1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (C) STMicroelectronics 2019
4  * Author: Christophe Kerello <christophe.kerello@st.com>
5  */
6 
7 #define LOG_CATEGORY UCLASS_MTD
8 
9 #include <common.h>
10 #include <clk.h>
11 #include <dm.h>
12 #include <log.h>
13 #include <nand.h>
14 #include <reset.h>
15 #include <dm/device_compat.h>
16 #include <linux/bitfield.h>
17 #include <linux/bitops.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/iopoll.h>
21 #include <linux/ioport.h>
22 #include <linux/mtd/rawnand.h>
23 
24 /* Bad block marker length */
25 #define FMC2_BBM_LEN			2
26 
27 /* ECC step size */
28 #define FMC2_ECC_STEP_SIZE		512
29 
30 /* Command delay */
31 #define FMC2_RB_DELAY_US		30
32 
33 /* Max chip enable */
34 #define FMC2_MAX_CE			2
35 
36 /* Timings */
37 #define FMC2_THIZ			1
38 #define FMC2_TIO			8000
39 #define FMC2_TSYNC			3000
40 #define FMC2_PCR_TIMING_MASK		0xf
41 #define FMC2_PMEM_PATT_TIMING_MASK	0xff
42 
43 /* FMC2 Controller Registers */
44 #define FMC2_BCR1			0x0
45 #define FMC2_PCR			0x80
46 #define FMC2_SR				0x84
47 #define FMC2_PMEM			0x88
48 #define FMC2_PATT			0x8c
49 #define FMC2_HECCR			0x94
50 #define FMC2_BCHISR			0x254
51 #define FMC2_BCHICR			0x258
52 #define FMC2_BCHPBR1			0x260
53 #define FMC2_BCHPBR2			0x264
54 #define FMC2_BCHPBR3			0x268
55 #define FMC2_BCHPBR4			0x26c
56 #define FMC2_BCHDSR0			0x27c
57 #define FMC2_BCHDSR1			0x280
58 #define FMC2_BCHDSR2			0x284
59 #define FMC2_BCHDSR3			0x288
60 #define FMC2_BCHDSR4			0x28c
61 
62 /* Register: FMC2_BCR1 */
63 #define FMC2_BCR1_FMC2EN		BIT(31)
64 
65 /* Register: FMC2_PCR */
66 #define FMC2_PCR_PWAITEN		BIT(1)
67 #define FMC2_PCR_PBKEN			BIT(2)
68 #define FMC2_PCR_PWID			GENMASK(5, 4)
69 #define FMC2_PCR_PWID_BUSWIDTH_8	0
70 #define FMC2_PCR_PWID_BUSWIDTH_16	1
71 #define FMC2_PCR_ECCEN			BIT(6)
72 #define FMC2_PCR_ECCALG			BIT(8)
73 #define FMC2_PCR_TCLR			GENMASK(12, 9)
74 #define FMC2_PCR_TCLR_DEFAULT		0xf
75 #define FMC2_PCR_TAR			GENMASK(16, 13)
76 #define FMC2_PCR_TAR_DEFAULT		0xf
77 #define FMC2_PCR_ECCSS			GENMASK(19, 17)
78 #define FMC2_PCR_ECCSS_512		1
79 #define FMC2_PCR_ECCSS_2048		3
80 #define FMC2_PCR_BCHECC			BIT(24)
81 #define FMC2_PCR_WEN			BIT(25)
82 
83 /* Register: FMC2_SR */
84 #define FMC2_SR_NWRF			BIT(6)
85 
86 /* Register: FMC2_PMEM */
87 #define FMC2_PMEM_MEMSET		GENMASK(7, 0)
88 #define FMC2_PMEM_MEMWAIT		GENMASK(15, 8)
89 #define FMC2_PMEM_MEMHOLD		GENMASK(23, 16)
90 #define FMC2_PMEM_MEMHIZ		GENMASK(31, 24)
91 #define FMC2_PMEM_DEFAULT		0x0a0a0a0a
92 
93 /* Register: FMC2_PATT */
94 #define FMC2_PATT_ATTSET		GENMASK(7, 0)
95 #define FMC2_PATT_ATTWAIT		GENMASK(15, 8)
96 #define FMC2_PATT_ATTHOLD		GENMASK(23, 16)
97 #define FMC2_PATT_ATTHIZ		GENMASK(31, 24)
98 #define FMC2_PATT_DEFAULT		0x0a0a0a0a
99 
100 /* Register: FMC2_BCHISR */
101 #define FMC2_BCHISR_DERF		BIT(1)
102 #define FMC2_BCHISR_EPBRF		BIT(4)
103 
104 /* Register: FMC2_BCHICR */
105 #define FMC2_BCHICR_CLEAR_IRQ		GENMASK(4, 0)
106 
107 /* Register: FMC2_BCHDSR0 */
108 #define FMC2_BCHDSR0_DUE		BIT(0)
109 #define FMC2_BCHDSR0_DEF		BIT(1)
110 #define FMC2_BCHDSR0_DEN		GENMASK(7, 4)
111 
112 /* Register: FMC2_BCHDSR1 */
113 #define FMC2_BCHDSR1_EBP1		GENMASK(12, 0)
114 #define FMC2_BCHDSR1_EBP2		GENMASK(28, 16)
115 
116 /* Register: FMC2_BCHDSR2 */
117 #define FMC2_BCHDSR2_EBP3		GENMASK(12, 0)
118 #define FMC2_BCHDSR2_EBP4		GENMASK(28, 16)
119 
120 /* Register: FMC2_BCHDSR3 */
121 #define FMC2_BCHDSR3_EBP5		GENMASK(12, 0)
122 #define FMC2_BCHDSR3_EBP6		GENMASK(28, 16)
123 
124 /* Register: FMC2_BCHDSR4 */
125 #define FMC2_BCHDSR4_EBP7		GENMASK(12, 0)
126 #define FMC2_BCHDSR4_EBP8		GENMASK(28, 16)
127 
128 #define FMC2_NSEC_PER_SEC		1000000000L
129 
130 #define FMC2_TIMEOUT_5S			5000000
131 
132 enum stm32_fmc2_ecc {
133 	FMC2_ECC_HAM = 1,
134 	FMC2_ECC_BCH4 = 4,
135 	FMC2_ECC_BCH8 = 8
136 };
137 
138 struct stm32_fmc2_timings {
139 	u8 tclr;
140 	u8 tar;
141 	u8 thiz;
142 	u8 twait;
143 	u8 thold_mem;
144 	u8 tset_mem;
145 	u8 thold_att;
146 	u8 tset_att;
147 };
148 
149 struct stm32_fmc2_nand {
150 	struct nand_chip chip;
151 	struct stm32_fmc2_timings timings;
152 	int ncs;
