTURE
787 
788 /**
789  * check_pattern:
790  *
791  * Check if buffer contains only a certain byte pattern.
792  *
793  * @param buf buffer to check
794  * @param patt the pattern to check
795  * @param size buffer size in bytes
796  * @return 1 if there are only patt bytes in buf
797  *         0 if something else was found
798  */
check_pattern(const u_char * buf,u_char patt,int size)799 static int check_pattern(const u_char *buf, u_char patt, int size)
800 {
801 	int i;
802 
803 	for (i = 0; i < size; i++)
804 		if (buf[i] != patt)
805 			return 0;
806 	return 1;
807 }
808 
809 /**
810  * nand_torture:
811  *
812  * Torture a block of NAND flash.
813  * This is useful to determine if a block that caused a write error is still
814  * good or should be marked as bad.
815  *
816  * @param mtd nand mtd instance
817  * @param offset offset in flash
818  * @return 0 if the block is still good
819  */
nand_torture(struct mtd_info * mtd,loff_t offset)820 int nand_torture(struct mtd_info *mtd, loff_t offset)
821 {
822 	u_char patterns[] = {0xa5, 0x5a, 0x00};
823 	struct erase_info instr = {
824 		.mtd = mtd,
825 		.addr = offset,
826 		.len = mtd->erasesize,
827 	};
828 	size_t retlen;
829 	int err, ret = -1, i, patt_count;
830 	u_char *buf;
831 
832 	if ((offset & (mtd->erasesize - 1)) != 0) {
833 		puts("Attempt to torture a block at a non block-aligned offset\n");
834 		return -EINVAL;
835 	}
836 
837 	if (offset + mtd->erasesize > mtd->size) {
838 		puts("Attempt to torture a block outside the flash area\n");
839 		return -EINVAL;
840 	}
841 
842 	patt_count = ARRAY_SIZE(patterns);
843 
844 	buf = malloc_cache_aligned(mtd->erasesize);
845 	if (buf == NULL) {
846 		puts("Out of memory for erase block buffer\n");
847 		return -ENOMEM;
848 	}
849 
850 	for (i = 0; i < patt_count; i++) {
851 		err = mtd_erase(mtd, &instr);
852 		if (err) {
853 			printf("%s: erase() failed for block at 0x%llx: %d\n",
854 				mtd->name, instr.addr, err);
855 			goto out;
856 		}
857 
858 		/* Make sure the block contains only 0xff bytes */
859 		err = mtd_read(mtd, offset, mtd->erasesize, &retlen, buf);
860 		if ((err && err != -EUCLEAN) || retlen != mtd->erasesize) {
861 			printf("%s: read() failed for block at 0x%llx: %d\n",
862 				mtd->name, instr.addr, err);
863 			goto out;
864 		}
865 
866 		err = check_pattern(buf, 0xff, mtd->erasesize);
867 		if (!err) {
868 			printf("Erased block at 0x%llx, but a non-0xff byte was found\n",
869 				offset);
870 			ret = -EIO;
871 			goto out;
872 		}
873 
874 		/* Write a pattern and check it */
875 		memset(buf, patterns[i], mtd->erasesize);
876 		err = mtd_write(mtd, offset, mtd->erasesize, &retlen, buf);
877 		if (err || retlen != mtd->erasesize) {
878 			printf("%s: write() failed for block at 0x%llx: %d\n",
879 				mtd->name, instr.addr, err);
880 			goto out;
881 		}
882 
883 		err = mtd_read(mtd, offset, mtd->erasesize, &retlen, buf);
884 		if ((err && err != -EUCLEAN) || retlen != mtd->erasesize) {
885 			printf("%s: read() failed for block at 0x%llx: %d\n",
886 				mtd->name, instr.addr, err);
887 			goto out;
888 		}
889 
890 		err = check_pattern(buf, patterns[i], mtd->erasesize);
891 		if (!err) {
892 			printf("Pattern 0x%.2x checking failed for block at "
893 					"0x%llx\n", patterns[i], offset);
894 			ret = -EIO;
895 			goto out;
896 		}
897 	}
898 
899 	ret = 0;
900 
901 out:
902 	free(buf);
903 	return ret;
904 }
905 
906 #endif
907