153 	int cs_used[FMC2_MAX_CE];
154 };
155 
to_fmc2_nand(struct nand_chip * chip)156 static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
157 {
158 	return container_of(chip, struct stm32_fmc2_nand, chip);
159 }
160 
161 struct stm32_fmc2_nfc {
162 	struct nand_hw_control base;
163 	struct stm32_fmc2_nand nand;
164 	struct nand_ecclayout ecclayout;
165 	fdt_addr_t io_base;
166 	fdt_addr_t data_base[FMC2_MAX_CE];
167 	fdt_addr_t cmd_base[FMC2_MAX_CE];
168 	fdt_addr_t addr_base[FMC2_MAX_CE];
169 	struct clk clk;
170 
171 	u8 cs_assigned;
172 	int cs_sel;
173 };
174 
to_stm32_nfc(struct nand_hw_control * base)175 static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_hw_control *base)
176 {
177 	return container_of(base, struct stm32_fmc2_nfc, base);
178 }
179 
stm32_fmc2_nfc_timings_init(struct nand_chip * chip)180 static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip)
181 {
182 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
183 	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
184 	struct stm32_fmc2_timings *timings = &nand->timings;
185 	u32 pmem, patt;
186 
187 	/* Set tclr/tar timings */
188 	clrsetbits_le32(nfc->io_base + FMC2_PCR,
189 			FMC2_PCR_TCLR | FMC2_PCR_TAR,
190 			FIELD_PREP(FMC2_PCR_TCLR, timings->tclr) |
191 			FIELD_PREP(FMC2_PCR_TAR, timings->tar));
192 
193 	/* Set tset/twait/thold/thiz timings in common bank */
194 	pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem);
195 	pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait);
196 	pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem);
197 	pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz);
198 	writel(pmem, nfc->io_base + FMC2_PMEM);
199 
200 	/* Set tset/twait/thold/thiz timings in attribut bank */
201 	patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att);
202 	patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait);
203 	patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att);
204 	patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz);
205 	writel(patt, nfc->io_base + FMC2_PATT);
206 }
207 
stm32_fmc2_nfc_setup(struct nand_chip * chip)208 static void stm32_fmc2_nfc_setup(struct nand_chip *chip)
209 {
210 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
211 	u32 pcr = 0, pcr_mask;
212 
213 	/* Configure ECC algorithm (default configuration is Hamming) */
214 	pcr_mask = FMC2_PCR_ECCALG;
215 	pcr_mask |= FMC2_PCR_BCHECC;
216 	if (chip->ecc.strength == FMC2_ECC_BCH8) {
217 		pcr |= FMC2_PCR_ECCALG;
218 		pcr |= FMC2_PCR_BCHECC;
219 	} else if (chip->ecc.strength == FMC2_ECC_BCH4) {
220 		pcr |= FMC2_PCR_ECCALG;
221 	}
222 
223 	/* Set buswidth */
224 	pcr_mask |= FMC2_PCR_PWID;
225 	if (chip->options & NAND_BUSWIDTH_16)
226 		pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16);
227 
228 	/* Set ECC sector size */
229 	pcr_mask |= FMC2_PCR_ECCSS;
230 	pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512);
231 
232 	clrsetbits_le32(nfc->io_base + FMC2_PCR, pcr_mask, pcr);
233 }
234 
stm32_fmc2_nfc_select_chip(struct mtd_info * mtd,int chipnr)235 static void stm32_fmc2_nfc_select_chip(struct mtd_info *mtd, int chipnr)
236 {
237 	struct nand_chip *chip = mtd_to_nand(mtd);
238 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
239 	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
240 
241 	if (chipnr < 0 || chipnr >= nand->ncs)
242 		return;
243 
244 	if (nand->cs_used[chipnr] == nfc->cs_sel)
245 		return;
246 
247 	nfc->cs_sel = nand->cs_used[chipnr];
248 	chip->IO_ADDR_R = (void __iomem *)nfc->data_base[nfc->cs_sel];
249 	chip->IO_ADDR_W = (void __iomem *)nfc->data_base[nfc->cs_sel];
250 
251 	stm32_fmc2_nfc_setup(chip);
252 	stm32_fmc2_nfc_timings_init(chip);
253 }
254 
stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc * nfc,bool set)255 static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc,
256 					   bool set)
257 {
258 	u32 pcr;
259 
260 	pcr = set ? FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16) :
261 		    FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_8);
262 
263 	clrsetbits_le32(nfc->io_base + FMC2_PCR, FMC2_PCR_PWID, pcr);
264 }
265 
stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc * nfc,bool enable)266 static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable)
267 {
268 	clrsetbits_le32(nfc->io_base + FMC2_PCR, FMC2_PCR_ECCEN,
269 			enable ? FMC2_PCR_ECCEN : 0);
270 }
271 
stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc * nfc)272 static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc)
273 {
274 	writel(FMC2_BCHICR_CLEAR_IRQ, nfc->io_base + FMC2_BCHICR);
275 }
276 
stm32_fmc2_nfc_cmd_ctrl(struct mtd_info * mtd,int cmd,unsigned int ctrl)277 static void stm32_fmc2_nfc_cmd_ctrl(struct mtd_info *mtd, int cmd,
278 				    unsigned int ctrl)
279 {
280 	struct nand_chip *chip = mtd_to_nand(mtd);
281 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
282 
283 	if (cmd == NAND_CMD_NONE)
284 		return;
285 
286 	if (ctrl & NAND_CLE) {
287 		writeb(cmd, nfc->cmd_base[nfc->cs_sel]);
288 		return;
289 	}
290 
291 	writeb(cmd, nfc->addr_base[nfc->cs_sel]);
292 }
293 
294 /*
295  * Enable ECC logic and reset syndrome/parity bits previously calculated
296  * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
297  */
stm32_fmc2_nfc_hwctl(struct mtd_info * mtd,int mode)298 static void stm32_fmc2_nfc_hwctl(struct mtd_info *mtd, int mode)
299 {
300 	struct nand_chip *chip = mtd_to_nand(mtd);
301 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
302 
303 	stm32_fmc2_nfc_set_ecc(nfc, false);
304 
305 	if (chip->ecc.strength != FMC2_ECC_HAM) {
306 		clrsetbits_le32(nfc->io_base + FMC2_PCR, FMC2_PCR_WEN,
307 				mode == NAND_ECC_WRITE ? FMC2_PCR_WEN : 0);
308 
309 		stm32_fmc2_nfc_clear_bch_irq(nfc);
310 	}
311 
312 	stm32_fmc2_nfc_set_ecc(nfc, true);
313 }
314 
315 /*
316  * ECC Hamming calculation
317  * ECC is 3 bytes for 512 bytes of data (supports error correction up to
318  * max of 1-bit)
319  */
stm32_fmc2_nfc_ham_calculate(struct mtd_info * mtd,const u8 * data,u8 * ecc)320 static int stm32_fmc2_nfc_ham_calculate(struct mtd_info *mtd, const u8 *data,
321 					u8 *ecc)
322 {
323 	struct nand_chip *chip = mtd_to_nand(mtd);
324 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
325 	u32 heccr, sr;
326 	int ret;
327 
328 	ret = readl_poll_timeout(nfc->io_base + FMC2_SR, sr,
329 				 sr & FMC2_SR_NWRF, FMC2_TIMEOUT_5S);
330 	if (ret < 0) {
331 		log_err("Ham timeout\n");
332 		return ret;
333 	}
334 
335 	heccr = readl(nfc->io_base + FMC2_HECCR);
336 
337 	ecc[0] = heccr;
338 	ecc[1] = heccr >> 8;
339 	ecc[2] = heccr >> 16;
340 
341 	stm32_fmc2_nfc_set_ecc(nfc, false);
342 
343 	return 0;
344 }
345 
stm32_fmc2_nfc_ham_correct(struct mtd_info * mtd,u8 * dat,u8 * read_ecc,u8 * calc_ecc)346 static int stm32_fmc2_nfc_ham_correct(struct mtd_info *mtd, u8 *dat,
347 				      u8 *read_ecc, u8 *calc_ecc)
348 {
349 	u8 bit_position = 0, b0, b1, b2;
350 	u32 byte_addr = 0, b;
351 	u32 i, shifting = 1;
352 
353 	/* Indicate which bit and byte is faulty (if any) */
354 	b0 = read_ecc[0] ^ calc_ecc[0];
355 	b1 = read_ecc[1] ^ calc_ecc[1];
356 	b2 = read_ecc[2] ^ calc_ecc[2];
357 	b = b0 | (b1 << 8) | (b2 << 16);
358 
359 	/* No errors */
360 	if (likely(!b))
361 		return 0;
362 
363 	/* Calculate bit position */
364 	for (i = 0; i < 3; i++) {
365 		switch (b % 4) {
366 		case 2:
367 			bit_position += shifting;
368 		case 1:
369 			break;
370 		default:
371 			return -EBADMSG;
372 		}
373 		shifting <<= 1;
374 		b >>= 2;
375 	}
376 
377 	/* Calculate byte position */
378 	shifting = 1;
379 	for (i = 0; i < 9; i++) {
380 		switch (b % 4) {
381 		case 2:
382 			byte_addr += shifting;
383 		case 1:
384 			break;
385 		default:
386 			return -EBADMSG;
387 		}
388 		shifting <<= 1;
389 		b >>= 2;
390 	}
391 
392 	/* Flip the bit */
393 	dat[byte_addr] ^= (1 << bit_position);
394 
395 	return 1;
396 }
397 
398 /*
399  * ECC BCH calculation and correction
400  * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
401  * max of 4-bit/8-bit)
402  */
403 
stm32_fmc2_nfc_bch_calculate(struct mtd_info * mtd,const u8 * data,u8 * ecc)404 static int stm32_fmc2_nfc_bch_calculate(struct mtd_info *mtd, const u8 *data,
405 					u8 *ecc)
406 {
407 	struct nand_chip *chip = mtd_to_nand(mtd);
408 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
409 	u32 bchpbr, bchisr;
410 	int ret;
411 
412 	/* Wait until the BCH code is ready */
413 	ret = readl_poll_timeout(nfc->io_base + FMC2_BCHISR, bchisr,
414 				 bchisr & FMC2_BCHISR_EPBRF, FMC2_TIMEOUT_5S);
415 	if (ret < 0) {
416 		log_err("Bch timeout\n");
417 		return ret;
418 	}
419 
420 	/* Read parity bits */
421 	bchpbr = readl(nfc->io_base + FMC2_BCHPBR1);
422 	ecc[0] = bchpbr;
423 	ecc[1] = bchpbr >> 8;
424 	ecc[2] = bchpbr >> 16;
425 	ecc[3] = bchpbr >> 24;
426 
427 	bchpbr = readl(nfc->io_base + FMC2_BCHPBR2);
428 	ecc[4] = bchpbr;
429 	ecc[5] = bchpbr >> 8;
430 	ecc[6] = bchpbr >> 16;
431 
432 	if (chip->ecc.strength == FMC2_ECC_BCH8) {
433 		ecc[7] = bchpbr >> 24;
434 
435 		bchpbr = readl(nfc->io_base + FMC2_BCHPBR3);
436 		ecc[8] = bchpbr;
437 		ecc[9] = bchpbr >> 8;
438 		ecc[10] = bchpbr >> 16;
439 		ecc[11] = bchpbr >> 24;
440 
441 		bchpbr = readl(nfc->io_base + FMC2_BCHPBR4);
442 		ecc[12] = bchpbr;
443 	}
444 
445 	stm32_fmc2_nfc_set_ecc(nfc, false);
446 
447 	return 0;
448 }
449 
stm32_fmc2_nfc_bch_correct(struct mtd_info * mtd,u8 * dat,u8 * read_ecc,u8 * calc_ecc)450 static int stm32_fmc2_nfc_bch_correct(struct mtd_info *mtd, u8 *dat,
451 				      u8 *read_ecc, u8 *calc_ecc)
452 {
453 	struct nand_chip *chip = mtd_to_nand(mtd);
454 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
455 	u32 bchdsr0, bchdsr1, bchdsr2, bchdsr3, bchdsr4, bchisr;
456 	u16 pos[8];
457 	int i, ret, den, eccsize = chip->ecc.size;
458 	unsigned int nb_errs = 0;
459 
460 	/* Wait until the decoding error is ready */
461 	ret = readl_poll_timeout(nfc->io_base + FMC2_BCHISR, bchisr,
462 				 bchisr & FMC2_BCHISR_DERF, FMC2_TIMEOUT_5S);
463 	if (ret < 0) {
464 		log_err("Bch timeout\n");
465 		return ret;
466 	}
467 
468 	bchdsr0 = readl(nfc->io_base + FMC2_BCHDSR0);
469 	bchdsr1 = readl(nfc->io_base + FMC2_BCHDSR1);
470 	bchdsr2 = readl(nfc->io_base + FMC2_BCHDSR2);
471 	bchdsr3 = readl(nfc->io_base + FMC2_BCHDSR3);
472 	bchdsr4 = readl(nfc->io_base + FMC2_BCHDSR4);
473 
474 	stm32_fmc2_nfc_set_ecc(nfc, false);
475 
476 	/* No errors found */
477 	if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
478 		return 0;
479 
480 	/* Too many errors detected */
481 	if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
482 		return -EBADMSG;
483 
484 	pos[0] = FIELD_GET(FMC2_BCHDSR1_EBP1, bchdsr1);
485 	pos[1] = FIELD_GET(FMC2_BCHDSR1_EBP2, bchdsr1);
486 	pos[2] = FIELD_GET(FMC2_BCHDSR2_EBP3, bchdsr2);
487 	pos[3] = FIELD_GET(FMC2_BCHDSR2_EBP4, bchdsr2);
488 	pos[4] = FIELD_GET(FMC2_BCHDSR3_EBP5, bchdsr3);
489 	pos[5] = FIELD_GET(FMC2_BCHDSR3_EBP6, bchdsr3);
490 	pos[6] = FIELD_GET(FMC2_BCHDSR4_EBP7, bchdsr4);
491 	pos[7] = FIELD_GET(FMC2_BCHDSR4_EBP8, bchdsr4);
492 
493 	den = FIELD_GET(FMC2_BCHDSR0_DEN, bchdsr0);
494 	for (i = 0; i < den; i++) {
495 		if (pos[i] < eccsize * 8) {
496 			__change_bit(pos[i], (unsigned long *)dat);
497 			nb_errs++;
498 		}
499 	}
500 
501 	return nb_errs;
502 }
503 
stm32_fmc2_nfc_read_page(struct mtd_info * mtd,struct nand_chip * chip,u8 * buf,int oob_required,int page)504 static int stm32_fmc2_nfc_read_page(struct mtd_info *mtd,
505 				    struct nand_chip *chip, u8 *buf,
506 				    int oob_required, int page)
507 {
508 	int i, s, stat, eccsize = chip->ecc.size;
509 	int eccbytes = chip->ecc.bytes;
510 	int eccsteps = chip->ecc.steps;
511 	int eccstrength = chip->ecc.strength;
512 	u8 *p = buf;
513 	u8 *ecc_calc = chip->buffers->ecccalc;
514 	u8 *ecc_code = chip->buffers->ecccode;
515 	unsigned int max_bitflips = 0;
516 
517 	for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
518 	     s++, i += eccbytes, p += eccsize) {
519 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
520 
521 		/* Read the nand page sector (512 bytes) */
522 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, s * eccsize, -1);
523 		chip->read_buf(mtd, p, eccsize);
524 
525 		/* Read the corresponding ECC bytes */
526 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, i, -1);
527 		chip->read_buf(mtd, ecc_code, eccbytes);
528 
529 		/* Correct the data */
530 		stat = chip->ecc.correct(mtd, p, ecc_code, ecc_calc);
531 		if (stat == -EBADMSG)
532 			/* Check for empty pages with bitflips */
533 			stat = nand_check_erased_ecc_chunk(p, eccsize,
534 							   ecc_code, eccbytes,
535 							   NULL, 0,
536 							   eccstrength);
537 
538 		if (stat < 0) {
539 			mtd->ecc_stats.failed++;
540 		} else {
541 			mtd->ecc_stats.corrected += stat;
542 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
543 		}
544 	}
545 
546 	/* Read oob */
547 	if (oob_required) {
548 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
549 		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
550 	}
551 
552 	return max_bitflips;
553 }
554 
stm32_fmc2_nfc_init(struct stm32_fmc2_nfc * nfc,bool has_parent)555 static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc, bool has_parent)
556 {
557 	u32 pcr = readl(nfc->io_base + FMC2_PCR);
558 
559 	/* Set CS used to undefined */
560 	nfc->cs_sel = -1;
561 
562 	/* Enable wait feature and nand flash memory bank */
563 	pcr |= FMC2_PCR_PWAITEN;
564 	pcr |= FMC2_PCR_PBKEN;
565 
566 	/* Set buswidth to 8 bits mode for identification */
567 	pcr &= ~FMC2_PCR_PWID;
568 
569 	/* ECC logic is disabled */
570 	pcr &= ~FMC2_PCR_ECCEN;
571 
572 	/* Default mode */
573 	pcr &= ~FMC2_PCR_ECCALG;
574 	pcr &= ~FMC2_PCR_BCHECC;
575 	pcr &= ~FMC2_PCR_WEN;
576 
577 	/* Set default ECC sector size */
578 	pcr &= ~FMC2_PCR_ECCSS;
579 	pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_2048);
580 
581 	/* Set default tclr/tar timings */
582 	pcr &= ~FMC2_PCR_TCLR;
583 	pcr |= FIELD_PREP(FMC2_PCR_TCLR, FMC2_PCR_TCLR_DEFAULT);
584 	pcr &= ~FMC2_PCR_TAR;
585 	pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT);
586 
587 	/* Enable FMC2 controller */
588 	if (!has_parent)
589 		setbits_le32(nfc->io_base + FMC2_BCR1, FMC2_BCR1_FMC2EN);
590 
591 	writel(pcr, nfc->io_base + FMC2_PCR);
592 	writel(FMC2_PMEM_DEFAULT, nfc->io_base + FMC2_PMEM);
593 	writel(FMC2_PATT_DEFAULT, nfc->io_base + FMC2_PATT);
594 }
595 
stm32_fmc2_nfc_calc_timings(struct nand_chip * chip,const struct nand_sdr_timings * sdrt)596 static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip,
597 					const struct nand_sdr_timings *sdrt)
598 {
599 	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
600 	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
601 	struct stm32_fmc2_timings *tims = &nand->timings;
602 	unsigned long hclk = clk_get_rate(&nfc->clk);
603 	unsigned long hclkp = FMC2_NSEC_PER_SEC / (hclk / 1000);
604 	unsigned long timing, tar, tclr, thiz, twait;
605 	unsigned long tset_mem, tset_att, thold_mem, thold_att;
606 
607 	tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
608 	timing = DIV_ROUND_UP(tar, hclkp) - 1;
609 	tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
610 
611 	tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
612 	timing = DIV_ROUND_UP(tclr, hclkp) - 1;
613 	tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
614 
615 	tims->thiz = FMC2_THIZ;
616 	thiz = (tims->thiz + 1) * hclkp;
617 
618 	/*
619 	 * tWAIT > tRP
620 	 * tWAIT > tWP
621 	 * tWAIT > tREA + tIO
622 	 */
623 	twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
624 	twait = max_t(unsigned long, twait, sdrt->tWP_min);
625 	twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
626 	timing = DIV_ROUND_UP(twait, hclkp);
627 	tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
628 
629 	/*
630 	 * tSETUP_MEM > tCS - tWAIT
631 	 * tSETUP_MEM > tALS - tWAIT
632 	 * tSETUP_MEM > tDS - (tWAIT - tHIZ)
633 	 */
634 	tset_mem = hclkp;
635 	if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
636 		tset_mem = sdrt->tCS_min - twait;
637 	if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
638 		tset_mem = sdrt->tALS_min - twait;
639 	if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
640 	    (tset_mem < sdrt->tDS_min - (twait - thiz)))
641 		tset_mem = sdrt->tDS_min - (twait - thiz);
642 	timing = DIV_ROUND_UP(tset_mem, hclkp);
643 	tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
644 
645 	/*
646 	 * tHOLD_MEM > tCH
647 	 * tHOLD_MEM > tREH - tSETUP_MEM
648 	 * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
649 	 */
650 	thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
651 	if (sdrt->tREH_min > tset_mem &&
652 	    (thold_mem < sdrt->tREH_min - tset_mem))
653 		thold_mem = sdrt->tREH_min - tset_mem;
654 	if ((sdrt->tRC_min > tset_mem + twait) &&
655 	    (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
656 		thold_mem = sdrt->tRC_min - (tset_mem + twait);
657 	if ((sdrt->tWC_min > tset_mem + twait) &&
658 	    (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
659 		thold_mem = sdrt->tWC_min - (tset_mem + twait);
660 	timing = DIV_ROUND_UP(thold_mem, hclkp);
661 	tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
662 
663 	/*
664 	 * tSETUP_ATT > tCS - tWAIT
665 	 * tSETUP_ATT > tCLS - tWAIT
666 	 * tSETUP_ATT > tALS - tWAIT
667 	 * tSETUP_ATT > tRHW - tHOLD_MEM
668 	 * tSETUP_ATT > tDS - (tWAIT - tHIZ)
669 	 */
670 	tset_att = hclkp;
671 	if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
672 		tset_att = sdrt->tCS_min - twait;
673 	if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
674 		tset_att = sdrt->tCLS_min - twait;
675 	if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
676 		tset_att = sdrt->tALS_min - twait;
677 	if (sdrt->tRHW_min > thold_mem &&
678 	    (tset_att < sdrt->tRHW_min - thold_mem))
679 		tset_att = sdrt->tRHW_min - thold_mem;
680 	if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
681 	    (tset_att < sdrt->tDS_min - (twait - thiz)))
682 		tset_att = sdrt->tDS_min - (twait - thiz);
683 	timing = DIV_ROUND_UP(tset_att, hclkp);
684 	tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
685 
686 	/*
687 	 * tHOLD_ATT > tALH
688 	 * tHOLD_ATT > tCH
689 	 * tHOLD_ATT > tCLH
690 	 * tHOLD_ATT > tCOH
691 	 * tHOLD_ATT > tDH
692 	 * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
693 	 * tHOLD_ATT > tADL - tSETUP_MEM
694 	 * tHOLD_ATT > tWH - tSETUP_MEM
695 	 * tHOLD_ATT > tWHR - tSETUP_MEM
696 	 * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
697 	 * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
698 	 */
699 	thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
700 	thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
701 	thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
702 	thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
703 	thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
704 	if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
705 	    (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
706 		thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
707 	if (sdrt->tADL_min > tset_mem &&
708 	    (thold_att < sdrt->tADL_min - tset_mem))
709 		thold_att = sdrt->tADL_min - tset_mem;
710 	if (sdrt->tWH_min > tset_mem &&
711 	    (thold_att < sdrt->tWH_min - tset_mem))
712 		thold_att = sdrt->tWH_min - tset_mem;
713 	if (sdrt->tWHR_min > tset_mem &&
714 	    (thold_att < sdrt->tWHR_min - tset_mem))
715 		thold_att = sdrt->tWHR_min - tset_mem;
716 	if ((sdrt->tRC_min > tset_att + twait) &&
717 	    (thold_att < sdrt->tRC_min - (tset_att + twait)))
718 		thold_att = sdrt->tRC_min - (tset_att + twait);
719 	if ((sdrt->tWC_min > tset_att + twait) &&
720 	    (thold_att < sdrt->tWC_min - (tset_att + twait)))
721 		thold_att = sdrt->tWC_min - (tset_att + twait);
722 	timing = DIV_ROUND_UP(thold_att, hclkp);
723 	tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
724 }
725 
stm32_fmc2_nfc_setup_interface(struct mtd_info * mtd,int chipnr,const struct nand_data_interface * cf)726 static int stm32_fmc2_nfc_setup_interface(struct mtd_info *mtd, int chipnr,
727 					  const struct nand_data_interface *cf)
728 {
729 	struct nand_chip *chip = mtd_to_nand(mtd);
730 	const struct nand_sdr_timings *sdrt;
731 
732 	sdrt = nand_get_sdr_timings(cf);
733 	if (IS_ERR(sdrt))
734 		return PTR_ERR(sdrt);
735 
736 	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
737 		return 0;
738 
739 	stm32_fmc2_nfc_calc_timings(chip, sdrt);
740 	stm32_fmc2_nfc_timings_init(chip);
741 
742 	return 0;
743 }
744 
stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip * chip)745 static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip)
746 {
747 	chip->ecc.hwctl = stm32_fmc2_nfc_hwctl;
748 
749 	/*
750 	 * Specific callbacks to read/write a page depending on
751 	 * the algo used (Hamming, BCH).
752 	 */
753 	if (chip->ecc.strength == FMC2_ECC_HAM) {
754 		/* Hamming is used */
755 		chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate;
756 		chip->ecc.correct = stm32_fmc2_nfc_ham_correct;
757 		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
758 		chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
759 		return;
760 	}
761 
762 	/* BCH is used */
763 	chip->ecc.read_page = stm32_fmc2_nfc_read_page;
764 	chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate;
765 	chip->ecc.correct = stm32_fmc2_nfc_bch_correct;
766 
767 	if (chip->ecc.strength == FMC2_ECC_BCH8)
768 		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
769 	else
770 		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
771 }
772 
stm32_fmc2_nfc_calc_ecc_bytes(int step_size,int strength)773 static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength)
774 {
775 	/* Hamming */
776 	if (strength == FMC2_ECC_HAM)
777 		return 4;
778 
779 	/* BCH8 */
780 	if (strength == FMC2_ECC_BCH8)
781 		return 14;
782 
783 	/* BCH4 */
784 	return 8;
785 }
786 
787 NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes,
788 		     FMC2_ECC_STEP_SIZE,
789 		     FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
790 
stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc * nfc,ofnode node)791 static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc, ofnode node)
792 {
793 	struct stm32_fmc2_nand *nand = &nfc->nand;
794 	u32 cs[FMC2_MAX_CE];
795 	int ret, i;
796 
797 	if (!ofnode_get_property(node, "reg", &nand->ncs))
798 		return -EINVAL;
799 
800 	nand->ncs /= sizeof(u32);
801 	if (!nand->ncs) {
802 		log_err("Invalid reg property size\n");
803 		return -EINVAL;
804 	}
805 
806 	ret = ofnode_read_u32_array(node, "reg", cs, nand->ncs);
807 	if (ret < 0) {
808 		log_err("Could not retrieve reg property\n");
809 		return -EINVAL;
810 	}
811 
812 	for (i = 0; i < nand->ncs; i++) {
813 		if (cs[i] >= FMC2_MAX_CE) {
814 			log_err("Invalid reg value: %d\n", nand->cs_used[i]);
815 			return -EINVAL;
816 		}
817 
818 		if (nfc->cs_assigned & BIT(cs[i])) {
819 			log_err("Cs already assigned: %d\n", nand->cs_used[i]);
820 			return -EINVAL;
821 		}
822 
823 		nfc->cs_assigned |= BIT(cs[i]);
824 		nand->cs_used[i] = cs[i];
825 	}
826 
827 	nand->chip.flash_node = node;
828 
829 	return 0;
830 }
831 
stm32_fmc2_nfc_parse_dt(struct udevice * dev,struct stm32_fmc2_nfc * nfc)832 static int stm32_fmc2_nfc_parse_dt(struct udevice *dev,
833 				   struct stm32_fmc2_nfc *nfc)
834 {
835 	ofnode child;
836 	int ret, nchips = 0;
837 
838 	dev_for_each_subnode(child, dev)
839 		nchips++;
840 
841 	if (!nchips) {
842 		log_err("NAND chip not defined\n");
843 		return -EINVAL;
844 	}
845 
846 	if (nchips > 1) {
847 		log_err("Too many NAND chips defined\n");
848 		return -EINVAL;
849 	}
850 
851 	dev_for_each_subnode(child, dev) {
852 		ret = stm32_fmc2_nfc_parse_child(nfc, child);
853 		if (ret)
854 			return ret;
855 	}
856 
857 	return 0;
858 }
859 
stm32_fmc2_nfc_get_cdev(struct udevice * dev)860 static struct udevice *stm32_fmc2_nfc_get_cdev(struct udevice *dev)
861 {
862 	struct udevice *pdev = dev_get_parent(dev);
863 	struct udevice *cdev = NULL;
864 	bool ebi_found = false;
865 
866 	if (pdev && ofnode_device_is_compatible(dev_ofnode(pdev),
867 						"st,stm32mp1-fmc2-ebi"))
868 		ebi_found = true;
869 
870 	if (ofnode_device_is_compatible(dev_ofnode(dev),
871 					"st,stm32mp1-fmc2-nfc")) {
872 		if (ebi_found)
873 			cdev = pdev;
874 
875 		return cdev;
876 	}
877 
878 	if (!ebi_found)
879 		cdev = dev;
880 
881 	return cdev;
882 }
883 
stm32_fmc2_nfc_probe(struct udevice * dev)884 static int stm32_fmc2_nfc_probe(struct udevice *dev)
885 {
886 	struct stm32_fmc2_nfc *nfc = dev_get_priv(dev);
887 	struct stm32_fmc2_nand *nand = &nfc->nand;
888 	struct nand_chip *chip = &nand->chip;
889 	struct mtd_info *mtd = &chip->mtd;
890 	struct nand_ecclayout *ecclayout;
891 	struct udevice *cdev;
892 	struct reset_ctl reset;
893 	int oob_index, chip_cs, mem_region, ret;
894 	unsigned int i;
895 	int start_region = 0;
896 	fdt_addr_t addr;
897 
898 	spin_lock_init(&nfc->controller.lock);
899 	init_waitqueue_head(&nfc->controller.wq);
900 
901 	cdev = stm32_fmc2_nfc_get_cdev(dev);
902 	if (!cdev)
903 		return -EINVAL;
904 
905 	ret = stm32_fmc2_nfc_parse_dt(dev, nfc);
906 	if (ret)
907 		return ret;
908 
909 	nfc->io_base = dev_read_addr(cdev);
910 	if (nfc->io_base == FDT_ADDR_T_NONE)
911 		return -EINVAL;
912 
913 	if (dev == cdev)
914 		start_region = 1;
915 
916 	for (chip_cs = 0, mem_region = start_region; chip_cs < FMC2_MAX_CE;
917 	     chip_cs++, mem_region += 3) {
918 		if (!(nfc->cs_assigned & BIT(chip_cs)))
919 			continue;
920 
921 		addr = dev_read_addr_index(dev, mem_region);
922 		if (addr == FDT_ADDR_T_NONE) {
923 			dev_err(dev, "Resource data_base not found for cs%d", chip_cs);
924 			return ret;
925 		}
926 		nfc->data_base[chip_cs] = addr;
927 
928 		addr = dev_read_addr_index(dev, mem_region + 1);
929 		if (addr == FDT_ADDR_T_NONE) {
930 			dev_err(dev, "Resource cmd_base not found for cs%d", chip_cs);
931 			return ret;
932 		}
933 		nfc->cmd_base[chip_cs] = addr;
934 
935 		addr = dev_read_addr_index(dev, mem_region + 2);
936 		if (addr == FDT_ADDR_T_NONE) {
937 			dev_err(dev, "Resource addr_base not found for cs%d", chip_cs);
938 			return ret;
939 		}
940 		nfc->addr_base[chip_cs] = addr;
941 	}
942 
943 	/* Enable the clock */
944 	ret = clk_get_by_index(cdev, 0, &nfc->clk);
945 	if (ret)
946 		return ret;
947 
948 	ret = clk_enable(&nfc->clk);
949 	if (ret)
950 		return ret;
951 
952 	/* Reset */
953 	ret = reset_get_by_index(dev, 0, &reset);
954 	if (!ret) {
955 		reset_assert(&reset);
956 		udelay(2);
957 		reset_deassert(&reset);
958 	}
959 
960 	stm32_fmc2_nfc_init(nfc, dev != cdev);
961 
962 	chip->controller = &nfc->base;
963 	chip->select_chip = stm32_fmc2_nfc_select_chip;
964 	chip->setup_data_interface = stm32_fmc2_nfc_setup_interface;
965 	chip->cmd_ctrl = stm32_fmc2_nfc_cmd_ctrl;
966 	chip->chip_delay = FMC2_RB_DELAY_US;
967 	chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
968 			 NAND_USE_BOUNCE_BUFFER;
969 
970 	/* Default ECC settings */
971 	chip->ecc.mode = NAND_ECC_HW;
972 	chip->ecc.size = FMC2_ECC_STEP_SIZE;
973 	chip->ecc.strength = FMC2_ECC_BCH8;
974 
975 	ret = nand_scan_ident(mtd, nand->ncs, NULL);
976 	if (ret)
977 		return ret;
978 
979 	/*
980 	 * Only NAND_ECC_HW mode is actually supported
981 	 * Hamming => ecc.strength = 1
982 	 * BCH4 => ecc.strength = 4
983 	 * BCH8 => ecc.strength = 8
984 	 * ECC sector size = 512
985 	 */
986 	if (chip->ecc.mode != NAND_ECC_HW) {
987 		dev_err(dev, "Nand_ecc_mode is not well defined in the DT\n");
988 		return -EINVAL;
989 	}
990 
991 	ret = nand_check_ecc_caps(chip, &stm32_fmc2_nfc_ecc_caps,
992 				  mtd->oobsize - FMC2_BBM_LEN);
993 	if (ret) {
994 		dev_err(dev, "No valid ECC settings set\n");
995 		return ret;
996 	}
997 
998 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
999 		chip->bbt_options |= NAND_BBT_NO_OOB;
1000 
1001 	stm32_fmc2_nfc_nand_callbacks_setup(chip);
1002 
1003 	/* Define ECC layout */
1004 	ecclayout = &nfc->ecclayout;
1005 	ecclayout->eccbytes = chip->ecc.bytes *
1006 			      (mtd->writesize / chip->ecc.size);
1007 	oob_index = FMC2_BBM_LEN;
1008 	for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1009 		ecclayout->eccpos[i] = oob_index;
1010 	ecclayout->oobfree->offset = oob_index;
1011 	ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
1012 	chip->ecc.layout = ecclayout;
1013 
1014 	if (chip->options & NAND_BUSWIDTH_16)
1015 		stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1016 
1017 	ret = nand_scan_tail(mtd);
1018 	if (ret)
1019 		return ret;
1020 
1021 	return nand_register(0, mtd);
1022 }
1023 
1024 static const struct udevice_id stm32_fmc2_nfc_match[] = {
1025 	{ .compatible = "st,stm32mp15-fmc2" },
1026 	{ .compatible = "st,stm32mp1-fmc2-nfc" },
1027 	{ /* Sentinel */ }
1028 };
1029 
1030 U_BOOT_DRIVER(stm32_fmc2_nfc) = {
1031 	.name = "stm32_fmc2_nfc",
1032 	.id = UCLASS_MTD,
1033 	.of_match = stm32_fmc2_nfc_match,
1034 	.probe = stm32_fmc2_nfc_probe,
1035 	.priv_auto	= sizeof(struct stm32_fmc2_nfc),
1036 };
1037 
board_nand_init(void)1038 void board_nand_init(void)
1039 {
1040 	struct udevice *dev;
1041 	int ret;
1042 
1043 	ret = uclass_get_device_by_driver(UCLASS_MTD,
1044 					  DM_DRIVER_GET(stm32_fmc2_nfc),
1045 					  &dev);
1046 	if (ret && ret != -ENODEV)
1047 		log_err("Failed to initialize STM32 FMC2 NFC controller. (error %d)\n",
1048 			ret);
1049 }
1050